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Abstract

Federated Learning (FL) is a promising research paradigm that enables the collabo-
rative training of machine learning models among various parties without the need
for sensitive information exchange. Nonetheless, retaining data in individual clients
introduces fundamental challenges to achieving performance on par with centrally
trained models. Our study provides an extensive review of federated learning
applied to visual recognition. It underscores the critical role of thoughtful archi-
tectural design choices in achieving optimal performance, a factor often neglected
in the FL literature. Many existing FL solutions are tested on shallow or simple
networks, which may not accurately reflect real-world applications. This practice
restricts the transferability of research findings to large-scale visual recognition
models. Through an in-depth analysis of diverse cutting-edge architectures such
as convolutional neural networks, transformers, and MLP-mixers, we experimen-
tally demonstrate that architectural choices can substantially enhance FL systems’
performance, particularly when handling heterogeneous data. We study 19 visual
recognition models from five different architectural families on four challenging
FL datasets. We also re-investigate the inferior performance of convolution-based
architectures in the FL setting and analyze the influence of normalization layers
on the FL performance. Our findings emphasize the importance of architectural
design for computer vision tasks in practical scenarios, effectively narrowing the
performance gap between federated and centralized learning. Our source code is
available at https://github.com/sarapieri/fed_het.git.

1 Introduction

The growing focus on data privacy and protection [37, 61] has sparked significant research interest
in federated learning (FL) as it provides an opportunity for collaborative machine learning in many
domains, such as healthcare [16, 14, 42, 55], mobile devices [47, 19], internet of things (IoTs) [53, 25]
and autonomous driving [40, 56]. In FL, data is kept separate by individual clients to learn a global
model on the server side in a decentralized way.

Despite the potential benefits of federated learning, the FL environments are highly non-trivial, as the
local datasets of the individual clients may not accurately represent the global data distribution. As
each client is a unique end user, the heterogeneity caused by uneven distributions of features, labels,
or an unequal amount of data across clients poses a serious obstacle [27]. Therefore, the setting is
inherently challenging since FL methods must accommodate both statistical diverseness and exploit
similarities in client data. Typically, the non-independent and identically distributed (non-IID) nature
of the clients drastically affects the model’s performance, resulting in lower accuracy and slower
convergence than the counterparts trained with all the data collected in a single location.

*Equal contribution
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Figure 1: Our study incorporates a wide range of datasets, each presenting varying data heterogeneity
levels, including Fed-ISIC2019 and GLD-23K, which are inherently federated datasets due to their
image acquisition and sensor mechanisms. Differently from prior literature, we extensively evaluate
models from each visual architectural family. Additionally, we assess the effectiveness of four distinct
optimization methods orthogonally to the architectural choice. Our findings empirically underscore
the significant influence of architectural design choices in narrowing the disparity with centralized
configurations and effectively handling data heterogeneity.

To this end, the problem of client heterogeneity received significant attention from the optimization
community [23, 38, 58, 29, 36, 1, 75, 50, 15].

In parallel to these developments in FL, visual recognition tasks have witnessed remarkable progress
in recent years, primarily due to the advancements in deep learning models. These models have
achieved state-of-the-art performance when trained on centralized datasets. However, when deployed
in an FL setting, these image recognition architectures often exhibit performance degradation. Recent
works have investigated the utilization of pretrained models to address the non-iid issue [4, 54]. Qu et
al. [57] examined the robustness of four neural architectures across heterogeneous data, introducing
the idea of tackling the problem from an architectural standpoint and encouraging the development
of “federated-friendly” architectures. The study suggests that self-attention-based architectures are
robust to distribution shifts compared to convolutional architectures, making them more adept in FL
tasks. In this work, we perform a comprehensive study across 19 visual recognition models from five
different architectural families on four challenging FL datasets. We also re-investigate the inferior
performance of convolution-based architectures and analyze the influence of normalization layers on
the model performance in non-IID settings.

Contributions: This work strives to offer architectural design insights that enable immediate
performance improvements without the need for additional data, complex training strategies, or
extensive hyperparameter tuning. The key contributions of this work are the following:

• We perform an exhaustive experimental analysis comparing 19 different state-of-the-art
(SOTA) models from the five leading computer vision architectural families, including Con-
volutional Neural Networks (CNNs), Transformers, MLP-Mixers, Hybrids, and Metaformer-
like architectures. Some of the architectural families we studied were never previously
introduced in FL, demonstrating the feasibility of addressing data heterogeneity in FL from
an architectural perspective. These architectures were tested across four prevalent CV feder-
ated datasets under the most common non-identicalness sources, such as feature distribution
skew, label distribution skew, and domain shift in highly heterogeneous data. Our study,
comprehensively illustrated in Figure 1, embodies a step toward more efficient, practical,
and robust FL systems.

• Our experiments in highly heterogeneous settings reveal that convolution operations are
not inherently sub-optimal in FL applications and Metaformer-like architectures generally
exhibit greater robustness in non-IID settings.

• We illustrate that Batch Normalization (BN) adversely impacts performance in the heteroge-
neous federated learning framework. To counteract this, we empirically demonstrate that
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replacing BN with Layer Normalization is an effective solution to mitigate the performance
drop. This study case underlines how architectural design choices can significantly influence
FL performance.

• We conduct a study on complex networks with four different optimizers, establishing that the
application of optimization methods does not yield substantial performance improvements
in the context of complex architectures. We argue that altering the architecture, in practical
scenarios, offers a more effective and simpler-to-implement choice.

2 Related Works

Federated learning (FL) aims to train models in a decentralized fashion, harnessing edge-device
computational capabilities to safeguard the privacy of client data. In this setup, clients retain their
data on the device, coordinating with a server to develop a global model. A distinct challenge in FL
is data heterogeneity, as client data is often non-IID. The issue of addressing this heterogeneity has
garnered significant focus from the optimization domain. To enhance the established aggregation
method, FedAvg [49], various strategies have emerged. These encompass optimization improvements
for federated averaging such as FedAVGM [23], FedProx [38], SCAFFOLD [29], and FedExP [26]
and methods to manage data heterogeneity and imbalance like FedShuffle [21], FedLC [34], and
MooN [36].

A complementary angle to explore is how the choice of models can elevate FL training outcomes. It
has been observed that pretrained models can significantly counteract non-IID challenges [4], [54].
Some previous studies have highlighted the impact of Batch Normalization (BN) on performance
drops under heterogeneous settings [39], and few works [22], [24] suggested replacing BN with
Group Normalization. Our work is related to Qu et al.’s examination [57] of neural architecture in
visual recognition robustness across heterogeneous data splits. Our experiments compare 19 cutting-
edge models from diverse computer vision architectural families against demanding heterogeneous
datasets and different optimizers.

3 Optimization Methods for Federated Learning

In this section, we present a brief overview of the optimization techniques utilized in our study to
evaluate their effectiveness in handling data heterogeneity when applied in conjunction with complex
computer vision architectures.

Federated Averaging (FedAVG) [49]: FedAVG was proposed by McMahan et al. (2017) as the
standard aggregation method for FL. It offers a straightforward and effective approach where local
models are trained on individual devices, and their parameters are averaged to update the global
model. However, FedAVG faces challenges in scenarios involving non-IID and unbalanced data,
which are prevalent in FL settings.

FedAVG with Momentum (FedAVGM) [23] To address some of the limitations of FedAVG, the
addition of a momentum term has been explored. This technique enhances the standard FedAVG
method by updating the global model at the server using a gradient-based server optimizer that
operates on the mean of the client model updates. The inclusion of momentum facilitates efficient
navigation through the complex optimization landscape and accelerates learning, particularly in the
presence of sparse or noisy gradients.

FedProx [38]: To handle the heterogeneity in data and device availability in FL, Li et al. proposed
FedProx (Federated Proximal). This method introduces a proximal term into the local loss function,
preventing local models from deviating significantly from the global model. The proximal term
acts as a regularizer, penalizing large deviations from the current global model. This regularization
approach improves overall performance and enhances robustness in FL scenarios.

