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Abstract

Policy gradient lies at the core of deep reinforcement learning (RL) in continuous
domains. Despite much success, it is often observed in practice that RL training
with policy gradient can fail for many reasons, even on standard control problems
with known solutions. We propose a framework for understanding one inherent
limitation of the policy gradient approach: the optimization landscape in the policy
space can be extremely non-smooth or fractal for certain classes of MDPs, such
that there does not exist gradient to be estimated in the first place. We draw on
techniques from chaos theory and non-smooth analysis, and analyze the maximal
Lyapunov exponents and Hölder exponents of the policy optimization objectives.
Moreover, we develop a practical method that can estimate the local smoothness
of objective function from samples to identify when the training process has
encountered fractal landscapes. We show experiments to illustrate how some
failure cases of policy optimization can be explained by such fractal landscapes.

1 Introduction

Deep reinforcement learning has achieved much success in various applications [23, 30, 38], but they
also often fail, especially in continuous spaces, on control problems that other methods can readily
solve. The understanding of such failure cases is still limited. For instance, the training process
of reinforcement learning is unstable and the learning curve can fluctuate during training in ways
that are hard to predict. The probability of obtaining satisfactory policies can also be inherently
low in reward-sparse or highly nonlinear control tasks. Existing analysis of the failures focuses
on limitations of the sampling and optimization algorithms, such as function approximation errors
[35, 39], difficulty in data collection [34], and aggressive updates in the policy space [28]. There has
not been much study of potentially deeper causes of failures that may be inherent in the formulation
of policy optimization problems.

Motivated by the common observation that small updates in the policy parameters can significantly
change the performance, we analyze the smoothness of the optimization landscapes in policy opti-
mization. Drawing on chaos theory, we introduce the concept of maximal Lyapunov exponent (MLE)
[17] to the RL setting to measure the exponential rate of trajectory divergence in MDP. It seems
contradictory that a trajectory in chaotic systems can be both exponentially divergent and uniformly
bounded at the same time, and we will show that these two conflicting facts combine to yield the
fractal structure in the optimization landscape. Intuitively, the objective function is non-differentiable
when the rate of trajectory divergence exceeds the decay rate of discount factor. Furthermore, this
finding indicates that the fluctuations observed in the loss curve are not just due to the numerical or
sampling error but rather reflect the intrinsic properties of the corresponding MDP.

We should emphasize that the fractal landscapes that we will demonstrate are stronger than various
existing results on the non-smoothness [2, 7]. Most nonsmooth objectives that have been studied still
assume is local Lipschitz continuity or piecewise smoothness that implies differentiability almost
everywhere (such as f(x) = |x|). Instead, by showing that the loss landscape of policy optimization
can be fractal, we demonstrate the absence of descent directions, which causes the failure of first-order
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methods in general. Since such behavior is an intrinsic property of the underlying dynamical systems,
the results show fundamental limitations of policy gradient methods on certain classes of MDPs.

The paper is organized as follows. In Section 3 and 4, we will introduce the preliminaries and develop
the theory for deterministic policies. In particular, we show that the optimization landscape is fractal,
even when all elements within the MDP are deterministic. Next, we consider stochastic policies
and provide an example to show how non-smoothness occurs without additional assumptions. In
Section 5, we turn the theoretical analysis into a practical sampling-based method for estimating
the Hölder exponent to determine whether the optimization objective is differentiable at a specific
parameter vector. It can also indicate if the training process has encountered fractal regions by
comparing the regression slope with some fixed threshold. In Section 6, we show experiments that
demonstrate and compare the landscapes of different MDPs.

2 Related work

Policy gradient and Q-learning methods. Policy gradient methods [33, 41] formulate RL as an
optimization problem in the parameter space, with many variations such as natural policy gradient
[16], deterministic policy gradient [29], deep deterministic policy gradient [18], trust region policy
optimization [27] and proximal policy optimization [28], were proposed. As all of these algorithms
aim to estimate the gradient of the objective function over the policy parameters, they become
ill-posed when the objective is non-differentiable, which is the focus of our analysis.

Another popular approach for model-free RL is Q-learning methods, which approximate the Q-
function of the policy at each step [22, 40]. As neural networks become more and more popular,
they are employed as function approximators in deep Q-learning algorithms [9, 13, 37]. Since the
foundation of Q-learning methods is established upon the estimation of value functions, a poor
approximation can completely ruin the entire training process. In this paper, we will show that
the value functions in a certain class of MDPs exhibit significant non-smoothness, making them
challenging to represent using existing methods.

Chaos in machine learning. Chaotic behaviors due to randomness in the learning dynamics have
been reported in other learning problems [6, 21, 25]. For instance, when training recurrent neural
networks for a long period, the outcome behaves like a random walk due to the problems of vanishing
and the exploding gradients [4]. It served as motivation for the work [24], which points out that the
chaotic behavior in finite-horizon model-based reinforcement learning problems may be caused by
long chains of nonlinear computation. A similar observation was made in [31]. However, we show
that in RL, the objective function is provably smooth if the time horizon is finite and the underlying
dynamics is differentiable. Instead, we focus on the general context of infinite-horizon problems in
MDPs, in which case the objective function can become non-differentiable.

Loss landscape of policy optimization. It has been shown that the objective functions in finite
state-space MDPs are smooth [1, 42], which enables the use of gradient-based methods and direct
policy search. It also explains why the classical RL algorithms in [32] are provably efficient in finite
space settings. Also, such smoothness results can be extended to some continuous state-space MDPs
with special structures. For instance, the objective function in Linear Quadratic Regulator (LQR)
problems is almost smooth [10] as long as the cost is finite. Similar results are obtained for the
H2/H∞ problem [43]. For the robust control problem, although the objective function may not be
smooth, it is locally Lipschitz continuous, which implies differentiability almost everywhere, and
further leads to global convergence of direct policy search [11]. There is still limited theoretical study
of loss landscapes of policy optimization for nonlinear and complex MDPs. We aim to partially
address this gap by pointing out the possibility that the loss landscape can be highly non-smooth and
even fractal, which is far more complex than the previous cases.

