
Frequency-enhanced Data Augmentation for
Vision-and-Language Navigation

——– Supplemental Material ——–

Keji He1,2,3 Chenyang Si∗4 Zhihe Lu3 Yan Huang1,2 Liang Wang∗1,2 Xinchao Wang∗3

1Center for Research on Intelligent Perception and Computing
National Key Laboratory for Multi-modal Artificial Intelligence Systems

Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3National University of Singapore
4Nanyang Technological University

keji.he@cripac.ia.ac.cn chenyang.si@ntu.edu.sg
{zhihelu, xinchao}@nus.edu.sg {yhuang, wangliang}@nlpr.ia.ac.cn

Appendix

A Analysis on the Impact of Random Seeds

Table 1: Performance of different seeds on R2R task.

Validation Unseen

TL NE↓ SR↑ SPL↑
seed-1 13.68 3.02 71.78 64.00
seed-2 14.18 3.02 71.39 63.63
seed-3 14.33 3.03 72.54 64.04
seed-4 15.21 3.01 71.39 62.88
Average 14.35 3.02 71.78 63.64

As described in the method section of the main manuscript, the interference image Î is a navigation
view randomly sampled from the Matterport3d dataset. Table 1 presents the impacts of different
random seeds for sampling the interference images. Across the four sets of random seeds, our
augmented data consistently enables the agent to achieve an SR of 71.39 (TD-STP) or higher. The
average performance2 of the augmented agents on SR metrics is 71.78. This indicates that the superior
performance of our method is not sensitive to the choice of random seeds.

Table 2: Analysis on the source of the interference frequency. FDAl and FDA denote utilizing the
low-frequency and high-frequency of the interference image for data augmentation, respectively.

Validation Unseen

TL NE↓ SR↑ SPL↑
TD-STP 13.53 3.28 69.65 62.97
TD-STP+FDAl 14.35±0.43 3.23±0.11 69.96±0.57 62.25±0.29

TD-STP+FDA 14.35±0.86 3.23±0.01 71.78±0.76 63.64±0.76

∗Corresponding author
2Experiments in the main manuscript are based on seed-1 which has an average performance.
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Figure 1: Navigation examples in normal and high-frequency perturbed scenes. The first row shows
candidate views and attention weights of the baseline model TD-STP in normal scenes. The second
row displays the same for high-frequency perturbed scenes. The third row presents the FDA-enhanced
model’s candidate views and attention weights in high-frequency perturbed scenes. Green and red
arrows denote the correct and erroneous actions, respectively.

B Analysis on the Source of the Interference Frequency

Table 2 presents the effects of using high-frequency (with a cutoff frequency of 10) and low-frequency
(with a cutoff frequency of 1) as interference sources in our data augmentation. We observe a
significant enhancement in the model’s performance when using high-frequency as the interference
source, with SR/SPL increased by 2.13/0.67. In contrast, low-frequency interference yields marginal
improvements, and even leads to a decrease in SPL. This result further substantiates the effectiveness
of high-frequency information in enhancing cross-modal navigation, demonstrating that our approach
enables the agent to better capture and utilize high-frequency information for improved navigation.
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Figure 2: Navigation examples in normal and high-frequency perturbed scenes. The first row shows
candidate views and attention weights of the baseline model TD-STP in normal scenes. The second
row displays the same for high-frequency perturbed scenes. The third row presents the FDA-enhanced
model’s candidate views and attention weights in high-frequency perturbed scenes. Green and red
arrows denote the correct and erroneous actions, respectively.

C Visualization Examples

Figure 1 and Figure 2 show examples of the candidate views and textual attention heatmap in normal
scenes and high-frequency perturbed scenes. It can be observed that the baseline model (the second
row) often fails to pay enough attention to the correct words, such as “walk straight (Figure 1)” and
“couch (Figure 2)”, in scenes with high-frequency interference, leading to erroneous action selections
as a result. In comparison, even in the presence of high-frequency interference, the FDA-enhanced
model (the third row) can achieve textual attention similar to the baseline model navigating in normal
scenes (the first row), and is capable of selecting the correct actions. This suggests that our method
enables the model to effectively recognize and capture the essential high-frequency information,
thereby improving text grounding and enhancing navigation performance.
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Figure 3: Navigation examples in normal scenes of the FDA-enhanced and baseline models.

Figure 4: Navigation examples in normal scenes of the FDA-enhanced model and baseline models.

