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Abstract

Domain adaptive object detection (DAOD) aims to generalize detectors trained
on an annotated source domain to an unlabelled target domain. However, existing
methods focus on reducing the domain bias of the detection backbone by inferring a
discriminative visual encoder, while ignoring the domain bias in the detection head.
Inspired by the high generalization of vision-language models (VLMs), applying a
VLM as the robust detection backbone following a domain-aware detection head
is a reasonable way to learn the discriminative detector for each domain, rather
than reducing the domain bias in traditional methods. To achieve the above issue,
we thus propose a novel DAOD framework named Domain-Aware detection head
with Prompt tuning (DA-Pro), which applies the learnable domain-adaptive prompt
to generate the dynamic detection head for each domain. Formally, the domain-
adaptive prompt consists of the domain-invariant tokens, domain-specific tokens,
and the domain-related textual description along with the class label. Furthermore,
two constraints between the source and target domains are applied to ensure that
the domain-adaptive prompt can capture the domains-shared and domain-specific
knowledge. A prompt ensemble strategy is also proposed to reduce the effect
of prompt disturbance. Comprehensive experiments over multiple cross-domain
adaptation tasks demonstrate that using the domain-adaptive prompt can produce
an effectively domain-related detection head for boosting domain-adaptive object
detection. Our code is available at https://github.com/Therock90421/DA-Pro.

1 Introduction

The essence of object detection lies in training a detection backbone to extract visual features
from images and a detection head to recognize and locate objects based on the visual features.
Object detectors whose backbone are based on Convolutional neural networks (CNNs) and Visual-
Transformer (ViT) have achieved encouraging performance with annotated data [31, 30, 25, 5].
However, it may suffer intolerable performance degradation when applied to an unlabelled domain
due to domain bias. In this respect, domain adaptive object detection (DAOD) is explored to generalize
detectors trained on an annotated source domain to an unlabelled target domain.

Current research on DAOD focuses on inferring a discriminative visual encoder as the detection
backbone. They encourage the visual encoder to generate domain-invariant features by aligning
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Figure 1: (a) Existing methods focus on reducing the domain bias of the detection backbone by
inferring a discriminative visual encoder across domains, ignoring the domain bias in the detection
head. (b) The proposed DA-Pro consists of a VLM-based backbone and a domain-aware detection
head obtained by learning domain-adaptive prompt.

source and target domains in feature space [3, 48, 37, 44, 22, 39, 14, 17]. These works strive to
reduce the domain bias of the detection backbone. However, they ignore the domain bias in the
detection head. As shown in Fig. 1(a), they apply the same detection head on both domains, inevitably
leading to performance degradation on the target domain [13, 8, 35]. Recently, vision-language
models (VLMs) show remarkably high generalization for downstream tasks on different domains,
such as CLIP [29], GLIP [20] and ALIGN [16]. The ability of VLMs to generate highly generalized
features makes it possible to be a robust visual encoder for DAOD. On this basis, applying a VLM
as the detection backbone following a domain-aware detection head is a reasonable way to directly
learn a discriminative detector for target domains, rather than reducing the domain bias in traditional
methods. Furthermore, inspired by prompt tuning such as CoOp [47], using domain-related prompt
can produce domain-related detection head.

In this work, we propose a novel Domain-Aware detection head with Prompt tuning (DA-Pro)
which is a new DAOD framework with a VLM-based backbone and a domain-aware detection head,
as shown in Fig. 1(b). To the best of our knowledge, we are the first to apply prompt tuning in
DAOD. Based on the highly generalized features generated from a VLM-based backbone and the
domain-aware detection head, there is no need to focus on reducing the domain bias in the detection
head. In DA-Pro, the domain-aware detection head is obtained by learning the domain-adaptive
prompt. To achieve high discrimination, domain-adaptive prompt exploits both domain-invariant
and domain-specific knowledge, consisting of domain-invariant tokens, domain-specific tokens and
domain-related textual descriptions, along with the class textual descriptions. Domain-invariant
tokens, which are shared across domains, learn the domain-invariant knowledge. Domain-specific
tokens and the domain-related textual description are different across domains, aiming to capture the
domain-specific knowledge of the corresponding domain by both learning and hand-craft.

To optimize the domain-adaptive prompt so that it can capture the domains-shared and domain-specific
knowledge, we further propose two unique constraints. Firstly, to learn the shared domain-invariant
knowledge, we constrain the detection heads generated by the source-domain prompt and target-
domain prompt to recognize the images as accurately as possible. Secondly, given images of one
domain, we constrain the detection head generated by the corresponding domain prompt to output
higher confidence of its own domain than of the other domain. Moreover, we introduce a historical
prompts ensemble strategy to reduce the disturbance caused by data mutation in the mini-batch.
Concretely, we maintain a prompt buffer, which is updated by EMA in each iteration of training, and
use it for inference.