3 Preliminaries

3.1 Dynamical Systems as Markov Decision Processes

We consider Markov Decision Processes (MDPs) that encode continuous control problems for
dynamical systems defined by difference equations of the form:

st+1 = f(st, at) (1)
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where st ∈ S ⊂ Rn is the state at time t, s0 is the initial state and at ∼ πθ(·|st) ∈ A ⊂ Rm is the
action taken at time t based on a policy parameterized by θ ∈ Rp.We assume that both the state space
S and the action space A are compact. The objective function of the RL problem to minimize is
defined by V πθ of policy πθ:

J(θ) = V πθ (s0) = Eat∼πθ(·|st)[

∞∑
t=0

γtc(st, at)] (2)

where γ ∈ (0, 1) is the discount factor and c(s, a) is the cost function. The following assumptions
are made throughout this paper:

• (A.1) f : Rn×Rm → Rn is Lipschitz continuous over any compact domains (i.e., locally Lipschitz
continuous);

• (A.2) The cost function c : Rn × Rm → R is non-negative and locally Lipschitz continuous
everywhere;

• (A.3) The state space is closed under transitions, i.e., for any (s, a) ∈ S × A, the next state
s′ = f(s, a) ∈ S.

3.2 Policy gradient methods

Policy gradient methods estimate the gradient of the objective J(·) with respect to the parameters of
the policies. A commonly used form is

∇J(θ) = Eat∼πθ(·|st)[∇θ log πθ(at|st) Aπθ (st, at)] (3)

where πθ(·|·) is a stochastic policy parameterized by θ. Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is the
advantage function often used for variance reduction and Qπθ (·, ·) is the Q-value function of πθ. The
theoretical guarantee of the convergence of policy gradient methods is typically established by the
argument that the tail term γt ∇θV

πθ (s) diminishes as t increases, for any s ∈ S [33]. For such
claims to hold, two assumptions are needed:

• ∇θV
πθ (s) exists and is continuous for all s ∈ S;

• ∥∇θV
πθ (s)∥ is uniformly bounded over S.

The second assumption is automatically satisfied if the first assumption holds in the case that S is
either finite or compact. However, as we will see in Section 4 and 6, the existence of ∇θV

πθ (·) may
fail in many continuous MDPs even if S is compact, which challenges the fundamental well-posedness
of policy gradient methods.

3.3 Maximal Lyapunov Exponents

Behaviors of chaotic systems have sensitive dependence on their initial conditions. To be precise,
consider the system st+1 = F (st) with initial state s0 ∈ Rn, and suppose that a small perturbation
∆Z0 is made to s0. The divergence from the original trajectory of the system under this perturbation
at time t, say ∆Z(t), can be estimated by ∥∆Z(t)∥ ≃ eλt∥∆Z0∥ with some λ that is called the
Lyapunov exponent. For chaotic systems, Lyapunov exponents are typically positive, which implies
an exponential divergence rate of the separation of nearby trajectories [19]. Since the Lyapunov
exponent at a given point may depend on the direction of the perturbation ∆Z0, and we are interested
in identifying the largest divergence rate, the maximal Lyapunov exponent (MLE) is formally defined
as follows:

Definition 3.1. (Maximal Lyapunov exponent) For the dynamical system st+1 = F (st), s0 ∈ Rn,
the maximal Lyapunov exponent λmax at s0 is defined as the largest value such that

λmax = lim sup
t→∞

lim sup
∥∆Z0∥→0

1

t
log

∥∆Z(t)∥
∥∆Z0∥

. (4)

Note that systems with unstable equilibria, not necessarily chaotic, can have positive MLEs.
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3.4 Fractal Landscapes

The Hausdorff dimension is the most fundamental concept in fractal theory. We first introduce the
concept of δ-cover and Hausdorff measure:
Definition 3.2. (δ-cover) Let {Ui} be a countable collection of sets of diameter at most δ (i.e.
|Ui| = sup{∥x− y∥ : x, y ∈ Ui} ≤ δ) and F ⊂ RN , then {Ui} is a δ-cover of F if F ⊂ ∪∞

i=1Ui.
Definition 3.3. (Hausdorff measure) For any F ⊂ RN and s ≥ 0, let

Hs
δ(F ) = inf{

∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F}.

Then we call the limit Hs(F ) = limδ→0 Hs
δ(F ) the s-dimensional Hausdorff measure of F .

The definition of Hausdorff dimension follows immediately:
Definition 3.4. (Hausdorff dimension) Let F ⊂ RN be a subset, then its Hausdorff dimension

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞}.

The notion of α-Hölder continuity that extends the concept of Lipschitz continuity:
Definition 3.5. (α-Hölder continuity) Let α > 0 be a scalar. A function g : RN → R is α-Hölder
continuous at x ∈ RN if there exist C > 0 and δ > 0 such that

|g(x)− g(y)| ≤ C∥x− y∥α

for all y ∈ B(x, δ), where B(x, δ) denotes the open ball of radius δ centered at x.

The definition reduces to Lipschitz continuity when α = 1. A function is not differentiable, if the
largest Hölder exponent at a given point is less than 1. Just as smoothness is commonly associated
with Lipschitz continuity, fractal behavior is closely related to Hölder continuity. In particular, for an
open set F ⊂ Rk and a continuous mapping η : F → Rp with p > k, the image set η(F ) is fractal
when its Hausdorff dimension dimH η(F ) is strictly greater than k, which occurs when η : F → Rp
is α-Hölder continuous with exponent α < 1:
Proposition 3.1. ([8]) Let F ⊂ Rk be a subset and suppose that η : F → Rp is α-Hölder continuous
where α > 0, then dimH η(F ) ≤ 1

α dimH F .

It implies that if the objective function is α-Hölder for some α < 1, its loss landscape LJ =
{(θ, J(θ)) ∈ RN+1 : θ ∈ RN} can be fractal. Further discussion of the theory on fractals can be
found in Appendix C.

