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Abstract

Modeling interacting dynamical systems, such as fluid dynamics and intermolecular
interactions, is a fundamental research problem for understanding and simulating
complex real-world systems. Many of these systems can be naturally represented by
dynamic graphs, and graph neural network-based approaches have been proposed
and shown promising performance. However, most of these approaches assume the
underlying dynamics does not change over time, which is unfortunately untrue. For
example, a molecular dynamics can be affected by the environment temperature
over the time. In this paper, we take an attempt to provide a probabilistic view for
time-varying dynamics and propose a model Context-attended Graph ODE (CARE)
for modeling time-varying interacting dynamical systems. In our CARE, we ex-
plicitly use a context variable to model time-varying environment and construct an
encoder to initialize the context variable from historical trajectories. Furthermore,
we employ a neural ODE model to depict the dynamic evolution of the context
variable inferred from system states. This context variable is incorporated into a
coupled ODE to simultaneously drive the evolution of systems. Comprehensive
experiments on four datasets demonstrate the effectiveness of our proposed CARE
compared with several state-of-the-art approaches.

1 Introduction

Modeling interacting dynamical systems is a fundamental machine learning problem [66, 65, 23, 59,
37] with a wide range of applications, including social network analysis [12, 17, 36] and particle-
based physical simulations [46, 43, 35]. Geometric graphs [27] are utilized to formalize these
interactions between objects. For example, in particle-based physical systems, edges are constructed
based on the geographical distance between particles, which represents the transfer of energy.

In the literature, numerous data-driven approaches have been proposed for understanding interacting
dynamical systems [2, 25, 49]. Among them, graph neural networks [26, 62, 72, 33, 13] (GNNs)
are widely utilized to predict trajectories at the next timestamp due to their strong capacity to
capture interactions in graph-structured data. In particular, each object is considered as a graph
node, and edges represent interactions between neighboring objects. Given the observations and their
corresponding graph structure, these methods forecast states in the next timestamp using the message
passing mechanism. This process involves aggregating information from the neighbors of each node
to update its representation in an iterative fashion, effectively capturing the dynamics of the system.

Although impressive progress has been achieved on GNN-based approaches, capturing long-term
dependency in interacting dynamical systems is still a practical but underexplored problem. Existing
next-step predictors [42, 46, 45] can send the predictions back to generate rollout trajectories, which
could suffer from serious error accumulation for long-term predictions. More importantly, system
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environments and relational structures could be changeable [69] (e.g., unsteady flow [11, 16]),
which implies the potential temporal distribution variation during the evolution. In particular, in
physical systems, there are various potential factors which can influence the trajectories extensively.
For example, high temperatures [69] or pressure [68] could speed up molecular movement. Their
continuous variation would make understanding interacting dynamic systems more challenging.
First, temporal environmental variation would indicate different data distributions over the time [52],
which requires the model equipped with superior generalization capability. In contrast, existing
methods typically focus on in-distribution trajectories [7, 1, 58, 3, 21, 66], which would perform
worse when it comes to out-of-distribution data. Second, recent out-of-distribution generalization
methods [50, 39, 57, 64, 44] usually focus on vision and text with discrete shift across different
domains. However, our scenarios would face the continuous distribution variation, which is difficult
to capture in interacting dynamical systems.

In this paper, we propose a novel method named Context-attended Graph ODE (CARE) to capture
interacting system dynamics. The core of our CARE approach is to characterize the temporal
environmental variation by introducing the context variable. In particular, we propose a probability
model to depict the interaction between the context variable and trajectories. Based on the probabilistic
decomposition, we divide each training sequence into two parts for initializing embeddings and
predictions. Here, we first construct a temporal graph and then leverage an attention-based encoder
to generate node representations and the context representation from spatial and temporal signals
simultaneously. More importantly, we introduce coupled ODEs to model the dynamic evolution
of node representations and the context variable. On the one hand, we adopt a graph-based ODE
system enhanced with context information to drive the evolution. On the other hand, the context
information can also be updated using summarized system states and the current context. We also
provide a theoretical analysis that indicates, at least locally, the future system trajectory and context
information are predictable based on their historical values. Finally, we introduce efficient dynamical
graph updating and robust learning strategies to enhance the generalization capability and efficiency
of the framework, respectively. Extensive experiments on various dynamical systems demonstrate the
superiority of our proposed CARE compared with state-of-the-art approaches.

To summarize, in this paper we make the following contributions: (1) Problem Formalization. We
formalize the problem of temporal environmental variation in interacting dynamics modeling. (2)
Novel Methodology. We analyze the problem under a probabilistic framework, and propose a novel
approach CARE, which incorporates the continuous context variations and system states into a
coupled ODE system. (3) Extensive Experiments. Extensive experiments conducted on four datasets
validate the superiority of our CARE. The performance gain of our proposed CARE over the best
baseline is up to 36.35%.

2 Related Work

Interacting Dynamics Modeling. Deep learning approaches have been extensively used in recent
years to model interacting systems across various fields [9, 53, 29, 20], including molecular dynamics
and computational fluid dynamics. Early efforts focus on incorporating convolutional neural networks
to learn from interacting regular grids [41]. To address more generalized scenarios, graph neural
network (GNN) methods have been developed [42, 46, 45], leveraging message passing mechanisms
to extract complex spatial signals. However, these methods often fail to account for environmental
fluctuations, which hinders their ability to make reliable long-term predictions. In contrast, our CARE
adopts a context-attended ODE architecture to explicitly represent both the observations and the
underlying environment, enabling the generation of accurate future trajectories.

Neural Ordinary Differential Equations (ODEs). Drawing inspiration from the approximation of
ResNet [5], neural ODEs equip neural networks with a continuous-depth architecture by parameteriz-
ing the derivatives of hidden states. Several attempts have been made to increase the expressiveness of
neural ODEs [65], including adding regularization [8] and designing high-order ODEs [61]. Neural
ODEs have also been incorporated into GNNs, producing continuous message passing layers to avoid
oversmoothing [60] and increase the interpretability of predictions [70]. In this study, we employ a
graph ODE architecture to capture the continuous nature of interacting system dynamics, relieving
potential error accumulation caused by discrete prediction models.
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Figure 1: An overview of the proposed CARE. To begin, we construct a temporal graph and utilize
an encoder to initialize both the context variable and node representations from historical trajectories.
Then, a coupled ODE model simulates the evolution of both nodes and context. Finally, CARE feeds
node representations into decoders, which output the predicted trajectories at any timestamp.

Out-of-distribution (OOD) Generalization. OOD generation aims to make models more effective
when the training and testing distributions diverge [50, 39, 57, 63]. This problem has drawn consid-
erable attention in several areas, including text and vision [48]. One effective solution is to learn
domain-invariant representations in the hidden space [31, 55, 30], which has been achieved under
the guidance of invariant learning theory [6, 32]. Additionally, uncertainty modeling [34], causal
learning [54, 14], and model selection [38, 56] are employed to improve the performance. Interacting
systems inherently exhibit dynamic distribution variation caused by environmental changes, an aspect
that remains underexplored in the literature. To address this, our paper proposes a novel approach
named CARE to model context information from the perspective of a probabilistic model.

