
Supplementary Material for
Enhancing Robotic Program Synthesis Through

Environmental Context

Anonymous Author(s)
Affiliation
Address
email

A Implementation Details1

A.1 Hardware and Software Configurations2

All experiments were conducted on Ubuntu 20.04.5 LTS (Linux version 5.15.0-46-generic) utilizing3

Python 3.9.0, PyTorch 1.12.1 [9], and PyTorch-Geometric 2.3.0 [5]. The hardware employed4

consisted of 24 Intel(R) Xeon(R) Gold 5317 CPUs @ 3.00GHz, 8 modules of 32GB memory (with a5

speed of 3200MT/s), and 2 NVIDIA A40 GPUs with 48GB of memory each (NVIDIA UNIX x86_646

Kernel Module 510.108.03, CUDA version 11.6, cuDNN version 8.3).7

A.2 Network Architecture8

For the program synthesizing stage, the structure of the I/O encoder is elaborated in Table 1, where9

we employ dk1 ×dk2 -s-do Conv to denote the 2D convolution with kernel size dk1 ×dk2 , stride s, and10

output channel do. Additionally, BN refers to batch normalization [8], and di-do Linear denotes the11

fully-connected layer with input feature di and output feature do. The I/O encoder utilizes residual12

networks [7] and takes I/O pair with size 5× 5× 3 as inputs.

Table 1: The structure of the I/O encoder for synthesizing stage.
Layers Output

3× 3-1-32 Conv BN LeakyReLU 5× 3× 32
3× 3-1-32 Conv BN LeakyReLU 5× 3× 32

3× 3-1-64 Conv 5× 3× 64
3× 3-1-64 Conv 5× 3× 64
3× 3-1-64 Conv BN LeakyReLU 5× 3× 64

3× 3-1-64 Conv 5× 3× 64
3× 3-1-64 Conv 5× 3× 64
3× 3-1-64 Conv BN LeakyReLU 5× 3× 64

960-512 Linear 512

13

To improve candidate programs through environmental contexts, the decoder’s structure is elaborated14

in Table 2. Here, we utilize do-h GATv2Conv to represent the dynamic graph attention variant [1]15

with output channel do and multiple attention heads h, and do-nl denotes the nl layered bi-directional16

LSTM with output feature do. Additionally, |V| refers to the size of the Vizdoom DSL vocabulary17

and Lt denotes the length of a candidate program. The decoder receives the environmental context,18

which comprises a depth buffer with dimensions of 30 × 40 × 15 and an RGB automap buffer19

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

with dimensions of 30× 120× 15, obtained by executing program segments through the Vizdoom20

interpreter, along with the candidate program embedding, as inputs.

Table 2: The decoder structure aimed at enhancing program synthesis through environmental contexts.
Layers Output

128-2 GATv2Conv LeakyReLU Lt × 256
128-2 GATv2Conv Lt × 256

3× 3-1-8 Conv BN LeakyReLU 30× 40× 8
3× 3-1-8 Conv BN LeakyReLU 30× 40× 8
9600-128 Linear 128

3× 3-1-8 Conv BN LeakyReLU 30× 120× 8
3× 3-1-8 Conv BN LeakyReLU 30× 120× 8
28800-128 Linear 128

256-2 LSTM 256
256-|V| Linear |V|

21

A.3 Hyper-parameters22

LGRL [2]: We employ the identical architecture as the original implementation1, which utilizes 2D23

convolution BN ReLU for I/O encoding. We set the kernel size to dk1
= 3 and dk2

= 3, convolutional24

stacks to [64, 64, 64], fully-connected stack to 512, embedding size to 256, 2 layered LSTM hidden25

size to 256, and batch size to 8. The model is trained using Adam optimizer, with a learning rate of26

10−4, learned syntax penalty of 10−5.27

SED [6]: We utilize the I/O encoder architecture, as illustrated in Table 1, based on the original im-28

plementation2. For the synthesis model, we set the kernel size to dk1
= 3 and dk2

= 3, convolutional29

stacks to [64, 64, 64], gradient clip to 5, warm-up to 40, bi-directional LSTM hidden size to 256, and30

batch size to 8. The model is trained using SGD optimizer, with a learning rate of 10−3 and decay31

rate of 0.5 after 100000 steps. For the debugger model, we set the mutate distribution to [1, 2, 3],32

learning rate to 10−4, and max beam to 50, while keeping other parameters the same.33