4 Fractal Landscapes in the Policy Space

In this section, we will show that the objective J(θ) in policy optimization can be non-differentiable
when the system has positive MLEs. We will first consider Hölder continuity of V πθ (·) and J(·) with
deterministic policies in 4.1 and 4.2, and then discuss the case of stochastic policies in 4.3.

4.1 Hölder Exponent of V πθ (·)

We first consider a deterministic policy πθ that maps states to actions a = πθ(s) instead of distribu-
tions. Consider a fixed policy parameter θ ∈ Rp such that the MLE of (1), namely λ(θ), is greater
than − log γ. Let s′0 ∈ S be another initial state that is close to s0, i.e., δ = ∥s′0 − s0∥ > 0 is small
enough. According to the assumption (A.3), we can find a constant M > 0 such that both ∥st∥ ≤M
and ∥s′t∥ ≤M for all t ∈ N, where {st}∞t=1 and {s′t}∞t=1 are the trajectories starting from s0 and s′0,
respectively. Motivated by (4), we further make the following assumptions:

• (A.4) There exists K1 > 0 such that ∥s′t − st∥ ≤ K1δe
λ(θ)t for all t ∈ N and δ = ∥s′0 − s0∥ > 0.

• (A.5) The policy π : RN × Rn → Rm is locally Lipschitz continuous everywhere.

We then have following theorem, and it provides a lower bound for the Hölder exponent of J whose
detailed proof can be found in Appendix B.1.
Theorem 4.1. (Non-smoothness of V πθ ) Assume (A.1)-(A.5) and the parameterized policy πθ(·) is
deterministic. Let λ(θ) denote the MLE of (1) at θ ∈ RN . Suppose that λ(θ) > − log γ, then V πθ (·)
is − log γ

λ(θ) -Hölder continuous at s0.
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Proof sketch of Theorem 4.1: Suppose that p ∈ (0, 1] is some constant for which we would like to
prove that V πθ (s) is p-Hölder continuous at s = s0, and here we take p = − log γ

λ(θ) .

According to Definition 3.5, it suffices to find some C ′ > 0 such that |V πθ (s′0)− V πθ (s0)| ≤ C ′δp

when δ = ∥s0 − s′0∥ ≪ 1. Consider the relaxed form

|V πθ (s′0)− V πθ (s0)| ≤
∞∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤ C ′δp. (5)

Now we split the entire series into three parts as shown in Figure 1: the sum of first T2 terms, the
sum from t = T2 + 1 to T3 − 1, and the sum from t = T3 to ∞. First, applying (A.4) to the sum of
the first T2 terms yields

T2∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤

e(λ(θ)+log γ)T2

1− γ
K1K2δ (6)

where K2 > 0 is the Lipschitz constant obtained by (A.2) and (A.5). If we wish to bound the
right-hand side of (6) by some term of order O(δp) when δ ≪ 1, the length T2(δ) ∈ N should have

T2(δ) ≃ C1 +
p− 1

λ(θ) + log γ
log(δ) (7)

where C1 > 0 is some constant independent of p and δ.

Figure 1: An illustration of the two series (7) and (9) that need to cover the entire R when δ → 0.

Next, for the sum of the tail terms in V πθ (·) starting from T3 ∈ N, it is automatically bounded by

∞∑
t=T3

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤

2M2e
T3 log γ

1− γ
, (8)

whereM2 = maxs∈S c(s, πθ(s)) is the maximum of continuous function c(·, πθ(·)) over the compact
domain S (and hence exists). if we bound the right-hand side of (8) by a term of order O(δp), it
yields

T3(δ) ≃ C2 +
p

log γ
log(δ), (9)

for some independent constant C2 > 0. Since the sum of (6) and (8) provides a good estimate of V πθ

only if T3(δ)− T2(δ) ≤ N0 for some N0 > 0 as δ → 0, otherwise there would be infinitely many
terms in the middle as δ → 0 that cannot be controlled by any O(δp) terms. In this case, we have

(C2 − C3) + (
p

log γ
− p− 1

λ(θ) + log γ
) log(δ) ≤ N0, (10)

as log(δ) → −∞, which implies that the slopes satisfy the inequality

p

log γ
− p− 1

λ(θ) + log γ
≥ 0, (11)

where the equality holds when p = − log γ
λ(θ) . Thus, V πθ (s) is − log γ

λ(θ) -Hölder continuous at s = s0.

On the other hand, the following counterexample shows that Theorem 4.1 has provided the strongest
Hölder-continuity result for V πθ (s) at s = s0 under the assumptions (A.1)-(A.5):
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Example 4.1. Consider a one-dimensional MDP st+1 = f(st, at) where

f(s, a) =


−1, a ≤ −1,

a, −1 < a < 1,

1, a ≥ 1,

(12)

with state space S = [−1, 1] and cost function c(s, a) = |s|. Let the policy be linear, πθ(s) = θ · s,
where θ ∈ R. It can be verified that all assumptions (A.1)-(A.5) are satisfied. Now let s0 = 0 and
θ > 1, then applying (4) directly yields

λ(θ) = lim sup
t→∞

lim sup
∥∆Z0∥→0

1

t
log

∥∆Z(t)∥
∥∆Z0∥

= lim sup
t→∞

lim sup
∥∆Z0∥→0

1

t
log

∥∆Z0∥θt

∥∆Z0∥
= log θ.

Let δ > 0 be sufficiently small, then

V πθ (δ) =

∞∑
t=0

δγtθt =

T0(δ)∑
t=0

δγtθt +

∞∑
t=T0(δ)

γt ≥ γT0(δ)

1− γ

where T0(δ) = 1 + ⌊− log δ
log θ ⌋ ∈ N and ⌊·⌋ is the flooring function. Therefore, we have

V πθ (δ)− V πθ (0) = V πθ (δ) ≥ γ
− log δ
log θ +1

1− γ
=

γ

1− γ
δ

− log γ
log θ

Remark 4.1. Another way to see why it is theoretically impossible to prove p-Hölder continuity for
V πθ for any p > − log γ

λ(θ) , notice that the inequality (10) no longer holds as log δ → −∞ since

p

log γ
− p− 1

λ(θ) + log γ
< 0.