We conduct extensive experiments for the proposed DA-Pro on three mainstream benchmarks:
Cross-Weather (Cityscapes → Foggy Cityscapes), Cross-Fov (KITTI → Cityscapes), and Sim-to-
Real (SIM10K → Cityscapes). The experimental results show that our method brings noticeable
improvement and achieves state-of-the-art performance. Concretely, DA-Pro improves the mAP by
1.9% ∼ 3.3% on synthetic and real datasets over the strong Baseline RegionCLIP. In the best case,
we achieve 55.9% mAP on the widely accepted benchmark of Cross-Weather, showing remarkable
effectiveness in applying the domain adaptive detection head.
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2 Related Works

Domain Adaptive Object Detection (DAOD) Domain Adaptive Object Detection (DAOD) aims to
generalize the object detector trained on the labelled source domain to the unlabelled target domain.
The key concept is inferring a discriminative visual encoder as the detection backbone by aligning
source and target domains in feature space. Previous works for domain adaption [26, 42, 27, 40,
33, 9, 28, 19, 42] have explored minimizing various distance metrics to reduce feature discrepancy.
Inspired by them, DA-Faster [3] first introduces a domain discriminator to extract domain-invariant
features [31] adversarially at the image level. To avoid sub-optimization by directly aligning domain-
specific features, DSS [37] suppresses the relevant gradient during backpropagation. TIA [44]
divides the detection task into two sub-tasks, localization and classification, and employs task-specific
discriminators to optimize them separately. CaCo [14] proposes that categories-agnostic alignment
ignores class-specific knowledge and may lead to negative adaptation. Then it explicitly models
the intra-class compactness and inter-class separability and aligns features on category hierarchy.
SIGMA [22] further models class-conditional distributions of two domains with cross-image graphs
and minimizes graph distances to bridge the domain gap.

Despite the considerable performance of domain alignment, existing methods ignore the domain bias
in the detection head. They share the detection head on both domains, inevitably leading to worse
discrimination on the target domain. In this work, we introduce visual-language models to DAOD,
to obtain the domain-aware detection head via the domain-related textual description and the text
encoder.

Visual-language models Recent advances in visual-language representation learning have shown that
learning directly from image-text pairs is a promising alternative that leverages a much broader source
of supervision. The model inferred by aligning the representation of the image-text pairs is defined as
Visual-Language Model (VLM). A representative work is CLIP, which trains a visual encoder and a
text encoder using the contrastive loss based on 400 million image-text pairs, demonstrating good
generability for the unseen classes. When inference, it classifies images using textual representations
generated from natural language descriptions, i.e. prompt. Some research [11, 45] adapt VLM into
the object detection framework to encode robust visual and textual features. ViLD [11] distills the
knowledge from a pre-trained VLM into a two-stage detector via aligning the region embeddings
of proposals to CLIP’s output. RegionCLIP [45] further extends VLM to directly learn region-level
visual representations by generating region-text pairs as supervision. Some others [8, 35] introduce
semantic domain concepts via textual prompts to infer robust detectors. In this work, we apply a VLM
as the robust detection backbone and utilize the text encoder to build the domain-aware detection
head. We adapt [45] with a domain classifier [3] as the Baseline.

Prompt Tuning Prompt tuning has been explored to transfer the pre-trained VLM to its downstream
tasks, which utilizes a learnable textual prompt to embed task-relevant information for prediction.
A proper prompt could boost the performance significantly with prompt engineering, however,
it requires domain expertise and takes an amount of time for words tuning. Inspired by prompt
tuning in language tasks, Context Optimization (CoOp) [47] and Conditional Context Optimization
(CoCoOp) [46] replaces the hand-crafted prompts with the learnable continuous tokens to automate
prompt engineering in an end-to-end manner. Furthermore, KgCoOp [41] explores the forgetting of
general textual knowledge during prompt tuning and alleviates it by reducing the discrepancy between
the learnable and hand-crafted prompt. DetPro [6] extends CoOP to object detection with a context
grading scheme to separate proposals in the image foreground for tailored prompt training. However,
these methods only develop highly generalizable and discriminative prompt on training domain
(single domain). Ignoring the cross-domain difference, their domain-agnostic prompts can only
capture domain knowledge on the training set. Due to domain bias, they have limited performance
on target domain. To enable the prompt to learn cross-domain information, we introduce a novel
domain-adaptive prompt and infer robust detection heads on each domain.

3 Methodology

DAOD aims to generalize the detector trained on the annotated source domain to the unlabelled
target domain. In this work, we propose a novel Domain-Aware detection head with Prompt tuning
(DA-Pro) for DAOD, which employs prompt tuning to generate the domain-aware detection head for
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Figure 2: Overview of the proposed DA-Pro framework on the Cross-Weather adaptation scenario.

capturing the domain-specific and domain-invariant knowledge, as shown in Figure 2. Therefore, we
first give a brief introduction of prompt tuning and then introduce the proposed method.

3.1 Preliminaries

Inspired by the effectiveness of CLIP for visual-language learning, we apply CLIP to embed the
image and text description. Formally, CLIP consists of the visual encoder f and the text encoder
g. For a classification task with K categories, CLIP uses the classes’ name to generate the textual
embedding space with a hand-crafted prompt, a text encoder g(·), and a text tokenizer e(·), where
e(·) map the text description into vectors. By denoting the class name of the i-th category as "class-i",
its corresponding fixed prompt ti is established by using the template "A photo of a [class-i]" to
generate the word vector tokens, e.g., ti = [e("A photo of a [class-i]")]. After that, the text encoder
further project the fixed prompt into textual embedding space, defined as zi = g(ti).

