
Appendix571

In this appendix, we provide more details about the four experiments and some scenario examples572

from the three databases used in the experiments. Section A is on the scenario generation model;573

Section B is on the single-agent cross-dataset generalization experiment; Section C is on the multi-574

agent reinforcement learning and imitation learning; Section D shows the interface of ROS bridge and575

the qualitative results of running Openpilot test. Section E shows more rendered scenario examples576

from each database.577

Codebase, documentation, videos, and a scenario gallery are available at https://metadriverse.578

github.io/scenarionet.579

A Scenario Generation Model580

We use all the databases (nuPlan, Waymo, PG) in scenarioNet for cross-dataset traffic scenario581

generation experiments. The goal is to show that scenarioNet contains diverse traffic scenario data582

for training deep neural networks. We conduct our experiments based on TrafficGen [18], a neural583

generative model previously developed for reactive traffic scenario generation.584

A.1 Task Definition585

A traffic scenario is denoted as τ = (m, s1:T ), which lasts T time steps and contains the High-586

Definition (HD) road map m and the state series of traffic vehicles s1:T = [s1, ..., sT ]. Each element587

st = {s1t , ...sNt } is a set of states of N traffic vehicles at time step t. Given an existing scenario588

τ = (m, s1:T ), the goal of TrafficGen is to learn to generate new traffic scenarios τ ′ = (m, s′1:T ′)589

that have similar distribution with τ and different states s′ and longer time steps T ′. After training,590

TrafficGen takes m as input and generates τ ′ as a totally different scenario.591

A.2 Model Architecture592

Traffic Scenario Encoder. TrafficGen uses vectorization to encode map and vehicle information,593

representing lanes as sets of vectors, each vector representing a small region. A vector-based594

coordinate system is established for each small region, with each vector comprising a start point psi ,595

endpoint pei , and information about vehicles in this region. Thus, a traffic snapshot τ at time step t is596

represented as τt = v = vi
I
i=1. Cross attention mechanism is applied to the unordered set v to fuse597

information from different regions into a single context vector.598

Decoder for Scenario Generation. TrafficGen places vehicles by generating a set of weights for all599

regions, which is then turned into a categorical distribution. The local position of a tentative vehicle600

is modeled by a mixture of K bivariate normal distributions, as are heading, speed, and size of the601

vehicle. Autoregressive sampling is used to create a traffic snapshot. A motion forecasting model is602

used as the trajectory generator.603

A.3 Experiment Setting604

We train a scenario generation model TrafficGen with mixed data. Specifically, we randomly sample605

30% data from nuPlan, Waymo, and PG. We filter out the scenarios with less than 8 cars and crop a606

rectangular area with a side length of 120m centered on the ego vehicle. Each of the 20s scenarios is607

split into 10 traffic snapshots with 2s intervals. The training is executed on servers with 8 x Nvidia608

2080TI and 256 G memory in Distributed Data-Parallel (ddp) mode. We set the feature size to be609

1024, and use 3-layer MLPs with hidden dimensions of [1024, 512, 256] for attribute modeling. The610

training takes 16 hours for 100 training epochs and the learning rate decays by 20% at every 30611

epochs. The detailed hyperparameters are shown in Table 4.612
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Figure 6: Traffic scenarios generated from the model trained on different databases: Waymo (□),
nuPlan (□), and PG (□).

t=120 Original Case Generated Case t=40 t=80 Simulation 

Figure 7: Dynamics of the generated traffic scenarios. The first column is the original case. The
middle columns show the generated scenarios at different timesteps. The last column shows the
corresponding scenarios imported in the simulation. The green and red dashed lines indicate the
traffic light status of this lane at the intersection.
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Figure 8: t-SNE visualizations of 3000 scenarios. PG scenarios (□) are located mostly on the left
side, while the scenarios from nuPlan (□) and the Waymo scenarios (□) are scattered on the right
side.