Thus, p = − log γ
λ(θ) is the largest Hölder exponent of V πθ that can be proved in the worst case.

Remark 4.2. The value function V πθ (s) is Lipschitz continuous at s = s0 when the maximal
Lyapunov exponent λ(θ) < − log γ, since there exists a constant K ′ such that

|V πθ (s′0)− V πθ (s0)| ≤
∞∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))|

≤
∞∑
t=0

γtK ′δeλ(θ)t

≤ δK ′
∞∑
t=0

e(λ(θ)+log γ)t

≤ K ′δ

1− (λ(θ) + log γ)

where δ = ∥s0 − s′0∥.

4.2 Hölder Exponent of J(·)

The following lemma establishes a direct connection between J(θ) and J(θ′) through value functions:
Lemma 4.1. Suppose that θ, θ′ ∈ Rp, then

V πθ′ (s0)− V πθ (s0) =

∞∑
t=0

γt(Qπθ (sθ
′

t , πθ′(s
θ′

t ))− V πθ (sθ
′

t ))

where {sθ′t }∞t=0 is the trajectory generated by the policy πθ′(·).

The proof can be found in the Appendix B.2. Notice that indeed we have J(θ′) = V πθ′ (s0) and
J(θ) = V πθ (s0), substituting with these two terms in the previous lemma and performing some
calculations lead to the main theorem, and its proof can be found in the Appendix B.3.:
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Theorem 4.2. (Non-smoothness of J) Assume (A.1)-(A.5) and the parameterized policy πθ(·) is
deterministic. Let λ(θ) denote the MLE of (1) at θ ∈ Rp. Suppose that λ(θ) > − log γ, then J(·) is
− log γ
λ(θ) -Hölder continuous at θ.

Remark 4.3. In fact, the set of assumptions (A.1)-(A.5) is quite general and does not exclude the case
of constant cost functions c(s, a) ≡ const, which always results in a smooth landscape regardless
of the underlying dynamics, even though they are rarely used in practice. However, recall that the
− log γ
λ(θ) -Hölder continuity is a result of exponential divergence of nearby trajectories, when a cost

function can continuously distinguish two separate trajectories (e.g., quadratic costs) with a discount
factor close to 1, the landscape will be fractal as shown in Section 6. Another way to see it is to look
into the relaxation in (5) where the Hölder continuity is obtained from the local Lipschitz continuity
of c(s, a), i.e., |c(s, πθ(s))− c(s′, πθ(s

′))| ≤ K2∥s− s′∥. Therefore, the Hölder continuity is tight
if for any δ > 0, there exists s′0 ∈ B(s0, δ) such that |c(st, πθ(st))− c(s′t, πθ(s

′
t))| ≥ K3∥st − s′t∥

with some K3 > 0 for all t ∈ N. We will leave the further investigation for future studies.

The following example illustrates how the smoothness of loss landscape changes with λ(θ) and γ:
Example 4.2. (Logistic model) Consider the following MDP:

st+1 = (1− st)at, s0 = 0.9, (13)

where the policy at is given by deterministic linear function at = πθ(st) = θst. The objective
function is defined as J(θ) =

∑∞
t=0 γ

t (s2t + 0.1 a2t ) where γ ∈ (0, 1) is the discount factor. It is
well-known that (13) begins to exhibit chaotic behavior with positive MLEs (as shown in Figure 2a)
when θ ≥ 3.3 [15], so we plot the graphs of J(θ) for different discount factors over the interval
θ ∈ [3.3, 3.9]. From Figure 2b to 2d, the non-smoothness becomes more and more significant as γ
grows. In particular, Figure 2e shows that the value of J(θ) fluctuates violently even within a very
small interval of θ, suggesting a high degree of non-differentiability in this region.

(a) MLE λ(θ). (b) γ = 0.5. (c) γ = 0.9.

(d) γ = 0.99. (e) Magnified.

Figure 2: The value of MLE λ(θ) for θ ∈ [3.3, 3.9] is shown in 2a. The graph of objective function
J(θ) for different values of γ are shown in 2b-2e where J(θ) is estimated by the sum of first 1000
terms in the infinite series.

4.3 Stochastic Policies

The original MDP (1) becomes stochastic when a stochastic policy is employed. First, let us consider
the slightly modified version of MLE for stochastic policies:

λ̃max = lim sup
t→∞

lim sup
∥∆Z0∥→0

1

t
log

∥Eπ[∆Zω(t)]∥
∥∆Z0∥

. (14)

where ∆Z0 = s′0 − s0 is a small pertubation made to the initial state and ∆Zω(t) = s′t(ω)− st(ω) is
the difference in the sample path at time t ∈ N and sample ω ∈ Ω. Since this definition is consistent
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with that in (4) when sending the variance to 0, we use the same notation λ(θ) to denote the MLE
at given θ ∈ RN and again assume λ(θ) > − log γ. Since policies in most control and robotics
environments are deterministic, this encourages the variance to converge to 0 during training.