Given an input image I and its class label y, the visual encoder f firstly extracts the visual embedding
f(I). Then, the predicted probability p(ŷ = y|I) of input image I on the class y is computed with
the distance between visual embedding and text embedding:

p(ŷ = y|I) = exp(s(f(I), g(ty))/τ)∑K
i=1 exp(s(f(I), g(ti))/τ)

, (1)

where s(·) is the cosine similarity, and τ is a learnable temperature parameter.

Especially, CLIP applies the hand-crafted prompts to generate the class textual embedding, having a
less discriminative ability for downstream tasks. Recently researchers, such as CoOp, show that using
the continuous learnable prompt can effectively capture domain-related knowledge. Formally, the
hand-crafted prompt is replaced by M learnable tokens V = [v1][v2]...[vM ]. After that, the learnable
prompt ti is defined as the concatenation of v and the tokenized vector ci = e("class-i") of i-th class:

ti = [v1][v2]...[vM ][ci]. (2)

Recently, a lot of CLIP-based detectors are proposed to mine textual knowledge of categories
effectively. For example, RegionCLIP [45] learns region-level visual representations by adapting
CLIP with the hand-crafted prompt to a vanilla detector. Furthermore, DetPro [6] further applies the
learnable prompt(Eq. 2) to generate the domain-agnostic representations. However, both the proposed
prompts in RegionCLIP [45] and DetPro [6] cannot model the domain-specific knowledge, which is
critical for DAOD.

3.2 Domain-Adaptive Prompt

Since the existing DAOD methods only consider the visual information, they aim to infer an unbiased
visual encoder to generate domain-invariant features and use a unique detection head for recognition.
For example, DA-Faster [3] introduces a domain discriminator to train a discriminative detection
backbone [31] adversarially. However, they all ignore the domain bias in the detection head. From a
cognitive perspective, using a shared visual encoder and a domain-related detection head can also
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reduce the domain bias. Furthermore, thanks to the increasing scale of models and data, the pre-trained
visual-language model (VLM) has a high generalization for the downstream task. Consequently,
treating the pre-trained model as a visual encoder to extract the highly generalized features and using
the domain-specific classifier (detection head) for recognization is a reasonable way for domain-
adaptive object detection rather than reducing the domain bias in traditional methods. Therefore, how
to propose a domain-adaptive detection head is the rest problem.

Inspired by prompt tuning such as CoOp, we can generate the dynamic textual class embedding
by feeding different prompts, i.e., using the source (target)-related prompt can produce the source
(target)-related detection heads for the source (target) domain. Based on the CLIP, the domain-
adaptive detection head can be obtained by feeding a domain-adaptive prompt into the text encoder
of CLIP. To ensure the domain-adaptive prompt has a high discrimination and generalization ability,
an ideal domain-adaptive prompt should satisfy the following conditions: 1) it can model the shared
knowledge between the source and target domains; 2) it can model the specific knowledge of
each domain; 3) it contains information that distinguishes or describes each domain; 4) The class
information should be embedded for discriminative representation learning.

To achieve the above issue, we design an effective domain-adaptive prompt,

tdi = [vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] (3)

In Eq.3, the domain-adaptive prompt consists of four components. Firstly, Vc = [vc
1][v

c
2]...[v

c
M ] are

the domain-invariant tokens with M learnable vectors tokens to learn the common knowledge across
two domains. Then, V = [vd

1 ][v
d
2 ]...[v

d
N ] are the domain-specific tokens with N learnable tokens,

which are independent across domains to exploit specific knowledge of each domain, i.e., Vs =
[vs

1][v
s
2]...[v

s
N ] and Vt = [vt

1][v
t
2]...[v

t
N ] represent the domain-specific prompt of the source and

target domains. Similar to CLIP, ci is the tokenized vector of the i-th class, which is the critical
component for boosting the representation discrimination. To constrain the domain-adaptive prompt
can fully capture the domain-related knowledge, the domain labels such as the domain-related textual
descriptions are used to generate the domain-related vector tokens. Given the domain-related textual
description [’domain-d’], the domain-related prompts dld = e("domain-d") is the vector of the
hand-crafted textual description "domain-d" for domain d ∈ {s, t}. As the Cityscapes to Foggy
Cityscape for example, the domain labels [‘domain-d’] for the source domain(‘Cityscapes’) and
the target domain (‘Foggy Cityscape’) are ‘clear’ and ‘foggy’, respectively. Note that the domain-
related prompts [dld] are the significant prompt to control the proposed prompt for inferring the
domain-aware knowledge.

By replace the domain-specific prompt V in Eq. 3 with the source-specific prompt Vs and the
target-specific prompt Vt, the final source and target prompts are:

tsi = [vc
1][v

c
2]...[v

c
M ][vs

1][v
s
2]...[v

s
N ][ci][dls] (4)

tti = [vc
1][v

c
2]...[v

c
M ][vt

1][v
t
2]...[v

t
N ][ci][dlt] (5)

3.3 Domain-Adaptive Prompt for object detection

Following [45], we use a class-agnostic RPN [43] to propose image regions and extract visual
embedding via the visual encoder. Then, the class textual embeddings are generated by feeding the
domain-adaptive prompts into the text encoder. As the generated class textual embeddings can be
treated as a classifier for computing the contrastive loss with the input visual feature, which can be
further used to optimize the domain-adaptive prompt with the given labels.