Inferred Trace [10]: The architecture and parameters are similar to LGRL, with the addition of an34

extra 3× 3-1-15 Conv BN LeakyReLU layer and a Linear layer for the encoder to infer execution35

traces. The decoder also includes a 3 × 3-1-8 Conv BN LeakyReLU layer and a Linear layer to36

incorporate the execution features.37

Latent Execution [3]: The architecture used is identical to the original one3. We have set the38

embedding size to 1024, the hidden size of the 2 layered LSTM to 512, the hidden size of the39

single-layered MLP to 512, and the number of attention layers to 2. Additionally, we have set the40

gradient clip to 5, the batch size to 8, and enabled latent execution. The model has been trained using41

the SGD optimizer, with a learning rate of 10−4 and a decay rate of 0.9 after 6000 steps.42

Transformer [12]: In order to facilitate I/O embedding learning, we have utilized the encoder43

structure (Table 1) on top of the Transformer. The Transformer embedding size has been set to 512,44

with 2 attention heads, 2 encoder layers, and 2 decoder layers. The remaining parameters are similar45

to LGRL.46

EVAPS4: To enhance the quality of candidate programs by incorporating environmental contexts, we47

have utilized the decoder structure presented in Table 2. We have set the kernel size to dk1
= 3 and48

dk2 = 3, the convolutional stacks to [64, 64, 64], the fully-connected stack to 512, the embedding49

size to 256, the hidden size of the 2 layered LSTM to 256, and the batch size to 4. Additionally, we50

have set the batch normalization momentum to 0.1 and the negative slope of the leakyReLU to 0.01.51

1https://github.com/bunelr/GandRL_for_NPS
2https://github.com/sunblaze-ucb/SED
3https://github.com/Jungyhuk/latent-execution
4Implementation available at: https://anonymous.4open.science/r/EVAPS-review

2

https://github.com/bunelr/GandRL_for_NPS
https://github.com/sunblaze-ucb/SED
https://github.com/Jungyhuk/latent-execution
https://anonymous.4open.science/r/EVAPS-review

The model has been trained using the Adam optimizer, with a learning rate of 10−4 and a learned52

syntax penalty of 10−5.53

B Additional Experimental Results54

B.1 Dataset Properties55

2 3 4 5 6 7+
Steps

0

5000

10000

15000

20000

Sa
m

pl
es

Figure 1: Distribution of the
number of samples in each cat-
egory.

Overall Synthesis Benchmark. As delineated in Section 4.1, the56

dataset is engendered by adhering to the tenets of antecedent studies57

[2, 4, 6, 11], culminating in 100, 000 unique samples. The mean pro-58

gram sequence length for these instances amounts to 13.37 tokens,59

while the average steps necessitated for task completion is 4.59 steps.60

The program sequence length spans a range of 5 to 20 tokens, and61

the steps required vary between a minimum of 2 and a maximum of62

13.63

Task Complexity. The number of samples in each complexity cat-64

egory is visualized in Figure 1. Overall, the distribution of samples65

remains equitable, precluding the model from capturing invalid fea-66

tures and generating wrong tokens. The detailed information of each67

category is presented in Table 3.

Table 3: Detailed program information of varying levels of complexity.

Complexity Program Length Steps

Min Max Avg Avg Max

2 5 20 11.85 -
3 6 20 14.18 -
4 7 20 13.67 -
5 8 20 13.52 -
6 9 20 13.24 -

7+ 10 19 13.27 8.11 13

68

B.2 Additional Results69

Task Complexity. Table 4 demonstrates the primary outcomes of the70

EVAPS model in comparison to other techniques when confronted71

with diverse levels of task complexity. Overall, as the task complexity escalates, EVAPS excels in72

decomposing tasks into more straightforward actions and exhibiting superior generalization. This73

underscores the efficacy of utilizing environmental contexts. Meanwhile, SED can still produce74

comparable outcomes by rectifying errors through execution traces.75

Table 4: The average accuracy (with standard deviation) of all methods evaluated on three metrics in
six complexity categories, assessed over 5 random seeds. The best results are highlighted in bold.

