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Abstract

Reinforcement learning (RL) has shown empirical success in various real world
settings with complex models and large state-action spaces. The existing analytical
results, however, typically focus on settings with a small number of state-actions or
simple models such as linearly modeled state-action value functions. To derive RL
policies that efficiently handle large state-action spaces with more general value
functions, some recent works have considered nonlinear function approximation
using kernel ridge regression. We propose π-KRVI, an optimistic modification of
least-squares value iteration, when the state-action value function is represented by
a reproducing kernel Hilbert space (RKHS). We prove the first order-optimal regret
guarantees under a general setting. Our results show a significant polynomial in
the number of episodes improvement over the state of the art. In particular, with
highly non-smooth kernels (such as Neural Tangent kernel or some Matérn kernels)
the existing results lead to trivial (superlinear in the number of episodes) regret
bounds. We show a sublinear regret bound that is order optimal in the case of
Matérn kernels where a lower bound on regret is known.

1 Introduction

Reinforcement learning (RL) in real world often has to deal with large state action spaces and complex
unknown models. While RL policies using complex function approximations have been empirically
effective in various fields including gaming (Silver et al., 2016; Lee et al., 2018; Vinyals et al., 2019),
autonomous driving (Kahn et al., 2017), microchip design (Mirhoseini et al., 2021), robot control
(Kalashnikov et al., 2018), and algorithm search (Fawzi et al., 2022), little is known about theoretical
performance guarantees in such settings. The analysis of RL algorithms has predominantly focused
on simpler cases such as tabular or linear Markov decision processes (MDPs). In a tabular setting,
a regret bound of Õ(

√
H3|S × A|T ) has been shown for optimistic state-action value learning

algorithms (e.g., see, Jin et al., 2018), where H is the length of episodes, T is the number of episodes,
and S and A are finite state and action spaces. This bound does not scale well when the size of
state-action space grows large. Furthermore, when the model (the state-action value function or the
transitions) admits a d-dimensional linear representation in some state-action features, a regret bound
of Õ(

√
H3d3T ) is established (Jin et al., 2020), that scales with the dimension of the linear model

rather than the cardinality of the state-action space.

Several recent studies have explored the utilization of complex models with large state-action spaces.
A very general model entails representing the state-action value function using a reproducing kernel
Hilbert space (RKHS). This approach allows using kernel ridge regression to obtain confidence
intervals, which facilitate the design and analysis of RL algorithms. The most significant contribution

∗Work was done when the author was affiliated with Vrije Universiteit Amsterdam.
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to this general RL problem is Yang et al. (2020a),2 that provides regret guarantees for an optimistic
least-squares value iteration (LSVI) algorithm, referred to as kernel optimistic least-squares value
iteration (KOVI). The main assumption is that the state-action value function can be represented
using the RKHS of a known kernel k. The regret bounds reported in Yang et al. (2020a) scale as
Õ
(
H2
√
(Γ(T ) + logN (ϵ)) Γ(T )T

)
, with ϵ = H

T , where Γ(T ) and N (ϵ) are two kernel related
complexity terms, respectively, referred to as maximum information gain and ϵ-covering number of
the class of state-action value functions. The definitions are given in Section 4. Both complexity
terms are determined using the spectrum of the kernel. While for smooth kernels, characterized by
exponentially decaying Mercer eigenvalues, such as Squared Exponential kernel, Γ(T ) and logN (HT )
are logarithmic in T , for more general kernels with greater representation capacity, these terms may
grow polynomially in T , possibly making the regret bound trivial (superlinear).

To have a better understanding of the existing result, let {σm > 0}∞m=1 denote the Mercer eigenvalues
of the kernel k in a decreasing order. Also, let {ϕm}∞m=1 denote the corresponding eigenfeatures.
Refer to Section 2.2 for details. The kernel k is said to have a polynomial eigendecay when σm decay
at least as fast as m−p for some p > 1. The polynomial eigendecay profile satisfies for many kernels
of practical and theoretical interest such as Matérn family of kernels (Borovitskiy et al., 2020) and
the Neural Tangent (NT) kernel (Arora et al., 2019). For a Matérn kernel with smoothness parameter
ν on a d-dimensional domain, p = 2ν+d

d (e.g., see, Janz et al., 2020). For a NT kernel with s − 1

times differentiable activations, p = 2s−1+d
d (Vakili et al., 2021b). In Yang et al. (2020a), the regret

bound is specialized for the class of kernels with polynomially decaying eigenvalues, by bounding
the complexity terms based on the kernel spectrum. However, the reported regret bound is sublinear
in T only when the kernel eigenvalues decay very fast. In particular, let p̃ = p(1− 2η), where for
η ≥ 0, ση

mϕm is uniformly bounded. Then, Yang et al. (2020a), Corollary 4.4 reports a regret bound
of Õ(T ξ∗+κ∗+ 1

2 ), with

κ∗ = max{ξ∗, 2d+ p+ 1

(d+ p)(p̃− 1)
,

2

p̃− 3
}, ξ∗ =

d+ 1

2(p+ d)
. (1)

The regret bound Õ(T ξ∗+κ∗+ 1
2 ) is sublinear only when p and p̃ are sufficiently large. That, at least,

requires 2ξ∗ < 1
2 , implying p > d + 2, when p̃ is also sufficiently large. For instance, for Matérn

kernels, this requirement can be expressed as ν > d(d+1)
2 , when (2ν+d)(1−2η)

d is sufficiently large.

Special case of bandits. A similar issue existed in the simpler problem of kernelized bandits,
corresponding to the special case where H = 1, |S| = 1. Specifically, the Õ(Γ(T )

√
T ) regret

bounds reported for optimistic sampling (Srinivas et al., 2010a, GP-UCB), as well as for Thompson
sampling (Chowdhury and Gopalan, 2017, GP-TS) are also trivial (superlinear) when Γ(T ) grows
faster than

√
T . It remains an open problem whether the suboptimal performance guarantees for

these two algorithms is a fundamental shortcoming or an artifact of the proof. This observation is
formalized as an open problem on the online confidence intervals for RKHS elements in Vakili et al.
(2021d). For the kernelized bandits problem, Scarlett et al. (2017) proved lower bounds on regret in
the case of Matérn family of kernels. In particular, they proved an Ω(T

ν+d
2ν+d ) lower bound on regret

of any bandit algorithm. Several recent algorithms, different from GP-UCB and GP-TS, have been
developed to alleviate the suboptimal and superlinear regret bounds in kernelized bandits and obtain
an Õ(

√
Γ(T )T ) regret bound (Li and Scarlett, 2022; Salgia et al., 2021), that matches the lower

bound in the case of the Matérn family of kernels, up to logarithmic factors. The Sup variations of
the UCB algorithms also obtain the optimal regret bound in the contextual kernel bandit setting with
finite actions (Valko et al., 2013).

Main contribution. The RL setting presents a greater level of complexity compared to the bandit
setting due to the Markovian dynamics. None of the solutions in Li and Scarlett (2022); Salgia et al.
(2021); Valko et al. (2013) seem appropriate in the presence of MDP dynamics, thereby leaving the
question of order optimal regret bounds largely open. In this work, we leverage the scaling of the
kernel spectrum with the size of the domain to improve the regret bounds. We consider kernels with
polynomial eigendecay on a hypercubical domain with side length ρ, where eigenvalues scale with
ρα for some α > 0. See Definition 1. This encompasses a large class of common kernels, including
the Matérn family, for which, α = 2ν. The hypercube domain assumption is a technical formality

2Also, see the extended version on arXiv (Yang et al., 2020b).
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that can be relaxed to other regular compact subsets of Rd. In Section 3, we propose a domain
partitioning kernel ridge regression based least-squares value iteration policy (π-KRVI) that achieves
sublinear regret of Õ(H2T

d+α/2
d+α ) for kernels introduced in Definition 1. This is the first sublinear

regret bound under such a general stetting. Moreover, with Matérn kernels, our regret bound matches
the Ω(T

ν+d
2ν+d ) lower bound reported in in Scarlett et al. (2017) for the special case of kernelized

bandits, up to a logarithmic factor.

