
A Proofs from Section 4

We setup some notation for the analysis. The total number of samples collected by buyer i is given as
nb,i(t), and similarly for seller j, it is ns,j(t). Let K(t) be the number of participants in round t. For
any i 2 [N ] and j 2 [M ], let �b,i(t) be the indicator of buyer i participating in round t, and �s,j(t)
be the indicator of seller j participating in round t. Let Pb(t) denote the set of participating buyers,
and Ps(t) denote the set of participating sellers.

For any buyer i 2 [N ] and any time t, we have

E(�)
i,t :=

(
|bbi(t)�Bi| 

s
� log(t)

nb,i(t)

)
, P[Ei,t] � 1� 1/t�/2.

Similarly, for any seller j 2 [M ] we have

E(�)
j,t :=

(
|bsj(t)� Sj | 

s
� log(t)

ns,j(t)

)
, P[Ej,t] � 1� 1/t�/2.

Without loss of generality, let true valuation of the buyers be in the descending order, and for the seller
in the ascending order. Then under the Average mechanism with the true bids (a.k.a. oracle Average
mechanism) the buyers 1 to K

⇤, and the sellers 1 to K
⇤ participate, while the others do not participate.

Let ↵min = min{↵s,j ,↵b,i : j 2 [M ], i 2 [N ]}, and ↵max = min{↵s,j ,↵b,i : j 2 [M ], i 2 [N ]}.

Lemma 6. Under the event E(�)
t := \i2[N ] \j2[M ] E

(�)
i,t \ E(�)

j,t , in time t, the bid for the i-th buyer
and the j-th seller admits the (random) bounds with ↵min � �

bi(t) 2
"
Bi + (

p
↵b,i �

p
�)

s
log(t)

nb,i(t)
, Bi + (

p
↵b,i +

p
�)

s
log(t)

nb,i(t)

#
,

sj(t) 2
"
Sj � (

p
↵s,j +

p
�)

s
log(t)

ns,j(t)
, Sj � (

p
↵s,j �

p
�)

s
log(t)

ns,j(t)

#
.

In particular, for any buyer i 2 [N ], any seller j 2 [M ], and ↵max � �, we have bi(t) � Bi and
sj(t)  Sj .

Proposition 7. For any round t, under the event E(�)
t , the following events are true, for

min{↵s,j ,↵b,i} � �, the number of participants K(t) � K
⇤.

Proof. Under the conditions, from Lemma 6 we know that bi(t) � Bi and sj(t)  Sj for all
buyers i and sellers j. The number of participant in the system given any value profile is given as
K(t) = maxp min(|{i 2 [N ] : bi(t) � p}|, |{j 2 [M ] : sj(t)  p}|). Let p⇤ 2 (SK⇤ , BK⇤). Then
we have |{i 2 [N ] : bi(t) � p

⇤}| � |{i 2 [N ] : Bi � p
⇤}| = K

⇤. Similarly, |{j 2 [M ] : sj(t) 
p
⇤}| � |{j 2 [M ] : Sj  p

⇤}| = K
⇤. Therefore, we have K(t) � K

⇤.

Let us define the gaps for the seller j from the minimum seller as �s,j = (Sj � SK⇤), and the gap
for the buyer i from the maximum buyer as �b,i = (BK⇤ � Bi). Also, we define for the seller j,
�s,b,j = (Sj � BK⇤), and for the buyer i, �b,i = (SK⇤ � Bi). We have SK⇤  BK⇤ . We now
introduce a definition next to ease exposition of simultaneous participation of two buyers or two
sellers.
Definition 8. A buyer i (a seller j) precedes a buyer i0 (resp., a seller j0) if and only if buyer i (resp.,
seller j) participates, and buyer i0 (resp., seller j0) does not participate.

The next lemma states that once a true non-participant buyer (seller) have enough samples, this buyer
(resp., seller) never precede the true participant buyers (resp., sellers).

Lemma 9. For any round t, under the event E(�)
t , the following events are true, for ↵min > �

• for any specific buyer i0 2 [K⇤], if for a buyer i � (K⇤ + 1), nb,i(t) �
(
p
↵b,i+

p
�)2

(Bi0�Bi)2
log(t)

then buyer i does not precede buyer i0.