3 Background

3.1 Problem Definition

In a multi-agent dynamical system, the state at time t is represented by Gt = (V,Et,Xt), where
each node in V corresponds to an object, Et denotes the current edge set, and Xt signifies the node
attribute matrix. Specifically, the state vector for each i ∈ V is given by xt

i = [pt
i, q

t
i ,ai], with

pt
i ∈ R3 and qt

i ∈ R3 representing the position and velocity, respectively, and ai representing static
attributes. We are given the sequence {G0, G1, · · · , Gt} and aim to learn a model that produces the
target dynamic states Y s(s > t) (e.g., velocity), which are part of Xs at the corresponding time.
The temporal environmental variation would result in data distribution changes during the evolution
of interacting systems. If we utilize C0:t to indicate the dynamical environment factor till timestamp
t, we have data from variable distribution, i.e., (G0:t,Y s) ∼ P (G0:t,Y s|C0:t). Thus, we must take
these changes into account for accurate trajectory predictions.

3.2 GNNs for Modeling Dynamical Systems

Graph neural networks (GNNs) are extensively employed in dynamical system modeling to investigate
the interactive relationships between objects [42, 46, 45]. These methods typically use the current
states to predict the states of nodes at the next timestamp. Specifically, omitting the time notation,
GNNs first initialize node representations and edge representations using encoders:

v
(0)
i = fv (xi) , e

(0)
ij = fe (xi,xj) , (1)

where fv(·) and fe(·) are two encoders for node and edge representations, respectively. Then, they
utilize two propagation modules to update these representations at the l-th layer, i.e., v(l)

i and e
(l)
ij

following the message passing mechanism:

e
(l+1)
ij = ϕe

(
v
(l)
i ,v

(l)
j , e

(l)
ij

)
, v

(l+1)
i = ϕv

v
(l)
i ,

∑
j∈Ni

e
(l+1)
ij

 , (2)
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where Ni collects the neighbours of node i. ϕe(·) and ϕv(·) are two functions for representation
updating. Finally, they generate the target velocity vectors at the next timestamp using a decoder.

4 Methodology

In this paper, we propose a novel method called CARE for modeling interacting dynamics under
temporal environmental variation. We start by formalizing a probabilistic model to understand the
relationships between trajectories and contexts. Based on this foundation, we construct a spatio-
temporal encoder to initialize the representations of nodes and contexts. Then, to simultaneously
model their evolution, a coupled graph ODE is introduced where node representations are evolved with
the guidance of contexts and the states of the context variable are inferred from current trajectories.
Additionally, we introduce a regularization term and dynamic graph updating strategies to enhance
our framework. An illustration of our CARE can be found in Figure 1.

4.1 Probabilistic Model for System Dynamics under Temporal Distribution Drift

In this work, to tackle the challenge brought by temporal distribution drift, we inject a context
variable ct in our dynamic system modeling, which indicates the environment state at timestamp t.
For example, the context variable could indicate flow speed, density and viscosity in fluid dynamics.

Here, we make two basic assumptions in our probabilistic model.

Assumption 4.1. (Independence-I) The context variable is independent of the sequences before
the last observed timestamp, i.e., P (ct|ct−k, G0:t) = P (ct|ct−k, Gt−k:t), where t − k is the last
observed timestamp.

Assumption 4.2. (Independence-II) Given the current states and contexts, the future trajecto-
ries are independent of the previous trajectories and contexts, i.e., P (Y t−k:t+l|G0:t−k, c0:t−k) =
P (Y t−k:t−k+l|Gt−k, ct−k) where l is the length of the prediction.

Then, we can have the following lemma:

Lemma 4.1. With Assumptions 4.1 and 4.2, we have:

P
(
Y t | G0:t−1

)
=

∫
P
(
Y t | ct−1, Gt−1

)
·

P
(
ct−1 | ct−k, Gt−k:t−1

)
· P
(
ct−k | G0:t−k

)
dct−1dct−k.

(3)

The proof of Lemma 4.2 can be found in Appendix. From Lemma 4.1, we decompose the probability
P
(
Y t | G0:t−1

)
into three terms. Specifically, the last term necessitates encoding context information

based on the historical trajectory G0:t−k. The second term aims to update the context vector according
to the recent trajectory Gt−k:t−1. The first term suggests using the context variable in conjunction
with the current states to make predictions for the next timestamp. Besides making a single next-time
prediction, our model can also predict trajectories (Y t−k,Y t−k+1, · · · ,Y t) by modifying Eqn. 14.

Consequently, we divide each training sequence into two parts, namely [0, t − k] and (t − k, t] as
in [19, 18]. The first part is used to encode contexts and nodes in the system, while the second part
serves for updating and prediction purposes.

4.2 Context Acquirement from Spatio-temporal Signals

In this part, our goal is to acquire knowledge from the historical trajectory, i.e., {G0, · · · , Gt−k}
to encode contexts and nodes for initialization. To be specific, we first construct a temporal graph
to capture spatial and temporal signals simultaneously. Subsequently, we employ the attention
mechanism to update temporal node representations, which will be used to initialize the context
representation and node representations for {Gt−k, · · · , GT }.

To begin, we construct a temporal graph containing two types of edges, i.e., spatial and temporal
edges. Spatial edges are built when the distance between two nodes at the same timestamp is less
than a threshold while temporal edges are between every two consecutive observations for each node.
Specifically, in the constructed temporal graph GH , there are N(t− k + 1) nodes {is}s∈[0:t−k],i∈V
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in total. The adjacent matrix A contains both spatial and temporal edges as follows:

A(is, js
′
) =

{
exp(−ds(i, j)) s = s′, exp(−ds(i, j)) < τ,
1 i = j, s′ = s+ 1,
0 otherwise,

(4)

where ds(i, j) denotes the distance between particles i and j at timestamp s and τ is the predefined
threshold. Then, we utilize an attention-based GNN to extract spatio-temporal relationships into node
representations. Here, we first compute the interaction scores between each node in GH with its
neighboring nodes, and then aggregate their embeddings at the previous layer. Let d represent the
hidden dimension, the interaction score between is and js

′
at layer l is:

w(l)(is, js
′
) = A(is, js

′
)(Wqueryh

s,(l)
i ) ⋆ (Wkeyh

s′,(l)
j ), (5)

where Wquery ∈ Rd×d and Wkey ∈ Rd×d are two matrices to map temporal node representations
into different spaces. ⋆ computes the cosine similarity between two vectors. With the interaction
scores, we can compute temporal node representations at the next layer:

h
s,(l+1)
i = h

s,(l)
i + σ

 ∑
js′∈N (is)

w(l)(is, js
′
)Wvalueh

s′,(l)
j

 , (6)

where Wvalue is a weight matrix, N (is) collects all the neighbours of is and σ(·) is an activation
function. After stacking L layers, we add temporal encoding and then summarize all these temporal
node representations to initialize node representations for the upcoming ODE module:

qs
i = h

s,(L)
i +TE(s), ut−k

i =
1

t− k + 1

t−k∑
s=0

σ(Wsumqs
i ), (7)

where TE(s)[2i] = sin
(

s
100002i/d

)
, TE(s)[2i+1] = cos

(
s

100002i/d

)
and Wsum denotes a projection

matrix. The initial context variable ct−k is driven by summarizing all node representations:

βt
i = tanh((

1

|V |
∑
i′∈V

ut−k
i′ )Wcontext) · ut−k

i , ct−k =
∑
i∈V

βt
iu

t−k
i , (8)

where Wcontext is a learnable matrix and βt
i calculates the attention score for each node.