Our proposed policy, π-KRVI, is based on least-squares value iteration (similar to KOVI, Yang et al.
(2020a)). However, in order to effectively utilize the confidence intervals from kernel ridge regression,
π-KRVI creates a partitioning of the state-action domain and builds the confidence intervals only
based on the observations within the same partition element. The domain partitioning allows us to
leverage the scaling of the kernel eigenvalues with respect to the domain size. The inspiration for
this idea is drawn from π-GP-UCB algorithm introduced in Janz et al. (2020) for kernelized bandits.
In comparison to Janz et al. (2020), π-KRVI and its analysis present greater complexity due to the
Markovian dynamics in the MDP setting. Furthermore, we provide a finer analysis that significantly
improves the results compared to Janz et al. (2020). Although Janz et al. (2020) obtained sublinear

regret guarantees of Õ(T
2ν+d(2d+3)
4ν+d(2d+4) ) in the kernelized bandit setting with Matérn kernel, there still

remained a polynomial in T gap between their regret bounds and the lower bound reported in Scarlett
et al. (2017). As a consequence of our results, we also close this gap.

There are several novel contributions in our analysis that lead to the improved and order optimal
regret bounds. We establish confidence intervals for kernel ridge regression that apply uniformly to all
functions in the state-action value function class (Theorem 1). A similar confidence interval was given
in Yang et al. (2020a). We however provide flexibility with respect to setting the parameters of the
confidence interval, that eventually contributes to the improved regret bounds, with a proper choice
of parameters. We also derive bounds on the maximum information gain (Lemma 2) and the function
class covering number (Lemma 3), taking into consideration the size of the state-action domain.
These bounds are important for the analysis of our domain partitioning policy which effectively
controls the number of observations utilized in kernel ridge regression by partitioning the domain
into subdomains of diminishing size. These intermediate results may also be of general interest in
similar problems.

The π-KRVI policy enjoys an efficient runtime, polynomial in T , and linear in |A|, similar to the
runtime of KOVI (Yang et al., 2020a). The dependency of the runtime on |A| limits the scope of the
policy to finite A, while allowing a continuous S (with |S| infinite). The assumption of finite A can
be relaxed, provided there is an efficient optimizer of a certain state-action value function. See the
details in Section 3.2.

Other related work. There is an extensive literature on the analysis of RL policies which do not
rely on a generative model or an exploratory behavioral policy. The literature has primarily focused
on the tabular setting (Jin et al., 2018; Auer et al., 2008; Bartlett and Tewari, 2012). The domain of
potential applications for this setting is very limited, as in many real world problems, the state-action
space is very large or even infinite. In response to this, recent literature has placed a notable emphasis
on employing function approximation in RL, particularly within the context of generalized linear
settings. This approach involves representing the value function or transition model through a linear
transformation to a well-defined feature mapping. Important contributions include the work of
Jin et al. (2020); Yao et al. (2014), as well as subsequent studies by Russo (2019); Zanette et al.
(2020a,b); Neu and Pike-Burke (2020); Yang and Wang (2020). Furthermore, there have been several
efforts to extend these techniques to a kernelized setting, as explored in Yang et al. (2020a); Yang
and Wang (2020); Chowdhury and Gopalan (2019); Yang et al. (2020c); Domingues et al. (2021).
These works are also inspired by methods originally designed for linear bandits (Abbasi-Yadkori
et al., 2011; Agrawal and Goyal, 2013), as well as kernelized bandits (Srinivas et al., 2010b; Valko
et al., 2013; Chowdhury and Gopalan, 2017). However, all known regret bounds in the RL setting
(Yang et al., 2020a; Yang and Wang, 2020; Chowdhury and Gopalan, 2019; Yang et al., 2020c;
Domingues et al., 2021) are not order optimal. We compare our regret bounds with the state of the
art reported in Yang et al. (2020a). A similar issue existed for classic kernelized bandit algorithms.
A detailed discussion can be found in Vakili et al. (2021d). The authors in Yang and Wang (2020)
considered finite state-actions under a kernelized MDP model where the transition model can be
directly estimated. That is different from the setting considered in our work and Yang et al. (2020a).
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2 Preliminaries and Problem Formulation

In this section, we overview the background on episodic MDPs and kernel ridge regression.

2.1 Episodic Markov Decision Processes

An episodic MDP can be described by the tuple M = (S,A, H, P, r), where S is the state space, A
is the action space, the integer H is the length of each episode, r = {rh}Hh=1 are the reward functions
and P = {Ph}Hh=1 are the transition probability distributions.2 We use the notation Z = S ×A to
denote the state-action space. For each h ∈ [H], the reward rh : Z → [0, 1] is the reward function at
step h, which is supposed to be deterministic for simplicity, and Ph(·|s, a) is the transition probability
distribution on S for the next state from state-action pair (s, a). The choice of deterministic rewards
allows us to concentrate on the core complexities of the problem, and should not be regarded as a
limitation. Both the framework and results can be readily extended to a setting with random rewards.

A policy π = {πh}Hh=1, at each step h, determines the (possibly random) action πh : S → A taken
by the agent at state s. At the beginning of each episode t = 1, 2, · · · , the environment picks an
arbitrary state st1. The agent determines a policy πt = {πt

h}Hh=1. Then, at each step h ∈ [H], the
agent observes the state sth ∈ S, picks an action ath = πt

h(s
t
h) and observes the reward rh(s

t
h, a

t
h).

The new state sth+1 then is drawn from the transition distribution Ph(·|sth, ath). The episode ends
when the agent receives the final reward rH(stH , atH).

The goal is to find a policy π that maximizes the expected total reward in the episode, starting at step
h, i.e., the value function defined as

V π
h (s) = E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H], (2)

where the expectation is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1
obtained by the policy π. It can be shown that under mild assumptions (e.g., continuity of Ph,
compactness of Z , and boundedness of r) there exists an optimal policy π⋆ which attains the
maximum possible value of V π

h (s) at every step and at every state (e.g., see, Puterman, 2014). We
use the notation V ⋆

h (s) = maxπ V
π
h (s), ∀s ∈ S, h ∈ [H]. By definition V π⋆

h = V ⋆
h . For a value

function V : S → [0, H], we define the following notation

[PhV ](s, a) := Es′∼Ph(·|s,a)[V (s′)]. (3)

We also define the state-action value function Qπ
h : Z → [0, H] as follows.

Qπ
h(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
, (4)

where the expectation is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1 obtained
by the policy π. The Bellman equation associated with a policy π then is represented as

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a), V π

h (s) = Eπ[Q
π
h(s, πh(s))], V π

H+1 := 0, (5)

where the expectation is taken with respect to the randomness in the policy π. The Bellman op-
timality equation is also given as Q⋆

h(s, a) = rh(s, a) + [PhV
⋆
h+1](s, a), V

⋆
h (s) = maxa Q

⋆
h(s, a),

V ⋆
H+1 := 0. The performance of a policy πt is measured in terms of the loss in the value function,

referred to as regret, denoted byR(T ) in the following definition

R(T ) =
T∑

t=1

(V ⋆
1 (s

t
1)− V πt

1 (st1)). (6)

Recall that πt is the policy executed by the agent at episode t, where st1 is the initial state in that
episode determined by the environment.

2We intentionally do note use the standard term transition kernel for Ph, to avoid confusion with the term
kernel in kernel-based learning.
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2.2 Kernel Ridge Regression

We assume that the state-action value functions belong to a known reproducing kernel Hilbert
space (RKHS). See Assumption 1 and Lemma 1 for the formal statement. This is a very general
assumption, considering that the RKHS of common kernels can approximate almost all continuous
functions on the compact subsets of Rd (Srinivas et al., 2010a). Consider a positive definite kernel
k : Z × Z → R. Let Hk be the RKHS induced by k, where Hk contains a family of functions
defined on Z . Let ⟨·, ·⟩Hk

: Hk × Hk → R and ∥ · ∥Hk
: Hk → R denote the inner product and

the norm of Hk, respectively. The reproducing property implies that for all f ∈ Hk, and z ∈ Z ,
⟨f,K(·, z)⟩Hk

= f(z). Without loss of generality, we assume k(z, z) ≤ 1 for all z. Mercer theorem
implies, under certain mild conditions, k can be represented using an infinite dimensional feature
map:

k(z, z′) =

∞∑
m=1

σmϕm(z)ϕm(z′), (7)

where σm > 0, and
√
σmϕm ∈ Hk form an orthonormal basis ofHk. In particular, any f ∈ Hk can

be represented using this basis and wights wm ∈ R as

f =

∞∑
m=1

wm
√
σmϕm, (8)

where ∥f∥2Hk
=
∑∞

m=1 w
2
m. A formal statement and the details are provided in Appendix A. We

refer to σm and ϕm as (Mercer) eigenvalues and eigenfeatures of k, respectively.