13



• for any specific seller j0 2 [K⇤], if for any j � (K⇤ + 1), ns,j(t) �
(
p
↵s,j+

p
�)2

(Sj�Sj0 )
2 log(t)

then seller j does not precede seller j0.

Proof. Let K(t) be the number of participants in round t. We know that under E(�)
t and ↵min > �,

sj(t) < Sj and bi(t) > Bi for all i 2 [N ] and j 2 [M ]. We note that if for any i � (K⇤ + 1)

and i
0  K

⇤, if nb,i(t) �
(
p
↵b,i+

p
�)2

(Bi0�Bi)2
log(t) then bi(t)  Bi0 . For buyers i0 we have bi0(t) > Bi0 ,

hence buyer i can not precede any of the buyers i0. This is true as under the current mechanism for
any i

0 with bi0(t) > bi(t), it can not happen that buyer i0 participates but buyer i does not. A similar
argument proves the seller side statement.

Furthermore, the above Lemma 9 can be used in conjunction to Proposition 7, to show the true
participant buyers (or sellers) fail to match only logarithimically many times.

Lemma 10. Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have

• nb,i(T ) � T �
P

i0�K⇤+1
(p↵b,i0+

p
�)2

(Bi�Bi0 )
2 log(T ) for any i 2 [K⇤],

• ns,j(T ) � T �
P

j0�K⇤+1
(p↵s,j0+

p
�)2

(Sj0�Sj)2
log(T ) for any j 2 [K⇤].

Proof. We know that under the condition of the lemma, K(t) � K
⇤ for all 1  t  T . Therefore,

we have
P

i2[N ] nb,i(T ) � K
⇤
T . Furthermore, as K(t) � K

⇤ in each round, a buyer i 2 [K⇤]
does not participate, only if there exists at least one participant i0 � (K⇤ + 1) that precedes buyer
i. This is because if in some round no participant i0 � (K⇤ + 1) precedes buyer i and buyer i does
not match then that implies at most there can be (K⇤ � 1) matches in that round. This leads to a
contradiction of K(t) � K

⇤. However, under event E(�) and ↵min > �, from Lemma 9 we know

that any i
0 � (K⇤ + 1) can precede buyer i only (p↵b,i0+

p
�)2

(Bi�Bi0 )
2 log(T ) many times. This implies that

(T � nb,i(T )) 
P

i0�K⇤+1
(p↵b,i0+

p
�)2

(Bi�Bi0 )
2 log(T ).

A similar treatment of the sellers give us the remaining result.

We next show that the true non-participants only match logarithimically many times. This means
K(t) converges to K

⇤ fast. It is important to note that the previous argument does not conclude that
where we mainly relied upon K(t) � K

⇤ for all t w.h.p. To that end we introduce the following
definition.
Definition 11. A buyer i, and a seller j co-participates in a given round, if and only if both buyer i,
and seller j participates in that round.

Lemma 12. Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have

•
PT

t=1 (j0 2 Ps(t), i0 2 Pb(t))  (
p
↵max+

p
�)2

(Sj0�Bi0 )
2 log(T ) for any i

0
, j

0 � (K⇤ + 1)

• nb,i(T ) 
⇣

(
p
↵b,i+

p
�)2

(BK⇤�Bi)2
+
P

j�(K⇤+1)
(
p
↵s,j+

p
�)2

(Sj�Bi)2

⌘
log(T ) for any i � (K⇤ + 1) and

P
i�(K⇤+1) nb,i(T ) 

⇣P
i�(K⇤+1)

(
p
↵b,i+

p
�)2

(BK⇤�Bi)2
+
P

j�(K⇤+1)
(
p
↵s,j+

p
�)2

(Sj�BK⇤ )2

⌘
log(T ),

• ns,j(T ) 
⇣

(
p
↵s,j+

p
�)2

(Sj�SK⇤ )2 +
P

i�(K⇤+1)
(
p
↵b,i+

p
�)2

(Sj�Bi)2

⌘
log(T ) for any j � (K⇤ + 1), and

P
j�(K⇤+1) ns,j(T ) 

⇣P
j�(K⇤+1)

(
p
↵s,j+

p
�)2

(Sj�SK⇤ )2 +
P

i�(K⇤+1)
(
p
↵b,i+

p
�)2

(SK⇤�Bi)2

⌘
log(T ).