4.3 Context-attended Graph ODE

In this module, to model continuous evolution, we incorporate an ODE system into our approach.
The precondition requires assuming that both the context variable and node representations are
continuous to fit neural ODE models, which inherently holds for common dynamical systems in
practice. We then introduce coupled ODEs to model the dynamic evolution of node representations
and the context variable. Specifically, the context variable can be inferred during the evolution of node
representations, which in turn drives the evolution of the system. We first introduce the assumption:
Assumption 4.3. (Continuous) We assume that both context variable cs and node representations vs

i
are continuously differentiable with respect to s.

Then, to utilize the context variable and the current state for making future predictions, we introduce
a graph ODE model. Let Âs denote the adjacency matrix at timestamp s with self-loop, we have:

dvs
i

ds
= Φ([vs

1, · · · ,vs
N , cs]) = σ(

∑
j∈N s(i)

Âs
ij√

D̂s
i · D̂s

j

vs
jW1 + csW2), (9)

where N s(i) denotes the neighbours of node i at timestamp s and D̂s
i represents the degree of node i

according to Âs. The first term in Eqn. 9 aggregates information from its instant neighbors and the
second term captures information from the current context information.

The next question is how to model the evolution of cs. Notice that we have:

P
(
ct | ct−k, Gt−k:t

)
=

∫
P (ct|ct−∆t, Gt−∆t:t) · · ·

P (ct−k+∆t|ct−k, Gt−k:t−k+∆t)dct−k+∆t · · · dct−∆t,

(10)
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where ∆t denotes a small time interval. With Assumption 4.3, we can simplify
P (ct−k+∆t|ct−k, Gt−k:t−k+∆t) into P (ct−k+∆t|ct−k,V t−k, dV t−k) where V t−k denotes the
node embedding matrix at timestamp t − k and dV t−k is its differentiation. On this basis, we
introduce another ODE to update the context variable as:

dcs

ds
= Φc(AGG({vs

i }i∈V ),AGG({dv
s
i

ds
}i∈V ), c

s]), (11)

where Φc is an MLP with the concatenated input and AGG(·) is an operator to summarize node
representations such as averaging and sum. Compared to previous methods, the key to our CARE is
to take into account the mutual impact between the environment and the trajectories, and model their
evolution simultaneously by coupling Eqn. 9 and Eqn. 11. We also provide a theoretical analysis of
the uniqueness of the solution to our system. To simplify the analysis, we set AGG(·) to summation
and rewrite Eqn. 11 with learnable matrices W3, W4 and W5 as:

dcs

ds
= σ

(
N∑
i=1

(vs
iW3 +

dvs
i

ds
W4) + csW5

)
. (12)

Then, we introduce the following assumption:

Assumption 4.4. All time-dependent coefficients in Eqn. 9, i.e At
ij , D̂

t
i are continuous with respect

to t and bounded by a constant C > 0. All parameters in the weight matrix are also bounded by a
constant W > 0.

With Assumption 4.4, we can deduce the following lemma:
Lemma 4.2. Given the initial state (t0,v

t0
1 , · · · ,vt0

N , ct0), we claim that there exists ε > 0, s.t. the
ODE system 9 and 12 has a unique solution in the interval [t0 − ε, t0 + ε].

The proof of Lemma 4.2 can be found in Appendix. Our theoretical analysis indicates that at least
locally, the future system trajectory and context information are predictable based on their historical
values [51], which is also an important property for dynamical system modeling [5, 28].

4.4 Decoder and Optimization

Decoder. We introduce an MLP Φd(·) to predict both the position and velocity vectors using
corresponding node representations, i.e., [p̂s

i , q̂
s
i ] = Φd(vs

i ).

Dynamic Graph Updating. We can estimate the instant distance between nodes using the encoder
and then construct the graphs, which could suffer from a large computational burden. To improve the
efficiency of graph construction during ODE propagation, we not only update the graph structure
every ∆s, and but also introduce a graph updating strategy that calculates the distance between
first-order and second-order neighbors in the last graph. By doing so, we can delete edges between
first-order neighbors and add edges between second-order neighbors, reducing quadratic complexity
to linear complexity in sparse graphs. We will also validate this empirically.

Learning Objective. Given the ground truth, we first minimize the mean squared error (MSE) of
the predicted trajectory. Moreover, we require both node and context representations to be robust to
noise attacks to improve the robustness of the ODE system. The overall objective is written as:

L =

t∑
s=t−k

||Ŷ s − Y s||+ η(||Ṽ s − V s||+ ||c̃s − cs||), (13)

where Ŷ s denotes the predictions from the encoder and η is a parameter set to 0.1 to balance two
losses. Ṽ s and c̃s denote the perturbed representations under noise attack to the input.

5 Experiments

We evaluate our proposed CARE on both particle-based and mesh-based physical systems. To ensure
the accuracy of our results, we use a rigorous data split strategy, where first 80% of the samples
are reserved for training purposes and the remaining 10% are set aside for testing and validating,
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Table 1: The RMSE (×10−2) results of the compared methods with the prediction lengths 1, 5, 10
and 20. vx, vy and vz represent the velocity in the direction of each coordinate axis.
Prediction Length +1 +5 +10 +20

Variable vx vy vz vx vy vz vx vy vz vx vy vz

Lennard-Jones Potential

LSTM 3.95 3.92 3.68 9.12 9.21 9.15 10.84 10.87 10.76 14.82 14.94 14.67
GNS 3.28 3.75 3.39 7.97 8.05 7.68 10.09 10.15 10.13 13.65 13.62 13.59
STGCN 2.91 3.08 2.95 5.06 5.17 5.11 6.89 6.90 6.93 9.31 9.32 9.44
MeshGraphNet 2.89 3.13 2.94 5.29 5.53 5.28 7.03 7.09 7.11 9.12 9.21 9.24
CG-ODE 1.79 2.05 1.71 3.47 3.92 3.38 5.46 5.99 5.36 9.03 9.26 8.92
TIE 1.62 1.98 1.47 3.25 3.90 3.15 5.24 5.82 5.17 8.24 8.34 8.47
Ours 0.76 0.89 1.01 2.94 3.16 2.85 5.01 4.69 4.71 5.75 5.91 5.82