We plot some generated traffic scenarios in Fig. 6 and the dynamics in Fig. 7. It shows that the models613

trained on the processed scenario data from ScenarioNet can generate realistic and diverse traffic614

behaviors and interactions.615

A.4 t-SNE Visualizations616

The trained model’s encoder is used to extract feature embeddings of a given scenario sample. The617

embeddings are then visualized with t-SNE method to show the similarities and differences. The618

detailed hyperparameters of t-SNE are shown in Table 5.619

The t-SNE result is plotted in Fig. 8. The clustering results show that there is a large domain620

gap between real-world scenarios (Waymo and nuPlan) and synthetic scenarios (PG). Besides,621

domain gap exists even in real-world datasets. One prominent feature of the Waymo dataset is the622

complex crossroad (shown in the lower right corner), which the nuPlan dataset is lacking. The t-SNE623

visualization reveals the differences between different traffic datasets.624
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Table 4: TrafficGen
Hyper-parameter Value

Batch Size 256
Feature Size 1024
Training epochs 100
Learning Rate 3e−4
Activation Function “relu”
MCG Layers 5

Table 5: t-SNE
Hyper-parameter Value

Components Number 2
Init pca
Learning Rate auto
Perplexity 30
Early Exaggeration 12

B Single-agent Cross-dataset Generalization Experiment625

We use the PG database and nuPlan database for cross-dataset generalization experiments. The goal626

is to investigate how the sim-to-real gap affects the generalizability of the learning-based vehicle627

controller. To this end, we train agents on synthetic PG scenarios [28] and nuPlan [6] scenarios628

respectively, and test them on the same held-out real-world test set.629

B.1 Task Setup630

To be specific, the task is to follow the trajectory of the data collection car and drive as fast as possible631

while avoiding collisions.632

Observation. The observation of the RL agents is as follows:633

• A 120-dimensional vector denoting the Lidar-like point clouds with 50m maximum detecting634

distance centering at the target vehicle. Each entry is in [0, 1] with Gaussian noise and635

represents the relative distance of the nearest obstacle in the specified direction.636

• A vector containing the data that summarizes the target vehicle’s state such as the steering,637

heading, velocity, and relative distance to the trajectory to follow.638

• The navigation information that guides the target vehicle toward the destination. Concretely,639

it consists of 10 points sampled on the future trajectory and the distance between two640

consecutive points is 2m. The points will be projected to the vehicle coordinates.641

• A 12-dimensional vector denoting the Lidar-like point clouds with 50m maximum detecting642

the boundary of the drivable area, like the solid lines or sidewalks. (Optional)643

As the vehicle for collecting nuPlan data in Boston sometimes drives out of the drivable area for644

bypassing the cones or barriers, crossing the drivable area boundary usually happens. Therefore, we645

didn’t use the boundary detector in our experiments, and crossing the boundaries like solid lines646

won’t terminate the episode nor penalize the agent.647

Action. The driving policy is a fully end-to-end model and directly controls the low-level throttle648

and steering angle. The action a is a continuous two-dimensional vector with entries in [−1, 1]. By649

multiplying coefficients and clipping the extreme value, the action will be converted into the engine650

force and steering angle for changing the vehicle states.651

Reward and Cost Scheme. The reward function is composed of four parts as follows:652

R = c1Rdisp + c2Psmooth + c2Pcollision +Rterm. (1)

The displacement reward Rdisp = dt − dt−1, wherein the dt and dt−1 denotes the longitudinal653

movement of the target vehicle in Frenet coordinates of the target trajectory between two consecutive654

time steps, providing a dense reward to encourage the agent to move forward. The smooth penalty655

Psmooth = min(0, 1/vt − |a[0]|) incentives the agent to drive smoothly and avoid a large steering656

value change between two timesteps, especially, when the velocity is high. vt and a[0] denote the657

current velocity and the steering value respectively. In addition, if a collision with a vehicle, human,658

or object happens at timestep t, the agent will receive a collision penalty. The penalty is set to659

Pcollision = 2 when colliding with a human or vehicle and Pcollision = 0.5 for colliding with an660

object like cones and barriers. We also define a sparse terminal reward Rterm, which is non-zero661
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only at the last time step. At that step, we set Rdisp = Rspeed = 0 and assign Rterm according to the662

terminal state. Rterm is set to +10 if the vehicle reaches the destination, −5 for being 2.5m away663

from the reference trajectory. We set c1 = 2, c2 = 1 and c3 = 1 .664

Termination Conditions and Evaluation Metrics. The episode will be terminated only when: 1)665

the agent drives 2.5m away from the reference trajectory 2) the agent arrives at the destination and666