Proof. Let us consider a non-participant buyer i. From Lemma 9 we know that if nb,i(t) � Thi(t) ⌘
(
p
↵b,i+

p
�)2

(BK⇤�Bi)2
log(t) then buyer i does not precede any buyer i0 2 [K⇤]. Therefore, for this buyer to

match there should exist at least (K⇤ + 1) sellers with bids no more than the bid of this buyer i,
and at least (K⇤ + 1) seller participates. This further implies that for this buyer to have additional
participation, after nb,i(t) = Thi(T ):
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1. There exists at least 1 seller j � (K⇤ + 1) with bid no more than the bid of this buyer i.

2. There exists at least 1 seller j � (K⇤ + 1) such that buyer i and seller j co-participates.

Let Si,j be the rounds after nb,i(t) = Thi(T ), and buyer i and seller j co-participates. Therefore,
from the 2nd point above we conclude that nb,i(T )  Thi(T ) + | [j�(K⇤+1) Si,j |.

However, if the seller j has ns,j(t) > Thi,j(t) ⌘ (
p
↵s,j+

p
�)2

(Sj�Bi)2
log(t) many participation then

under E(�)
t and ↵min > � we have sj(t) > bi(t).4 But then from the 1st point above we know

that |Si,j |  Thi,j(T ), because |Si,j |  ns,j(T ), and buyer i and seller j can co-participate only
if ns,j(t)  Thi,j(T ). This proves the first point. Moreover, we have nb,i(T )  Thi(T ) +P

j�(K⇤+1) Thi,j(T ).

In fact, we can improve the cumulative bound. We have
X

i�(K⇤+1)

nb,i(T ) 
X

i�(K⇤+1)

Thi(T ) + | [i�(K⇤+1) [j�(K⇤+1)Si,j |.

However, we know that after ns,j(t) > maxi Thi,j(T ) a seller j � (K⇤ + 1) can not co-participate
for any seller i � (K⇤ + 1). Thus we can bound | [i�(K⇤+1) Si,j |  maxi Thi,j(T ).

X

i�(K⇤+1)

nb,i(T ) 
X

i�(K⇤+1)

Thi(T ) +
X

j�(K⇤+1)

max
i�(K⇤+1)

Thi,j(T ).

A similar treatment proves the lemma for a non-participant seller j.

Corollary 13. Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have

• nb,i(T )  (M�K⇤+1)(
p
↵max+

p
�)2

(BK⇤�Bi)2
log(T ) for any i � (K⇤ + 1),

• ns,j(T )  (N�K⇤+1)(
p
↵max+

p
�)2

(Sj�SK⇤ )2 log(T ) for any j � (K⇤ + 1).

We have shown, up to this point, that the optimal participating buyers and sellers participate in all
but O(log(T )) rounds. Moreover, true non-participating buyers and sellers participate in O(log(T ))
rounds. This suffices to show the regret for non-participating buyers and sellers is O(log(T )) (we
will state this precisely later). However, to compute the regret for participating buyers and sellers
we next need to understand how the price is set in each round. We next argue that if in any round
t, sellers j � (K⇤ + 1) do not participate, and buyer K⇤ participates then the regret of a optimal
participating buyer is small. Similarly, if in any round t, buyers i � (K⇤ + 1) do not participate, and
seller K⇤ participates then the regret of a optimal participating seller is small.

A.1 Social Welfare regret of buyers and sellers.

We now compute the social welfare regret.

Lemma 14. Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have the social regret

rSW (T ) 
X

iK⇤

X

i0>K⇤

(
p
↵max +

p
�)2

(Bi �Bi0)
log(T ) +

X

jK⇤

X

j0>K⇤

(
p
↵max +

p
�)2

(Sj0 � Sj)
log(T )

+
X

j0>K⇤

X

i0>K⇤

(
p
↵max +

p
�)2

(Sj0 �Bi0)
.

Proof. Let us consider that the event E(�) = [T
t=1E

(�)
t holds, and min{↵s,j ,↵b,i} � �. With that

assumption we can bound the social welfare regret as follows.