However, unlike the deterministic case where the Hölder continuity result was proved under the
assumption that the policy πθ(s) is locally Lipschitz continuous, stochastic policies instead provide
a probability distribution from which the action is sampled. Thus, a stochastic policy cannot be
locally Lipschitz continuous in θ when approaching its deterministic limit. For instance, consider the
one-dimensional Gaussian distribution πθ(a|s) where θ = [µ, σ]T denotes the parameters. As the
variance σ approaches 0, πθ(a|s) becomes more and more concentrated at a = µs, and eventually
converges to the Dirac delta function δ(a − µs), which means that πθ(a|s) cannot be Lipschitz
continuous within a neighborhood of any θ = [µ, 0]T even though its deterministic limit πθ(s) = µs
is indeed Lipschitz continuous. The following example illustrates that in this case, the Hölder
exponent of the objective function J(·) can still be less than 1:

Example 4.3. Suppose that the one-dimensional MDP st+1 = f(st, at) where f(s, a) is defined
as in (12) over the state space S = [−1, 1] and action space A = [0,∞). The cost function
is c(s, a) = s + 1. Also, the parameter space is θ = [θ1, θ2]

T ∈ R2 and the policy πθ(·|s) ∼
U(|θ1|s+|θ2|, |θ1|s+2|θ2|) is a uniform distribution. It is easy to verify that all required assumptions
are satisfied. Let the initial state s0 = 0 and θ1 > 1, θ2 = 0, then applying (14) directly yields
λ(θ) = log θ1 similarly as in Example 4.1. Now suppose that θ′2 > 0 is small and θ′ = [θ1, θ

′
2]
T ,

then for any ω ∈ Ω in the sample space, the sampled trajectory {s′t} generated by πθ′ has

s′t+1(ω) ≥ θ1s
′
t(ω) + (θ′2) > θ1s

′
t(ω) ≥ θt1s

′
1(ω) ≥ θt1(θ

′
2)

when s′t+1(ω) < 1. Thus, we have s′t+1(ω) = 1 for all ω ∈ Ω and t ≥ T0(θ
′) = 1 + ⌊− log θ′2

log θ1
⌋,

which further leads to

J(θ′) =
1

1− γ
+

∞∑
t=0

γt Eπθ′ [s
′
t] ≥ J(θ) +

∞∑
t=T0(δ)

γt Eπθ′ [s
′
t] ≥

γ

1− γ
(θ′2)

− log γ
log θ1

using the fact that J(θ) = 1
1−γ . Plugging ∥θ − θ′∥ = θ′2 into the above inequality yields

J(θ′)− J(θ) ≥ γ

1− γ
∥θ′ − θ∥

− log γ
log θ1 . (15)

where the Hölder exponent is again − log γ
λ(θ) as in Example 4.1.

Remark 4.4. Consider the 1-Wasserstein distance as defined in [36] between the distribution
δ(a − µs) and U(|θ1|s + |θ2|, |θ1|s + 2|θ2|), which is given by W1(θ1, θ2) =

3|θ2|
2 . It is Lipschitz

continuous at θ2 = 0, even though the non-smooth result in (15) holds. Therefore, probability
distribution metrics, such as the Wasserstein distance, are too "coarse" to capture the full fractal
nature of the objective function. This also suggests that further assumptions regarding the point-
wise smoothness of probability density functions are necessary to create a smooth landscape with
stochastic policies, even though they may exclude the case of σ → 0 as discussed earlier.

5 Estimating Hölder Exponents from Samples

In the previous sections, we have seen that the objective function J(θ) can be highly non-smooth
and thus gradient-based methods may not work well in the policy parameter space. The question
is: how can we determine whether the objective function J(θ) is differentiable at some θ = θ0 or
not in high-dimensional settings? Note that J(θ) may have different levels of smoothness along
different directions. To address it, we propose a statistical method to estimate the Hölder exponent.
Consider the objective function J(θ) and a probability distribution whose variance is finite. Consider
the isotropic Gaussian distribution X ∼ N (θ0, σ

2Ip) where Ip is the p × p identity matrix. For
continuous objective function J(·), then its variance matrix can be expressed as

V ar(J(X)) = EX∼N (θ0,σ2I)[J(X)− EX∼N (θ0,σ2Ip)[J(X)])2]

= EX∼N (θ0,σ2Ip)[(J(X)− J(ξ′))2]
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where ξ′ ∈ Rp is obtained from applying the intermediate value theorem to EX∼N (θ0,σ2Ip)[J(X)]
and hence not a random variable. If J(·) is locally Lipschitz continuous at θ0, say |J(θ)− J(θ0)| ≤
K∥θ − θ0∥ for some K > 0 when ∥θ − θ0∥ is small, then it has the following approximation

V ar(J(X)) ≤ K2EX∼N (θ0,σ2Ip)[∥X − ξ′∥2] ≃ (V ar(X))2 ∼ O(σ2) (16)

when σ ≪ 1. Therefore, (16) provides a way to directly determine whether the Hölder exponent of
J(·) at any given θ ∈ Rp is less than 1, especially when the dimension p is large. In particular, taking
the logarithm on both sides of (16) yields

log V arσ(J(X)) ≤ C + 2 log σ (17)

for some constant C where the subscript in V arσ(J(X)) indicates its dependence on the standard
deviation σ of X . Thus, the log-log plot of V arσ(J(X)) versus σ is expected to be close to a straight
line with slope k ≥ 2 when J(θ) is locally Lipschitz continuous around θ = θ0. Therefore, one can
determine the smoothness by sampling around θ0 with different variances and estimating the slope
via linear regression. Usually, J(θ) is Lipschitz continuous at θ = θ0 when the slope k is close to or
greater than 2, and it is non-differentiable if the slope is less than 2.

6 Experiments

In this section, we will validate the theory presented in this paper through common RL tasks. All
environments are adopted from The OpenAI Gym Documentation [5] with continuous control
input. The experiments are conducted in two steps: first, we randomly sample a parameter θ0
from a Gaussian distribution and estimate the gradient η(θ0) from (3); second, we evaluate J(θ) at
θ = θ0 + δη(θ0) for each small δ > 0. According to our results, the loss curve is expected to become
smoother as γ decreases, since smaller γ makes the Hölder exponent − log γ

λ(θ) larger. In the meantime,
the policy gradient method (3) should give a better descent direction while the true objective function
J(·) becoming smoother.

Notice that a single sample path can always be non-smooth when the policy is stochastic and hence
interferes the desired observation, we use stochastic policies to estimate the gradient in (3), and apply
their deterministic version (by setting variance equal to 0) when evaluating J(θ). Regarding the
infinite series, we use the sum of first 1000 terms to approximate J(θ). The stochastic policy is
given by πθ(·|s) ∼ N (u(s), σ2Ip) where the mean u(s) is represented by the 2-layer neural network
u(s) = W2 tanh(W1s) where W1 ∈ Mr×n(R) and W2 ∈ Mm×r(R) are weight matrices. Let
θ = [W1,W2]

T denote the vectorized policy parameter. For the width of the hidden layer, we use
r = 8 for the inverted pendulum and acrobot, and r = 64 for the hopper.