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged
to guide the RL algorithm. In particular, consider a fixed unknown function f ∈ Hk. Consider a set
Zt = {zi}ti=1 ⊂ Z of t inputs. Assume t noisy observations {Y (zi) = f(zi) + εi}ti=1 are provided,
where εi are independent zero mean noise terms. Kernel ridge regression provides the following
predictor and uncertainty estimate, respectively (see, e.g., Schölkopf et al., 2002),

µt,f (z) = k⊤Zt(z)(KZt + λ2It)−1YZt ,

(bt(z))2 = k(z, z)− k⊤Zt(z)(KZt + λ2I)−1kZt(z), (9)

where kZt(z) = [k(z, z1), . . . , k(z, zt)]⊤ is a t × 1 vector of the kernel values between z and
observations, KZt = [k(zi, zj)]ti,j=1 is the t× t kernel matrix, YZt = [Y (z1), . . . , Y (Zt)]⊤ is the
t× 1 observation vector, I is the identity matrix of dimensions t, and λ > 0 is a free regularization
parameter. The predictor and uncertainty estimate could be interpreted as posterior mean and variance
of a surrogate centered Gaussian process (GP) model with covariance k, and zero mean Gaussian
noise with variance λ2 (e.g., see, Williams and Rasmussen, 2006).

2.3 Technical Assumption

We assume that the reward functions {rh}Hh=1 and the transition probability distributions Ph(s
′|·, ·)

belong to the 1-ball of the RKHS. We use the notation Bk,R = {f : ∥f∥Hk
≤ R} to denote the

R-ball of the RKHS.

Assumption 1 We assume

rh(·, ·), Ph(s
′|·, ·) ∈ Bk,1, ∀h ∈ [H], ∀s′ ∈ S. (10)

This is a mild assumption considering the generality of RKHSs, that is also supposed to hold
in Yang et al. (2020a). Similar assumptions are made in linear MDPs which are significantly more
restrictive (e.g., see, Jin et al., 2020).

An immediate consequence of Assumption 1 is that for any integrable V : S → [0, H], rh +
[PhVh+1] ∈ Bk,H+1. This is formalized in the following lemma.

Lemma 1 Consider any integrable V : S → [0, H]. Under Assumption 1, we have

rh + [PhV ] ∈ Bk,H+1. (11)

See (Yeh et al., 2023, Lemma 3) for a proof.
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3 Domain Partitioning Least-Squares Value Iteration Policy

A standard policy in episodic MDPs is the least-squares value iteration (LSVI), which computes
an estimate Q̂t

h for Q⋆
h at each step h of episode t, by recursively applying Bellman equation as

discussed in the previous section. In addition, an exploration bonus term bth : Z → R is typically
added leading to

Qt
h = min{Q̂t

h + βbth, H − h+ 1}. (12)

The term Q̂t
h + βbth is an upper confidence bound on the state-action value function, that is inspired

by the principle of optimism in the face of uncertainty. Since the rewards are assumed to be at most 1,
the state-action value function at step h is also bounded by H − h+ 1. In episode t, then πt is the
greedy policy with respect to Qt = {Qt

h}Hh=1. Under Assumption 1, the estimate Q̂t
h, the parameter

β and the exploration bonus bth can all be designed using kernel ridge regression. Specifically, having
the Bellman equation in mind, Q̂t

h is the (kernel ridge) predictor for rh + [PhV
t
h+1] using (possibly

some of) the past t − 1 observations {rh(zτh) + V t
h+1(s

τ
h+1)}

t−1
τ=1 at points {zτh}

t−1
τ=1. Recall that

E
[
rh(z

τ
h) + V t

h+1(s
τ
h+1)

]
= rh(z

τ
h) + [PhV

t
h+1](z

τ
h), where the expectation is taken with respect

to Ph(·|zτh). The observation noise V t
h+1(s

τ
h+1)− [PhV

t
h+1](z

τ
h) is due to random transitions and is

bounded by H − h ≤ H .

3.1 Domain Partitioning

To overcome the suboptimal performance guarantees rooted in the online confidence intervals in
kernel ridge regression, we introduce domain partitioning kernel ridge regression based least-squares
value iteration (π-KRVI). The proposed policy partitions the state-action space Z into subdomains
and builds kernel ridge regression only based on the observations within each subdomain. By doing
so, we obtain tighter confidence intervals, ultimately resulting in a tighter regret bound. To formalize
this procedure, we consider the state-action space Z ⊂ [0, 1]d. Let Sth, h ∈ [H], t ∈ [T ] be sets of
hypercubes overlapping only at edges, covering the entire [0, 1]d. For any hypercube Z ′ ∈ Sth, we
use ρZ′ to denote the length of any of its sides, and N t

h(Z ′) to denote the number of observations at
step h in Z ′ up to episode t:

N t
h(Z ′) =

t∑
τ=1

1{(sτh, aτh) ∈ Z ′}. (13)

For all h ∈ [H], we initialize S1h = {[0, 1]d}. At each episode t, for each step h, after observing
a sample from rh + [PhV

t
h+1] at (sth, a

t
h), we construct a new cover Sth as follows. We divide

every element Z ′ ∈ St−1
h that satisfies ρ−α

Z′ < |N t
h(Z ′)| + 1, into two equal halves along each

side, generating 2d hypercubes. The parameter α > 0 in the splitting rule is a constant specified in
Definition 1. Subsequently, we define Sth as the set of newly created hypercubes and the elements of
St−1
h that were not split.

The construction of the cover sets described above ensures the number N t
h(Z ′) of observations within

each cover element Z ′ remains relatively small with respect to the size of Z ′, while also controlling
the total number |Sth| of cover elements. The key parameter managing this tradeoff is α, which is
carefully chosen to achieve an appropriate width for the confidence interval, as shown in Section 4.

3.2 π-KRVI

Our proposed policy, π-KRVI, is derived by adopting the precise structure of an optimistic LSVI, as
described previously, where the predictor and the exploration bonus are designed based on kernel
ridge regression only on cover elements. In particular, for z ∈ Z , let Zt

h(z) ∈ Sth be the cover
element at step h of episode t containing z. Define Zt

h(z) = {(sτh, aτh) ∈ Zt
h(z), τ < t} to be the set

of past observations belonging to the same cover element as z. We then set

Q̂t
h(z) = k⊤Zt

h(z)
(z)(KZt

h(z)
+ λ2I)−1YZt

h(z)
, (14)

where kZt
h(z)

= [k(z, z′)]⊤z′∈Zt
h(z)

is the kernel values between z and all observations z′ in Zt
h(z),

KZt
h(z)

= [k(z′, z′′)]z′,z′′∈Zt
h(z)

is the kernel matrix for observations in Zt
h(z), and YZt

h(z)
=

6



[rh(z
′)+V t

h+1(s
′
h+1)]

⊤
z′∈Zt

h(z)
, where s′h+1 is drawn from the transition distribution Ph(·|z′), denotes

the observation values for the observation points z′ ∈ Zt
h(z). The vectors kZt

h(z)
and YZt

h(z)
are

N t−1
h (Zt

h(z)) dimensional column vectors, and KZt
h(z)

and I are N t−1
h (Zt

h(z)) × N t−1
h (Zt

h(z))
dimensional matrices.

The exploration bonus is determined based on the uncertainty estimate of the kernel ridge regression
model on cover elements defined as

bth(z) =
(
k(z, z)− k⊤Zt

h(z)
(z)(KZt

h(z)
+ λ2I)−1kZt

h(z)
(z)
) 1

2

. (15)

The policy π-KRVI then is the greedy policy with respect to

Qt
h(z) = min{Q̂t

h(z) + βT (δ)b
t
h(z), H − h+ 1}. (16)

Specifically, at step h of episode t, the following action is chosen, after observing sth,

ath = arg max
a∈A

Qt
h(s

t
h, a). (17)

A pseudocode is provided in Algorithm 1.

Algorithm 1 The π-KRVI Policy.
1: Input: λ, βT (δ), k, M = (S,A, H, P, r).
2: For all h ∈ [H], let S1h = {[0, 1]d}.
3: for Episode t = 1, 2, . . . , T , do
4: Receive the initial state st1.
5: Set V t

H+1(s) = 0, for all s.
6: for step h = H, . . . , 1 do
7: Obtain value functions Qt

h(z) as in (16).
8: end for
9: for step h = 1, 2, . . . ,H do

10: Take action ath ← arg maxa∈A Qt
h(s

t
h, a).

11: Observe the reward rh(s
t
h, a

t
h) and the next state sth+1.