4Note that for any i, j � (K⇤ + 1) we have Sj > Bi.
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rSW (T ) = T
� X

i2P⇤
b

Bi +
X

j2[M ]\P⇤
s

Sj

�
�
h TX

t=1

� X

i2Pb(t)

Bi +
X

j2[M ]\Ps(t)

Sj

�i

=
TX

t=1

h⇣ X

i2[K⇤]\Pb(t)

Bi �
X

i02Pb(t)\[K⇤]

Bi0

⌘
+
⇣ X

j02Ps(t)\[K⇤]

Sj0 �
X

j2[K⇤]\Ps(t)

Sj

⌘i

We use P⇤
b = P⇤

b = [K⇤] without loss of generality, as mentioned earlier.

We first notice that above the number of positive and negative terms are equal. Now we con-
sider pairing some of the positive and negative terms. Under the event E(�) = [T

t=1E
(�)
t and

min{↵s,j ,↵b,i} � �, we know that K(t) � K
⇤ where Pb(t) = Ps(t) = K(t). Hence, we have

|[K⇤] \ Pb(t)|  |Pb(t) \ [K⇤]|, |[K⇤] \ Ps(t)|  |Ps(t) \ [K⇤]|.

Therefore, in the final term we can pair up each buyer with positive contribution with a buyer
with negative contribution, and each seller with negative contribution with a seller with positive
contribution. Finally, we may be left with some sellers with positive, and some buyers with negative
contributions. But we have the number of sellers with positive contribution equals the number of
buyers with negative contribution. To see this observe

(|Pb(t) \ [K⇤]|� |[K⇤] \ Pb(t)|) = (|Ps(t) \ [K⇤]|� |[K⇤] \ Ps(t)|) = (K(t)�K
⇤)

Let us define by i
0(i, t) 2 Pb(t) \ [K⇤] as the pair for the buyer i 2 [K⇤] \ Pb(t), such that i0(i, t)

are all unique. Similarly, we denote by j
0(j, t) 2 Ps(t) \ [K⇤] the pair for j 2 [K⇤] \ Ps(t). We

denote the set of remaining buyers and sellers, respectively, as

I 0(t) = (Pb(t) \ [K⇤]) \ [i2[K⇤]\Pb(t)i
0(i, t),

J 0(t) = (Ps(t) \ [K⇤]) \ [j2[K⇤]\Ps(t)j
0(j, t).

Finally, we denote by i(j0, t) 2 I 0(t) as the pair for j0 2 J 0(t).5

With these definitions we can bound the social regret as

rSW (T ) =
TX

t=1

h X

i2[K⇤]\Pb(t)

(Bi �Bi0(i,t)) +
X

j2[K⇤]\Ps(t)

(Sj0(j,t) � Sj) +
X

j2J 0(t)

(Sj �Bi(j0,t))
i

=
TX

t=1

h X

iK⇤

(Bi �Bi0(i,t)) (i0(i, t) 2 Pb(t), i /2 Pb(t))

+
X

jK⇤

(Sj0(j,t) � Sj) (j0(j, t) 2 Ps(t), j /2 Ps(t))

+
X

j0>K⇤

(Sj0 �Bi(j0,t)) (j0 2 Ps(t), i(j
0
, t) 2 Pb(t))

i


TX

t=1

h X

iK⇤

X

i0>K⇤

(Bi �Bi0) (i0 2 Pb(t), i /2 Pb(t))

+
X

jK⇤

X

j0>K⇤

(Sj0 � Sj) (j0 2 Ps(t), j /2 Ps(t))

+
X

i0>K⇤

X

j0>K⇤

(Sj0 �Bi0) (j0 2 Ps(t), i
0 2 Pb(t))

i
(3)

=
X

iK⇤

X

i0>K⇤

(Bi �Bi0)
TX

t=1

(i0 2 Pb(t), i /2 Pb(t))

5Any arbitrary pairing works for this purpose. For concreteness, we may assume the the buyer/seller in one
set, is matched with that of the other ranked by their respective ids.
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+
X

jK⇤

X

j0>K⇤

(Sj0 � Sj)
TX

t=1

(j0 2 Ps(t), j /2 Ps(t))