SCAFFOLD [29]: SCAFFOLD is a stochastic algorithm designed to enhance the performance of
Federated Averaging (FedAVG) by introducing a controlled stochastic averaging step. This step
reduces the variance of gradient estimates by correcting the local updates. SCAFFOLD employs
control variates (variance reduction) to address the "client-drift" issue in local updates. Notably,
SCAFFOLD requires fewer communication rounds, making it less susceptible to data heterogeneity
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Figure 2: Model Accuracy Analysis across CIFAR-10 splits grouped by the architecture type. The
presented results depict the accuracy performance of various models on distinct partitions of the
CIFAR-10 dataset. Each split represents a unique partition, progressing from an IID scenario
(Split-1) to a non-IID scenario (Split-3). The models under comparison exhibit similar parameters,
FLOPS, and approximately matching ImageNet and centralized accuracies. Notably, Metaformer-
like architectures, including Metaformers (e), Transformers (b), and MLP-Mixers (d), exhibit a
comparatively smaller performance degradation on Split-2 and Split-3. The best-performing models
are CA-Former and ConvFormer, which are Metaformers with advanced token mixers.

or client sampling. Furthermore, the algorithm leverages data similarity among clients, leading to
faster convergence.

4 Architectures for Computer Vision

In this section, we provide an overview of the architecture families studied in this work.

Convolutional-based models: We include Resnet [19] and EfficientNet [62] as the study of Qu et
al. [57], and extend it by adding a recently introduced architecture, ConvNeXt [45]. EfficientNet
and Resnet consist of a stack of convolutional layers, pooling layers, and batch normalization
layers. ConvNext was conceived by modernizing ResNet-50 to pair with the performance of vision
transformers. The key changes introduced at the component-level are: replacing the typical batch
normalization with layer normalization, using inverted residual blocks and larger kernel sizes, and
substituting the more common ReLU [51] with the GeLU [20] nonlinearity.

Vision Transformers: ViTs were introduced to the computer vision community by Dosovitskiy et al.
[13] after becoming the de-facto standard for natural language processing tasks. The Transformer
architecture reconsiders the need for convolutions and replaces them with a self-attention mechanism.
ViTs work by splitting the image into non-overlapping patches treated as tokens and re-weighting
them based on a similarity measure between each token pair. The main differences with CNNs are the
lack of inductive bias of the vanilla self-attention and the global receptive field capable of capturing
long-distance dependencies as opposed to the local receptive field of convolutions. As representatives
of this family of architectures, we include ViT [60], Swin [44], Swin V2 [43], and DeiT [66].

MLP-Mixers: MLP-Mixers were first proposed by Tolstikhin et al. [64]. It was the first architecture
to show that although convolutions and self-attention are sufficient to achieve top performance, they
are not necessary. The MLP-Mixers take inspiration from ViT’s use of patches for input representation
but fully use multi-layer perceptrons instead of the typical self-attention mechanism of Transformers.
For our experiments, we make use of the original MLP-Mixer [64], the ResMLP variation [65], and
the gMLP [41] which uses a special gating unit to enable cross-token interactions.

Hybrids: Many efforts have been made to incorporate features from CNNs into Transformers and
vice versa. We group this set of mixed models under the same ’Hybrids’ category. Namely ConvMixer
[67], CoATNet [8], and MaxViT [69]. ConvMixer combines a transformer-like patch design with
convolution-based layers to mix patch embeddings’ spatial and channel locations. CoATNet vertically
stacks convolution layers and attention layers. Finally, MaxViT hierarchically stacks repeated blocks
composed of multi-axis self-attention and convolutions.

MetaFormers: Although the success of transformer-based architectures was longly attributed to
self-attention, recent works [73, 74] have started to identify the overall structure of the transformer
block as the critical component in achieving competitive performances. Based on this hypothesis,

4



Metaformer is constructed from Transformers without specifying the design of the token mixers.
If the token mixer is self-attention or spatial MLP, the architecture becomes a Transformer or an
MLP-Mixer.
Although most of the Transformers and MLP-Mixers formally fall into the ’Metaformers’ structure,
we group in this family only the works published by the authors under this name. Within the networks
selected, we have some working with simple operators in the token mixers, published with the explicit
intent of pushing the limit of the Metaformer structure. Respectively, RandFormer, IdentityFormer
[74], and PoolFormer [73] have a random matrix, an identity mapping, and a pooling operator as
the token mixer. Moreover, ConvFormer [74] applies depthwise separable convolutions as the token
mixer, and CAFormer [74] further combines it with vanilla self-attention in the deep stages. We also
add to this category RIFormer [70], an architecture that optimizes the latency/accuracy trade-off by
using re-parametrization [12] to remove the token mixer without significantly compromising the
performance.

5 Experimental Setup

Models: This study aims to enrich the FL landscape by introducing a variety of cutting-edge
architectures for computer vision. Within the FL framework, we conduct a comparative analysis
of models that have similar parameters and FLOPS and roughly equivalent accuracy in centralized
settings to the benchmark model, ResNet-50. Ensuring fairness, all the models under consideration
fall within a similar parameter range (21-31M) and floating point operations per second (FLOPS)
range (4-6G) 1. Each model exhibits a comparable centralized test accuracy on ImageNet-1K [11].

Unless explicitly stated, all models are pretrained on ImageNet-1K and subsequently finetuned on the
specified dataset.

Federated learning: In an effort to ensure that the insights derived from this study remain indepen-
dent of the training heuristics, we have standardized and simplified the training strategy across all
architectures. Our approach involves performing FedAVG for a specific number of communication
rounds to reach convergence: 100 rounds for both the CIFAR-10 and Fed-ISIC2019 datasets, 30
rounds for the CelebA dataset, and 200 rounds for the GLD-23K dataset. With the exception of the
GLD-23K dataset, where we conduct five local steps, each round of local training encompasses one
local epoch. The training regimen employs the SGD optimizer with an initial learning rate of 0.03,
cosine decay, and a warm-up phase of 100 steps. We set the local training batch size at 32 and apply
gradient clipping with a unitary norm to stabilize the training process.

The numerical values presented in this paper represent the average results derived from three rep-
etitions of the same experiment, each with different initializations, to ensure the robustness and
reproducibility of our findings. Regarding optimization, we conduct hyperparameter tuning for each
model based on the set of values suggested by the respective authors in their original publications.
The results reported in this paper reflect the optimal outcomes derived from the hyperparameter
search. A more in-depth discussion is given in the supplementary material.

Datasets: We conduct experiments on four different datasets, CIFAR-10 [31], CelebA [46], Fed-
ISIC2019 [68, 5, 7] and Google Landmarks Dataset v2 (GLD-23K) [72]. Across the experiments, all
the images are resized to a standard dimension of 224 × 224. The data heterogeneity of the different
datasets used in our experiments is characterized in terms of Label Distribution Skew (LDS), Data
Distribution Skew (DDS), and Feature Distribution Skew (FDS). The LDS is characterized by a
heterogeneous number of samples per class for each client. In the DDS, the amount of data per client
varies. Lastly, the FDS is defined by varying image features per class across clients due to changes in
acquisition sensors, image domains, user preferences, geographical locations, etc. (see supplementary
materials for more details).