12: Split any element Z ′ ∈ St−1
h , for which ρ−α

Z′ < |N t
h(Z ′)|+ 1 along the middle of each

side, and obtain Sth.
13: end for
14: end for

The predictor Q̂t
h, the confidence interval width multiplier βT (δ) and the exploration bonus bth are

all designed using kernel ridge regression limited to the observations within cover elements given
above. The parameter βT (δ), in particular, is designed in a way that Qt

h is a 1− δ upper confidence
bound on rh + [PhV

t
h+1]. Using Theorem 1 on the confidence intervals, we show that a choice of

βT (δ) = Θ(H
√
log(TH

δ )) satisfies this requirement.

Figure 1 demonstrates the domain partitioning used in π-KRVI on a 2-dimensional domain. The
colors represent the value of the target function. The observation points are expected to concentrate
around the areas where the target function has a high value. As a result the domain is partitioned to
smaller squares in that region.

Runtime complexity. The π-KRVI policy is also runtime efficient with a polynomial runtime
complexity. In particular, an upper bound on the runtime of π-KRVI is O(HT 4 +H|A|T 3), that
is similar to KOVI (Yang et al., 2020a). However, analogous to (Janz et al., 2020), we expect an
improved runtime for π-KRVI in practice. In addition, the runtime can further improve in terms of T ,
utilizing sparse approximations of kernel ridge predictor and uncertainty estimate (e.g., see, Vakili
et al., 2022). The dependency of the runtime on |A| is due to the step given in Equation (17). If this
optimization can be done efficiently over continuous domains, π-KRVI (also KOVI) could handle
infinite number of actions. The assumption that the upper confidence bound index can be efficiently
optimized over continuous domains is often made in the kernelized bandits (e.g., see, Srinivas et al.,
2010a).
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Figure 1: A 2-dimensional domain partitioned into smaller squares.

4 Main Results and Regret Analysis

In this section, we present our main results. In Theorem 2, we establish an Õ(H2T
d+α/2
d+α ) regret

bound for π-KRVI, for the class of kernels with polynomial eigendecay. We first prove bounds
on maximum information gain and covering number of state-action value function class. Those
enable us to present our uniform confidence interval for state-action value functions (Theorem 1),
and subsequently the regret bound (Theorem 2).

Definition 1 (Polynomial Eigendecay) Consider the Mercer eigenvalues {σm}∞m=1 of k : Z×Z →
R, given in Equation (7), in a decreasing order, as well as the corresponding eigenfeatures {ϕm}∞m=1.
AssumeZ is a d-dimensional hypercube with side length ρZ . For some Cp, α > 0, p > 1, the kernel k
is said to have a polynomial eigendecay, if for all m ∈ N, σm ≤ Cpm

−pραZ . In addition, for some
η ≥ 0, m−pηϕm(z) is uniformly bounded over all m and z. We use the notation p̃ = p(1− 2η).

The polynomial eigendecay profile encompasses a large class of common kernels, e.g., the Matérn
family of kernels. For a Matérn kernel with smoothness parameter ν, p = 2ν+d

d and α = 2ν (e.g.,
see, Janz et al., 2020). Another example is the NT kernel (Arora et al., 2019). It has been shown
that the RKHS of the NT kernel, when the activations are s− 1 times differentiable, is equivalent
to the RKHS of a Matérn kernel with smoothness ν = s − 1

2 (Vakili et al., 2021b). For instance,
the RKHS of an NT kernel with ReLU activations is equivalent to the RKHS of a Matérn kernel
with ν = 1

2 (also known as the Laplace kernel). In this case, p = 1 + 1
d and α = 1. The hypercube

domain assumption is a technical formality that can be relaxed to other regular compact subsets of Rd.
The uniform boundedness of m−pηϕm(z) for some η > 0, also holds for a broad class of kernels,
including the Matérn family, as discussed in (Yang et al., 2020a). Several works including (Vakili
et al., 2021b; Kassraie and Krause, 2022), have employed an averaging technique over subsets of
eigenfeatures, demonstrating that, for the bounds on information gain, the effective value of η can be
considered as 0 in the case of Matérn and NT kernels.

4.1 Confidence Intervals for State-Action Value Functions

Confidence intervals are an important building block in the design and analysis of bandit and RL
algorithms. For a fixed function f in the RKHS of a known kernel, 1− δ confidence intervals of the
form |f(z)−µt,f (z)| ≤ β(δ)bt(z) are established in several works (Srinivas et al., 2010a; Chowdhury
and Gopalan, 2017; Abbasi-Yadkori, 2013; Vakili et al., 2021a) under various assumptions. In our
setting of interest, however, these confidence intervals cannot be directly applied. This is due to the
randomness of the target function itself. Specifically, in our case, the target function is rh+[PhV

t
h+1],

which is not a fixed function due to the temporal dependence within an episode. An argument based
on the covering number of the state-action value function class was used in Yang et al. (2020a)
to establish uniform confidence intervals over all z ∈ Z and all f in a specific function class. In
Theorem 1, we prove a different confidence interval that offers flexibility with respect to setting the
parameters of the confidence interval. Our approach leads to a more refined confidence interval,
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which, with a proper choice of parameters, contributes to the improved regret bound achieved by our
policy.

We first give a formal definition of the two complexity terms: maximum information gain and the
covering number of the state-action value function class, which appear in our confidence intervals.

Definition 2 (Maximum Information Gain) In the kernel ridge regression setting described in
Section 2.2, the following quantity is referred to as maximum information gain: Γk,λ(t) =
maxZt⊂Z

1
2 log det(I + 1

λ2KZt).

Upper bounds on maximum information gain based on the spectrum of the kernel are established
in Janz et al. (2020); Srinivas et al. (2010a); Vakili et al. (2021c). Maximum information gain is closely
related to the effective dimension of the kernel. While the feature representation of common kernels
is infinite dimensional, with a finite observation set, only a finite number of features have a significant
impact on kernel ridge regression, that is referred to as the effective dimension. It has been shown
that information gain and effective dimension are the same up to logarithmic factors (Calandriello
et al., 2019). This observation offers an intuitive understanding of information gain.

State-action value function class: Let us use Qk,h(R,B) to denote the class of state-action value
functions. In particular for a set of observations Z, let bh(z) be the uncertainty estimate obtained
from kernel ridge regression as given in (9). We define

Qk,h(R,B) =
{
Q : Q(z) = min {Q0(z) + βbh(z), H − h+ 1} , ∥Q0∥Hk

≤ R, β ≤ B, |Z| ≤ T
}
.

(18)

Definition 3 (Covering Set and Number) Consider a function class F . For ϵ > 0, we define the
minimum ϵ-covering set C(ϵ) as the smallest subset of F that covers it up to an ϵ error in l∞ norm.
That is to say, for all f ∈ F , there exists a g ∈ C(ϵ), such that ∥f − g∥l∞ ≤ ϵ. We refer to the size of
C(ϵ) as the ϵ-covering number.

We use the notation Nk,h(ϵ;R,B) to denote the ϵ-covering number of Qk,h(R,B), that appears in
the confidence interval.

In Lemmas 2 and 3, we establish bounds on Γk,λ(t) and Nk,h(ϵ;R,B), respectively.

Lemma 2 (Maximum information gain) Consider a positive definite kernel k : Z ×Z → R, with
polynomial eigendecay on a hypercube with side length ρZ . The maximum information gain given in
Definition 2 satisfies

Γk,λ(T ) = O
(
T

1
p̃ (log(T ))1−

1
p̃ ρ

α
p̃

Z

)
.

Lemma 3 (Covering Number of Qk,h(R,B)) Recall the class of state-action value functions
Qk,h(R,B), where k : Z × Z → R satisfies the polynomial eigendecay on a hypercube with
side length ρZ . We have

logNk,h(ϵ;R,B) = O

((
R2ραZ
ϵ2

) 1
p̃−1

(
1 + log

(
R

ϵ

))
+

(
B2ραZ
ϵ2

) 2
p̃−1

(
1 + log

(
B

ϵ

)))
.

Our bound on maximum information gain is stronger than the ones presented in Yang et al. (2020a);
Janz et al. (2020); Srinivas et al. (2010a) and is similar to the one given in Vakili et al. (2021c), in
terms of dependency on T . Our bound on function class covering number is similar to the one given
in Yang et al. (2020a), in terms of dependency on T . Both Lemmas 2 and 3 given in this work are,
however, novel in terms of dependency on the domain size ρZ , and are required for the analysis of
our domain partitioning algorithm.