Given an input image I , the RPN r(·) proposes Nr image region boxes R = {rj}Nr
j=1. After

that, the corresponding visual embedding F = {fj}Nr
j=1 is inferred by the visual encoder f , where

fj = f(rj) is a fixed-size feature patch. Then the domain-adaptive detection head predicts probability
p(ŷ = y|rj , d,D) of the proposal rj belongs to the class y and domain d:

p(ŷ = y|rj , d,D) =
exp(s(f(rj), g(t

d
y))/τ)∑

k∈D

∑K
i=1 exp(s(f(rj), g(t

k
i ))/τ)

, (6)

where s(·) is the cosine similarity. D ∈ {{s}, {t}, {s, t}} indicates probability is calculated with the
class embedding generated by the source prompt {tsi}Ki=1, the target prompt{tti}Ki=1, or both prompts
{tsi}Ki=1 ∪ {tti}Ki=1.
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The goal is to make the domain-invariant tokens learn the shared knowledge across domains and
the domain-specific tokens learn the specific knowledge of each domain. The following two con-
straints are proposed to achieve the above goal. Firstly, the domain-invariant prompt is learnable
by constraining that the detection head generated by the source-domain prompt and target-domain
prompt should both classify the input images as accurately as possible. Secondly, the detection head
generated by one domain should output higher confidence on its own domain than the other domain
when predicting images of its own domain, so as to learn domain-specific knowledge.

Formally, given an image I ∈ X d from domain d along with the generated regions {rdj}
Nr
j=1 and

its class label {ydj }
Nr
j=1. Following the prediction probability calculated by Eq. 6, we denote the

cross-entropy loss as:

Ld,D = EX s [− 1

Nr

Nr∑
j=1

log p(ŷ = ysj |rsj , d,D)] (7)

where D ∈ {{s}, {t}, {s, t}} indicates probability is calculated with the class embedding generated
by the source prompt {tsi}Ki=1, the target prompt{tti}Ki=1, or both prompts {tsi}Ki=1 ∪ {tti}Ki=1. To
learn domain-invariant knowledge, both classifiers should predict rdj to the ground truth ydj :

Linv
d = Ld,{s} + Ld,{t} (8)

To learnable domain-specific knowledge, we constrain that the classifier of domain d should be more
confident on rsj by minimizing the cross-entropy over the source and target prompts:

Lspc
d = Ld,{s,t} (9)

Therefore, the objective function of the source data X s is:

Ls = Linv
s + Lspc

s . (10)

Due to the lack of annotations, the above optimization objective cannot be directly performed on the
target domain. We thus generate the pseudo labels for unlabeled target images with considering the
powerful zero-shot capability of CLIP. Formally, we apply the hand-crafted template "A photo of
[class]" to produce the class having the highest probability as pseudo labels, In particular, the pseudo
labels ytj for the image regions rtj is generated with Eq. 11:

ytj = argmax
y

p(ŷ = y|rtj) (11)

where the probability p is computed via Eq.1.

As untrusted pseudo would harm the learning of the source classifier, we use the pseudo labels whose
probabilities are higher than τ . Similar to Eq. 7, the cross-entropy loss computed with target data is
denoted as:

Lt,D = EX t [− 1

Nr

Nr∑
j=1

I(p(ŷ = ytj |rtj , t, {t}) ≥ τ) log p(ŷ = ytj |rtj , t,D)] (16)

where the I(·)) is an indicator function. Meanwhile, we minimize the information entropy of the
logits to achieve high-confident classification.

Lent = EX t [− 1

Nr

Nr∑
j=1

I(p(ŷ = ytj |rtj , t, {t}) ≥ τ)p(ŷ = ytj |rtj , t, {t}) log p(ŷ = ytj |rtj , t, {t})]

(17)
Considering that inaccurate pseudo labels may be detrimental to the training of the source classifier,
we only use them to optimize the target classifier. Overall, the objective on the target data X t is:

Lt = Lt,{t} + Lt,{s,t} + Lent (12)

The overall training objective is:
L = Ls + λLt. (13)

where λ is used to balance the effect of Lt in L.
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3.4 Prompt Ensemble

During prompt tuning, all the visual and text encoder parameters are frozen. In each iteration,
only the learnable prompts are updated via backward gradients. However, data mutation across
mini-batches may cause prompt perturbations in the early stage of training, harming the prompt
tuning. To alleviate this phenomenon, a prompts ensemble strategy is proposed to improve the
stability of prompt tuning by averaging all the history prompts. Concretely, we maintain a prompt
buffer B = {bs

1,b
s
2, ...,b

s
K ,bt

1,b
t
2, ...,b

t
K} about the learnable prompt in DA-Pro. In each iteration

iter of training, buffer Biter can not be optimized with gradients, and can only be updated by
Exponential Moving Average (EMA) according to the weights of itself and the learnable prompt titer
Titer = {ts1, ts2, ..., tsK , tt1, t

t
2, ..., t

t
K}:

Biter = αBiter−1 + (1− α)Titer (14)

where α is the ensemble ratio of history prompts. Considering that the buffer needs to quickly
forget the inaccurate parameters learned in the early stage, we set a dynamic updating ratio α =
min{1− 1

iter+1 , 0.99}. As EMA reduces the variance of the model, the prompt ensembled strategy
infers a more robust prompt b. After training, B is saved and used for inference.