Figure 3 and Figure 4 show two navigation examples in normal scenes of the FDA-enhanced (the
first row) and baseline (the second row) models. Figure 3 shows that the FDA-enhanced model could
better find the essential words, namely “island counter” for visual-textual matching and ultimately
aid the model in making correct action decisions. In the examples shown in Figure 4, both models
obtained similar textual attention. However, unlike our model, the baseline model failed to choose
the correct action. This indicates that the FDA-enhanced model, leveraging its enhanced capacity
to capture high-frequency information, exhibits superior performance in cross-modal matching and
consequently facilitates improved navigation decisions.

Figure 5, Figure 6 and Figure 7 depict three common navigation failure cases in FDA-enhanced
model, each corresponding to the visual interference from similar objects, textual interference from

4



Figure 5: Navigation failure case: visual interference from similar objects.

Figure 6: Navigation failure case: textual interference from adjacent object-related and direction-
related words.

Figure 7: Navigation failure case: textual interference from adjacent object-related words.

adjacent object-related and direction-related words, and textual interference from adjacent object-
related words. In Figure 5, the table in the second view bears a significant visual similarity to the
pool table. Consequently, the agent is misdirected towards the wrong direction during cross-modal
alignment. In Figure 6, according to the given instruction, the agent should turn left to enter the
room corresponding to the second view. However, due to the influence of the adjacent word “bed”
in the instruction, when the agent sees a bed in the wrong direction, it bypasses the left turn and
proceeds directly to the room where the bed is located. Figure 7 illustrates the scenario where the
agent prioritizes proceeding towards the object “door” that appears later in the instruction, instead
of the earlier mentioned “stairs”. This leads to a deviation in the navigation. These failure cases
indicate that the next step for navigation improvement may lie in finer-grained discrimination for
similar objects, as well as focusing on the temporal aspect of navigation reasoning through more
precise text parsing.

D Implementation Details

For HAMT on R2R and RxR, we set the learning rate (lr) as 1e-5 and the batch size (bz) is 8. And
the training iteration is 200K. In the case of HAMT on CVDN, the lr, bz and training iteration are set
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as 1e-5, 8 and 100k, respectively. For DUET, we first pretrain the model as guided by [1] and then
finetune it on R2R, with lr set as 1e-5 and bz set as 8. The total iteration for the finetuning is 50k.
For TD-STP, the lr and bz are set as 1e-5 and 8. The training iteration is 200K. We set the optimizer
as AdamW [4] for all models. The visual feature for R2R, CVDN and REVERIE are extracted by
the ViT-B/16 [2], and the visual feature for RxR is extracted by the CLIP [5]. The textual encoder is
aligned with the baseline models. In addition, the style-transfer-based ENVEDIT feature [3] we adopt
use the fixed style embedding across 36 discretized views in a panoramic setting. All the experiments
are conducted with a single NVIDIA RTX 3090 GPU. The validation and test phases are under the
single-run setting.

E A Revisit to Discrete Fourier Transform on RGB Image

Considering an image X ∈ ℜ3×H×W including RGB color channels, Xc denotes the image with
the single color channel c, where c ∈ {r, g, b}. The corresponding frequency spectrum F c can be
obtained by the Fourier Transform (FFT) formula F(Ic) on image Xc:

F c
X [m,n] = F(Xc)[m,n] =

H−1∑
h=0

W−1∑
w=0

Xc[h,w] · exp(−iuh) · exp(−ivw), u =
2π

H
m v =

2π

W
n (1)

where F c
X [m,n] denotes the value at the position [m,n] of frequency spectrum F c

X , Xc[h,w] denotes
the value at the position [h,w] of image Xc, u and v are verticle frequency and horizon frequency,
respectively. Similarly, the inverse Fourier Transform (iFFT) F−1(F c

X) maps the frequency spectrum
F c
X to the image domain, resulting in the original image Xc:

Xc[h,w] = F−1(F c
X)[h,w] =

1

HW

H−1∑
m=0

W−1∑
n=0

F c
X [m,n]·exp(iuh)·exp(ivw), u =

2π

H
m v =

2π

W
n. (2)

The frequency spectrum F
{rgb}
X and X can be obtained by stacking the frequency spectrums

{F r, F g, F b} and images {Xr, Xg, Xb} of RGB channels together, respectively:

F
{rgb}
X = Stack(F r, F g, F b), X = Stack(Xr, Xg, Xb). (3)
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