We next present the confidence interval. Proofs are given in the appendix.

Theorem 1 (Confidence Interval) Let Q̂t
h and bth denote the kernel ridge predictor and uncertainty

estimate of rh + [PhV
t
h+1], using t observations {V t

h+1(s
τ
h+1)}tτ=1 at Zt

h = {zτh}tτ=1 ⊂ Z , where
sτh+1 is the next state drawn from Ph(·|zτh). Let RT = 2H

√
Γk,λ(T ). For ϵ, δ ∈ (0, 1), with

probability, at least 1− δ, we have, ∀z ∈ Z, h ∈ [H] and t ∈ [T ],

|rh(z) + [PhV
t
h+1](z)− Q̂t

h(z)| ≤ βt
h(δ, ϵ)b

t
h(z) + ϵ,
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where βt
h(δ, ϵ) is set to any value satisfying

βt
h(δ, ϵ) ≥ H + 1 +

H√
2

√
Γk,λ(t) + logNk,h(ϵ;RT , βt

h(δ, ϵ)) + 1 + log

(
TH

δ

)
+

3
√
tϵ

λ
. (19)

4.2 Regret of π-KRVI

A key step in the analysis of π-KRVI is to apply the confidence interval in Theorem 1 to a subdomain
Z ′ ∈ Sth. By design of the splitting rule, we can prove that the maximum information gain

corresponding to Z ′ satisfies Γk,λ(N
T
h (Z ′)) = O(log(T )). In addition, we choose ϵ =

H
√

log(TH
δ )√

Nt
h(Z′)

,

when applying the confidence interval at step h of episode t on this subdomain. That ensures
logNk,h(ϵ;RNT

h (Z′), β
t
h(δ, ϵ)) = O(log(T )). From these, and by applying a probability union

bound over all subdomains Z ′ created in π-KRVI, we can deduce that the choice of βT (δ) =

Θ(H
√
log(TH

δ )) with a sufficiently large constant, satisfies the requirements for confidence interval
widths based on Theorem 1. The details are provided in the proof of Theorem 2 in Appendix D.
Then, using standard tools from the analysis of optimistic LSVI algorithms, we arrive at the following
regret bound.

Theorem 2 (Regret of π-KRVI) Consider the π-KRVI policy described in Section 3.2, with

βT (δ) = Θ(H
√
log(TH

δ )) with a sufficiently large constant implied in the Θ notation. Under
Assumption 1, for kernels given in Definition 1, with probability at least 1− δ, the regret of π-KRVI
satisfies

R(T ) = O

(
H2T

d+α/2
d+α log(T )

√
log

(
H

δ

))
. (20)

The regret bound of π-KRVI presented in Theorem 2 is sublinear in T when α > 0, in contrast to
the state of the art regret bound in Yang et al. (2020a). The O notation used in the expression above
hides constants that depend on p, α and d. See Appendix D for more details. When specialized to the
Matérn family of kernels, replacing p = 2ν+d

d and α = 2ν, the regret bound becomes

R(T ) = O

(
H2T

ν+d
2ν+d log(T )

√
log

(
H

δ

))
. (21)

In terms of T scaling, this matches the lower bound for the special case of kernelized bandits (Scarlett
et al., 2017), up to a log(T ) factor.

5 Conclusion

The analysis of RL algorithms has predominantly focused on simple settings such as tabular or
linear MDPs. Several recent studies have considered more general models, including representing
the state-action value functions using RKHSs. Notably, the work in Yang et al. (2020a) derives
regret bounds for an optimistic LSVI policy. However, the regret bounds in Yang et al. (2020a) are
sublinear only when the eigenvalues of the kernel decay rapidly. In this work, we leveraged a domain
partitioning technique, a uniform confidence interval for state-action value functions, and bounds
on complexity terms based on the domain size to propose π-KRVI, which attains a sublinear regret
bound for a general class of kernels. Moreover, our regret bounds match the lower bound derived for
Matérn kernels in the special case of kernelized bandits, up to logarithmic factors. It remains an open
problem whether the suboptimal regret bounds in the case of standard optimistic LSVI policies (such
as KOVI, Yang et al., 2020a) represent a fundamental shortcoming or an artifact of the proof.
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A Mercer Theorem and the RKHSs

Mercer theorem (Mercer, 1909) provides a representation of the kernel in terms of an infinite
dimensional feature map (e.g., see, Christmann and Steinwart, 2008, Theorem 4.49). Let Z be a
compact metric space and µ be a finite Borel measure on Z (we consider Lebesgue measure in a
Euclidean space). Let L2

µ(Z) be the set of square-integrable functions on Z with respect to µ. We
further say a kernel is square-integrable if∫

Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem 3 (Mercer Theorem) Let Z be a compact metric space and µ be a finite Borel measure
on Z . Let k be a continuous and square-integrable kernel, inducing an integral operator Tk :
L2
µ(Z)→ L2

µ(Z) defined by

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dµ(z′) ,

where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(σm, ϕm)}∞m=1

such that σm > 0, and Tkϕm = σmϕm, for m ≥ 1. Moreover, the kernel function can be represented
as

k (z, z′) =

∞∑
m=1

σmϕm(z)ϕm (z′) ,

where the convergence of the series holds uniformly on Z × Z .

According to the Mercer representation theorem (e.g., see, Christmann and Steinwart, 2008, Theorem
4.51), the RKHS induced by k can consequently be represented in terms of {(σm, ϕm)}∞m=1.

Theorem 4 (Mercer Representation Theorem) Let {(σm, ϕm)}∞i=1 be the Mercer eigenvalue eigen-
feature pairs. Then, the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmσ
1
2
mϕm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {√σmϕm}∞m=1 form an or-
thonormal basis forHk.

B Proof of Theorem 1 (Confidence Interval)

Confidence bounds of the form given in Theorem 1 have been established for a fixed function f with
bounded RKHS norm and sub-Gaussian observation noise in several works including Abbasi-Yadkori
(2013); Chowdhury and Gopalan (2017); Vakili et al. (2021a). In the RL setting, however, we apply
the confidence interval to f = rh + [PhV

t
h+1]. Although the RKHS norm of this target function is

bounded by H + 1, this is not a fixed function as it depends on V t
h+1. In addition the observation

noise terms Vh+1(s
t
h+1)− [PhV

t
h+1](s

t
h, a

t
h) also depend on V t

h+1. To handle this setting, we prove
a confidence interval that holds for all possible V t

h+1 : S → [0, H]. For this purpose, we use a
probability union bound and a covering set argument over the function class of V t

h+1.

We first recall the confidence interval for a fixed function and noise sequence given in (Chowdhury
and Gopalan, 2017, Theorem 2). See also (Abbasi-Yadkori, 2013, Corollary 3.15).

Lemma 4 Let {zt ∈ Z}Tt=1 be a stochastic process predictable with respect to the filtration {Ft}Tt=0.
Let {εt}Tt=1 be a real valued Ft measurable stochastic process with a σ sub-Gaussian distribution
conditioned on Ft−1. Let µt,f and bt be the kernel ridge predictor and uncertainty estimate of f
using t noisy observations of the form {f(zτ ) + ετ}tτ=1. Assume f ∈ Bk,R .Then with probability at
least 1− δ, for all z ∈ Z and t ≥ 1,

|f(z)− µt,f (z)| ≤ β1b
t(z), (22)

where β1 = R+ σ
√
2(Γk,λ(t) + 1 + log( 1δ )).
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As discussed above, we cannot directly use this confidence interval on rh + [PhV
t
h+1] in the RL

setting. Instead, we need to prove a new confidence interval that holds true for all possible V t
h+1. We

thus define V to be the function class of V t
h+1 as follows.

Vk,h(R,B) = {V : V (s) = max
a∈A

Q(s, a), for some Q ∈ Qk,h(R,B)}. (23)

For simplicity of presentation, we specify the parameters R and B later.

Let CVk,h(ϵ;R,B) be the smallest ϵ-covering set of Vk,h(R,B) in terms of l∞ norm. That is to
say for all V ∈ Vk,h(R,B), there exists some V ∈ CVk,h(ϵ;R,B) such that ∥V − V ∥l∞ ≤ ϵ.
Let NV

k,h(ϵ;R,B) denote the ϵ covering number of Vk,h(R,B). By definition NV
k,h(ϵ;R,B) =

|CVk,h(ϵ;R,B)|.