3) the agent can not finish the episode in recorded_episode_length + 50 steps. For each trained667

agent, we evaluate it in the held-out test environments and define the ratio of episodes where the668

agent arrives at the destination as the success rate. The definition is the same for out of road and669

Timeout. For evaluating the driving behavior, the mean velocity in each scenario is collected and670

then averaged across all scenarios. Also, a metric similar to the success rate is measured and called671

route completion, which is the ratio of moving distance to the length of the whole reference trajectory.672

Since each agent are trained across 5 random seeds, this evaluation process will be executed for 5673

agent which has the same training setting but different random seeds. We report the average and std674

on the metrics mentioned above.675

B.2 Curriculum Training System676

In the single-agent experiments, 40,000 scenarios are used for training agents in both PG scenarios677

and nuPlan scenarios. Loading each scenario from scratch costs a significant amount of time, and thus678

we would like to buffer the scenarios in RAM for repeated use. However, the memory consumption679

is nonnegligible, especially when we train 5 policies concurrently and launch 20 workers to collect680

rollout for each policy. Assuming each scenario consumes about 10MB of memory, buffering 40,000681

training scenarios in each worker process consumes 40,000×100×10MB=40,000GB=40TB of682

memory, which requests a powerful and expensive cluster to train agents in large-scale scenarios. We683

adopt curriculum training scheme for overcoming this issue, which reduces the memory by 99.9%.684

Curriculum Training. We first sort the training scenarios according to the difficulty score calculated685

by: track_length × cumulative_curvature. track_length is the moving distance of the data686

collection car. A greater moving distance corresponds to a higher velocity, which in turn indicates687

a higher difficulty score. This value then will be multiplied by a weight cumulative_curvature688

which quantifies the level of bending in the trajectory. After this, scenarios can be divided into 100689

levels with 400 scenarios in each level. Only when the Success Rate reaches 75%, the worker will690

move to the next level and release the memory used to store scenarios of the previous level. To further691

reduce memory usage, we split the scenarios in each level into 20 subsets, and each worker only loads692

scenarios from the corresponding subset. Finally, only 0.05% scenarios (20 scenarios) are actually693

loaded in each worker, which saves memory by a large margin.694

This curriculum training scheme not only makes it possible to finish training on a single server but695

boosts training efficiency and performance. We conduct an ablation study without the curriculum696

training, which costs a long time to train. This training scheme releases every scenario after using and697

reloading it when needed. The inferior performance highlights the necessity of having curriculum698

training.699

B.3 Results700

As shown in Fig. 9, we present experiment results for three training settings: nuPlan with curriculum701

training, nuPlan without curriculum training, PG with curriculum training. The three used databases702

are PG-train, nuPlan-train, and nuPlan-test, comprising 40,000, 40,000, and 5,000 scenarios re-703

spectively. Considering nuPlan with curriculum training as the baseline, our analysis focuses on704

two factors: the data source and the inclusion of curriculum training. The evaluation of real-world705

scenarios underscores the significance of training with in-distribution real-world data and employing706

a curriculum training system.707

Actually, the poor performance of nuPlan without curriculum training is also exposed at the training708

stage. In spite of increasing the data coverage, the agents under this setting always have a poor709

training success rate and training route completion throughout the whole training process. However,710
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Figure 9: The upper left figure shows the evaluation results for three sets of agents trained in different
settings. The other two upper figures show the learning dynamics including training success rate
and training route completion. The bottom figures show the status of the curriculum training system.
The curriculum level is calculated as the average worker level across 5 seeds, with 20 workers per
seed. Data coverage refers to the proportion of scenarios in the training set that the agent encounters
throughout the entire training process. A value of 1.0 indicates that the agent has visited all scenarios.
Scenario difficulty is determined by calculating the average difficulty score across all scenarios
collected during a PPO optimization epoch.