The CIFAR-10 dataset comprises 60,000 32x32 color images in 10 distinct classes representing
common objects. Since CIFAR-10 is not inherently a federated dataset, we artificially simulate three
federated data partitions across clients following the approach outlined in [57]. The original test set
is retained as the global test set, and 5,000 images are set aside from the training set for validation

1The only exception in terms of model size is MLPMixer-S/16. However, we have opted to include this model
in its smallest configuration provided by the authors, as it constitutes the inaugural exemplar of MLP-Mixer
architectures.
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CIFAR-10 FED-ISIC2019

ARCHITECTURE RESNET-50 CONVNEXT-T CAFORMER-S18 RESNET-50 CONVNEXT-T CAFORMER-S18

FEDAVG [49] 59.9± 1.87 93.5± 0.36 97.1± 0.35 67.6± 1.59 78.6± 0.29 83.1± 0.49
FEDAVGM [58] 80.2± 0.49 93.4± 0.48 97.0± 0.14 66.2± 2.16 79.0± 0.52 83.8± 0.37
FEDPROX [38] 79.0± 0.41 93.4± 0.16 97.1± 0.25 68.0± 1.93 79.4± 1.13 83.0± 0.79
SCAFFOLD [29] 78.1± 0.06 94.3± 0.30 96.9± 0.21 62.2± 0.26 76.0± 1.24 77.1± 0.61

Table 1: Accuracy of ResNet-50, ConvNext-T, and CAFormer on CIFAR-10 and Fed-ISIC2019
across four different optimization methods. The average test accuracy of the model is displayed along
with the standard deviation of three repetitions of the experiments.

purposes, resulting in a revised training dataset of 45,000 images. We employ the Kolmogorov-
Smirnov statistic (KS) to simulate one Independent and Identically Distributed (IID) data partition,
namely Split-1 (KS=0), ensuring balanced labels per client, and two non-IID partitions, Split-2
(KS=0.5) and Split-3 (KS=1), with label distribution skew. In Split-2, each client has access to four
classes and does not receive samples from the remaining six classes. In Split-3, each client strictly
sees samples from two classes only. Therefore, this is the most challenging partition, featuring a
pronounced class imbalance. Each data partition has five clients.

The CelebA dataset is a large-scale face attributes dataset featuring over 200,000 high-resolution
celebrity images. Each image is annotated with 40 binary labels that denote the presence or absence
of distinct facial attributes. In this study, we employ the federated version of the CelebA dataset
proposed by the LEAF benchmark [3]. In line with the methodology outlined in [57], we test the
models on a binary classification task, determining whether a celebrity is smiling. The dataset is
partitioned across 227 clients, each representing a specific celebrity and collectively accounting for
1,213 images. The dataset presents significant challenges due to the large-scale setting involving
numerous clients. Each client has access to only a handful of samples, five per client on average, and
in some instances, data from only one class is available.

The Fed-ISIC2019 dataset contains skin lesion images collected from four hospitals. We adopt the
partitioning strategy proposed by [63], which is based on the imaging acquisition systems utilized.
Given that one hospital employed three distinct imaging technologies over time, the federated dataset
is distributed across six clients, encompassing 23,247 images. The task involves classifying the
images into eight melanoma classes with high label imbalance across clients. Additionally, the dataset
exhibits quantity skew with disparity in the number of images per client. The largest client possesses
more than half the data, whereas the smallest has only 439 samples.

The Google Landmark-V2 dataset is a vast collection with over 5 million images of global landmarks.
We utilize the federated GLD-23K partition, involving 233 smartphone users as clients contributing
23,080 images across 203 classes. These datasets exhibit a geographically influenced, long-tailed
distribution, with some landmarks having many representations while others have very few, mirroring
real-world disparities. Also, photographers’ images present unique distributional characteristics tied
to their habits and locations, resulting in large diversity and imbalance across clients.

6 Experimental Results

6.1 Optimizers and Complex Networks in Federated Learning

An effective learning system typically requires both an optimized architecture and an effective
optimization technique to shape the learning process and resultant model. The federated learning
community has focused considerably on optimization techniques to address challenges related to
non-IID data and the need to balance statistical diversity and leverage similarities in client data for
central model training. However, most recent studies [48] rarely present results incorporating the
latest architectures developed by the computer vision community. Many of these publications on
vision tasks present their work on simple and shallow networks ranging from a few fully connected
layers to the ResNet-50 model. This discrepancy highlights a significant chasm between the research
focus of federated learning and state-of-the-art computer vision architectures.
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To evaluate the compatibility of advanced architectures with federated optimization methods, we
consider the widely used ResNet-50 model in our study and extend it to more recent computer vision
architectures. We compare different models with the baseline ResNet-50, combined with diverse
optimization techniques across four federated datasets. Alongside ResNet, we employ ConvNext,
proposed to narrow the gap of convolutional with transformer architectures, and CAFormer, a recently
introduced model in the Metaformer family. We consider four of the most popular optimizers in
federated learning, namely FedAVG [49], FedAVGM (enhanced with momentum) [58], FedProx [38],
and SCAFFOLD [29].

Results reported in Table 1 can be summarized as follows. First, using the standard FedAVG
replacing ResNet-50 with the above computer vision architectures significantly increases accuracy
across all datasets, especially with the CAFormer architecture, suggesting that architectural
modification can significantly boost performance. Secondly, combining optimizers with complex
models does not enhance results, with most of the performance maintaining a steady status, except
for FedAVGM applied with ResNet on the CIFAR-10 dataset. In fact, for the Fed-ISIC2019
dataset, some of the optimizers proved to be detrimental to the performance of the network
when compared to the simple FedAVG (e.g., SCAFFOLD for all architectures, and ResNet
with FedAVGM and FedProx). The lack of optimization benefits across different datasets and
architectures can be attributed to the complexity of modern deep learning architectures, such as
Transformer-based models, which are significantly more complex than models typically used in
FL research, leading to a more challenging optimization landscape. Applying these optimization
techniques to the tough non-convex optimization problems encountered during the training of
modern deep neural networks remains an unresolved issue. Most FL methods have demonstrated
efficacy for certain types of non-convex problems under specific assumptions that might not be
applicable to these complex models in practice [10, 30]. Our experiments reveal that the naïve ap-
plication of these techniques, combined with advanced models, often leads to negligible improvement.

This leaves us with the unresolved question of how we can optimize federated learning per-
formance for practical applications, bridge the gap between advancements in the computer vision and
FL communities, and address the issue of closing the performance gap with centralized settings.
Inspired by our findings, we inspect the benefits of architectural design choices. Replacing the
architecture is an easy-to-implement strategy, given the wide array of pretrained models available and
their proven effectiveness on various vision tasks. Moreover, cutting-edge architectures often include
design elements that inherently facilitate learning, such as superior feature extraction, incorporation
of prior knowledge (inductive biases), and regularization that could mimic the effects of federated
optimization techniques. In the following Section 6.2, we explore the possibility of leveraging the
inherent strengths of different computer vision models to enhance performance and naturally bridge
the non-IID gap in federated learning.

6.2 Tackling the Heterogeneity Challenge with Architectural Design
We comprehensively compare network architectures from diverse network families, such as CNNs,
Vision Transformers, Hybrids, MLP-Mixers, and Metaformers, with a particular focus on how each
architecture family performs against each other. Tables 2 and 3 show our results on CIFAR, CelebA,
Fed-ISIC2019, and GLD-23k datasets.

Architectural Comparison on CIFAR-10: On CIFAR-10, all models show performance degradation
compared to the ideal centralized training, with most of the architectures displaying a significant
reduction in accuracy as we progress to the non-IID splits (see Figure 2). Table 2 shows the
performance of each model across all splits and the centralized version. The key observations from
this study are summarized below.

Convolutional Networks: Convolutional models exhibit the overall highest performance degradation
among all families. ResNet [19] and EfficientNet [62] are found to be non-robust in heterogeneous
settings, with a loss of 36 and 17.1 points, respectively, observed in Split-3. While ConvNeXt [45]
shows improvement over its predecessors, it still falls short of achieving top results when compared
to other model families.