We can create a confidence bound for all V ∈ CVk,h(ϵ;R,B), using Lemma 4 and a probability union

bound over CVk,h(ϵ;R,B). Fix h ∈ [H] and t ∈ [T ]. Let us use the notation Q̂
t

for the kernel ridge

predictor with V . That is Q̂
t

(z) = k⊤Zt(z)(KZt + λ2I)−1Y , where Y
⊤
= [V (sτh+1)]

t
τ=1, and sτh+1

is the next state drawn randomly from probability distribution Ph(·|zτh). In addition, to simplify

the notation, we use g = rh + [PhV ] and µt,g = Q̂
t

. Also, let bt(z) = (k(z, z) − k⊤Zt(z)(KZt +

λ2I)−1kZt(z))
1
2 . Then, we have, with probability at least 1− δ, for all V ∈ CVk,h(ϵ;R,B) and for

all z ∈ Z ,
|g(z)− µt,g(z)| ≤ β2b

t(z), (24)

where β2 = H + 1 + H√
2

√
Γk,λ(t) + logNV

k,h(ϵ;R,B) + 1 + log( 1δ ).

Confidence interval (24) is a direct application of Lemma 4 and using a probability union bound over
all V ∈ CVk,h(ϵ;R,B). Note that, ∥rh + PhV ∥Hk

≤ H + 1 (Lemma 1). In addition, V (sτh+1) −
[PhV ](zτh) ∈ [0, H] for all h and τ . A bounded random variable in [0, H] is a H/2 sub-Gaussian
random variable based on Hoeffding inequality (Hoeffding, 1994).

Now, we extend the uniform confidence interval over all V ∈ CVk,h(ϵ;R,B) to a uniform confidence
interval over all V ∈ Vk,h(R,B). For some V ∈ Vk,h(R,B), define f = rh+[PhV ] and µt,f = Q̂t,
similar to g and µt,g. By definition of CVk,h(ϵ;R,B), there exists V ∈ CVk,h(ϵ;R,B), such that
∥V − V ∥l∞ ≤ ϵ. Thus, for all z ∈ Z ,

f(z)− g(z) = [PV ](z)− [PV ](z) ≤ sup
s∈S
|V (s)− V (s)| ≤ ϵ. (25)

Therefore, with probability at least 1− δ,

|f(z)− µt,f (z)| ≤ |f(z)− g(z)|+ |g(z)− µt,g(z)|+ |µt,g(z)− µt,f (z)|
≤ β2b

t(z) + ϵ+ |µt,g(z)− µt,f (z)|. (26)

Next, we prove that |µt,f (z)− µt,g(z)| ≤ 3ϵ
√
tbt(z)
λ .

Let us further simplify the notation by introducing αt(z) = (KZt+λ2I)−1kZt(z), F
⊤
t = [f(zτh)]

t
τ=1,

E⊤
t = [ετ = V (sτh+1)−[PhV ](zτh)]

t
τ=1, G⊤

t = [g(zτh)]
t
τ=1, E

⊤
t = [ε̄τ = V (sτh+1)−[PhV ](zτh)]

t
τ=1

so that µt,f (z) = α⊤(z)(Ft + Et) and µt,g(z) = α⊤(z)(Gt + Et).

As discussed earlier, the observation noise terms εt also depend on V . We have, for all t ≥ 1,

|εt − ε̄t| =

∣∣∣∣V (sτh+1)− V (sτh+1)− ([PhV ](zτh)− [PhV ](zτh)

∣∣∣∣
≤ 2ϵ.
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Using the difference between f and g, as well as the difference between noise terms, we have

|µt,f (z)− µt,g(z)| = |α⊤
t (z)(Ft + Et)− α⊤(z)(Gt + Et)|

≤ ∥αt(z)∥∥Ft −Gt + Et − Et∥
≤ 3ϵ

√
t∥αt(z)∥

≤ 3ϵ
√
tbt(z)

λ
,

where the last inequality follows from ∥αt(z)∥ ≤ bt(z)
λ (e.g., see, Vakili et al., 2021a, Proposition 1).

The bound on |µt,f (z)− µt,g(z)| combined with (26) proves that for a fixed t ∈ [T ], fixed h ∈ [H],
for all z ∈ Z and for all V ∈ Vk,h(R,B),

|f(z)− µt,f (z)| ≤ β3b
t(z) + ϵ,

where

β3 = H + 1 +
H√
2

√
Γk,λ(t) + logNV

k,h(ϵ;R,B) + 1 + log(
1

δ
) +

3
√
tϵ

λ
. (27)

The confidence interval holds uniformly for all h ∈ [H] and t ∈ [T ] using a probability union bound,
when β3 is replaced with the following

β4 = H + 1 +
H√
2

√
Γk,λ(t) + logNV

k,h(ϵ;R,B) + 1 + log(
HT

δ
) +

3ϵ
√
t

λ
. (28)

To complete the proof, we bound NV
k,h(ϵ;R,B) in terms of the specific parameters of the problem.

Firstly, the ϵ-covering number of Vk,h(R,B) is bounded by that of Qk,h(R,B) (Yang et al., 2020a,
proof of Lemma D.1). Recall the definition of Qk,h(R,B) in (18). We note that ∥Q̂t

h∥Hk
≤

2H
√
Γk,λ(t) (Yang et al., 2020a, Lemma C.1). Thus, the theorem follows with βt

h(δ, ϵ), where
βt
h(δ, ϵ) is set to some value satisfying

βt
h(δ, ϵ) ≥ H + 1 +

H√
2

√
Γk,λ(t) + logNk,h(ϵ;Rt, βt

h(δ, ϵ)) + 1 + log(
HT

δ
) +

3ϵ
√
t

λ
, (29)

with Rt = 2H
√
Γk,λ(t). That completes the proof of Theorem 1.

C Proof of Lemmas 2 (Maximum Information Gain) and 3 (Covering
Number).

We first introduce the projection of the RKHS on a lower dimensional RKHS that is used in the
proof of both lemmas. We then present the proofs. Recall the Mercer theorem and the representation
of kernel using Mercer eigenvalues and eigenfeatures. Using Mercer representation theorem, any
f ∈ BR can be written as

f =

∞∑
m=1

wm
√
σmϕm, (30)

with
∑∞

m=1 w
2
m ≤ R2. For some D ∈ N, let ΠD[f ] denote the projection of f onto the D-

dimensional RKHS corresponding to the first D features with the largest eigenvalues

ΠD[f ] =

D∑
m=1

wm
√
σmϕm. (31)

Let us use the notations wD = [w1, w2, · · · , wD]⊤ for the D-dimensional column vector of weights,
ϕD(z) = [ϕ1(z), ϕ2(z), · · · , ϕD(z)]⊤ for the D-dimensional column vector of eigenfeatures, and
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ΣD = diag([σ1, σ2, · · · , σD]) for the diagonal matrix of eigenvalues with [σ1, σ2, · · · , σD] as the
diagonal entries. We also use the notations

kD(z, z′) = ϕ⊤
D(z)ΣDϕD(z), (32)

to denote the kernel corresponding to the D-dimensional RKHS, as well as k0(z, z′) = k(z, z′)−
kD(z, z′).

C.1 Proof of Lemma 2 on Maximum Information Gain

Recall the definition of Γk,λ(t). We have

1

2
log det

(
I +

1

λ2
KZt

)
=

1

2
log det

(
I +

1

λ2
(KD

Zt +K0
Zt)

)
=

1

2
log det

(
I +

1

λ2
KD

Zt

)
︸ ︷︷ ︸

Term (i)

+
1

2
log det

(
I +

1

λ2
(I +

1

λ2
KD

Zt)−1K0
Zt

)
︸ ︷︷ ︸

Term (ii)

.

We next bound the two terms on the right hand side.

Term (i): Note that for kD corresponding to the D-dimensional RKHS, we have KD
Zt = ΦtΣDΦ⊤

t ,
where Φt = [ϕD(z)]⊤z∈Zt is a t×D matrix that stacks the feature vectors ϕD(zτ ), τ = 1, · · · , t, as
it rows. By Weinstein–Aronszajn identity (Pozrikidis, 2014) (a special case of matrix determinant
lemma),

log det
(
It +

1

λ2
KD

Zt

)
= log det

(
It +

1

λ2
ΦtΣDΦ⊤

t

)
(33)

= log det
(
ID +

1

λ2
Σ

1
2

DΦtΦ
⊤
t Σ

1
2

D

)

≤ D log(
tr(ID + 1

λ2Σ
1
2

DΦtΦ
⊤
t Σ

1
2

D)

D
)

≤ D log(1 +
t

λ2D
).