agents trained in nuPlan with curriculum training setting are more stable and have an increasing711

training success rate as they can fully exploit the scenarios which properly match their current driving712

ability.713

For investigating the influence of data sources, the conclusion can be drawn only from the test results714

which show that agents trained under PG with curriculum training can not generalize to real-world715

settings well. And the failure mode is that agents trained in synthetic scenarios can not learn to716

drive at high speed. And they don’t move until other vehicles move far from them. This behavior is717

reflected on the test mean velocity as well.718

Another interesting phenomenon is the drop of training success rate when the scenario difficulty and719

curriculum level increase, which is also reported in [8] as well. And this value finally coverage to the720

test success rate. Therefore, we infer that given enough training scenarios, the test performance of721

learning-based agents can be roughly reflected by the training-time performance.722

The hyper-parameters of the RL training are listed in Table 6723

Table 6: PPO
Hyper-parameter Value

KL Coefficient 0.2
λ for GAE [39] 0.95
Discounted Factor γ 0.99
Number of SGD epochs 20
Train Batch Size 50,000
SGD mini batch size 200
Learning Rate 1e−4
Clip Parameter ϵ 0.2
Activation Function “tanh”
MLP Hidden Units [512, 256, 128]
MLP Layers 3
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C Multi-agent Policy Learning724

C.1 Experiment Setting725

We can load the real-world dataset into MetaDrive simulator and create multi-agent interactive policy726

environment. We first instantiate agents in the environment where their initial states are loaded from727

the real-world dataset. The initial states include position, heading, velocity and the size. Then, we728

assign EnvInputPolicy to all agents and allow them to be controlled by external RL policies.729

The ground-truth (GT) trajectories are not accessible to the learning agents but serve as the supervision730

via reward function (in RL) or observations (in IL).731

Concretely, we create the reward function similar to Eq. 1 with slightly different weights:732

R = Rdisp + Pcollision +Rterm. (2)

The displacement reward Rdisp = dt − dt−1, wherein the dt and dt−1 denotes the longitudinal733

movement of the target vehicle in Frenet coordinates of the target trajectory between two consecutive734

time steps, provides a dense reward to encourage the agent to move forward. In addition, if a collision735

with a vehicle, human, or object happens at timestep t, the agent will receive a collision penalty.736

The penalty is set to Pcollision = 1 when colliding with a human or vehicle. We also define a737

sparse terminal reward Rterm, which is non-zero only at the last time step. At that step, we set738

Rdisp = Rspeed = 0 and assign Rterm according to the terminal state. Rterm is set to +10 if the739

vehicle reaches the destination, −1 for being 10m away from the reference trajectory. We transform740

the GT trajectory into the simulator to create the target trajectory and use the displacement reward as741

the primary supervision from the dataset.742

On the other hand, in multi-agent imitation learning we use the GT trajectory to form a dataset of743

observations and follow the setting of learning from observations or say action-free imitation learning.744

Specifically, for each frame in the scenario, we load the states of all actors at this frame into the745

simulator and utilize the sensor simulation functionality of MetaDrive to simulate the observations of746

each actor. The observation follows Sec. B.1. We form the dataset of observation sequences of all747

actors in the dataset.748

The ground-truth trajectory can be used to measure the learned behaviors. The the route completion749

rate is the ratio between the length of projected agent trajectory and the length of GT trajectory. The750

average distance between agent trajectory and the GT trajectory is computed as follows:751

1

T

T∑
t=1

||posagent,t − posGT,t||. (3)

where T is the minimum length of agent trajectory and the length of GT trajectory. Therefore, for752

the agents that terminate quickly after spawning, the average distance will be quite small. The final753

distance is computed as distance between the last position of GT trajectory and the last position of754

agent trajectory. The cost is the number of crashes of an agent in one episode. There are two terminal755

conditions. If the route completion rate exceeds 95%, the agent is marked successful. If the agent756

moves out of 10m aways from the reference trajectory, the agent is marked out of road and failed.757

We don’t terminate agent’s episode if it crash with other objects.758

C.2 Baseline Details759

MA-GAIL. We use GAIL [23] in multi-agent setting [43] but the discriminator distinguishes state-760

next state pair, instead of state-action pair [47]. We use PPO as the underlying RL algorithm in GAIL.761