3-body Stillinger-Weber Potential

LSTM 17.11 17.14 17.18 23.64 23.69 23.60 25.46 25.42 25.48 28.44 28.45 28.44
GNS 15.39 15.27 15.33 22.14 22.19 22.17 25.29 25.36 25.31 27.18 27.15 27.14
STGCN 12.33 12.31 12.35 17.94 17.96 17.91 20.08 20.14 20.13 23.49 23.51 23.52
MeshGraphNet 12.16 12.10 12.13 18.33 18.38 18.34 20.65 20.62 20.71 23.62 23.54 23.61
CG-ODE 9.78 9.74 9.75 12.11 12.05 12.14 15.55 15.58 15.50 16.17 16.24 16.22
TIE 10.18 10.26 10.19 14.75 14.70 14.73 18.42 18.45 18.41 20.92 21.04 21.36
Ours 4.21 4.29 4.18 9.74 9.79 9.71 13.65 13.71 13.57 15.30 15.39 15.35

CARE

Ground
Truth

Figure 2: Visualization of Lennard-Jones Potential with multiple timestamps. We render the 3D
positions of each particle according to the historical positions and predicted velocities.

separately. During training, we split each trajectory sample into two parts, i.e., a conditional part
and a prediction part. We initialize node representations and the context representation based
on the first part and utilize the second part to supervise the model. The size of the two parts is
represented as conditional length and prediction length, respectively. Our approach is compared
with various baselines for interacting systems modeling, i.e., LSTM [15], STGCN [67], GNS [45],
MeshGraphNet [42], TIE [46] and CG-ODE [19].

5.1 Performance on Particle-based Physical Simulations

Datasets. We evaluate our proposed CARE on two particle-based simulation datasets with temporal
environmental variations, i.e., Lennard-Jones Potential [47] and 3-body Stillinger-Weber Potential [4].
Lennard-Jones Potential is popular in modeling electronically neutral atoms or molecules. 3-body
Stillinger-Weber Potential provides more complex relationships in atom systems The temperature in
two particle-based systems is continuously changed along with the time to model the environmental
variations. The objective is to predict the future velocity values in all directions, i.e., vx, vy and vz .
More details can be found in Appendix.

Performance Comparison. We evaluate the performance in terms of RMSE with different prediction
lengths. Table 1 show the compared results on these two datasets. We can observe that our proposed
CARE outperforms all the baselines on two datasets. In particular, compared with TIE, CARE
accomplishes an error reduction of 24.03% and 36.35% on two datasets, respectively. The remarkable
performance can be attributed to two factors: (1) Introduction of the context variable. Our CARE
infers the context states during the evolution of the system, which can help the model understand
environmental variations. (2) Introduction of robust learning. We add noise attack to both system and
context states, which improves the model generalization to potential distribution changes.
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Table 2: The RMSE results of the compared methods over different prediction lengths 1, 10, 20 and
50. vx, vy and p represent the velocity in different directions and the pressure field, respectively.
Prediction Length +1 +10 +20 +50

Variable vx vy p vx vy p vx vy p vx vy p

CylinderFlow

LSTM 3.35 29.4 12.5 7.06 44.8 17.8 9.47 49.5 19.9 14.3 73.6 42.3
GNS 3.12 28.8 11.9 7.18 44.3 17.3 9.01 49.6 19.2 13.5 73.2 41.6
STGCN 2.68 26.7 11.0 5.47 42.1 16.9 6.72 45.6 18.4 9.15 68.7 40.0
MeshGraphNet 1.75 22.4 10.6 4.09 39.7 15.7 5.38 44.5 17.2 7.92 64.3 37.7
CG-ODE 1.05 20.4 8.51 3.44 36.8 13.6 4.15 38.5 17.1 5.14 61.2 32.3
TIE 1.22 20.8 8.94 3.75 35.2 13.0 4.62 40.6 16.0 5.87 59.5 32.1
Ours 0.87 19.1 7.21 3.02 32.9 11.8 3.95 37.8 13.9 4.97 55.8 29.4

Airfoil

LSTM 7.49 7.73 1.92 8.86 9.02 3.78 10.8 11.0 4.71 14.9 15.7 4.96
GNS 6.95 7.14 1.69 8.20 8.34 3.34 10.2 10.5 3.98 14.2 14.1 4.11
STGCN 6.24 5.35 1.07 6.57 6.51 2.33 7.88 8.01 3.16 11.6 11.8 3.17
MeshGraphNet 4.72 4.68 0.50 5.89 5.74 1.23 6.32 6.48 1.85 9.03 9.12 2.08
CG-ODE 4.26 4.32 0.35 4.78 4.70 0.46 5.81 5.66 1.04 7.39 7.85 1.69
TIE 4.17 4.39 0.33 4.99 4.86 0.51 5.75 5.62 0.95 7.25 7.63 1.44
Ours 3.51 4.11 0.19 3.86 3.75 0.34 4.16 4.12 0.45 6.74 6.82 0.81

CARE

TIE

Ground
Truth

Figure 3: Visualization of the CylinderFlow Dataset with multiple timestamps. We render the velocity
in the x-axis in the fluid field of our CARE and the ground truth.

Visualization. Figure 2 visualizes the prediction of positions in comparison to the ground truth
on Lennard-Jones Potential. Here, we sample six timestamps in every trajectory to validate the
performance of both short-term and long-term predictions. From the qualitative results, we can
observe that in the first three frames, the particle motion is not strenuous due to low temperature in
the system. Surprisingly, our proposed CARE can always make faithful physical simulations close to
the ground truth even though the system environment is highly variable.

5.2 Performance on Mesh-based Physical Simulations

Datasets. We employ two popular mesh-based simulation datasets, i.e., CylinderFlow, and Airfoil.
CylinderFlow consists of simulation data from modeling an incompressible flow governed by the
Navier-Stokes equations. Notably, the initial flow velocity of the incoming water flow to the cylinder
varies cyclically over time, meaning the Reynolds number of the flow field also changes periodically.
Airfoil is generated in a similar manner through simulations of a compressible flow, wherein the inlet
velocity over the wing varies cyclically over time. We aim to forecast the velocity values vx and vy ,
as well as the pressure p. More details can be found in Appendix.

Performance Comparison. The performance with respect to different variables is recorded in Table
2. From the results, we can observe that the average performance of the proposed CARE is over the
best baseline by 12.99% and 22.78% on two datasets, respectively. Note that unsteady flow [11, 16]
is a crucial problem in recent fluid dynamics, our proposed CARE can benefit abundant complex
mesh-based simulations under environmental variations.

Visualization. Moreover, we show the qualitative results of the best baseline and our CARE in
comparison to the ground truth. From the results, we can observe that our CARE can capture more
accurate signals in unsteady fluid dynamics. In particular, in the last two frames with complicated
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Table 3: Ablation study on four datasets.