Transformers and Metaformers: Transformers consistently demonstrate robust performance, par-
ticularly in non-IID data partitions, exhibiting only a marginal average degradation of 1.7 points.
Notably, ViT [60] achieves remarkable resilience, attaining an accuracy of 96.8% and experiencing
a minimal drop of merely 0.8%, even in the most challenging split. These findings corroborate the
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MODEL CENTRAL SPLIT-1 SPLIT-2 SPLIT-3

RESNET-50 [19] 95.9± 0.21 96.8± 0.17 92.7± 0.25 59.9± 1.87 (↓ 36.0)
EFFICIENTNET-B5 [62] 97.6± 0.21 97.8± 0.06 95.1± 0.06 80.5± 0.92 (↓ 17.1)
CONVNEXT-T [45] 97.2± 0.15 97.6± 0.06 96.6± 0.21 93.5± 0.36 (↓ 3.7)

SWIN-T [44] 97.6± 0.15 97.9± 0.10 97.6± 0.06 95.7± 0.15 (↓ 1.9)
VIT-S [60] 97.6± 0.06 98.5± 0.10 98.2± 0.12 96.8± 0.15 (↓ 0.8)
SWINV2-T [43] 96.4± 0.00 97.4± 0.10 96.4± 0.15 93.7± 0.38 (↓ 2.7)
DEIT-S [66] 96.8± 0.12 97.8± 0.06 97.2± 0.12 95.2± 0.15 (↓ 1.6)

CONVFORMER-S18 [74] 97.9± 0.12 98.4± 0.12 98.0± 0.12 96.8± 0.35 (↓ 1.2)
CAFORMER-S18 [74] 98.1± 0.18 98.5± 0.06 98.3± 0.06 97.1± 0.14 (↓ 1.0)

RANDFORMER-S36 [74] 95.7± 0.12 95.8± 0.10 94.6± 0.06 91.3± 0.35 (↓ 4.4)
IDENTITYFORMER-S36 [74] 95.3± 0.26 95.6± 0.12 94.6± 0.12 90.8± 0.45 (↓ 4.5)
POOLFORMER-S36 [73] 97.1± 0.25 97.4± 0.10 96.9± 0.06 95.2± 0.12 (↓ 1.9)
RIFORMER-S36 [70] 95.9± 0.08 96.6± 0.16 95.5± 0.15 93.0± 0.10 (↓ 2.9)

MLPMIXER-S/16 [64] 94.8± 0.10 96.5± 0.12 95.6± 0.06 92.7± 0.06 (↓ 2.1)
RESMLP-S24 [65] 96.2± 0.10 97.2± 0.10 96.7± 0.06 94.1± 0.17 (↓ 2.1)
GMLP-S [41] 96.9± 0.26 98.0± 0.06 97.6± 0.12 96.1± 0.23 (↓ 0.8)

CONVMIXER-768/32 [67] 97.4± 0.12 97.3± 0.06 94.4± 0.15 74.1± 1.07 (↓ 23.3)
COATNET-0 [8] 97.7± 0.15 98.3± 0.15 97.5± 0.06 94.2± 0.06 (↓ 3.4)
MAXVIT-T [69] 98.0± 0.10 98.6± 0.10 97.3± 0.12 92.0± 1.15 (↓ 6.0)

Table 2: Performance of different types of models across all splits of CIFAR-10. The average test
accuracy of the model is displayed along with the standard deviation of the experiments. Split-3
shows the degradation compared to the centralized version of the training.

earlier observations made by Qu et al. [57] regarding the robustness of ViT models against data
heterogeneity. However, Qu et al. attribute the superior performance of Transformers, compared to
convolutional networks, to the robustness of self-attention in mitigating distribution shifts. In contrast,
the emergence of the Metaformer family, employing various token-mixers including convolution
operation, suggests that the remarkable proficiency exhibited by Transformers may be primarily
attributed to the underlying architectural design of Metaformers, rather than the exclusive reliance
on self-attention in models like ViT. Indeed, even Metaformers employing basic token mixers, such
as RandFormer with a random token mixer, deliver remarkably satisfactory performances. On the
challenging Split-3, CAFormer [74] garners the highest result, achieving an accuracy of 97.1% and
delivering exemplary performance across all splits, followed by fully convolutional token mixer
(without self-attention) based ConvFormer [74], which is also on par with ViTs.

MLP-Mixers: As for MLP-Mixers, on average, their performance on the Split-3 is close to those of
Transformers. The best is the gMLP [41] with 0.8% of degradation (second only to ViT) and an
accuracy of 96.1%. Finally, Hybrid models achieve reasonable performance, but their results are far
behind those of the other families. It is worth noticing that most models achieve higher accuracy in
Split-1 compared to the centralized setting. We conjuncture that this is due to a regularizing effect
caused by each client’s access to the IID data partition (with uniform distribution over 10 classes).

Architectural Comparison on CelebA, Fed-ISIC2019 and GLD-23k: The results for CelebA,
Fed-ISIC2019 and GLD-23k are reported in Table 3.

CelebA: The highest accuracies for CelebA are the ones of Swin [44] (89.0) and ConvFormer [74]
(88.1), followed by MLP-Mixer [64] and CAFormer [74]. Again, all Metaformer-like architectures
(encompassing Transformers and MLP-Mixers) achieve the best results, far surpassing those of CNNs
and Hybrid models, whose average performance is 84 and 74.9, respectively.

GLD-23K: On the GLD-23K, we also observe that ViT remains among the highest-performing
networks. However, Metaformers such as CaFormer and ConvFormer do not yield high performance
as in previous datasets.

Fed-ISIC-2019: Finally, on the Fed-ISIC-2019 dataset, which is naturally federated (due to the
differences in the image acquisition systems across clients), we find CAFormer and ViT as the best-
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MODEL NORM MAIN OPERATION CELEBA GLD-23K FED-ISIC2019

RESNET-50 [19] BN CONV 84.9± 1.48 54.3± 0.48 67.6± 1.59
EFFICIENTNET-B5 [62] BN CONV 79.5± 0.50 51.9± 1.21 70.0± 0.64
CONVNEXT-T [45] LN CONV 87.5± 0.87 65.5± 0.57 78.6± 0.29

SWIN-T [44] LN SA 89.0± 0.79 72.1± 0.67 81.9± 0.42
VIT-S [60] LN SA 87.3± 0.53 76.6± 0.69 82.3± 0.95
SWINV2-T [43] LN SA 86.8± 0.62 74.4± 0.02 81.7± 0.50
DEIT-S [66] LN SA 87.4± 0.60 69.1± 1.24 82.3± 0.59

CONVFORMER-S18 [74] LN CONV 88.1± 0.42 53.8± 1.11 81.1± 1.54
CAFORMER-S18 [74] LN SA+CONV 87.5± 0.49 57.8± 0.54 83.1± 0.49

RANDFORMER-S36 [74] LN CONV 83.9± 0.35 56.3± 0.10 77.3± 0.23
IDENTITYFORMER-S36 [74] LN CONV 85.8± 0.49 56.0± 2.07 76.9± 1.43
POOLFORMER-S36 [73] LN CONV+POOL 86.4± 0.61 55.8± 1.41 79.6± 0.29
RIFORMER-S36 [70] LN CONV 87.2± 0.37 69.4± 0.20 81.9± 1.37

MLPMIXER-S/16 [64] LN CONV 87.9± 0.51 71.3± 0.32 80.5± 1.62
RESMLP-S24 [65] - CONV 87.0± 0.35 64.8± 0.59 81.1± 0.45
GMLP-S [41] LN CONV 86.6± 0.31 67.4± 0.16 79.9± 1.60

CONVMIXER-768/32[67] BN CONV 56.5± 1.07 45.0± 0.76 58.6± 2.02
COATNET-0 [8] BN+LN SA+CONV 82.2± 1.66 70.4± 0.25 66.0± 3.40
MAXVIT-T [69] LN SA 86.1± 0.72 71.7± 0.90 70.1± 1.27

Table 3: Accuracy of the model families on CelebA, GLD-23K, and Fed-ISIC2019. For each model,
we report the type of normalization layer, either LayerNorm or BatchNorm (LN/BN), and main
operation employed (Convolution/Self-Attention). The mean accuracy of all repetitions is displayed
along with the standard deviation.

performing models (83.1 and 82.3 accuracy). In fact, we can see a significantly superior performance
from all models following the Metaformer structure, indistinctly of their use of convolutions and/or
self-attention in their basic block structure.