4 Experiment

This section evaluates our DA-Pro on mainstream DAOD scenarios, including the Cross-Weather,
Cross-Fov, and Sim-to-Real. Further ablation studies are conducted to validate the effectiveness of
the proposed domain-adaptive prompt, training scheme, and prompt ensemble strategy.

4.1 Dataset

Cross-Weather Cityscapes [4] is a large-scale dataset that contains diverse images recorded in
street scenes. It is divided into 2,975 training and 500 validation images, annotated with 8 classes.
Foggy Cityscapes [32] is a synthetic foggy dataset that simulates fog with three distinct densities on
Cityscapes, containing 8,925 training images and 1,500 validation images. We take the training set
of Cityscapes as the source domain and the training set of foggy Cityscapes as the target domain,
evaluating Cross-Weather adaptation performance on the 1500-sized validation set in all 8 categories.

Cross-Fov KITTI [10] is a vital dataset in self-driving, containing 7,481 images with car annotations.
Images are captured by driving in rural areas and on highways, yielding the Field of View (FoV)
disparity with Cityscapes. For the Cross-Fov adaptation scenario, we migrate KITTI to Cityscapes on
the car category and validate performance on Cityscapes.

Sim-to-Real SIM10k [18] is a synthetic dataset containing 10,000 images with car annotations
rendered from the video game Grand Theft Auto V. We perform simulated environment to real-world
adaptation on SIM10K and Cityscapes datasets.

4.2 Implementation Details

We adapt RegionCLIP with a domain classifier [3] as baseline, and initialize the default prompt with
"A photo of a [class][domain]". We use ResNet-50 [12] as the visual encoder and Transformer [34])
as the text encoder, and initialize with the pre-trained CLIP model. Configurations of the detector
and image pre-processing follow the default settings in [31, 3]. Following [3], we first pre-train the
baseline model with classification loss, regression loss, and adversarial loss. Then for adaptation,
one batch of source images with ground truth and one batch of target domain images are forwarded
to the proposed DA-Pro in each iteration to calculate the supervising and self-training loss. We fix
the length of learnable tokens M,N to 8, 8, respectively. The hyperparameter λ is set to 1.0. We
set the batch size of each domain to 2 and use the SGD optimizer with a warm-up learning rate for
training. We take the mean Average Precision (mAP) with a threshold of 0.5 as the evaluation metric.
All experiments are deployed on a Tesla V100 GPU.

4.3 Comparison with existing methods

We introduce various state-of-the-art DAOD approaches for comparison, including DA-Faster [3],
VDD [38], DSS [37], MeGA [36], SCAN [21], TIA [44], SIGMA [22], and AT [24].
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Table 1: Comparison with existing methods on three adaptation tasks, for Cross-Weather adaptation
Cityscapes→Foggy Cityscapes (C→F), Cross-Fov adaptation KITTI→Cityscapes (K→C) and Sim-
to-Real adaptation SIM10K→Cityscapes (S→C). mAP: mean Average Precision (%).

C→F K→C S→ C

Methods Person Rider Car Truck Bus Train Motor Bicycle mAP mAP mAP

DA-Faster [3] 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0 41.9 38.2
VDD [38] 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0 - -
DSS [37] 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9 42.7 44.5

MeGA [36] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8 43.0 44.8
SCAN [21] 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1 45.8 52.6

TIA [44] 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3 44.0 -
SIGMA [22] 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2 45.8 53.7

AT [24] 56.3 51.9 64.2 38.5 45.5 55.1 54.3 35.0 50.9 - -

Baseline 51.8 59.0 67.4 36.8 59.5 50.6 39.7 55.9 52.6 59.5 60.8
DA-Pro 55.4 62.9 70.9 40.3 63.4 54.0 42.3 58.0 55.9 61.4 62.9

Table 2: Ablation studies (%) on Cross-Weather adaptation scenario Cityscapes→Foggy Cityscapes.
AP50 evaluates mAP on detection boxes with IoU ≥ 0.5, and ≥ 0.75 for AP75. AP averages AP50
to AP95 with step 5.