+
X

i0>K⇤

X

j0>K⇤

(Sj0 �Bi0)
TX

t=1

(j0 2 Ps(t), i
0 2 Pb(t))


X

iK⇤

X

i0>K⇤

(
p
↵b,i0 +

p
�)2

(Bi �Bi0)
log(T ) +

X

jK⇤

X

j0>K⇤

(
p
↵s,j0 +

p
�)2

(Sj0 � Sj)
log(T )

+
X

j0>K⇤

X

i0>K⇤

(
p
↵s,i0 +

p
�)2

(Sj0 �Bi0)
log(T ). (4)

The first inequality (3) upper bounds i0(i, t), j0(j, t), and i(j0, t) with the sum over the sets each of
them can belong to.

Under the event E(�) = [T
t=1E

(�)
t and min{↵s,j ,↵b,i} � �, the final inequality (4) follows from

Lemma 9 and Lemma 12. In particular,
PT

t=1 (i0 2 Pb(t), i /2 Pb(t)) denotes the number of times a
true non-participating buyer i0 can precede a optimal participating buyer i, and Lemma 9 bounds these
terms. Similarly, the terms

PT
t=1 (j0 2 Ps(t), j /2 Ps(t)) are bounded with the help of Lemma 9.

Finally, the terms (j0 2 Ps(t), i0 2 Pb(t)) denote how many times a pair of true non-participating
buyer and seller i0 and j

0 can co-participate. Following proof of Lemma 12, we can bound this with
(p↵s,i0+

p
�)2

(Sj0�Bi0 )
log(T ). This finishes the proof of the lemma.

Using Lemma 14, the expected regret can be bounded for � > 2 as

RSW (T )  E[rSW (T )|E(�)] + bmax(1� P[E(�)])

 E[rSW (T )|E(�)] + bmax

TX

t=1

MN/t
�/2

 E[rSW (T )|E(�)] +MNbmax⇣(�/2).

Here ⇣(x) is the Riemann-zeta function which is finite for x > 1.

A.2 Individual regret of buyers and sellers.

Recall that p⇤ = (SK⇤ + BK⇤)/2 be the price under true bids for the average mechanism, and
p(t) = (mini02Pb(t) bi0(t) + maxj2Ps(t) sj(t))/2 denotes the price in round t. Let �b,i(t), and
�s,j(t) is the participation indicator for buyer i, and seller j respectively. The individual regret for
any true non-participating buyer or seller can be computed easily. We will present it later.

The regret for any optimal participating buyer i 2 [K⇤] can be decomposed in rounds where the
buyer i does not participate, and where the buyer i participates.

rb,i(T ) =
X

t:�b,i(t)=0

(Bi � (BK⇤ + SK⇤)/2) +
X

t:�b,i(t)=1

(p(t)� p
⇤).

Similarly, for any optimal participating seller j 2 [K⇤] the regret is bounded as

rs,j(T ) =
X

t:�s,j(t)=0

((BK⇤ + SK⇤)/2� Sj) +
X

t:�s,j(t)=1

(p⇤ � p(t)).

We first focus on the regret of the buyers which implies upper bounding
P

t(p(t)� p
⇤) in the next

lemma.
Lemma 15. Under the event E(�) = [T

t=1E
(�)
t and ↵min > �, we have for all ĩ 2 [N ] and j̃ 2 [M ]

X

t:�b,̃i(t)=1

(p(t)� p
⇤)  Cb log(T ) + (

p
↵max +

p
�)
q
nb,̃i(T ) log(T ),
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X

t:�s,j̃(t)=1

(p⇤ � p(t))  Cs log(T ) + (
p
↵max +

p
�)
q

nb,j̃(T ) log(T ),

where

2Cb =
X

j<K⇤

(
p
↵max +

p
�)2

(SK⇤ � Sj)
+

X

i�(K⇤+1)

(
p
↵max +

p
�)2
p
(M �K⇤ + 1)

(BK⇤ �Bi)

+
X

j�(K⇤+1)

 
(N �K

⇤ + 1)(
p
↵max +

p
�)2

(Sj � SK⇤)
+

p
(N �K⇤ + 1)(

p
↵max +

p
�)2

(Sj � SK⇤)

!
,

2Cs =
X

i<K⇤

(
p
↵max +

p
�)2

(Bi �BK⇤)
+

X

j�(K⇤+1)

(
p
↵max +

p
�)2
p
(N �K⇤ + 1)

(Sj � SK⇤)

+
X

i�(K⇤+1)

 
(M �K

⇤ + 1)(
p
↵max +

p
�)2

(BK⇤ �Bi)
+

p
(M �K⇤ + 1)(

p
↵max +

p
�)2

(BK⇤ �Bi)

!
.