In summary, our comprehensive experiments on 19 state-of-the-art architectures demonstrate that
the choice of architecture and its components play a noteworthy role in tackling performance
degradation caused by data heterogeneity. As a matter of fact, the experiments indicate that selecting
an appropriate architecture design can have a greater impact on closing the gap with centralized
training than the choice of the optimizer. For example, Table 1 shows that CAFormer with simple
FedAVG outperforms all other models even when using more advanced optimization methods.

6.2.1 How architectural design improves performances - Normalization Layer

Based on the results observed in the previous sections, we further investigate the performance
reduction by delving into the contribution of specific architectural components. Our objective is to
identify some key structural elements to achieve stronger performances in heterogeneous settings.

As shown in Table 3, models making use of Batch Normalization (like ResNet, EfficientNet, and
ConvMixer) are consistently outperformed by models with Layer Norm on Split-3. This insight sheds
light on why older convolutional (such as ResNet and EfficientNet) models have such high degradation.
On the contrary, ConvNext, which uses Layer Norm, reaches satisfactory performance, contradicting
the initial conclusion of [57] that convolutions are inherently problematic in the federated learning
scenario under non-IID conditions. Moreover, we observe how ConvFormer, a model without Self-
attention based blocks (based primarily on convolutions) but with a MetaFormer-like structure and
Layer Norms, regularly reaches top performance even under the most challenging data partitions.

To further support our claims, we perform experiments with three different models, namely Pool-
Former, CoAtNet, and ResNet. Each model trains with a variant using Batch Norm and another using
Layer Norm. Lastly, we include a training scheme with FedBN [39] (a method developed specifically
to deal with the performance degradation caused by the Batch Norm layer). Results (displayed in
Table 4) show a trend indicating the superiority of Layer Norm over Batch Norm, even when using a
tailored aggregation method for the latter (e.g., FedBN [39]).
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VARIANT CENTRAL SPLIT-3

COATNET-0 BN 97.5± 0.04 20.9± 0.45 (↓ 76.6)
COATNET-0 LN * 97.7± 0.15 94.2± 0.06 (↓ 3.4)

POOLFORMER-S12 BN 95.3± 0.35 51.5± 0.32 (↓ 43.7)
POOLFORMER-S12 LN 95.6± 0.09 91.5± 0.13 (↓ 4.1)

RESNET-50 BN 95.9± 0.21 59.9± 1.87 (↓ 36.0)
RESNET-50 LN † 92.8± 0.16 72.2± 3.06 (↓ 26.6)
RESNET-50 FEDBN [39] 96.1± 0.19 59.6± 1.40 (↓ 36.5)

Table 4: Accuracy of ResNet-50, CoAtNext-
0, and PoolFormer-S12 with BN and LN in
the central and the Split-3 version of CIFAR-
10. * The original CoAtNet-0 uses BN and
LN in convolutional and self-attention blocks,
respectively. † LN layers have no pretraining.

PoolFormer-LN PoolFormer-BN CoAtNet-LN * CoAtNet-BN* Resnet-LN Resnet-BN 
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Figure 3: Weight divergence with respect to
models’ centralized version on CIFAR-10. The
use of BN leads to a larger weight divergence.

Finally, as in [76], we measure and report the weight divergence of the models with respect to the
centralized training. Figure 3 shows the increase of divergence for the models using BN to their LN
counterparts, supporting the selection of Layer Norm over Batch Norm as an architectural choice for
federated learning.

7 Limitations

Our research primarily explores visual recognition tasks within the federated learning domain, and we
have not explored potential downstream tasks, such as object detection and segmentation. It’s worth
noting that visual recognition models often serve as backbones for extracting input image features in
downstream tasks, thereby suggesting that our observed performance trends could likely extend to
these downstream tasks. We plan to address this research gap in future studies.

Furthermore, our approach did not design a completely new model from scratch. Instead, we demon-
strated our results utilizing pre-existing models and components. Our study also underscores the
limitations of employing established optimizers (e.g., FedAVG, FedAVGM, FedProx, SCAFFOLD)
along with modern network architectures. However, we abstain from plunging into the creation of
innovative optimization techniques. Instead, we focus on evaluating diverse architectural families on
many practical federated learning datasets and optimizers. As a result, our investigation leaves an
intriguing avenue for future research, integrating our findings to develop dedicated architecture and
optimizers tailored specifically for federated learning (FL) scenarios. By exploring this direction, we
anticipate the potential to further enhance the performance and efficiency of FL systems.

8 Conclusion

This research expands the architectural domain in federated learning, emphasizing architectural
design for computer vision applications under data heterogeneity. Our experiments assess various
state-of-the-art models from five architectural families across four federated datasets, demonstrating
the potential of addressing FL data heterogeneity architecturally. We show that Metaformer-like
architectures exhibit superior robustness in non-IID settings. In contrast to existing studies, we
observe that convolution operations are not necessarily a sub-optimal choice for architectures in FL
applications and highlight the negative impact of Batch Normalization layer on the model performance.
Our study also shows that architectural alterations offer an effective and more practical solution to
handle data heterogeneity in non-IID settings.
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Supplementary Material

9 A Re-look into existing Federated Computer Vision Approaches

In this section, we explore the landscape of computer vision techniques in existing literature. We
begin by examining foundational works from the literature and the computer vision architectures they
adopt. Our comparative assessment reveals that our approach incorporates several state-of-the-art
vision architectures, previously unexplored in federated learning contexts. Furthermore, we contrast
commonly used datasets with those we have chosen for our study. Notably, while our methodology
encompasses a range of architectures, we also feature five datasets, four of which are intrinsically
federated.

METHOD VENUE VISION ARCHITECTURES VISION DATASETS

FEDAVG [49] AISTATS’17 2MLP, 2CNN MNIST, CIFAR-10
FEDAVGM [58] ARXIV’19 2CNN CIFAR-10
FEDPROX [38] MLSYS’20 LOGISTIC REGRESSION MNIST, FEDMNIST
SCAFFOLD [29] ICML’20 2MLP MNIST
FEDNOVA [71] NEURIPS’20 LOGISTIC REGRESSION, VGG SYNTHETIC, CIFAR-10
MOON [36] CVPR’21 6CNN, RESNET CIFAR-10, CIFAR-100, TINY-IMAGENET
FEDDYN [1] ICLR’21 6CNN MNIST, EMNIST, CIFAR-10, CIFAR-100
FEDOPT [58] ICLR’21 RESNET, 4CNN, 8MLP CIFAR-10, CIFAR-100, EMNIST
FEDBN [39] ICLR’21 6CNN SVHN, USPS HULL, SYNTHETIC DIGITS, MNIST
MIME [28] NEURIPS ’21 LOGISTIC REGRESSION, 4CNN, 2MLP EMNIST
FEDLC [34] ICML’22 RESNET SVHN, CIFAR10 AND CIFAR100, IMAGENET SUBSET
PROXSKIP [50] ICML’22 LOGISTIC REGRESSION LIBSVM-‘W8A’
FEDDC [15] CVPR’22 LOGISTIC REGRESSION, 2MLP MNIST, FASHION MNIST, CIFAR10, CIFAR100

2CNN, RESNET EMNIST, TINY IMAGENET, SYNTHETIC
FEDSHUFFLE [21] TMLR ’22 RESNET CIFAR-100
FEDEXP [26] ICLR ’23 4CNN, RESNET EMNIST, CIFAR-10, CIFAR-100, CINIC-10
FEDML [17] NEURIPS WORKSHOP ’20 LOGISTIC REGRESSION, 4CNN MNIST, FEDMNIST, SYNTHETIC