Datasets Lennard-Jones 3-body Stillinger-Weber CylinderFlow Airfoil

Variable vx vy vz vx vy vz vx vy p vx vy p

CARE V1 6.98 7.12 7.06 18.2 18.3 18.3 6.13 60.4 32.2 7.13 7.21 1.43
CARE V2 6.03 6.35 6.30 16.8 16.5 16.6 5.21 57.2 29.8 6.94 6.99 1.15
Ours 5.75 5.91 5.82 15.3 15.4 15.4 4.97 55.8 29.4 6.74 6.82 0.81

Figure 4: (a), (b) The performance with respect to different condition and prediction lengths on
CylinderFlow and Airfoil. (c) The sensitivity of interval on Lennard-Jones Potential (LJP) and 3-body
Stillinger-Weber Potential (SWP) datasets. (d) The comparison of running time for our dynamic
graph updating and full pairwise calculation on two particle-based datasets.

structures, our CARE still can generate superior simulations in both scenarios under potential
environmental variation while the baseline fails, which shows the superiority of our proposed CARE.

5.3 Further Analysis

Ablation Study. To analyze the effectiveness of different components in our CARE, we introduce
two different variants: (1) CARE V1, which removes the context variable in Eqn. 9; (2) CARE
V2, which removes the robust learning term in Eqn. 13. The compared performance is recorded in
Figure 3 and we have two observations. First, our full model outperforms CARE V1, which indicates
the incorporation of the context variable would benefit interacting system modeling under temporal
environmental variation. Second, without the robust learning term, the performance would get worse,
implying that improving the robustness can also benefit tackling the distribution changes.

Parameter Sensitivity. We begin by analyzing the performance with respect to different condi-
tion lengths and prediction lengths. Here the condition length and prediction length vary from
{10,15,20,25,30}, {20,50}, respectively. From the results in Figure 4 (a) and (b), we can observe that
our proposed CARE can always achieve superior performance compared with CG-ODE. Moreover,
we can observe that a longer condition length would benefit the performance in most cases due to
more provided information. It can also be seen that a smaller interval for graph updating would
improve the performance before saturation from Figure 4 (c).

Efficiency. To show the efficiency of our proposed dynamic graph updating, we propose a model
variant named CARE E, which calculates all pairwise distances to update graph structure during the
evolution. The computational cost is recorded in Figure 4 (d) and we can observe that our strategy
can reduce a large number of computational costs, which validates the complexity analysis before.

6 Conclusion

This paper studies the problem of modeling interacting dynamics under temporal environmental
variation and we propose a probabilistic framework to depict the dynamical system. Then, a novel
approach named CARE is proposed. CARE first constructs an encoder to initialize the context
variable indicating the environment and then utilizes a coupled ODE system, which combines both
the context variable and node representation to drive the evolution of the system. Finally, we introduce
both efficient dynamical graph updating and robust learning strategies to enhance our framework.
Extensive experiments on four datasets validate the superiority of our CARE.

Broader Impacts and Limitations. This work presents an effective learning-based model for
interacting dynamical systems under temporal environmental variation, which can benefit complex
physical simulations such as unsteady flow. Moreover, our study provides a new perspective on
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modeling environmental variations for fluid dynamics and intermolecular interactions. One potential
limitation is that our CARE cannot directly fit more physical scenarios requiring abundant external
knowledge. In future work, we would extend our CARE to more complicated applications such as
rigid dynamics.

Acknowledgement

This work was partially supported by NSF 2211557, NSF 1937599, NSF 2119643, NSF 2303037,
NSF 2312501, NASA, SRC Jump 2.0, Okawa Foundation Grant, Amazon Research Awards, Cisco
research grant, Picsart Gifts, and Snapchat Gifts.

References
[1] Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-

Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction
graph networks. arXiv preprint arXiv:2212.03574, 2022.

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. In NeurIPS, 2016.

[3] Suresh Bishnoi, Ravinder Bhattoo, Jayadeva Jayadeva, Sayan Ranu, and NM Anoop Krishnan.
Enhancing the inductive biases of graph neural ode for modeling physical systems. In ICLR,
2023.

[4] W Michael Brown and Masako Yamada. Implementing molecular dynamics on hybrid
high performance computers—three-body potentials. Computer Physics Communications,
184(12):2785–2793, 2013.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

[6] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang
Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-
distribution generalization on graphs. In NeurIPS, pages 22131–22148, 2022.

[7] Yitong Deng, Hong-Xing Yu, Jiajun Wu, and Bo Zhu. Learning vortex dynamics for fluid
inference and prediction. arXiv preprint arXiv:2301.11494, 2023.

[8] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In NeurIPS,
2019.

[9] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode
networks for traffic flow forecasting. In KDD, pages 364–373, 2021.

[10] Jayesh K Gupta, Sai Vemprala, and Ashish Kapoor. Learning modular simulations for homoge-
neous systems. In NeurIPS, 2022.

[11] Rohit Gupta and Phillip J Ansell. Unsteady flow physics of airfoil dynamic stall. AIAA journal,
57(1):165–175, 2019.

[12] Nesrine Hafiene, Wafa Karoui, and Lotfi Ben Romdhane. Influential nodes detection in dynamic
social networks: A survey. Expert Systems with Applications, 159:113642, 2020.

[13] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. In NeurIPS, 2022.

[14] Yue He, Zimu Wang, Peng Cui, Hao Zou, Yafeng Zhang, Qiang Cui, and Yong Jiang. Causpref:
Causal preference learning for out-of-distribution recommendation. In WWW, pages 410–421,
2022.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

10



[16] C Huang, L Zhao, JP Niu, JJ Di, JJ Yuan, QL Zhao, FQ Zhang, ZH Zhang, JM Lei, and GP He.
Coupled particle and mesh method in an euler frame for unsteady flows around the pitching
airfoil. Engineering Analysis with Boundary Elements, 138:159–176, 2022.

[17] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin, and Nitesh V
Chawla. Online purchase prediction via multi-scale modeling of behavior dynamics. In KDD,
pages 2613–2622, 2019.

[18] Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from
irregularly-sampled partial observations. In NeurIPS, pages 16177–16187, 2020.

[19] Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning interacting system
dynamics. In KDD, 2021.

[20] Zijie Huang, Yizhou Sun, and Wei Wang. Generalizing graph ode for learning complex system
dynamics across environments. In KDD, pages 798–809, 2023.

[21] Steeven Janny, Aurélien Beneteau, Nicolas Thome, Madiha Nadri, Julie Digne, and Christian
Wolf. Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. arXiv
preprint arXiv:2302.10803, 2023.

[22] Hrvoje Jasak. Openfoam: open source cfd in research and industry. International Journal of
Naval Architecture and Ocean Engineering, 1(2):89–94, 2009.

[23] Ruoxi Jiang and Rebecca Willett. Embed and emulate: Learning to estimate parameters of
dynamical systems with uncertainty quantification. In NeurIPS, 2022.

[24] Patrick Kidger, Ricky T. Q. Chen, and Terry J. Lyons. "hey, that’s not an ode": Faster ode
adjoints via seminorms. ICML, 2021.