(a) γ = 0.9, deter-
ministic.

(b) γ = 0.9, stochas-
tic.

(c) γ = 0.99, deter-
ministic.

(d) γ = 0.99,
stochastic.

(e) y = 1.980x +
2.088.

Figure 3: The experimental results of inverted pendulum. In 3e, the linear regression result is obtained
for γ = 0.9. The loss curves J(θ) are presented in 3a-3d where θ = θ0 + δη(θ0) with step size 10−7.

Inverted Pendulum. The inverted pendulum task is a standard test case for RL algorithms, and
here we use it as an example of non-chaotic system. The initial state is always taken as s0 = [−1, 0]T

([0, 0]T is the upright position), and quadratic cost function c(s, a) = sTt Qst + 0.001∥at∥2, where
Q = diag(1, 0.1) is a 2× 2 diagonal matrix, st ∈ R2 and at ∈ R. The initial parameter is given by
θ0 ∼ N (0, 0.052 I). In Figure 4a and 4c, we see that the loss curve is close to a straight line within a
very small interval, which indicates the local smoothness of θ0. It is validated by the estimate of the
Hölder exponent of J(θ) at θ = θ0 which is based on (16) by sampling many parameters around θ0
with different variance. In Figure 3e, the slope k = 1.980 is very closed to 2 so Lipschitz continuity
(and hence differentiability) is verified at θ = θ0. As a comparison, the loss curve of single random
sample path is totally non-smooth as shown in Figure 3b and 3d.
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Acrobot. The acrobot system is well-known for its chaotic behavior and hence we use it as
the main test case. Here we use the cost function c(s, a) = sTt Qst + 0.005∥at∥2, where Q =
diag(1, 1, 0.1, 0.1), st ∈ R4 and at ∈ R. The initial state is s0 = [1, 0, 0, 0]T . The initial parameter
is again sampled from θ0 ∼ N (0, 0.052 I). From Figure 4a-4c, the non-smoothness grows as γ
increases and finally becomes completely non-differentiable when γ = 0.99 which is the most
common value used for discount factor. It partially explains why the acrobot task is difficult to
policy gradient methods. In Figure 4e, the Hölder exponent of J(θ) at θ = θ0 is estimated as
α ≃ 0.43155 < 1, which further indicates non-differentiability around θ0.

(a) γ = 0.8, deter-
ministic.

(b) γ = 0.9, deter-
ministic.

(c) γ = 0.99, deter-
ministic.

(d) γ = 0.99,
stochastic.

(e) y = 0.8631x +
2.041

Figure 4: The experimental results of acrobot. In Figure 4e, the linear regression result is obtained for
γ = 0.9. The loss curves J(θ) are presented in 4a-4d where θ = θ0 + δη(θ0) with step size 10−7.

Hopper. Now we consider the Hopper task in which the cost function is defined c(s, a) = (1.25−
s[0]) + 0.001∥a∥2, where s[0] is the first coordinate in s ∈ R11 which indicates the height of hopper.
Because the number of parameters involved in the neural network is larger, the initial parameter
is instead sampled from θ0 ∼ N (0, 102 I). As we see that in Figure 5a, the loss curve is almost
a straight line when γ = 0.8, and it starts to exhibit non-smoothness when γ = 0.9 and becomes
totally non-differentiable when γ = 0.99. A supporting evidence by the Hölder exponent estimation
is provided in Figure 5e where the slope is far less than 2.

(a) γ = 0.8, deter-
ministic.

(b) γ = 0.9, deter-
ministic.

(c) γ = 0.99, deter-
ministic.

(d) γ = 0.99,
stochastic.

(e) y = 0.5036x −
1.250.

Figure 5: The experimental results of hopper. In Figure 5e, the linear regression result is obtained for
γ = 0.9. The loss curves J(θ) are presented in 5a-5d where θ = θ0 + δη(θ0) with step size 10−3.

7 Conclusion

In this paper, we initiate the study of chaotic behavior in reinforcement learning, especially focusing
on how it is reflected on the fractal landscape of objective functions. A method to statistically estimate
the Hölder exponent at some given parameter is proposed, so that one can figure out if the training
process has encountered fractal landscapes or not. We believe that the theory established in this paper
can help to explain many existing results in reinforcement learning, such as the hardness of complex
control tasks and the fluctuating behavior of training curves. It also poses a serious question to the
well-posedness of policy gradient methods given the fact that no gradient exists in many continuous
state-space RL problems. Being aware of the fact that the non-smoothness of loss landscapes is an
intrinsic property of the model, rather than a consequence of any numerical or statistical errors, we
conjecture that the framework developed in this paper might provide new insights into the limitations
of a wider range of deep learning problems beyond the realm of reinforcement learning.
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A A Brief introduction to chaos theory

As mentioned in the Introduction, chaos exists in many systems in the real world. Although no
universal definition of chaos can be made, there are, indeed, three features that a chaotic system
usually possesses [14]:

• Dense periodic points;

• Topological transitivity;

• Sensitive dependence on initial conditions;

In some cases, some of these properties imply the others. It is important to note that, despite the
appearance of chaos is always accompanied by high unpredictability, the chaotic behavior is entirely
deterministic and is not a consequence of randomness. Another interesting fact is that trajectories
in a chaotic system are usually bounded, which drives us to think about the convergence of policy
gradient methods beyond the boundedness of state spaces.

(a) Lorenz attractor. (b) Rössler attractor.

Figure 6: The Lorenz system and Rössler system are standard examples of chaotic systems, in which
a small perturbation in the initial state can result in a significant divergence in the entire trajectory.