Prompt Design M N Prompt Ensemble AP AP50 AP75

A photo of a [class][domain] 28.5 52.6 28.7

[vc
1][v

c
2]...[v

c
M ][ci] 16 0 28.9 53.0 28.5

[vc
1][v

c
2]...[v

c
M ][ci][dld] 16 0 29.2 53.8 29.3

[vd
1 ][v

d
2 ]...[v

d
N ][ci][dld] 0 16 28.9 53.1 28.7

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 8 8 31.2 55.5 30.5

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 8 8 ✓ 31.9 55.9 32.0

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 4 4 ✓ 31.1 55.0 30.2

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 12 12 ✓ 31.4 55.4 31.3

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 16 16 ✓ 31.3 55.3 30.6

Cross-Weather Adaptation Scenario As shown in Table 1 (C→F), the proposed DA-Pro achieves
the highest mAP over 8 classes of 55.9%, outperforming SOTA AT [24] by a remarkable margin of
5.0%. Compared with existing methods, our method significantly improves 6 categories (i.e. rider,
car, truck, bus, train and bicycle) ranging from 1.8% to 16.2%. The improvement is particularly
significant on the previously poor categories, e.g.11.0% on Rider and 16.2% on Bicycle, which may
have harder semantics for adaptation. Though its promising mAP of 52.6%, DA-Pro still improves
Baseline by 3.3%. Concretely, DA-Pro promotes 2.1 ∼ 3.9% on all 8 categories via learning domain-
adaptive prompt. The superior performance demonstrates the proposed DA-Pro can improve the
generalization ability of the detector on the target domain.

Cross-Fov Adaptation Scenario Table 1 (K→C) also shows that the DA-Pro improves hand-crafted
prompt Baseline by 1.9%. And the proposed method reaches the best remarkable 61.4% mAP,
outperforming SOTA methods in the Cross-Fov detection task. According to [37], K→C adaptation
faces more complicated shape confusion than C→F, which requests higher discriminability of the
model. The considerable performance improvement confirms that the proposed method can efficiently
generate domain-aware detectors with high discrimination.

Sim-to-Real Adaptation Scenario Unlike the Cross-Weather and Cross-Fov adaptation, the Sim-to-
Real task has a wider domain gap at semantic level. As presented in Table 1 (S→C), the proposed
method gains 2.1% on Baseline and peaks at 62.9%, surpassing SOTA by 9.2%. It further demon-
strates that our strategy is robust in not only appearance but also harder semantics adaptation tasks.

4.4 Ablation Studies

We report detailed ablation studies (Table 2) conducted on the Cross-Weather adaptation scenario, to
validate the effectiveness of DA-Pro under different configurations.
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Table 3: The influence (%) of loss design on Cross-Weather adaptation scenario Cityscapes→Foggy
Cityscapes. Total number of tokens is set to 16. - stands for the prompt is not compatible with the
loss. Without the historical prompt ensemble strategy.

Prompt Design Ls,{s} + Lt,{t} Ls,{t} Ls,{s,t} + Lt,{s,t} Lent Lt,{s} mAP

A photo of a [class][domain] - - - - - 52.6

[vc
1][v

c
2]...[v

c
M ][ci] ✓ - - - - 53.0

[vc
1][v

c
2]...[v

c
M ][ci][dld] ✓ 53.5

[vc
1][v

c
2]...[v

c
M ][ci][dld] ✓ ✓ 53.8

[vc
1][v

c
2]...[v

c
M ][ci][dld] ✓ ✓ ✓ 53.8

[vc
1][v

c
2]...[v

c
M ][ci][dld] ✓ ✓ ✓ ✓ 53.7

[vd
1 ][v

d
2 ]...[v

d
N ][ci][dld] ✓ 52.9

[vd
1 ][v

d
2 ]...[v

d
N ][ci][dld] ✓ ✓ 53.1

[vd
1 ][v

d
2 ]...[v

d
N ][ci][dld] ✓ ✓ ✓ 52.7

[vd
1 ][v

d
2 ]...[v

d
N ][ci][dld] ✓ ✓ ✓ ✓ 52.9

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] ✓ 54.4

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] ✓ ✓ 54.8

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] ✓ ✓ ✓ 55.2

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] ✓ ✓ ✓ ✓ 55.5

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] ✓ ✓ ✓ ✓ ✓ 53.4

Comparison on Prompt Design In this section, we analyze the performance of different prompts. As
shown in line 1 ∼ 5 of Table 2, we compare the performances on the following four prompt designs:
the pre-defined prompt "A photo of a [class][domain]", the CoOp-style learnable prompt, and the
domain-invariant tokens or domain-specific tokens with domain-related textual description. The
CoOp-style prompt with 16 learnable domain-invariant tokens improves 0.4% on AP and AP50 over
the hand-crafted prompt. Introducing domain-related textual description further boosts 0.3 ∼ 0.8%
on three metrics. This exhibits that learning domain-invariant tokens improves the discrimination
of the target detection head. When directly applying domain-specific tokens, it only gains a limited
improvement over the pre-defined prompt. This shows that the source domain information cannot
be transferred to the target domain only using domain-specific tokens. Diving the 16 tokens into 8
domain-invariant and 8 domain-specific tokens further gains extra 0.3 ∼ 1.0% improvements. We
suppose that based on shared knowledge across domains, learning domain-specific knowledge leads
to more discriminative detection head on each domain. These results reveal that compared with the
fixed or the domain-agnostic prompt, the domain-adaptive prompt has a higher ability to embed
domain information for prediction. Moreover, both domain-invariant tokens and domain-specific
tokens bring improvements.