[25] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In ICML, pages 2688–2697, 2018.

[26] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[27] Miltiadis Kofinas, Naveen Nagaraja, and Efstratios Gavves. Roto-translated local coordinate
frames for interacting dynamical systems. In NeurIPS, 2021.

[28] Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with
uncertainty estimates. In ICML, 2020.

[29] Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. Dstagnn:
Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In ICML,
pages 11906–11917, 2022.

[30] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with
adversarial feature learning. In CVPR, pages 5400–5409, 2018.

[31] Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex Kot. Domain
generalization for medical imaging classification with linear-dependency regularization. In
NeurIPS, pages 3118–3129, 2020.

[32] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. In NeurIPS, 2022.

[33] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In ICML, pages
13242–13256, 2022.

[34] Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying Shan, and Ling-Yu Duan. Uncertainty
modeling for out-of-distribution generalization. arXiv preprint arXiv:2202.03958, 2022.

11



[35] Xuan Li, Yadi Cao, Minchen Li, Yin Yang, Craig Schroeder, and Chenfanfu Jiang. Plasticitynet:
Learning to simulate metal, sand, and snow for optimization time integration. In NeurIPS, pages
27783–27796, 2022.

[36] Siyuan Liao, Shangsong Liang, Zaiqiao Meng, and Qiang Zhang. Learning dynamic embeddings
for temporal knowledge graphs. In WSDM, pages 535–543, 2021.

[37] Andreas Look, Melih Kandemir, Barbara Rakitsch, and Jan Peters. Cheap and determinis-
tic inference for deep state-space models of interacting dynamical systems. arXiv preprint
arXiv:2305.01773, 2023.

[38] Wang Lu, Jindong Wang, Yidong Wang, Kan Ren, Yiqiang Chen, and Xing Xie. Towards
optimization and model selection for domain generalization: A mixup-guided solution. arXiv
preprint arXiv:2209.00652, 2022.

[39] Lucas Mansilla, Rodrigo Echeveste, Diego H Milone, and Enzo Ferrante. Domain generalization
via gradient surgery. In ICCV, pages 6630–6638, 2021.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[41] Jiang-Zhou Peng, Siheng Chen, Nadine Aubry, Zhihua Chen, and Wei-Tao Wu. Unsteady
reduced-order model of flow over cylinders based on convolutional and deconvolutional neural
network structure. Physics of Fluids, 32(12):123609, 2020.

[42] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. In ICLR, 2021.

[43] Lukas Prantl, Benjamin Ummenhofer, Vladlen Koltun, and Nils Thuerey. Guaranteed conserva-
tion of momentum for learning particle-based fluid dynamics. arXiv preprint arXiv:2210.06036,
2022.

[44] Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
out-of-distribution generalization. In ICML, pages 18347–18377, 2022.

[45] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In ICML, pages
8459–8468, 2020.

[46] Yidi Shao, Chen Change Loy, and Bo Dai. Transformer with implicit edges for particle-based
physics simulation. In ECCV, pages 549–564, 2022.

[47] BJTJ Smit. Phase diagrams of lennard-jones fluids. The Journal of Chemical Physics,
96(11):8639–8640, 1992.

[48] Yaguang Song, Xiaoshan Yang, Yaowei Wang, and Changsheng Xu. Recovering generalization
via pre-training-like knowledge distillation for out-of-distribution visual question answering.
IEEE Transactions on Multimedia, 2023.
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A Proof of Lemma 4.1

Lemma 4.1. With Assumptions 4.1 and 4.2, we have:
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B Proof of Lemma 4.2

For convenience, Eqn. 9 in the main paper is repeated as:

dvs
i

ds
= Φ([vs

1, · · · ,vs
N , cs]) = σ(

∑
j∈N s(i)

Âs
ij√
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j
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jW1 + csW2), (16)

Eqn. 12 is repeated as:

dcs

ds
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ds
W4) + csW5

)
. (17)

Lemma 4.2. Given the initial state (t0,v
t0
1 , · · · ,vt0

N , ct0), we claim that there exists ε > 0, s.t. the
ODE system Eqn. 16 and Eqn. 17 has a unique solution in the interval [t0 − ε, t0 + ε].

To begin, we introduce the Picard–Lindelöf Theorem as follows:
Theorem B.1. (Picard–Lindelöf Theorem) Let D ⊆ R×Rn be a closed rectangle with (t0, y0) ∈ D.
Let f : D → Rn be a function which is continuous with respect to t and Lipschitz continuous with
respect to y. Then, there exists some ε > 0 such that the initial value problem:

y′(t) = f(t, y(t)), y (t0) = y0. (18)

has a unique solution y(t) in the interval [t0 − ε, t0 + ε] .

Proof. Let As
ij = 0 if j /∈ N s(i) and denote M s
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. Then, we transpose them with Eqn.

16 and 17 becoming:
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Let Y s =


(vs

1)
T

...
(vs

N )T

(cs)T

 ∈ R(N×dv+dc)×1, where vi ∈ Rdv , c ∈ Rdc .

From the Eqn. 19 we get the ODE system dY s

ds = f(Y s; θ) with fixed parameters θ for the ODE
solver. Here the function f(Y t; θ) is continuous w.r.t t since all components in the vector Y t are
continuous w.r.t t and θ does not depend on t.

Now consider activation functions σ, such as ReLU, that satisfy the following inequality for all x and
y:

∥σ(x)− σ(y)∥ ≤ ∥x− y∥
Then, for any two solutions Y s
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To simplify the representation, denote:
∆vs

j = vs
1j − vs

2j , ∆cs = cs1 − cs2.
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Without loss of generality, we assume constants M,W > 1. Thus, we have the following result:
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Therefore the function f is L-Lipschitz with L =
√
NW 2M2 + (W +MNW 2)2. By

Picard–Lindelöf theorem, we prove the uniqueness of the solution.

C Dataset Details

We evaluate our proposed CARE on four physical simulation datasets with temporal environmental
variation. All these four datasets involve at least one thousand nodes. Then we introduce the details
of these four datasets.

• Lennard-Jones Potential (a.k.a. 6-12 potential) is popular in modeling electronically neutral atoms
or molecules, which can be formulated as:

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (20)

where r is the distance between particle pairs, σ denotes the size of the particle, ϵ denotes the depth
of the potential well. The first term denotes the attractive force, which decreases as the distance
between particles increases. The second term denotes the repulsive force, which increases when
two particles are too close. The temperature in the system is changed along with the time to model
the environmental variations and a high temperature would bring a more intense molecular motion.