We are now in a position to prove out main theorem.
Theorem 16. The regret of the Average mechanism with buyers bidding UCB(↵), and sellers bidding
LCB(↵) of their estimated valuation, for ↵min > � > 2, we have the expected regret is bounded as:

• for a participating buyer i 2 [K⇤] as Rb,i(T )  (
p
↵max+

p
�)
p
T log(T )+Cb0,i log(T ),

• for a participating seller j 2 [K⇤] as Rs,j(T )  (
p
↵max+

p
�)
p
T log(T )+Cs0,j log(T ),

• for a non-participating buyer i � (K⇤ + 1) as

Rb,i(T ) 
p

(M�K⇤+1)(
p
↵max+

p
�)2

(BK⇤�Bi)
log(T ),

• for a non-participating seller j � (K⇤ + 1) as

Rs,j(T ) 
p

(N�K⇤+1)(
p
↵max+

p
�)2

(Sj�SK⇤ ) log(T ).

Here Cb and Cs is as defined in Lemma 15, and

Cb0,i =

✓
(N �K

⇤)
(
p
↵max +

p
�)2

(Bi � p⇤)
+ Cb

◆
,

Cs0,j =

✓
(M �K

⇤)
(
p
↵max +

p
�)2

(p⇤ � Sj)
+ Cs

◆
.

Proof of Regret Upper Bound. We first bound the regret under the event E(�) = [T
t=1E

(�)
t and

↵min > �. Applying the bounds in Lemma 15, we bound the of a optimal participating buyer
i 2 [K⇤] as

rb,i(T ) =
X

t:�b,i(t)=0

(Bi � (BK⇤ + SK⇤)/2) +
X

t:�b,i(t)=1

(p(t)� p
⇤)


X

i0�K⇤+1

(
p
↵max +

p
�)2(Bi � (BK⇤ + SK⇤)/2)

(Bi �Bi0)2
log(T ) + Cb log(T ) + (

p
↵max +

p
�)
p
T log(T )


✓
(N �K

⇤)
(
p
↵max +

p
�)2

(Bi � p⇤)
+ Cb

◆
log(T ) + (

p
↵max +

p
�)
p
T log(T )

Similarly, for any optimal participating seller j 2 [K⇤] the regret is bounded as

rs,j(T ) =
X

t:�s,j(t)=0

((BK⇤ + SK⇤)/2� Sj) +
X

t:�s,j(t)=1

(p⇤ � p(t))


X

j0�K⇤+1

(
p
↵max +

p
�)2((BK⇤ + SK⇤)/2� Sj)

(Sj0 � Sj)2
log(T ) + Cs log(T ) + (

p
↵max +

p
�)
p

T log(T )
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✓
(M �K

⇤)
(
p
↵max +

p
�)2

(p⇤ � Sj)
+ Cs

◆
log(T ) + (

p
↵max +

p
�)
p
T log(T )

The regret for any true non-participating buyer i � (K⇤ + 1) is non negative only when the buyer i
participates. Under E(�) and ↵min > � we have

rb,i(T ) =
X

t:�b,i(t)=1

(p(t)�Bi)


X

t:�b,i(t)=1

(bi(t)�Bi)


X

t:�b,i(t)=1

(
p
↵max +

p
�)
q

log(t)
nb,i(t)


nb,i(T )X

n=1

(
p
↵max +

p
�)
q

log(T )
n

 (
p
↵max +

p
�)
q
nb,i(T ) log(T )

Where the first inequality is due to the fact that if buyer i participates in round t then bid bi(t) � p(t).