The hyper-parameters are listed in Table 7.762

MA-AIRL. We also train multi-agent Adversarial Inverse RL [59] (AIRL) with an additional763

inverse dynamics model for estimating the expert actions. The inverse dynamics model is trained764

concurrently with the AIRL policies and learns the action given state-next state pairs from the765

environment interactions. AIRL will learn a reward function and use the reward function to build a766
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discriminator as GAIL. We also use PPO as the underlying RL algorithm. The hyper-parameters are767

listed in Table 8.768

MARL baselines. We train independent PPO [40, 38] and TD3 [21] agents as well as the Coordinated769

Policy Optimization (CoPO) agents [36] as MARL baselines. The hyper parameters are given in the770

next section.771

C.3 Hyper-parameters772

Table 7: Action-free Multi-agent GAIL
Hyper-parameter Value

Discriminator LR 5e-5
Discriminator L2 Norm 1e-5
Discriminator SGD Num Iters 1
Discriminator SGD Minibatch Size 1024
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 8: Action-free Multi-agent AIRL
Hyper-parameter Value

Discriminator Loss LR 3e-4
Discriminator L2 Norm 1e-5
Discriminator SGD Num Iters 5
Discriminator SGD Minibatch Size 1024
Inverse Dynamics SGD Num Iters 100
Inverse Dynamics SGD Minibatch Size 512
Inverse Dynamics LR 1e-4
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 9: PPO
Hyper-parameter Value

PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 10: CoPO
Hyper-parameter Value

LCF LR 1e-4
LCF Num Iters 5
Neighborhood Distance 40 m
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 11: TD3
Hyper-parameter Value

Critic LR 1e-4
Actor LR 1e-4
Tau for Target Update 5e-3
Train Batch Size 100
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D AD stack testing773

D.1 ROS bridge774

As shown in Fig. 10, We provide a ROS bridge along with the ScenarioNet, allowing users from the775

ROS community to develop and test their systems with massive real-world data. As shown in Fig. 11,776

information like camera, lidar, and mid-level representations can be retrieved from the simulation.777

Figure 10: The interface of ROS bridge allowing connecting ScenarioNet and ROS community.

Real-world Street Image Deluxe RGB Camera Depth Camera 

Light RGB CameraTop-down Rendering 3D Lidar

Figure 11: Multimodal sensory data provided by ScenarioNet.

ScenarioNet provides not only mid-level scenario representations but multiple sensor outputs like778

top-down view, RGB camera, depth camera, and cloud points. The deluxe RGB camera is supported779

by the deferred rendering pipeline. This figure shows the scene-0061 from nuPlan-mini-split and780

its digital twin counterparts. It is worth investigating how to reconstruct meshes from the recorded781

lidar cloud points and images so that we can simulate the sensor output from new views different782

from the recorded ones. Besides, it is a promising topic to study the closed-loop sensor fusing and783

learning-based control together, which can be supported by ScenarioNet.784

23



D.2 Qualitative Results of Openpilot test785

Openpilot [9] is an end-to-end solution for driver assistance. Therefore, a platform providing 3D786

rendering is necessary, if one would like to study or test the system. ScenarioNet is the only one787

that provides both real-world scenarios and 3D graphics support. As its navigation module is still a788

beta version, we only test Openpilot in scenarios without diverged roads. We build a small database789

containing mainly lane-keeping scenarios for conceptually demonstrating that ScenarioNet can790

connect with commercial AD stack. As shown in Fig. 12, the Openpilot system is robust to common791

scenarios like turning right, lane-keeping, stopping at traffic lights, and passing traffic lights. The792

demo video is available at https://youtu.be/KjlPB0nCTvg793

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Lane Keeping

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Turning Right

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Stopping at Traffic Light

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Passing Traffic Light

Figure 12: Openpilot manages to overcome four representative scenarios.
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E Scenario Databases794

In the database statistics Table, the Intersection Ratio is the ratio of scenarios having traffic lights for795

real-world data, and the ratio of scenarios containing intersections and roundabouts for synthetic data.796

E.1 Waymo Database797

Figure 13: Rendered traffic scenarios and their top-down views from the Waymo database.