• 3-body Stillinger-Weber Potential provides more complex relationships besides pairwise rela-
tionships in Lennard-Jones Potential. It contains both two-body and three-body terms with the
following formulation:

VSW =
∑
i

∑
j>i

ϕ2 (rij) +
∑
i

∑
j ̸=i

∑
k>j

ϕ3 (rij , rik, θijk) , (21)

where ϕ2 (rij) = Aijϵij

[
Bij

(
σij

rij

)pij

−
(

σij

rij

)qij]
exp

(
σij

rij−aijσij

)
is the two-body term

and ϕ3 (rij , rik, θijk) = λijkϵijk [cos θijk − cos θ0ijk]
2
exp

(
γijσij

rij−aijσij

)
exp

(
γikσik

rik−aikσik

)
is the

three-body term. The two body term is similar to Lennard-Jones Potential to model the pairwise
relationships and the three body term can consider the angles among atom triplets. Similarly, the
temperature is changed along with the time to model the environmental variations and a high
temperature would also bring a more intense molecular motion.

• CylinderFlow is a popular computational fluid dynamics (CFD) simulation dataset, which models
the fluid flow around a given cylinder by OpenFoam [22]. It consists of simulation data from
modeling an incompressible flow governed by the Navier-Stokes equations. The Reynolds number,
denoted by Re, is a dimensionless quantity that characterizes the flow regime of the fluid. It is
defined as: Re = ρV D

µ , where ρ is the density of the fluid, V is the velocity of the fluid relative
to the cylinder, D is the diameter of the cylinder, and µ is the dynamic viscosity of the fluid. The
transition from the laminar to turbulent flow usually happens at a critical Reynolds number, which
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depends on the geometry of the cylinder and the properties of the fluid. In general, the flow is more
likely to be laminar for small cylinders and viscous fluids, and more likely to be turbulent for large
cylinders and low-viscosity fluids. Notably, the initial flow velocity V of the incoming water flow
to the cylinder varies cyclically over time, meaning the Reynolds number of the flow field also
changes periodically.

• Airfoil is generated in a similar manner through simulations of a compressible flow by Open-
Foam [22]. The lift coefficient of an airfoil relies on a number of factors, e.g., the angle of attack,
the shape of the airfoil, and the Reynolds number of the flow. The angle of attack is the one between
the chord line of the airfoil (the straight line connecting the leading and trailing edges) and the
direction of the incoming flow. The Reynolds number, as mentioned in the previous question, is a
dimensionless quantity that characterizes the flow regime of the fluid. It also plays a crucial role
in the lift produced by an airfoil, as it determines whether the flow around the airfoil is laminar
or turbulent. For laminar flow, the air moves smoothly over the surface of the airfoil, while for
turbulent flow, it moves in a chaotic, swirling pattern. The Reynolds number is given by: Re = ρV c

µ ,
where c is the chord length of the airfoil, and µ denotes the viscosity of the fluid. The lift coefficient
is typically higher for laminar flow than for turbulent flow, up to a certain point where the flow
separates from the airfoil. Notably, in our simulation datasets, the inlet velocity V over the wing
also varies cyclically over time.

D Details of Baselines

Our proposed method is compared with a range of competing baselines as follows:

• LSTM [15] is a widely recognized approach for sequence prediction problems. It involves three
gates, i.e., forget gate, input gate and output gate, enabling the model to acquire knowledge of
long-term relationships.

• STGCN [67] is a deep learning approach to handle spatial dependencies and temporal dynamics
in complicated spatio-temporal data. It involves a recurrent component and a message passing
component for effective analysis of spatio-temporal signals.

• GNS [45] utilizes a graph to represent a physical dynamical system and then utilizes a message
passing neural network to explore complicated dynamics and interactions among multiple objects.

• MeshGraphNet [42] characterize each physical system as meshes, followed by graph neural
networks to learn interacting dynamics. Moreover, remeshing techniques are adopted to fit the
multi-resolution nature in irregular meshes.

• CG-ODE [19] models both nodes and edges jointly through two groups of ODEs, which can
capture the evolution of both objective and interaction in the system.

• TIE [46] attempts to improve the particle-based simulations by decomposing edges into both ends,
and introducing abstract nodes to capture global information in the system.

E Algorithm

The whole learning algorithm of CARE is summarized in Algorithm 1.

F Implementation Details

To ensure the accuracy of our results, we use a rigorous data split strategy, where first 80% of the
samples are reserved for training purposes and the remaining 10% are set aside for testing and
validating, separately. Following [19], we also ensure that no sequence overlap exists on training,
validation and testing sets. In particular, each of these particle-based datasets consists of 14400
training trajectories, 1800 validation trajectories, and 1800 test trajectories while 7200 training
samples, 900 validation samples and 900 test trajectories are for mesh-based datasets. During
training, we split each trajectory sample into two parts, i.e., a conditional part and a prediction part.
We initialize node representations and the context representation based on the first part and utilize the
second part to supervise the model. The size of the two parts is represented as conditional length and
prediction length, respectively. We would vary two lengths to show the performance comprehensively.
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Algorithm 1 Learning Algorithm of the proposed CARE

Input: The training sequences
{
G0, G1, · · · , Gt

}
.

Output: The parameters in our CARE.

1: Initialize the parameters in our model;
2: while not convegence do
3: for each training sequence do
4: Divide the sequence into two segments;
5: Build the temporal graph using Eqn. 4;
6: Initialize both node representations and context representations for ODEs using Eqn. 8;
7: Solve the coupled ODEs, i.e., Eqns. 9 and 11;
8: Add noise into the input for perturbed hidden states;
9: Feed these hidden states into a decoder Φd(·) to get the predictions;

10: Calculate the loss in Eqn. 13;
11: Update the parameters in CARE using back propagation;
12: end for
13: end while

In our implementation, we utilize the sum operator as AGG in Eqn. 11. To solve the ODE systems
on a time grid which is five times denser than the observed time steps, we employ the fourth-order
Runge-Kutta method as in the torchdiffeq Python package [24], using PyTorch [40]. We also use
the adjoint method [5] to reduce memory usage. All experiments are conducted on a single NVIDIA
A100 GPU. We set the latent dimension to 256 and the dropout rate to 0.2. For optimization, we use
the Adam optimizer with weight decay by mini-batch stochastic gradient descent, setting the learning
rate to 0.01. Overall, our proposed CARE offers a novel approach for modeling and predicting
complex systems with multiple interacting objects.

G More Experiment Results

G.1 Model Comparison

We first compare our CARE with MP-NODE [10], which is an ODE-based approach for homogeneous
dynamical systems. The compared result on particle-based simulation datasets and mesh-based
simulation datasets are recorded in Table 4 and Table 5, respectively. From the results, we can
validate the superiority of our CARE in tackling the temporal environmental variation and making
accurate long-term predictions.