Complexity Top-K Methods Exact Match Semantic Match Generalization

2

Top-1

LGRL 10.39% (0.92%) 67.53% (2.75%) 66.23% (1.84%)
SED 52.72% (1.59%) 59.22% (1.91%) 58.83% (1.51%)
Inferred Trace 25.97% (0.92%) 58.44% (1.84%) 57.14% (2.75%)
Latent Execution 9.94% (2.75%) 68.83% (0.92%) 68.83% (0.91%)
Transformer 35.06% (1.84%) 44.16% (2.75%) 42.86% (1.83%)

EVAPS 68.83% (7.35%) 74.03% (1.32%) 74.03% (0.91%)

Top-5

LGRL 12.99% (4.59%) 81.82% (0.92%) 80.52% (0.92%)
SED 66.49% (4.93%) 73.25% (3.57%) 72.93% (5.38%)
Inferred Trace 33.77% (1.83%) 72.73% (2.75%) 70.13% (0.92%)

3

Table 4 continued from previous page
Latent Execution 15.94% (3.67%) 72.73% (2.75%) 71.42% (2.54%)
Transformer 58.44% (2.75%) 70.13% (0.92%) 67.53% (1.03%)

EVAPS 83.12% (6.43%) 85.71% (1.84%) 83.12% (0.92%)

Top-20

LGRL 23.38% (1.83%) 85.71% (0.92%) 84.42% (0.92%)
SED 69.61% (2.53%) 81.09% (1.81%) 81.06% (2.96%)
Inferred Trace 44.16% (3.67%) 81.82% (3.28%) 79.22% (1.84%)
Latent Execution 26.18% (2.75%) 79.22% (0.92%) 77.92% (1.08%)
Transformer 75.32% (0.91%) 77.92% (6.43%) 75.32% (6.42%)

EVAPS 87.01% (4.59%) 88.31% (1.86%) 87.01% (2.75%)

3

Top-1

LGRL 1.92% (1.36%) 44.23% (6.12%) 39.42% (5.43%)
SED 43.84% (0.75%) 43.86% (3.01%) 43.84% (3.96%)
Inferred Trace 22.12% (1.36%) 49.04% (1.39%) 46.15% (0.68%)
Latent Execution 5.91% (1.06%) 56.73% (3.40%) 53.84% (3.39%)
Transformer 15.38% (4.76%) 31.73% (2.04%) 31.73% (1.36%)

EVAPS 54.80% (3.40%) 56.73% (6.12%) 54.80% (5.44%)

Top-5

LGRL 2.88% (2.04%) 67.31% (1.36%) 63.46% (0.68%)
SED 60.00% (0.75%) 65.76% (0.94%) 63.15% (0.79%)
Inferred Trace 30.77% (3.40%) 60.58% (0.68%) 56.73% (2.72%)
Latent Execution 11.01% (0.68%) 62.50% (5.19%) 60.58% (5.88%)
Transformer 34.62% (3.40%) 59.62% (5.44%) 59.62% (4.76%)

EVAPS 71.15% (1.36%) 76.92% (0.68%) 75.00% (0.79%)

Top-20

LGRL 7.69% (3.40%) 76.92% (1.35%) 74.03% (0.68%)
SED 65.38% (0.72%) 76.92% (3.39%) 76.73% (4.28%)
Inferred Trace 46.15% (0.69%) 74.04% (0.67%) 71.15% (1.04%)
Latent Execution 24.55% (1.36%) 73.08% (3.39%) 71.15% (4.76%)
Transformer 59.61% (1.36%) 81.73% (1.35%) 80.76% (2.07%)

EVAPS 80.77% (2.72%) 83.65% (0.68%) 81.73% (0.91%)

4

Top-1

LGRL 4.25% (0.75%) 39.36% (1.50%) 36.17% (1.50%)
SED 34.89% (0.98%) 34.89% (0.13%) 34.89% (0.45%)
Inferred Trace 19.14% (2.26%) 39.36% (1.50%) 36.17% (2.25%)
Latent Execution 5.43% (0.75%) 36.17% (2.26%) 34.04% (3.01%)
Transformer 10.64% (0.75%) 24.47% (4.51%) 22.34% (3.44%)

EVAPS 43.62% (3.76%) 46.81% (2.25%) 43.62% (2.56%)

Top-5

LGRL 10.64% (3.01%) 57.45% (0.75%) 53.19% (0.75%)
SED 50.21% (3.85%) 56.98% (0.57%) 56.70% (2.07%)
Inferred Trace 29.78% (3.01%) 51.06% (3.08%) 46.81% (4.51%)
Latent Execution 14.05% (0.75%) 38.30% (1.50%) 36.17% (2.26%)
Transformer 35.11% (5.26%) 47.87% (4.31%) 46.81% (5.27%)

EVAPS 56.38% (1.50%) 65.96% (3.01%) 62.77% (2.26%)