We construct the Waymo database from the 20 seconds version [44] motion data with Google Cloud798

path at waymo_open_dataset_motion_v_1_2_0/uncompressed/scenario/training_20s .799

As Waymo data is collected with the altitude calibrated, we can filter the overpass scenarios by800

excluding the scenarios with significant changes in height. In addition, we exclude the scenarios801

where the ego car waits at the red light for a long time by selecting scenarios where the ego car802

moving distances are greater than 10 meters. We provide the rendered scenario examples from this803

dataset in Fig. 13. Top-down views show that Waymo scenarios contain diverse road structures and a804

large number of vehicles.805
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E.2 nuPlan Database806

Figure 14: Rendered traffic scenarios and their top-down views from the nuPlan database.

According to https://www.nuscenes.org/nuplan, nuPlan has more than 1500 hours of driving807

data collected in 4 different cities: Las Vegas, Singapore, Pittsburgh, and Boston, here we only use808

the data collected in Boston as we want to keep all databases in experiments to have similar sizes.809

Data collected in other cities can also be converted to our scenario format.810

We use the V.1.0 version data, which contains approximately 50,000 scenarios after excluding811

scenarios where the ego car moving distances are less than 10 meters. It is noticeable that nuPlan812

updated the data to version v1.1 recently (one week before the NeurIPS 2023 dataset track deadline),813

which may induce some differences if building a database from this new version. As shown in Fig. 14,814

the scenario examples reveal that nuPlan Boston split has cluttered scenes and contains many traffic815

cones and barriers besides vehicles. We additionally find that in some nuPlan scenarios, the ego car816

trajectory is out of the drivable area for sidestepping the barriers or cones.817

26

https://www.nuscenes.org/nuplan


E.3 PG Database818

Figure 15: Rendered traffic scenarios and their top-down views from the PG database.

Unlike the previous two datasets collected in the real world, PG scenarios are synthesized according819

to a set of rules. For map generation, two blocks are sampled from a set of candidate roadblocks820

and connected to form a map. Those blocks include intersections, roundabouts, straight roads,821

curved roads, Ramp, and so on. Once the map is defined, a traffic generation rule will be822

applied to scatter vehicles and road objects like traffic cones on the map. The detailed scenario823

generation config such as the block distribution for sampling can be found at https://github.824

com/metadriverse/metadrive/blob/0a929f8130b34e4428067390f20f872d1d6d224a/825

metadrive/component/algorithm/blocks_prob_dist.py#L4. All vehicles choose a destina-826

tion automatically and be actuated by IDM policy which can keep a proper distance from the front827

vehicle and perform a lane change when the front object is static. The scenario data is collected by an828

IDM policy as well. Some scenario examples are shown in Fig. 15.829
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F Discussion: how to improve visual fidelity?830

The visual fidelity of the closed-loop simulation can be further improved with the collected raw831

sensor data. We already have some plans to improve it and will include this discussion in the paper832

for sharing our thoughts regarding realistic sensor simulation.833

Currently, the sensor simulation including the camera and lidar is achieved in a Computer Graphics834

(CG) way, where people try restoring the mesh and texture for objects from real-world data and835

shading these models based on lights and materials to make them visually realistic. To improve the836

rendering results of ScenarioNet, we do plan to reconstruct the geometry data for traffic participants837

and objects from the driving videos. Besides, we also consider connecting ScenarioNet with Unreal838

Engine or Nvidia Omniverse in the future as they could provide better shading results.839

On the other hand, NeRF is an alternative to improve the quality of sensor simulation. Through840

volume rendering, it can directly synthesize new camera views and point clouds from the driving841

videos when traffic participants and the ego car move with different trajectories and poses in the842

closed-loop training. This way is purely data-driven and can exempt the need for restoring 3D assets843

like objects and buildings. Recent results [55, 58, 54] already demonstrate its potential in terms of844

camera and lidar simulation. However, how to make the NeRF scene editable is still an open problem;845

hence, we plan to investigate this in the future.846
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