Actually, it can be summarized from the results in this paper that for a given MDP, the following
three features contribute most to its chaotic behavior:

• Infinite time horizon (t→ ∞);

• Continuous state space (∥∆Z0∥ → 0);

• Exponential divergence (λmax > 0);

Since these features are not necessarily bound to certain types of continuous state-space MDPs, it
would be exciting for future studies to investigate other types of MDPs using the framework developed
in the paper.

B Proofs omitted in Section 4

B.1 Proof of Theorem 4.1

Proof. Suppose that s′0 ∈ S is another initial state close to s0 and δ = ∥s0 − s′0∥. Let T1 ∈ N be the
smallest integer that satisfies

T1 ≥ 1

λ(θ)
log(

2M2

K1δ
), (18)
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where M2 = 1 + maxs∈S c(s, πθ(s)) > 0 is the maximum of the continuous function c(·, πθ(·))
over S , then applying the Lipschitz condition of c(·, πθ(·)) yields

T1∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤

T1∑
t=0

γtK2∥st − s′t∥

≤
T1∑
t=0

K1K2e
(λ(θ)+log γ)tδ

≤ K1K2δ
e

λ(θ)+log γ
λ(θ)

log(
2M2
K1δ )+2(λ(θ)+log γ)

e(λ(θ)+log γ) − 1

=
e2(λ(θ)+log γ)K2K

− log γ
λ(θ)

1 (2M2)
1+ log γ

λ(θ)

e(λ(θ)+log γ) − 1
δ

− log γ
λ(θ)

where K2 > 0 is the Lipschitz constant of c(·, πθ(·)) over compact set S.

On the other hand, the tail terms in J(·) is bounded by

∞∑
t=T1+1

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤

∞∑
t=T1+1

2M2γ
t

≤
∞∑
t=T1

2M2γ
t

= 2M2
γT1

1− γ

≤ 2M2

1− γ
(
K1

2M2
)

− log γ
λ(θ) δ

− log γ
λ(θ)

using that |c(st, πθ(st))− c(s′t, πθ(s
′
t))| ≤ 2M2.

Combining the above two inequalities yields

|V πθ (s′0)− V πθ (s0)|

≤
∞∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))|

=

T1∑
t=0

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))|+

∞∑
t=T1+1

γt|c(st, πθ(st))− c(s′t, πθ(s
′
t))|

≤(
e2(λ(θ)+log γ)K2K

− log γ
λ(θ)

1 (2M2)
1+ log γ

λ(θ)

e(λ(θ)+log γ) − 1
+

2M2

1− γ
(
K1

2M2
)

− log γ
λ(θ) ) δ

− log γ
λ(θ)

and we complete the proof.

B.2 Proof of Lemma 4.1

Proof. For the ease of notation, let st = sθt , s
′
t = sθ

′

t , u(s) = πθ(s) and u′(s) = πθ′(s).
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V πθ′ (s0)− V πθ (s0) =

∞∑
t=0

γtc(s′t;u
′(s′t))− V πθ (s0)

=

∞∑
t=0

γt(c(s′t;u
′(s′t)) + V πθ (s′t)− V πθ (s′t))− V πθ (s0)

=

∞∑
t=0

γt(c(s′t;u
′(s′t)) + γV πθ (s′t+1)− V πθ (s′t) + V πθ (s′t)− γV πθ (s′t+1))− V πθ (s0)

=

∞∑
t=0

γt(Qπθ (s′t, u
′(s′t))− V πθ (s′t)) +

∞∑
t=0

γt(V πθ (s′t)− γV πθ (s′t+1))− V πθ (s0).

Using the fact that γtV πθ (x′t+1) → 0 as t→ ∞ from (A.3) yields

V πθ′ (s0)− V πθ (s0) =
∞∑
t=0

γt(Qπθ (s′t, u
′(s′t))− V πθ (s′t)) + V πθ (s′0)− V πθ (s0)

=

∞∑
t=0

γt(Qπθ (s′t, u
′(s′t))− V πθ (s′t))

and the proof is completed using s′0 = s0.

B.3 Proof of Theorem 4.2

Proof. First, we will show that Qπθ (s, a) is − log γ
λ(θ) -Hölder continuous with respect to a. Note that

for any given a ∈ A and any a′ ∈ A such that ∥a− a′∥ ≪ 1 ,

|Qπθ (s, a)−Qπθ (s, a′)| ≤ |c(s, a)− c(s, a′)|+ γ|V πθ (f(s, a))− V πθ (f(s, a′))|

≤ K1∥a− a′∥+ γ∥f(s, a)− f(s, a′)∥
− log γ
λ(θ)

≤ K1∥a− a′∥+ γK2∥a− a′∥
− log γ
λ(θ)

≤ K3∥a− a′∥
− log γ
λ(θ)

for some K3 > 0 using the locally Lipschitz continuity of c and f .

Note that V πθ (s) = Qπθ (s, πθ(s)), combining it with Lemma 4.1 yields

|J(θ′)− J(θ)| ≤
∞∑
t=0

γt|Qπθ (s′t, u
′(s′t))− V πθ (s′t)|

=

∞∑
t=0

γt|Qπθ (s′t, πθ′(s
′
t))−Qπθ (s′t, πθ(s

′
t))|

≤
∞∑
t=0

γtK3∥πθ′(s′t)− πθ(s
′
t)∥

− log γ
λ(θ)

≤
∞∑
t=0

γtK3K4∥θ′ − θ∥
− log γ
λ(θ)

=
K3K4

1− γ
∥θ′ − θ∥

− log γ
λ(θ)

using the fact that πθ(s) is Lipschitz continuous in a neighborhood of (θ, s) ∈ RN × S for some
constant K4 > 0 and we complete the proof.
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C From the perspective of fractal theory

We will go through some basic concepts in fractal theory that are related to the study of non-smooth
functions.