Top-20

LGRL 15.96% (2.26%) 67.02% (3.76%) 64.89% (0.75%)
SED 57.87% (3.15%) 69.16% (3.25%) 69.00% (4.94%)
Inferred Trace 37.23% (3.15%) 59.57% (1.50%) 56.38% (2.26%)
Latent Execution 21.88% (1.54%) 54.26% (2.25%) 52.13% (2.26%)
Transformer 43.62% (1.50%) 62.77% (0.75%) 60.64% (0.75%)

EVAPS 68.08% (0.75%) 74.47% (2.25%) 72.34% (2.26%)

5

Top-1

LGRL 13.82% (0.57%) 30.89% (4.02%) 30.08% (3.45%)
SED 40.98% (0.67%) 40.98% (0.29%) 40.98% (0.76%)
Inferred Trace 23.58% (0.57%) 34.96% (0.74%) 34.96% (0.48%)
Latent Execution 4.51% (1.72%) 42.28% (1.15%) 38.21% (2.30%)
Transformer 20.33% (1.15%) 27.64% (2.30%) 24.64% (2.29%)

4

Table 4 continued from previous page
EVAPS 47.97% (1.15%) 52.03% (1.14%) 51.22% (1.23%)

Top-5

LGRL 21.14% (3.45%) 47.97% (2.87%) 47.15% (2.30%)
SED 57.84% (3.54%) 58.54% (2.02%) 58.01% (3.07%)
Inferred Trace 31.70% (4.02%) 50.41% (0.57%) 49.59% (1.58%)
Latent Execution 7.07% (2.87%) 44.72% (0.57%) 43.09% (1.72%)
Transformer 36.59% (2.53%) 43.08% (1.72%) 42.27% (1.76%)

EVAPS 59.35% (0.57%) 66.67% (1.72%) 65.85% (1.65%)

Top-20

LGRL 26.83% (2.29%) 58.54% (5.75%) 56.91% (5.17%)
SED 65.84% (2.84%) 66.80% (1.94%) 66.78% (2.53%)
Inferred Trace 46.34% (0.75%) 61.79% (1.15%) 60.98% (1.14%)
Latent Execution 17.82% (3.89%) 52.85% (2.29%) 52.03% (2.53%)
Transformer 49.59% (1.14%) 59.35% (1.15%) 58.54% (1.97%)

EVAPS 65.85% (2.87%) 71.54% (1.74%) 69.11% (1.72%)

6

Top-1

LGRL 11.94% (3.17%) 29.85% (2.11%) 25.37% (1.05%)
SED 40.60% (0.22%) 40.60% (1.83%) 40.60% (2.88%)
Inferred Trace 20.90% (1.06%) 40.30% (2.11%) 38.81% (3.17%)
Latent Execution 3.81% (1.06%) 32.84% (3.17%) 31.34% (4.22%)
Transformer 8.96% (1.05%) 22.39% (2.31%) 19.40% (1.06%)

EVAPS 49.25% (2.11%) 53.73% (3.16%) 50.75% (1.06%)

Top-5

LGRL 19.40% (2.11%) 52.24% (2.11%) 46.27% (1.07%)
SED 57.31% (0.34%) 62.71% (1.15%) 61.46% (2.21%)
Inferred Trace 38.80% (1.06%) 64.18% (1.05%) 59.70% (1.53%)
Latent Execution 6.94% (1.05%) 38.81% (1.06%) 32.84% (2.11%)
Transformer 31.34% (1.06%) 55.22% (5.28%) 50.75% (5.26%)

EVAPS 64.18% (4.22%) 76.12% (2.11%) 71.64% (1.05%)

Top-20

LGRL 31.34% (3.17%) 65.67% (1.06%) 61.19% (1.05%)
SED 63.28% (1.44%) 74.35% (1.70%) 74.08% (4.86%)
Inferred Trace 47.76% (3.17%) 68.66% (2.11%) 64.18% (2.17%)
Latent Execution 18.16% (1.38%) 47.76% (2.17%) 43.28% (2.06%)
Transformer 55.22% (1.58%) 67.16% (3.17%) 62.69% (3.16%)

EVAPS 68.66% (2.07%) 83.58% (2.65%) 79.10% (1.06%)

7+

Top-1

LGRL 9.41% (0.83%) 22.35% (0.66%) 21.18% (0.82%)
SED 39.53% (0.83%) 39.53% (1.91%) 39.53% (2.34%)
Inferred Trace 21.18% (3.32%) 36.47% (2.49%) 35.29% (3.27%)
Latent Execution 3.18% (0.83%) 27.06% (2.49%) 27.06% (2.56%)
Transformer 14.12% (3.32%) 18.82% (0.83%) 18.82% (0.89%)