The first inequality follows from the inequality of arithmetic and geometric means on eigenvalues of
the argument, and the second inequality follows from kD ≤ 1. For clarity, we used the notations It
and ID for identity matrices of dimension t and D, respectively. Otherwise, we drop the superscript.

Term (ii): Similarly using the inequality of arithmetic and geometric means on eigenvalues, we
bound the log det by the log of the trace of the argument. Let us use ϵD to denote an upper bound on
k0.

log det
(
I +

1

λ2
(I +

1

λ2
KD

Zt)−1K0
Zt

)
≤ t log

(
tr(I + 1

λ2 (I +
1
λ2K

D
Zt)−1K0

Zt)

t

)
(34)

≤ t log(1 +
ϵD
λ2

)

≤ tϵD
λ2

.

The last inequality uses log(1 + x) ≤ x which holds for all x ∈ R.

Combining the bounds on Term (i) and Term (ii), we have

Γk,λ(t) ≤
D

2
log(1 +

t

λ2D
) +

tϵD
2λ2

. (35)
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Now, using the polynomial eigendecay profile given in Definition 2,

k0(z, z′) =

∞∑
m=D+1

σmϕm(z)ϕm(z′) (36)

≤ C2
1Cpρ

α
Z

∞∑
m=D+1

m−p(1−2η)

≤ C2
1Cpρ

α
Z

∫ ∞

D

x−p̃dx

≤ C2
1Cpρ

α
Z

p̃− 1
D−p̃+1. (37)

The constant C1 is the uniform bound on m−pηϕm, and Cp is the parameter in Definition 1.

Choosing D = Ct
1
p̃ ρ

α
p̃

Z (log(t))−
1
p̃ , with constant C = (

C2
1Cp

(p̃−1)λ2 )
1
p̃ we obtain

Γk,λ(t) ≤
C

2
t
1
p̃ ρ

α
p̃

Z

(
log(t)−

1
p̃ log(1 +

t

λ2D
) + (log(t))1−

1
p̃

)
, (38)

that completes the proof.

C.2 Proof of Lemma 3 on Covering Number of State-Action Value Function Class

Recall the definition of the state-action value function class,

Qk,h(R,B) =
{
Q : Q(z) = min {Q0(z) + βb(z), H − h+ 1} , ∥Q0∥Hk

≤ R, β ≤ B, |Z| ≤ T
}
.

and the notation Nk,h(ϵ;R,B) for its ϵ-covering number. Let us use the notation Nk,R(ϵ) for the
ϵ-covering number of RKHS ball Bk,R = {f : ∥f∥Hk

≤ R}, N[0,B](ϵ) for the ϵ-covering number of
interval [0, B] with respect to Euclidean distance, and Nk,b(ϵ) for the ϵ-covering number of class of

uncertainty functions bk = {b(z) =
(
k(z, z)− k⊤Z (z)(KZ + λ2I)−1kZ(z)

) 1
2 , |Z| ≤ T}.

Consider Q,Q ∈ Qk,h(R,B) where Q(z) = min {Q0(z) + βb(z), H − h+ 1} and Q(z) =

min
{
Q0(z) + β̄b̄(z), H − h+ 1

}
. We have

|Q(z)−Q(z)| ≤ |Q0(z)−Q0(z)|+ |β − β̄|+B|b(z)− b̄(z)|. (39)

That implies

Nk,h(ϵ;R,B) ≤ Nk,R(
ϵ

3
)N[0,B](

ϵ

3
)Nk,b(

ϵ

3B
). (40)

For the ϵ-covering number of the [0, B] interval, we simply haveN[0,B](ϵ/3) ≤ 1+3B/ϵ. In the next
lemmas, we bound the ϵ-covering number of the RKHS ball and the class of uncertainty functions.

Lemma 5 (RKHS Covering Number) Consider a positive definite kernel k : Z × Z → R, with
polynomial eigendecay on a hypercube with side length ρZ . The ϵ-covering number of R-ball in the
RKHS satisfies

logNk,R(ϵ) = O

((
R2ραZ
ϵ2

) 1
p̃−1

log(1 +
R

ϵ
)

)
. (41)

Lemma 6 (Uncertainty Class Covering Number) Consider a positive definite kernel k : Z×Z →
R, with polynomial eigendecay on a hypercube with side length ρZ . The ϵ-covering number of the
class of uncertainty functions satisfies

logNk,b(ϵ) = O
(
(
ραZ
ϵ2

)
2

p̃−1 (1 + log(
1

ϵ
))

)
(42)
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Combining (40) with Lemmas 5 and 6, we obtain

logNk,h(ϵ;R,B) = O
(
(
R2ραZ
ϵ2

)
1

p̃−1 (1 + log(
R

ϵ
)) + (

B2ραZ
ϵ2

)
2

p̃−1 (1 + log(
B

ϵ
))

)
, (43)

that completes the proof of Lemma 3. Next, we provide the proof of two lemmas above on the
covering numbers of the RKHS ball and the uncertainty function class.

Proof 1 (Proof of Lemma 5) For f in the RKHS, recall the following representation

f =

∞∑
m=1

wm
√
σmϕm, (44)

as well as its projection on the D-dimensional RKHS

ΠD[f ] =

D∑
m=1

wm
√
σmϕm. (45)

We note that

∥f −ΠD[f ]∥∞ =

∞∑
m=D+1

wm
√
σmϕm

≤ C1C
1
2
p ρ

α/2
Z

∞∑
m=D+1

|wm|m−p( 1
2−η)

≤ C1C
1
2
p ρ

α/2
Z

( ∞∑
m=D+1

|wm|2
) 1

2
( ∞∑

m=D+1

m−p(1−2η)

) 1
2

≤ C1C
1
2
p ρ

α/2
Z R

(∫ ∞

D

x−p̃dx

) 1
2

=
C1C

1
2
p ρ

α/2
Z R√

p̃− 1
D

−p̃+1
2 .

In the expressions above, C1 is the uniform bound on m−pηϕm, and Cp is the constant specified in
Definition 1. The third inequality follows form Cauchy–Schwarz inequality.

Now, let D0 be the smallest D such that the right hand side is bounded by ϵ
2 . There exists a constant

C2 > 0, only depending on constants C1, Cp, η and p̃, such that

D0 ≤ C2

(
R2ραZ
ϵ2

) 1
p̃−1

. (46)

For a D-dimensional linear model, where the norm of the weights is bounded by R, the ϵ-covering
is at most C3D(1 + log(Rϵ ), for some constant C3 (e.g., see, Yang et al., 2020a). Using an ϵ/2
covering number for the space of ΠD[f ] and using the minimum number of dimensions that ensures
|f −ΠD[f ]| ≤ ϵ/2, we conclude that

logNk,R(ϵ) ≤ C3D0(1 + log(
R

ϵ
))

≤ C2C3

(
R2ραZ
ϵ2

) 1
p̃−1

(1 + log(
R

ϵ
)),

that completes the proof of the lemma.
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Proof 2 (Proof of Lemma 6) Let us define b2k = {b2 : b ∈ bk} and Nk,b2(ϵ) to be its ϵ-covering
number. We note that, for b, b̄ ∈ b,

|b(z)− b̄(z)| ≤
√
|(b(z))2 − (b̄(z))2|. (47)

Thus, an ϵ-covering number of b is bounded by an ϵ2-covering of b2:

Nk,b(ϵ) ≤ Nk,b2(ϵ2). (48)

We next bound Nk,b2(ϵ2).

Using the feature space representation of the kernel, we obtain

(b(z))2 =

∞∑
m=1

γmσmϕ2
m(z), (49)

for some γm ∈ [0, 1]. Based on the GP interpretation of the model, γm can be understood as the
posterior variances of the weights. Let D0 be the smallest D such that

∑∞
m=D+1 σmϕ2

m(z) ≤ ϵ2/2.
From Equation (37), we can see that, for some constant C4, only depending on constants C1, Cp, η
and p̃,

D0 ≤ C4

(
ραZ
ϵ2

) 1
p̃−1

. (50)

For
∑D0

m=1 γmσmϕ2
m(z) on a finite D0-dimensional spectrum, as shown in Lemma D.3 of Yang et al.