RESNET, MOBILENET CIFAR-10, CIFAR-100, CINIC-10
FLOWER [2] ARXIV’20 4CNN, RESNET FEMNIST, CIFAR-10, IMAGENET
FEDCV [18] CVPR’21 EFFICIENTNET, MOBILENET, VIT CIFAR-100, GLD-23K
QU ET AL. [57] CVPR’22 RESNET, EFFICIENTNET, VIT, SWIN RETINA, CIFAR-10, CELEBA
SKEWSCOUT [22] ICML’20 ALEXNET, GOOGLENET, LENET, RESNET CIFAR-10, FLICKR-MAMMAL, IMAGENET
HSU ET AL. [24] ECCV’20 MOBILENETV2, 6CNN CIFAR-10, CIFAR-100, INATURALIST, GLD-160K

RESNET-50, EFFICIENTNET, CONVNEXT
SWIN, VIT, SWINV2, DEIT,

RIFORMER-S36, CONVFORMER, CAFORMER,
OURS RANDFORMER, IDENTITYFORMER, POOLFORMER CIFAR-10, CELEBA, FED-ISIC2019, GLD-23K, PACS

MLPMIXER, RESMLP, GMLP,
CONVMIXER, COATNET, MAXVIT

Table 5: Literature review and comparative analysis of various federated learning methods evaluated
on computer vision benchmarks. Each method is classified by the publication venue, the vision
architecture utilized, and the vision-related datasets employed for testing. Furthermore, we provide
specific details for shallow models on the complexity of the network architectures in terms of the
number of convolutional (CNN) and fully connected (MLP) layers.

DATASET IMAGES CLASSES CLIENTS NATURALLY FEDERATED

CIFAR-10 [31] 60,000 10 - NO
CELEBA [46] 200,288 2 9,343 YES
FED-ISIC2019 [68, 5, 7] 23,247 8 6 YES
GLD-23K [72] 23,080 203 233 YES
PACS [35] 9,991 7 4 YES
TINYIMAGENET [32] 120,000 203 - NO
MNIST [33] 70,000 10 250 YES
EMNIST [6] 814,255 62 500 YES
FEMNIST [3] 805,263 62 3500 YES
SVHN [52] 600,000 10 - NO
CINIC [9] 270,000 10 - NO
SYNTHETIC DIGITS [59] 12,000 10 - NO

Table 6: Overview of frequently utilized datasets for visual recognition within the field of federated
learning. The number of clients indicated for non-naturally federated datasets are subject to each
author’s unique artificial partition.
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9.0.1 Data Heterogeneity - Dataset Analysis

In our experiments, we examined data heterogeneity across several datasets, focusing on Label
Distribution Skew (LDS), Feature Distribution Skew (FDS), and Data Distribution Skew (DDS). The
LDS denotes an uneven distribution of samples across classes for each client, while DDS reflects
variations in the volume of data per client. On the other hand, FDS arises from differences in image
features per class across clients, attributable to factors like varied acquisition sensors, image domains,
user preferences, and geographical locations.

Specifically, for LDS, we tested CIFAR-10 and created three distinct splits with escalating label skew.
This skewness was measured using the KS statistic, enabling a comprehensive exploration of how
label imbalances affect our model’s efficacy.

For Data Distribution Skew (DDS), our primary dataset was GLDK, which exhibited the most
pronounced variations in the amount of data per client. This helped us delve deep into the challenges
and implications of data volume discrepancies across clients in a federated setting.

In terms of FDS, we incorporated inherently federated datasets like GLD-23K and Fed-ISIC2019,
which exhibit this skew. The GLD-23K dataset spans multiple geographical areas, while Fed-
ISIC2019 was gathered using diverse medical equipment, offering a broad spectrum of feature
distribution skews. Additionally, we delve deeper into the PACS dataset in Sec. 10.4, which
showcases significant domain variations. For this particular study, our federated divisions allocated
unique target domains: Photos, Sketches, Cartoons, and Paintings.

DATASET # CLASSES # CLIENTS # IMAGES LDS FDS DDS

CIFAR-10 SPLIT-1 10 5 60,000 ✗ ✗ ✗
SPLIT-2 10 5 60,000 ✓ ✓ ✗ ✗
SPLIT-3 10 5 60,000 ✓ ✓ ✓ ✗ ✗

CELEBA 2 227 1,213 ✓ ✓ ✓ ✓
FED-ISIC2019 8 6 23,247 ✓ ✓ ✓ ✓ ✓ ✓
GOOGLE LANDMARK-V2 203 223 23,080 ✓ ✓ ✓ ✓ ✓ ✓ ✓
PACS 7 4 9,991 ✗ ✓ ✓ ✓ ✗

Table 7: Summary of datasets and setups. We assess the data heterogeneity of the datasets in terms
of three key aspects: Label Distribution Skew (LDS), Feature Distribution Skew (FDS), and Data
Distribution Skew (DDS). We utilize a grading system to quantify the level of skewness, with options
ranging from “none" (✗), “mild" (✓), “moderate" (✓✓), to “severe" (✓✓✓).

10 Additional Experiments

In this section, we delve into supplementary experiments. These encompass optimization strategies
applied to complex network results 10.1, further analysis on normalization layers 10.2, the inclusion
of the PASCs dataset 10.4, and a study of convergence speed 10.5.

10.1 Optimization Methods with Complex Architectures

CELEBA

ARCHITECTURE RESNET-50 CONVNEXT-T CAFORMER-S18

FEDAVG [49] 84.9± 1.48 87.5± 0.87 88.1± 0.61
FEDAVGM [58] 84.1± 1.51 87.4± 1.15 87.4± 1.70
FEDPROX [38] 85.0± 1.48 87.5± 0.88 87.5± 0.37
SCAFFOLD [29] 84.4± 1.81 86.8± 1.33 89.0± 0.40

Table 8: Accuracy of ResNet-50, ConvNext-T, and CAFormer on CelebA across four different
optimization methods. The average test accuracy of the model is displayed along with the standard
deviation of the experiments. We can appreciate how changing the optimizer achieves virtually
negligible improvements, unlike changing the architecture, which yields a significant boost.
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10.2 Normalization Layer

In this section, we delve into extended experiments concerning normalization layers. We begin by re-
inforcing our earlier findings, showcasing that Layer Normalization outperforms Batch Normalization
(BN) when tested on an additional dataset, Fed-ISIC2019, as detailed in Table 9.

VARIANT FED-ISIC2019

COATNET-0 BN 68.5± 0.70
COATNET-0 LN * 70.4± 0.25

POOLFORMER-S12 BN 64.2± 0.53
POOLFORMER-S12 LN 83.2± 0.63

RESNET-50 BN 54.3± 0.48
RESNET-50 LN † 62.5± 1.50
RESNET-50 FEDBN [39] 65.2± 1.24

Table 9: Accuracy of ResNet-50, CoAtNext- 0, and PoolFormer-S12 with Batch (BN) and Layer (LN)
Normalization across the Fed-ISIC2019 datasets. Replacing BN with LN improves performance. *
The original CoAtNet-0 uses BN and LN in convolutional and self-attention blocks, respectively. †
LN layers have no pretraining.

Exploring alternatives to BN, and extending beyond LN, we incorporated Group Normalization (GN)
in our assessment. We replicated our results on CIFAR-10, encompassing CoAtNet, PoolFormer,
and ResNet - as in the original manuscript—while augmenting it with GN results (averaging three
repetitions per experiment along with standard deviations). In this context, CoatNet and PoolFormer
exhibited a more pronounced performance drop under GN compared to the LN configuration. In-
triguingly, ResNet yielded a converse pattern, achieving superior outcomes with GroupNorm as
opposed to LayerNorm. This trend remained consistent while performing the weight divergence
analysis across Split-2 and Split-3. These experiments indicate that LayerNorm is a more favorable
choice when paired with advanced models. Indeed, the weight divergence in figure 4 serves as a
compelling indicator that the incorporation of LN offers a safeguard against drops in performance in
heterogeneous partitions, with LayerNorm having inferior weight divergence wrt BatchNorm in all
cases and best results for CoAtNet and PoolFormer.