Table 4: Results on particle-based physical simulations with the prediction lengths 1, 5, 10 and 20.
vx, vy and vz represent the velocity in the direction of each coordinate axis.
Prediction Length +1 +5 +10 +20

Variable vx vy vz vx vy vz vx vy vz vx vy vz

Lennard-Jones Potential

MP-NODE 1.45 1.79 1.41 3.08 3.74 3.02 5.36 5.91 5.26 8.46 8.36 8.95
Ours 0.76 0.89 1.01 2.94 3.16 2.85 5.01 4.69 4.71 5.75 5.91 5.82

3-body Stillinger-Weber Potential

MP-NODE 9.95 9.82 9.87 12.47 12.41 12.49 16.05 16.14 16.10 17.06 17.15 17.09
Ours 4.21 4.29 4.18 9.74 9.79 9.71 13.65 13.71 13.57 15.30 15.39 15.35

G.2 Results with Different Prediction Lengths

To evaluate the performance of the proposed CARE in different settings, we vary the prediction
length and compare the performance of different approaches. In particular, we show the results with
the prediction length {8, 15} on two particle-based simulation datasets in Table 6. The results with
the prediction length {15, 30} on two mesh-based simulation datasets are shown in Table 7. From the
compared results, we can validate the superiority of our CARE in various settings.
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Table 5: Results on mesh-based physical simulations over different prediction lengths 1, 10, 20 and
50. vx, vy and p represent the velocity in different directions and the pressure field, respectively.
Prediction Length +1 +10 +20 +50

Variable vx vy p vx vy p vx vy p vx vy p

CylinderFlow

MP-NODE 1.11 20.6 8.62 3.68 37.2 13.8 4.36 38.8 17.7 5.59 61.8 32.7
Ours 0.87 19.1 7.21 3.02 32.9 11.8 3.95 37.8 13.9 4.97 55.8 29.4

Airfoil

MP-NODE 4.41 4.44 0.38 4.85 4.76 0.49 5.89 5.72 1.23 7.45 7.97 1.78
Ours 3.51 4.11 0.19 3.86 3.75 0.34 4.16 4.12 0.45 6.74 6.82 0.81

Table 6: Results on particle-based physical simulations with the prediction lengths 8 and 15. vx, vy
and vz represent the velocity in the direction of each coordinate axis.

Prediction Length +8 +15

Variable vx vy vz vx vy vz

Lennard-Jones Potential

LSTM 9.44 9.40 9.57 12.68 12.75 12.61
GNS 8.86 8.92 8.85 11.99 11.84 12.08
STGCN 6.28 6.24 6.33 7.85 8.01 8.09
MeshGraphNet 6.47 6.42 6.55 7.99 8.08 8.14
CG-ODE 5.33 5.16 5.17 7.94 7.59 7.71
TIE 4.97 4.68 4.71 7.65 7.28 7.44
Ours 4.85 4.17 4.55 5.52 5.19 5.06

3-body Stillinger-Weber Potential

LSTM 22.89 22.93 22.90 26.74 26.79 26.78
GNS 22.36 22.38 22.31 26.04 26.05 26.02
STGCN 17.79 17.88 17.83 21.48 21.42 21.46
MeshGraphNet 17.92 17.84 17.95 21.86 21.82 21.84
CG-ODE 13.61 13.68 13.63 17.11 17.15 17.08
TIE 16.79 16.76 16.81 20.04 20.08 20.02
Ours 11.94 11.97 11.88 14.89 14.95 14.81

G.3 Visualization

Moreover, we show more visualization of our proposed CARE and the best baseline (i.e., TIE)
compared with the ground truth. In particular, given that we have shown the time steps in
{1, 100, 200, 300, 400, 500} in Figure 3 and Figure 4, now we select them in {5, 150, 250, 350, 450}
for Lennard-Jones Potential and CylinderFlow, respectively. The compared results are shown in
Figure 5 and Figure 6. We can observe that our CARE can generate more accurate trajectories
compared with the baselines in most cases, which validates the superiority of our CARE again. For
example, in the last row in Figure 5, our CARE can accurately recover the velocity distribution around
the cylinder while the baseline fails.

H More Related Work

Graph Neural Networks. Graph Neural Networks (GNNs) have garnered significant success for
their remarkable capabilities in graph representation learning [26, 62, 72, 33, 13], which is integral
to a variety of downstream applications, including node classification [26], link prediction [71],
and graph classification [62]. These approaches typically employ the message-passing mechanism,
enabling the iterative updating of node representations with the aid of neighboring information.
Recently, GNNs have successfully branched out into modeling interactive dynamics [42, 46, 45]. For
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Table 7: Results on mesh-based physical simulations over different prediction lengths 15 and 30. vx,
vy and p represent the velocity in different directions and the pressure field, respectively.

Prediction Length +15 +30

Variable vx vy p vx vy p

CylinderFlow

LSTM 8.25 47.43 17.62 11.09 59.86 33.24
GNS 8.16 47.95 17.54 11.36 60.49 33.72
STGCN 6.27 44.37 16.97 7.03 56.18 31.45
MeshGraphNet 5.13 42.05 14.65 6.54 52.96 28.63
CG-ODE 3.92 37.45 13.79 5.28 47.12 23.69
TIE 4.07 37.91 13.72 5.31 47.17 23.65
Ours 3.48 35.6 12.9 4.26 44.9 20.7

Airfoil

LSTM 8.75 8.84 3.96 12.86 18.74 4.78
GNS 8.14 8.02 3.51 11.52 11.44 4.04
STGCN 7.64 7.38 2.79 10.14 10.16 3.14
MeshGraphNet 6.05 6.19 1.27 7.11 7.09 1.43
CG-ODE 5.68 5.53 0.81 6.82 6.88 1.21
TIE 5.41 5.33 0.79 6.64 6.71 1.19
Ours 4.08 4.02 0.41 4.95 5.11 0.62

CARE

5 step

Ground TruthTIE

150 step

250 step

350 step

450 step

CARE

5 step

Ground TruthTIE

150 step

250 step

350 step

450 step

Figure 5: More visualization of velocity in CylinderFlow dataset with varying time steps in {5, 150,
250, 350, 450}.

instance, MeshGraphNet [42] employs a message passing neural network to facilitate the modeling of
interactions between objectives, thereby outputting the next-time predictions. However, an inherent
drawback lies in the inability of discrete GNNs to encapsulate the continuous nature of system
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Figure 6: More visualization of Lennard-Jones Potential with varying time steps in {5, 150, 250, 350,
450}.

dynamics. To relieve this limitation, we present a novel graph-based ODE system named CARE for
the modeling of interacting dynamics, which enriches the capabilities of making long-term predictions
under potential environmental variation.

Graph-based ODE. Neural ODEs have been integrated into GNNs, resulting in the development of
Graph ODEs that are applicable to both static and dynamic graphs. Graph ODEs on static graphs [60,
70] primarily aim to mitigate overfitting by formalizing derivatives using both initial and immediate
node representations. Meanwhile, Graph ODEs on dynamic graphs are utilized for tasks such as traffic
flow forecasting [9] and social analysis [19], demonstrating effective performance on irregularly
sampled partial observation data. For example, STGODE [9] employs tensor computation to conduct
continuous message passing, which facilitates accurate long-term predictions by overcoming the
network depth limitations. Despite these advancements, existing works fall short of addressing
the temporal environmental variation in interacting dynamics. To fill this gap, we propose a novel
approach CARE to handle this problem by injecting a context variable in the Graph ODE system.

I Potential Negative Impacts

To the best of our knowledge, we have not found any negative impact of our work.
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