(2020a), an ϵ2/2 covering number scales with D2
0 . Specifically, an ϵ2/2 covering number of the

space of
∑D0

m=1 γmσmϕ2
m(z) is bounded by

C5D
2
0(1 + log(

1

ϵ
)). (51)

Combining Equations (50) and (51), we obtain

Nk,b2(ϵ2) ≤ C5D
2
0(1 + log(

1

ϵ
))

≤ C5C
2
4

(
ραZ
ϵ2

) 2
p̃−1

,

that completes the proof of the lemma.

D Proof of Theorem 2 (Regret of π-KRVI).

Following the standard analysis of optimisitc LSVI policies, for any h ∈ [H], t ∈ [T ], we define
temporal difference error δth : Z → R as

δth(z) = rh(z) + [PhV
t
h+1](z)−Qt

h(z), ∀z ∈ Z. (52)

Roughly speaking, {δth(z)}Hh=1 quantify how far the {Qt
h}Hh=1 are from satisfying the Bellman

optimality equation.

For any h ∈ [H], t ∈ [T ] , we also define

ξth =
(
V t
h(s

t
h)− V πt

h (sth)
)
−
(
Qt

h(z
t
h)−Qπt

h (zth)
)
,

ζth =
(
[PhV

t
h+1](z

t
h)− [PhV

πt

h+1](z
t
h)
)
−
(
V t
h+1(s

t
h+1)− V πt

h+1(s
t
h+1)

)
. (53)

Using the notation defined above, we then have the following regret decomposition into three parts.
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Lemma 7 (Lemma 5.1 in Yang et al. (2020a) on regret decomposition) We have

R(T ) =
T∑

t=1

H∑
h=1

Eπ⋆ [δth(zh)|s1 = st1]− δth(z
t
h)︸ ︷︷ ︸

(i)

+

T∑
t=1

H∑
h=1

(ξth + ζth)︸ ︷︷ ︸
(ii)

+

T∑
t=1

H∑
h=1

Eπ⋆ [Qt
h(sh, π

⋆
h(sh))−Qt

h(sh, π
t
h(sh))|s1 = st1]︸ ︷︷ ︸

(iii)

. (54)

The third term is negative, by definition of πt
h that is the greedy policy with respect to Qt

h:

Qt
h(sh, π

⋆
h(sh))−Qt

h(sh, π
t
h(sh)) = Qt

h(sh, π
⋆
h(sh))−max

a∈A
Qt

h(sh, a) ≤ 0,

for all sh ∈ S. The second term is bounded using the following lemma.

Lemma 8 (Lemma 5.3 in Yang et al. (2020a)) For any δ ∈ (0, 1), with probability at least 1 − δ,
we have

T∑
t=1

H∑
h=1

(ξth + ζth) ≤ 4

√
TH3 log

(
2

δ

)
. (55)

Term (i): It turns out that the dominant term and the challenging term to bound is the first term in
Lemma 7. We next provide an upper bound on this term.

For step h, let UT
h =

⋃T
t=1 Sth be the union of all cover elements used by π-KRVI over all episodes.

The size of UT
h is bounded in the following lemma and is useful in the analysis of Term (i).

Lemma 9 (Lemma 2 in Janz et al. (2020)) The size of UT
h satisfies

|UT
h | ≤ C6T

d
d+α , (56)

for some constant C6.

The size of UT
h depends on the dimension of the domain and the parameter α used in the splitting

rule in Section 3.1.

Now, consider a cover element Z ′ ∈ UT
h . Using Theorem 1, we have, with probability at least 1− δ,

for all h ∈ [H], t ∈ [T ], z ∈ Z ′, for some ϵth ∈ (0, 1),∣∣rh(z) + [PhVh+1](z)− Q̂t
h(z)

∣∣ ≤ βt
h(δ, ϵ

t
h)b

t
h(z) + ϵth, (57)

where βt
h(δ, ϵ

t
h) is the smallest value satisfying

βt
h(δ, ϵ

t
h) ≥ H + 1 +

H√
2

√
Γk,λ(N) + logNk,h(ϵth;RN , βt

h(δ, ϵ
t
h)) + 1 + log

(
NH

δ

)
+

3
√
Nϵth
λ

,

with N = NT
h,Z′ and ϵth =

H
√

log(TH
δ )√

NT
h,Z′

.

We also note that

Γk,λ(N
T
h,Z′) = O

(
(NT

h,Z′)
1
p̃ (log(NT

h,Z′))1−
1
p̃ ρ

α
p̃

Z′

)
= O

(
(ρZ′)

−α
p̃ (log(NT

h,Z′))1−
1
p̃ ρ

α
p̃

Z′

)
= O

(
(log(NT

h,Z′))1−
1
p̃

)
= O (log(T )) , (58)
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where the first line is based on Lemma 2, and the second line is by the design of partitioning in
π-KRVI. Recall that each hypercube is partitioned when ρ−α

Z′ < N t
h,Z′ + 1, ensuring that N t

h,Z′

remains at most ρ−α
Z′ .

For the covering number, with the choice of ϵth =
H
√

log(TH
δ )√

Nt
h,Z′

, we have

logNk,h(ϵ
t
h;RN , βt

h(δ, ϵ
t
h))

= O

((
R2

NραZ′

(ϵth)
2

) 1
p̃−1

(1 + log(
RN

ϵth
)) +

(
(βt

h(δ, ϵ
t
h))

2ραZ′

(ϵth)
2

) 2
p̃−1

(1 + log(
βt
h(δ, ϵ

t
h)

ϵth
))

)

= O

( R2
N

H2 log(HT
δ )

) 1
p̃−1

(1 + log(
RN

ϵth
)) +

(
(βt

h(δ, ϵ
t
h))

2

H2 log(HT
δ )

) 2
p̃−1

(1 + log(
βt
h(δ, ϵ

t
h)

ϵth
))

 .

We thus see that the choice of βt
h(δ, ϵ

t
h) = Θ(H

√
log(TH

δ )) satisfies the requirement for confidence

interval width on Z ′ based on Theorem 1. We now use probability union bound over all Z ′ ∈ UT
h to

obtain

βT (δ) = Θ(H

√
log(

TH|HUT
h |

δ
)) = Θ(H

√
log(

TH

δ
). (59)

For this value of βT (δ), we have with probability at least 1− δ, for all h ∈ [H], t ∈ [T ], z ∈ Z ,∣∣rh(z) + [PhVh+1](z)− Q̂t
h(z)

∣∣ ≤ βT (δ)b
t
h(z) + ϵth, (60)

where in the above expression ϵth is the parameter of the covering number corresponding to Z ′ when
z ∈ Z ′.

Therefore, we have, with probability at least 1− δ

Term (i) ≤
T∑

t=1

H∑
h=1

−δth(zth) ≤ 2βT (δ)

(
T∑

t=1

H∑
h=1

bth(z
t
h)

)
+ 2ϵth, (61)

with

ϵth =
H
√
log(TH

δ )√
N t

h,Z(zt
h)

. (62)

We bound the total uncertainty in the kernel ridge regression measured by
∑T

t=1 (b
t
h(z

t
h))

2

T∑
t=1

(
bth(z

t
h)
)2

=
∑

Z′∈UT
h

∑
zt
h∈Z′

(
bth(z

t
h)
)2

≤
∑

Z′∈UT
h

2

log(1 + 1/λ2)
Γk,λ(N

T
h,Z′)

= O

 ∑
Z′∈UT

h

log(T )


= O

(
|UT

h | log(T )
)

= O
(
T

d
d+α log(T )

)
.

The first inequality is commonly used in kernelized bandits. For example see (Srinivas et al., 2010a,
Lemma 5.4). The third and fifth lines follow from Equation (58) and Lemma 9, respectively. Also,
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we have
T∑

t=1

(ϵth)
2 =

T∑
t=1

H2 log(TH
δ )

N t
h,Z(zt

h)

(63)

≤
∑

Z′∈UT
h

∑
zt
h∈Z′

H2 log(TH
δ )

N t
h,Z′

≤ |UT
h |H2 log(

TH

δ
)(log(T ) + 1)

≤ O
(
H2T

d
d+α log(

TH

δ
) log(T )

)
.

We are now ready to bound the

Term (i) ≤ 2βT (δ)

(
T∑

t=1

H∑
h=1

bth(z
t
h)

)
+ 2

T∑
t=1

H∑
h=1

ϵth (64)

≤ 2βT (δ)
√
T

H∑
h=1

√√√√ T∑
t=1

(bth(z
t
h))

2 + 2
√
T

H∑
h=1

√√√√ T∑
t=1

(ϵth)
2

= O

(
H2T

d+α/2
d+α

√
log(T ) log(

TH

δ
)

)
.

The proof is completed.
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