Comparison on Loss Function Table 3 shows that each term of loss function contributes to im-
provement in the adaption performance. To reduce the influence of other factors, we do not use the
historical prompt ensemble strategy. With Ls,{s} + Lt,{t}, four types of learnable prompts have
improved 0.3 ∼ 1.8% on the hand-crafted prompt. Combined with Ls,{t}, which commands the
target prompt to classify the source image accurately, further gains 0.2 ∼ 0.4% on three prompts
distinguished across domains. This reveals that by constraining the detection heads in the source
and target domains to classify the input image as accurately as possible, the prompt can learn more
domain-invariant knowledge. Further, though introduce Ls,{s,t} + Lt,{s,t} has few effects on prompt
with only domain-invariant/domain-specific tokens, it improves 0.4% on the domain-adaptive prompt.
We conclude that in two respect. On one hand, just using domain-invariant/domain-specific tokens
cannot model shared knowledge between domains and domain-specific knowledge at the same time.
On the other hand, constraining the detection head generated by one domain to output higher confi-
dence in its own domain than the other domain contributes to learning domain-specific knowledge.
Moreover, adding Lent brings extra 0.3% improvement. However, introducing Lt,{s} suffers 2.1%
degradation, showing that directly optimizing the source classifier with pseudo target labels could do
harm to the learning process.

Comparison on Prompt Ensemble To verify the effectiveness of the proposed historical prompt
ensemble strategy, we introduce it to the domain-adaptive prompt with 8 domain-invariant tokens
and 8 domain-specific tokens. Line 6 of Table 2 shows that it gains improvements of 0.7%, 0.4% and
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Figure 3: Detection comparison of different prompts on the Cross-Weather adaptation scenario.
We visualize the ground truth (a) and the detection results of three prompts: (b) "A photo of a
[class][domain]" (c) [Vc][c][dld] (d) [Vc][Vd][c][dld]. (a.1) (b.1) (c.1) (d.1) are roomed from the
same region of the image (a) (b) (c) (d). mAP: mean Average Precision on the example image
1.5% on AP, AP50 and AP75. This reveals ensembling the history prompt can reduce the effect of
prompt disturbance and infer a robust prompt, thus improving detection performance.

Comparison on Prompt Length Further, we explore the impact of prompt length, where M for
domain-invariant tokens and N for domain-specific tokens on DA-Pro with full configuration in line
6 ∼ 9 of Table 2. We vary the length from (4, 4) to (8, 8) to (12, 12) to (16, 16). DetPro[6] has
shown that a longer prompt may cause over-fitting to base categories in open-set object detection.
Similarly, we conclude that a shorter prompt is less discriminative, while a too-long prompt is prone
to overfitting to the source domain in DAOD. Thus, we set the token length as (8, 8) in DA-Pro.

4.5 Visualization

In Fig. 3, we present the comparison on the target domain among the ground truth boxes (a) and the
detection boxes using different prompts. (a.1)(b.1)(c.1)(d.1) are zoomed from the same region of
images (a)(b)(c)(d) for a better view. Fig. 3(a.1) indicates four objects in the cropped region: a car
and a bicycle on the left, and two overlapping persons on the right. Both hand-crafted and learnable
prompt models detect the car correctly. However, it is difficult for the hand-crafted prompt to describe
domain information, like weather conditions, accurately. Thus, the hand-crafted prompt misses some
objects on the right side of Fig. 3(b), and the bicycle and one of the persons in Fig. 3(b.1). In Fig. 3(c),
the domain-invariant prompt improves 9.3% mAP compared with the hand-crafted prompt. But it
still suffers worse discrimination due to insufficient domain representation learning. In Fig. 3(c.1),
the domain-invariant prompt misclassifies the bicycle as a rider even confident with 93%, and also
ignores one person. The proposed domain-adaptive prompt correctly detects all objects in the cropped
region Fig 3(d.1). By learning domain information, the domain-specific tokens enable the model to
perform confident predictions on the bicycle (79%) and 2 persons (100%, 89%). These comparison
results reveal the effectiveness of the proposed domain-adaptive prompt in DA-Pro.

5 Conclusion
In this paper, we propose a novel DAOD framework named Domain-Aware detection head with
Prompt tuning (DA-Pro). Serving a pre-trained visual-language model as the robust detection
backbone, it applies the learnable domain-adaptive prompt to generate the discriminative detection
head for each domain. As the learnable part is designed to capture the domain-invariant and domain-
specific knowledge, we proposed two constraints over the source and target domains to guide the
optimization. Moreover, a prompt ensemble strategy is also proposed to reduce the effect of prompt
disturbance. Comprehensive experiments over multiple cross-domain adaptation tasks demonstrate
that using the domain-adaptive prompt can produce a domain-aware detection head with more
discrimination for domain-adaptive object detection.
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Appendix

5.1 Additional Experimental Results

In order to further verify the effectiveness of DA-Pro, we evaluate performance on three harder
benchmarks: Pascal to Clipart, Pascal to Watercolor and Pascal to Comic. Pascal VOC [7] is a large-
scale real-world dataset annotated with 20 classes, which contains 2007 and 2012 subsets. Clipart [15]
is collected from the website with 1000 comical images, providing bounding box annotations with
the same 20 classes as Pascal VOC. Watercolor and Comic [15] both contain 1000 training images
and 1000 test images in art style, sharing 6 categories with Pascal VOC. Three benchmarks enable the
method to be evaluated under more challenging domain shifts and in multi-class problem scenarios.
The comparison is shown in Table 4 Our DA-Pro surpasses the SOTA method (SIGMA++ with
ResNet-101) with a weak backbone (ResNet-50) on all three additional benchmarks, showing the
effectiveness of DA-Pro.