C.1 The Hausdorff dimension

We will show that the Hausdorff dimension is well-defined: First, it is clear that when δ < 1, Hs
δ(F )

is non-increasing with respect to s. Thus, Hs(F ) is non-increasing as well. Let s ≥ 0 such that
Hs(F ) <∞, then for any t > s and any δ-cover {Ui} of F , we have

∞∑
i=1

|Ui|t ≤ δt−s
∞∑
i=1

|Ui|s

which implies Ht(F ) = 0 by taking infimum on both sides and letting δ → 0. Therefore, the set
{s ≥ 0 : 0 < Hs(F ) <∞} contains at most one point, which further implies inf{s ≥ 0 : Hs(F ) =
0} = sup{s ≥ 0 : Hs(F ) = ∞}.

More details regarding the well-posedness of Hausdorff dimension can be found in [3, 8]. In particular,
one can easily verify that the Hausdorff dimension coincides with the standard dimension (i.e. s ∈ N)
when F is a regular manifold. Typically, the Hausdorff dimension of a fractal is not an integer, and
we will be exploiting this fact through the section. A famous example is the Weierstrass function as
shown in Figure 7. A comparison of Figure 2e and Figure 7c (they have the same scale) gives some
sense about how non-smooth the objective function can be in practice.

(a) The double sector S(x, ϕ, ψ). (b) The W (x) over x ∈ [−2, 2]. (c) Magnified: x ∈ [0.5, 0.5001].

Figure 7: (a) shows how the double sector looks like. In (b) and (c), the Weierstrass function is given
by W (x) =

∑∞
n=0 a

n cos(bnπx) where a = 0.6, b = 7. The Hausdorff dimension of its loss curve
is calculated as dimH LW = 2 + logb a ≃ 1.73. Also, according to [12], such W (x) is nowhere
differentiable when 0 < a < 1 and ab ≥ 1.

C.2 Non-existence of tangent plane

Actually, when J(·) is Lipschitz continuous on any compact subset of RN , by the Rademacher’s
Theorem, we know that it is differentiable almost everywhere which implies the existence of tangent
plane. As it comes to fractal landscapes, however, the tangent plane itself does not exist for almost
every θ ∈ RN , which makes all policy gradient algorithms ill-posed. Although similar results were
obtained for higher-dimensional cases as in [26], we focus on the two-dimensional case so that it
provides a more direct geometric intuition. First, we introduce the notion of s-sets:
Definition C.1. Let F ⊂ R2 be a Borel set and s ≥ 0, then F is called an s-set if 0 < Hs(F ) <∞.

The intuition is that: when the dimension of fractal F is a fraction between 1 and 2, then there is no
direction along which a significant part of F concentrates within a small double sector with vertex x
as shown in Figure 7a. To be precise, let S(x, ϕ, ψ) denote the double sector and r > 0, then we say
that F has a tangent at x ∈ F if there exists a direction ϕ such that for every angle ϕ > 0, it has

1. lim supr→0
Hs(F∩B(x,r))

(2r)s > 0;

2. limr→0
Hs(F∩(B(x,r)\S(x,ϕ,ψ)))

(2r)s = 0;
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where the first condition states that the set F behaves like a fractal around x, and the second condition
implies that the part of F lies outside of any double sector S(x, ϕ, ψ) is negligible when r → 0.
Then, the main result is as follows:
Proposition C.1. (Non-existence of tangent planes, [8]) If F ⊂ R2 is an s-set with 1 < s < 2, then
at almost all points of F , no tangent exists.

Therefore, "estimate the gradient" no longer makes sense since there does not exist a tangent line/plane
at almost every point on the loss surface. This means that all policy gradient algorithms are ill-posed
since there is no gradient for them to estimate at all.

C.3 Accumulated uncertainty

Another issue that may emerge during training process is the accumulation of uncertainty. To see how
the uncertainty entered at each step accumulates and eventually blows up when generating a path
along fractal boundaries, let us consider the following toy problem: Suppose that the distance between
the initial point θ0 ∈ RN and the target θ∗ is d > 0, and step size δk > 0 is adapted at the k-th step,
as shown in Figure 8a. If there exists c > 0 such that the projection ⟨θ∗ − θ0, θk+1 − θk⟩ ≥ cdδk for
all k ∈ N which implies that the angle between the direction from θk to θk+1 and the true direction
θ∗ − θ0 does not exceed arccos(c), in this case, a successful path {θk} that converges to θ∗ should
give

∞∑
k=0

cdδk ≤
∞∑
k=0

⟨θ∗ − θ0, θk+1 − θk⟩ = ⟨θ∗ − θ0, θ
∗ − θ0⟩ = d2

using θk → θ∗ as k → ∞, which is equivalent to
∑∞
k=0 δk ≤ d

c .

(a) Generating path from θ0 to θ∗. (b) Update θn+1 from θn.

Figure 8: Illustrations of the statistical challenges in implementing policy gradient algorithms on a
fractal loss surface.

On the other hand, when walking on the loss surface, it is not guaranteed to follow the correct
direction precisely all the time. For any small step size δ > 0, the uncertainty fraction u(δ) involved
in every single step can be estimated by the following result [20]:
Proposition C.2. Let δ > 0 be the step size and β = N + 1 − dimH J where dimH J is the
Hausdorff dimension of loss surface of J(·), then the uncertainty u(δ) ∼ O(δβ) when δ ≪ 1.

Therefore, we may assume that there exists another c′ > 0 such that the uncertainty Uk at the k-th
step has Uk ≤ c′δβk for all k = 0, 1, .... Then, the accumulated uncertainty

U =

∞∑
k=0

Uk ≤ c′
∞∑
k=0

δβk

is bounded when β = 1 (i.e. boundary is smooth) using the earlier result
∑∞
k=0 δk ≤ d

c . However,
the convergence of

∑∞
k=0 δk no longer guarantees the convergence of

∑∞
k=0 δ

β
k when β < 1, and a

counterexample is the following series:

δk =
1

k(log(k + 2))2

for all k = 0, 1, ..., which implies the uncertainty accumulated over the course of iterations may
increase dramatically and eventually cause the sequence θk to become random when walking on
fractal boundaries.
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