EVAPS 52.94% (4.99%) 52.94% (4.34%) 49.41% (3.32%)

Top-5

LGRL 21.17% (0.83%) 54.12% (0.83%) 51.76% (0.32%)
SED 55.53% (0.89%) 58.85% (1.35%) 58.85% (1.07%)
Inferred Trace 42.35% (2.49%) 58.82% (1.66%) 56.47% (0.83%)
Latent Execution 7.76% (2.70%) 31.76% (2.50%) 31.76% (1.66%)
Transformer 32.94% (7.48%) 42.35% (8.32%) 42.35% (8.31%)

EVAPS 65.89% (0.83%) 71.76% (2.50%) 69.41% (1.66%)

Top-20

LGRL 27.06% (2.49%) 67.06% (1.56%) 63.52% (5.82%)
SED 68.66% (2.49%) 71.29% (2.36%) 71.29% (3.01%)
Inferred Trace 56.47% (0.83%) 70.59% (1.66%) 67.06% (1.37%)
Latent Execution 17.64% (3.32%) 50.59% (2.31%) 49.41% (2.46%)
Transformer 49.41% (3.25%) 63.53% (4.99%) 61.18% (4.16%)

EVAPS 74.12% (0.83%) 77.65% (1.89%) 75.29% (0.81%)

5

1 5 10 15 20
Top-K

30
40
50
60
70

Ex
ac

t M
at

ch
 (%

)

Naïve EVAPS+O EVAPS+S EVAPS

(a) Exact Match

1 5 10 15 20
Top-K

30

40

50

60

70

Se
m

an
tic

 M
at

ch
 (%

)

Naïve EVAPS+O EVAPS+S EVAPS

(b) Semantic Match

1 5 10 15 20
Top-K

30

40

50

60

70

Ge
ne

ra
liz

at
io

n
(%

)

Naïve EVAPS+O EVAPS+S EVAPS

(c) Generalization

Figure 2: The visualized ablation results, depicting a range from Top-1 to Top-20, and are accompa-
nied by a 95% confidence interval band.

Ablation Study. Figure 2 illustrates the comprehensive ablation results evaluated on three metrics.76

It can be inferred that the generalization ability is enhanced by leveraging partial observations or77

aligning code symbols, and this improvement is particularly noticeable in predicting exact matched78

sequences. Furthermore, the interval band for EVAPS is smaller than that of EVAPS+O and EVAPS+S,79

indicating that the model’s stability and robustness are enhanced by incorporating both modules.80

6

C Broader Impact81

The fundamental concept of utilizing environmental observations and aligning them with code82

symbols to enhance program synthesis generalization capability can be implemented in actual robotic83

devices. Although the idea holds promise for real-world scenarios, the current focus is on program84

generation. We anticipate that the proposed method will not generate any biased or offensive content.85

However, when gathering observation data from the surroundings, it is imperative to avoid infringing86

on privacy. Robots are bound to interact with the environment, and to enable the proposed model,87

environmental data collection is necessary. Typically, the data comprises RGB images that may88

contain facial data or result in other forms of privacy infringement. Therefore, it is crucial to ensure89

that the collected environmental data is desensitized before further analysis. We recommend utilizing90

the proposed algorithm solely for research purposes.91

References92

[1] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In ICLR,93

2022.94

[2] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-95

aging grammar and reinforcement learning for neural program synthesis. In ICLR, 2018.96

[3] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis97

beyond domain-specific languages. In NeurIPS, 2021.98

[4] Xuguang Duan, Qi Wu, Chuang Gan, Yiwei Zhang, Wenbing Huang, Anton Van Den Hengel,99

and Wenwu Zhu. Watch, reason and code: Learning to represent videos using program. In ACM100

MM, 2019.101

[5] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.102

In ICLR (RLGM Workshop), 2019.103

[6] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, execute and104

debug: Learning to repair for neural program synthesis. In NeurIPS, 2020.105

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image106

recognition. In CVPR, 2016.107

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training108

by reducing internal covariate shift. In ICML, 2015.109

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,110

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative111

style, high-performance deep learning library. In NeurIPS, 2019.112

[10] Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with113

inferred execution traces. In NeurIPS, 2018.114

[11] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program115

synthesis from diverse demonstration videos. In ICML, 2018.116

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,117

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.118

7

	Implementation Details
	Hardware and Software Configurations
	Network Architecture
	Hyper-parameters

	Additional Experimental Results
	Dataset Properties
	Additional Results

	Broader Impact