Variant CIFAR-10 Central CIFAR-10 Split-3

PoolFormer-S12 BN 95.3± 0.35 51.5± 0.32 (↓ 43.7)
PoolFormer-S12 GN † 94.1± 0.25 81.5± 0.29 (↓ 12.6)
PoolFormer-S12 LN 95.6± 0.09 91.5± 0.13 (↓ 4.1)

ResNet-50 BN 95.9± 0.21 59.9± 1.87 (↓ 36.0)
ResNet-50 GN † 95.8± 0.19 89.3± 0.59 (↓ 6.5)
ResNet-50 LN † 92.8± 0.16 72.2± 3.06 (↓ 26.6)

CoAtNet-0 BN 97.5± 0.04 20.9± 0.45 (↓ 76.6)
CoAtNet-0 GN † 94.3± 0.39 82.6± 2.79 (↓ 11.7)
CoAtNet-0 LN * 97.7± 0.15 94.2± 0.06 (↓ 3.4)

Table 10: Normalization layer comparison. Accuracy of the models with batch normalization (BN),
layer normalization (LN) and group normalization (GN) in the central and the Split-3 version of
CIFAR-10. * The original CoAtNet-0 uses BN and LN in convolutional and self-attention blocks,
respectively. † layers have no pretraining.

18



PoolFormer-LN PoolFormer-GN PoolFormer-BN CoAtNet-LN* CoAtNet-GN CoAtNet-BN Resnet-LN Resnet-GN Resnet-BN
Experiment

0

20

40

60

80

100

120

140

W
ei

gh
t D

iv
er

ge
nc

e

Split 2
Split 3

Figure 4: Weight divergence analysis on CIFAR-10. Weight divergence with respect to models’
centralized version on CIFAR-10. The use of BN leads to a larger weight divergence. Complex
models tend to pair well with LayerNorm, achieving even smaller divergence than when paired with
GroupNorm layers.

10.3 Centralized Results

GLD-23K FED-ISIC2019

MODEL CENTRAL SPLIT CENTRAL SPLIT

RESNET-50 [19] 79.6± 2.09 54.3± 0.48 88.2± 0.15 67.6± 1.59
EFFICIENTNET-B5 [62] 85.3± 0.30 51.9± 1.21 89.7± 0.41 70.0± 0.64
CONVNEXT-T [45] 83.7± 0.45 65.5± 0.57 88.1± 0.91 78.6± 0.29

SWIN-T [44] 81.9± 0.32 72.1± 0.67 90.8± 0.31 81.9± 0.42
VIT-S [60] 79.4± 0.34 76.6± 0.69 90.3± 0.17 82.3± 0.95
SWINV2-T [43] 75.7± 3.92 74.4± 0.02 88.1± 0.58 81.7± 0.50
DEIT-S [66] 78.7± 1.04 69.1± 1.24 89.3± 0.36 82.3± 0.59

CONVFORMER-S18 [74] 83.7± 0.49 53.8± 1.11 90.3± 0.45 81.1± 1.54
CAFORMER-S18 [74] 83.6± 0.31 57.8± 0.54 90.7± 0.22 83.1± 0.49

RANDFORMER-S36 [74] 81.4± 0.27 56.3± 0.10 86.9± 0.23 77.3± 0.23
IDENTITYFORMER-S36 [74] 81.3± 0.95 56.0± 2.07 87.0± 0.38 76.9± 1.43
POOLFORMER-S36 [73] 83.4± 1.33 55.8± 1.41 88.5± 0.36 79.6± 0.29
RIFORMER-S36 [70] 80.7± 1.17 69.4± 0.20 89.5± 0.08 81.9± 1.37

MLPMIXER-S/16 [64] 77.5± 0.91 71.3± 0.32 88.6± 0.50 80.5± 1.62
RESMLP-S24 [65] 73.4± 1.03 64.8± 0.59 89.1± 0.23 81.1± 0.45
GMLP-S [41] 76.5± 0.71 67.4± 0.16 88.6± 0.52 79.9± 1.60

CONVMIXER-768/32[67] 85.6± 0.40 45.0± 0.76 87.3± 0.20 58.6± 2.02
COATNET-0 [8] 79.2± 1.03 70.4± 0.25 87.6± 0.17 66.0± 3.40
MAXVIT-T [69] 83.4± 0.29 71.7± 0.90 91.0± 0.28 70.1± 1.27

Table 11: Comparative analysis among different architectural families in both federated and central-
ized settings. Notably, each model experiences a drop in accuracy when transitioning from centralized
to federated learning settings. Importantly, high performance in the centralized setting does not
necessarily translate to comparable success in the federated split. The table particularly emphasizes
the robustness and superior performance of Metaformer-like architectures in the federated setting.
These architectures demonstrate a minimal drop in accuracy relative to their centralized counterparts
and high overall accuracy results, underlining their adeptness at handling data heterogeneity.
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10.4 PACS: Analysis on Domain Shift

To simulate a domain shift setting with feature distribution skew, where each client has a target
domain with distinct characteristics, we implement a federated version of PACS [35], a 7-class
classification dataset commonly used in domain generalization. The total number of images in the
dataset is 9991. We partition the data, associating each client with one of the four available domains:
Photos, Sketches, Cartoons, and Paintings.

The experiments on PACS [35] are shown in Table 12. On this task, all models reach competi-
tive performances on both the central training and the federated version. The results lead to the
aforementioned conclusions, confirming the Metaformer-like models are robust to different types
of heterogeneity across the datasets. All models have negligible degradation or show an increase
over the centralized version, except for Resnet [19], EfficientNet [62], and ConvMixer [67]. Our
hypothesis for such behavior is the combination of the following elements: the small dimension of
the target dataset compared to the ImageNet pretraining and the overlapping of classes between both
PACS and ImageNet [11].

As we hypothesize that the behavior is caused by the solid pretraining on ImageNet the following
question arises: How will the models behave without pretraining? As shown in Table 12, degradation
patterns arise again without pretraining. As expected all models have inferior performances, indicating
how crucial pretraining is and making it always preferable if weights are available. Moreover, most
models with a huge drop in the pretrained version still present the same behavior in the non-pretrained.
However, the best-performing models are not those observed in the corresponding pretrained version.
The best-performing model is MLP-Mixer [64], along with EfficientNet [62], which has the lowest
score with pretraining. As one would expect, the worst-performing models are the ones that require
large amounts of data. For example, PoolFormer, IdentityFormer, and RandFormer ([74]) perform
very poorly already in the centralized setting, showing that a large dataset is crucial to compensate
for the simple token mixers. Likewise, ConvNext [45], and ViT [60] reach a deficient performance
on the centralized training version.