Table 4: mAP(%) comparison with existing methods on Pascal→Watercolor, Pascal→Clipart and
Pascal→Comic tasks.

Methods Pascal→Watercolor Pascal→Clipart Pascal→Comic

DBGL[1] (ResNet-101) 53.8 41.6 29.7
Baseline (ResNet-50) 54.8 43.4 40.6

FGRR[2] (ResNet-101) 55.7 43.3 32.7
SIGMA++[23] (ResNet-101) 57.1 46.7 37.1

DA-Pro (ResNet-50) 58.1 46.9 44.6

5.2 Hyperparameter Search

To select hyperparameters for our loss functions, we perform experiments of different choices of the
weight values λ(Lt). We conduct the experiment on DA-Pro on both Cityscapes→FoggyCityscapes
and Sim10K→Cityscapes adaptation scenarios. Table 5 shows that our DA-Pro is robust with different
settings of λ. Considering that the best result is achieved under 1.0, we take λ = 1.0 as the default.

Table 5: The influence (%) of λ for the loss with target data Lt.
Cityscapes→ FoggyCityscapes

λ 0.25 0.5 1.0 5.0 10.0

mAP 55.6 55.8 55.9 55.7 55.4

Sim10K→ Cityscapes

λ 0.25 0.5 1.0 5.0 10.0

mAP 62.5 62.9 62.9 62.4 62.8

5.3 Options of the pseudo labels

We optimize the domain-adaptive prompt with annotated source data and further distill CLIP’s
remarkable zero-shot classification ability to the detection head of the target domain. A naive
way is to generate classification probabilities, i.e.soft labels, with the fixed prompt "A photo of
[class]. However, aligning the model’s predictions with these probabilities will result in the learnable
prompt converging to the hand-crafted prompt. Unlike probabilities, generating pseudo labels with a
threshold, i.e.hard labels, does not demand learning the relative distances to each category provided
by hand-crafted prompts. Instead, they require the prompt to be as close to the correct category and as
far from the incorrect categories as possible, thereby learning a more discriminative prompt. To verify
this, we conduct experiments on the three benchmarks (C→ F, K→ C, S→ C). As shown in Table 6,
replacing pseudo labels with probability supervision suffers 0.6 1.6% degradation on performance.
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Table 6: The comparison (%) of different options of pesudo labels on Cross-Weather adaptation
scenario Cityscapes→Foggy Cityscapes.

Options Cityscapes→Foggy Cityscapes KITTI→Cityscapes Sim10K→Cityscapes

probabilities 54.3 60.8 62.1
pseudo label (ours) 55.9 61.4 62.9

5.4 Effect of the domain-related textual tokens dld

The domain-related textual tokens aim to leverage textual descriptions of domains and introduce
hand-crafted prior information to facilitate more efficient learning of domain-specific tokens. The
hand-crafted token offers a solid initialization which is discriminative. On this foundation, domain-
specific tokens further learn the bias between the two domains, further enhancing the prompt’s
discrimination. The combination of both hand-crafted and learnable tokens yields superior results.
We have conducted additional experiments on three different scenarios. The results are shown in
Table 7. Without dld token, using prompt [vc

1][v
c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci] suffering 0.7 ∼ 1.7%

mAP. Experimental results demonstrate that dld assists in the convergence of domain-specific tokens
and enhances the discrimination of the prompt.

Table 7: The influence (%) of the domain-related textual tokens dld on Cityscapes→Foggy Cityscapes,
KITTI→Cityscapes and Sim10K→Cityscapes.

Prompt Design C→F K→C S→C

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci] 54.3 60.8 62.1

[vc
1][v

c
2]...[v

c
M ][vd

1 ][v
d
2 ]...[v

d
N ][ci][dld] 55.9 61.4 62.9

5.5 Effect of the Historical Prompt Ensemble Strategy

To verify the effect of the proposed historical prompt ensemble strategy, we calculate the mAP
of whether apply prompt ensemble under different loss function. We conduct the experiment on
DA-Pro on Cityscapes→FoggyCityscapes scenarios. Table 8 shows the effect of our historical
prompt ensemble strategy. It improves the performance of all forms of learnable prompts without
any inference overhead. In particular, the best case of improvement is 0.4% for the domain-adaptive
prompt.

Table 8: The influence (%) of the historical prompt ensemble on Cross-Weather adaptation scenario
Cityscapes→Foggy Cityscapes. Total number of tokens is set to 16.

Historical Prompt Ensemble Ls,{s} + Lt,{t} Ls,{t} Ls,{s,t} + Lt,{s,t} Lent

54.4 54.8 55.2 55.5
✓ 54.7 55.0 55.6 55.9

Gain 0.3 0.2 0.4 0.4
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