Also, the regret for any true non-participating buyer j � (K⇤ + 1) is non negative only when the
buyer i participates. Under E(�) and ↵min > � we have similarly

rs,j(T ) =
X

t:�s,j(t)=1

(Sj � sj(t))  (
p
↵max +

p
�)
q
ns,j(T ) log(T )

The terms nb,i(T ) and ns,j(T ) above can be bounded using Lemma 12 when E� holds for ↵max � �

Therefore, the expected regret can be bounded for � > 2 as

Rb,i(T )  E[rb,i(T )|E(�)] + bmax(1� P[E(�)])

 E[rb,i(T )|E(�)] + bmax

TX

t=1

MN/t
�/2

 E[rb,i(T )|E(�)] +MNbmax⇣(�/2).

Similarly, for � > 2 we have

Rs,j(T )  E[rs,j(T )|E(�)] +MNsmax⇣(�/2).

This concludes the proof.

Let us recall the minimum gap is � = mini,2[N ],j2[M ]{|p⇤ � Sj |, |Bi � p
⇤|}. Then we can bound

the constants associated with the logarithmic terms as
Corollary 17. The constants in Theorem 16 is upper bounded as

• Cb0 
(N+(N�K⇤+1)

p
M�K⇤+1+

p
N�K⇤+1(M�K⇤+1)+(N�K⇤+1)(M�K⇤+1))(p↵max+

p
�)2

�

• Cs0 
(M+(N�K⇤+1)

p
M�K⇤+1+

p
N�K⇤+1(M�K⇤+1)+(N�K⇤+1)(M�K⇤+1))(p↵max+

p
�)2

�

A.3 Proof of Lemma 15

Proof. We first focus on the upper bound for some buyer i 2 [N ].
X

t:�b,̃i(t)=1

(p(t)� p
⇤) = 1

2

X

t:�b,̃i(t)=1

✓
min

i02Pb(t)
bi0(t)�BK⇤

◆
+ 1

2

X

t:�b,̃i(t)=1

( max
j2Ps(t)

sj(t)� SK⇤)
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The rounds where buyer K⇤ participates, we have mini2Pb(t) bi(t)  bK⇤(t). Therefore, we can
bound

X

t

✓
min

i02Pb(t)
bi0(t)�BK⇤

◆


X

t:�b,K⇤ (t)=0

✓
min

i02Pb(t)
bi0(t)�BK⇤

◆
+

X

t:�b,K⇤ (t)=1,�b,̃i(t)=1

(bK⇤(t)�BK⇤)

Under E(�) = [T
t=1E

(�)
t and ↵min > �, we know that �b,K⇤(t) = 0 only if

maxi�(K⇤+1) �b,K⇤(t) = 1. That is K
⇤ does not participate, only if at least one of the non-

participant buyers participate. Hence we further have,
X

t:�b,K⇤ (t)=0

✓
min

i02Pb(t)
bi0(t)�BK⇤

◆


X

i�(K⇤+1)

X

t:�b,i(t)=1,�b,K⇤ (t)=0

(bi(t)�BK⇤)


X

i�(K⇤+1)

X

t:�b,i(t)=1

(bi(t)�BK⇤)


X

i�(K⇤+1)

X

t:�b,i(t)=1

(bi(t)�Bi)

Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have

X

t:�b,K⇤ (t)=1,�b,̃i(t)=1

(bK⇤(t)�BK⇤)


X

t:�b,K⇤ (t)=1,�b,̃i(t)=1

(
p
↵b,K⇤ +

p
�)
q

log(t)
nb,K⇤ (t)


nb,̃i(T )X

n=1

(
p
↵b,K⇤ +

p
�)
q

log(T )
n  (

p
↵b,K⇤ +

p
�)
q
nb,̃i(T ) log(T ),

Above, we use the logic that the summation is minimized when nb,K⇤(t) increases in unison with
nb,i(t), otherwise we will have larger denominator.

From Corollary 13 we know that under the event E(�) and ↵min > �, the maximum number of time
a buyer i � (K⇤ + 1) can participate is

T̃ hi(T ) = (M �K
⇤ + 1)

(
p
↵max +

p
�)2

(BK⇤ �Bi)2
log(T ).

Under the event E(�) = [T
t=1E

(�)
t and ↵min > �, we have
X

t:�b,i(t)=1

(bi(t)�Bi)


X

t:