MODEL CENTRAL-PRETRAINED SPLIT-PRETRAINED CENTRAL SPLIT

RESNET-50 96.1± 0.26 90.2± 0.53 (↓ 5.9) 82.1± 0.74 42.5± 0.53 (↓ 39.5)
EFFICIENTNET-B5 97.5± 0.05 89.1± 0.45 (↓ 8.3) 87.6± 0.45 60.4± 0.60 (↓ 27.2)
CONVNEXT-T 97.2± 0.28 97.6± 0.21 (↑ 0.4) 42.6± 2.30 32.5± 0.34 (↓ 10.1)

SWIN-T 97.2± 0.24 97.9± 0.12 (↑ 0.6) 66.8± 0.41 53.6± 0.58 (↓ 13.2)
VIT-S 96.9± 0.31 97.9± 0.26 (↑ 1.0) 57.3± 0.96 49.0± 0.53 (↓ 8.3)
SWINV2-T 96.4± 0.25 97.7± 0.21 (↑ 1.2) 64.8± 2.62 55.3± 0.95 (↓ 9.5)
DEIT-S 96.5± 0.14 97.5± 0.21 (↑ 1.0) 58.0± 2.13 47.7± 0.68 (↓ 10.4)

CONVFORMER-S18 97.8± 0.22 98.2± 0.16 (↑ 0.4) 70.0± 0.24 54.3± 0.63 (↓ 15.7)
CAFORMER-S18 97.9± 0.14 98.5± 0.31 (↑ 0.6) 68.1± 1.84 50.2± 0.42 (↓ 17.8)

RANDFORMER-S36 95.7± 0.27 95.9± 0.14 (↑ 0.2) 47.9± 1.77 39.6± 0.20 (↓ 8.3)
IDENTITYFORMER-S36 95.4± 0.26 96.1± 0.37 (↑ 0.7) 49.7± 3.41 46.1± 1.37 (↓ 3.7)
POOLFORMER-S36 96.8± 0.20 97.1± 0.40 (↑ 0.3) 46.3± 2.13 37.5± 0.47 (↓ 8.8)
RIFORMER-S36 96.4± 0.14 96.7± 0.26 (↑ 0.3) 55.9± 0.32 40.8± 0.41 (↓ 15.0)

MLPMIXER-S/16 96.0± 0.45 96.5± 0.45 (↑ 0.4) 70.1± 0.14 63.2± 0.59 (↓ 6.9)
RESMLP-S24 96.2± 0.38 96.4± 0.03 (↑ 0.3) 64.1± 0.72 35.0± 2.56 (↓ 29.1)
GMLP-S 96.3± 0.41 97.9± 0.24 (↑ 1.6) 71.6± 0.17 59.4± 0.26 (↓ 12.2)

CONVMIXER-768/32 97.3± 0.36 75.7± 5.31 (↓ 21.6) 69.8± 1.84 20.7± 0.38 (↓ 49.1)
COATNET-0 97.0± 0.29 94.7± 0.29 (↓ 2.3) 79.8± 0.71 47.7± 0.59 (↓ 32.1)
MAXVIT-T 97.3± 0.25 96.7± 0.16 (↓ 0.6) 83.4± 0.74 50.9± .041 (↓ 32.6)

Table 12: A comprehensive evaluation of the accuracy achieved by various model families on the
PACS dataset under different operational configurations. This includes centrally stored data and
federated learning scenarios, with and without ImageNet pretraining. The results offer a detailed
insight into the relative effectiveness of the model families under these varying conditions, providing
a clear understanding of the impact of pretraining on model performance.
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10.5 Convergence Speed

The efficiency of convergence is crucial in the context of federated learning. The inherent complexity
of this learning paradigm imposes communication overhead for each update iteration, reinforcing the
need for rapid convergence. Fast convergence — reaching the optimal model parameters in fewer
iterations — minimizes communication demands, reducing bandwidth usage and overall training time.
Faster convergence plays a significant role in real-world federated learning applications where devices
may be intermittently available or have unreliable connections. We show that architecture selection
(architectural choices) has a significant impact on the convergence speed in federated learning
scenarios. The rate of convergence among models varies notably. Notably, the best-performing
models we highlighted, specifically ViT and MetaFormers, also exhibit accelerated convergence in
most of the experiments. Surprisingly, within the GLDk-23 set, CAFormer lags with the slowest
convergence rate, suggesting a need for more in-depth exploration of complex large-scale settings in
future studies.
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Figure 5: Comparative evaluation of convergence rates for different neural network architectures
across diverse datasets. (a) CIFAR-10, (b) Fed-ISIC2019, (c) CelebA, and (d) GLD-23K. Convergence
time is measured in terms of communication rounds. This comparison highlights the significant
reduction in convergence time enabled by architectural changes.

11 Implementation Details

11.1 Machines

We simulate the federated learning setup (1 server and N devices) on a single machine with 32 Intel(R)
Xeon(R) Silver 4215 CPU and 1 NVidia Quadro RTX 6000 GPU.

11.2 Hyperparameter Search

Our study only tests a limited set of hyperparameters for the optimization methods, mostly adhering
to the respective original authors’ recommendations. For FedProx, we conduct a hyperparameter
search across a spectrum of µ values, specifically µ ∈ {10−4, 10−3, 10−1, 1} keeping the clients
learning rate at η = 3× 10−2.

For SCAFFOLD, we perform a hyperparameter search over a grid of client learning rates η ∈
{10−4, 3 × 10−4, 10−3, 3 × 10−3, 10−2, 3 × 10−2, 10−1, 3 × 10−1, 1} with global learning rate
ηgl = 1. Hyperparameter tuning is harder for FedAvgM as it involves an additional hyperparameter
for momentum β. In our search, we considered β ∈ {0, 0.5, 0.7, 0.9, 0.99} and server learning
ηsr ∈ {10−4, 3× 10−4, 10−3, 3× 10−3, 10−2, 3× 10−2, 10−1, 3× 10−1, 1}. The learning rate of
the client optimizer is held constant at η = 3× 10−2.

Although additional tuning of the regularization parameters may sometimes yield improved empirical
performance, we do not anticipate a significant impact on the results discussed. This demonstrates
the advantage of architectural design choices over off-the-shelf optimization methods, which can be
integrated with minimal modifications to the training process.
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Figure 6: Visualization of the results from a hyperparameter grid search for the FedAvgM algorithm
on the federated version of CelebA dataset. Three different architectures were tested: ResNet,
ConvNext, and CAFormer. The explored hyperparameters include momentum and server learning
rate.

11.3 Architectures

Ensuring comparable models is indeed crucial for obtaining fair results. All of the architectures tested
(with the exception of MLP-Mixer) have a similar size, measured in number of parameters (21-31M),
and similar computational complexity, measured in FLOPS (4-6G). Other elements that might impact
the computational cost, input size, etc., are also kept constant.

Regarding the variations in pre-trained accuracy on ImageNet, there are slight differences in perfor-
mance among the models. However, it is essential to consider that this diversity is inevitable due
to the wide range of architectures we incorporated that span across several years of research. To
address fairness in our comparisons, we analyzed the absolute numerical result of the experiments
and discussed the drop in performance for each model compared to its own centralized version of the
training. Furthermore, all models perform similarly in the centralized setting on CIFAR-10, while
their performances significantly differ in challenging splits. Both analysis allows us to assess the
relative impact of each model’s modifications while accounting for the individual model’s baseline.

MODEL PARAM FLOPS IMAGENET-1K ACC

RESNET-50 26M 4.1G 76.2
EFFICIENTNET-B5* 30M 2.4G 83.6
CONVNEXT-T 29M 4.5G 82.1

SWIN-T 29M 4.5G 81.3
VIT-S* 22M 4.5G 83.1
SWINV2-T* 28M 4.6G 83.5
DEIT-S 22M 4.6G 79.8

CONVFORMER-S18 27M 3.9G 83.7
CAFORMER-S18 26M 4.1G 84.1

RANDFORMER-S36 31M 5.2G 79.5
IDENTITYFORMER-S36 31M 5G 79.3
POOLFORMER-S36 31M 5G 81.4
RIFORMER-S36 31M 5G 81.3

MLPMIXER-S/16* 59M 13G 76.4
RESMLP-S24 30M 6G 79.4
GMLP-S* 20M 6G 79.6

CONVMIXER-768/32* 21M 20G 80.16
COATNET-0 25M 4.2G 81.6
MAXVIT-T 31M 5.6G 83.6

Table 13: Comparative analysis of examined architectures based on key performance and complexity
metrics. The metrics include the number of parameters, Floating Point Operations Per Second
(FLOPS), and ImageNet-1K performance results. *FLOPS were computed using the Fvcore library.
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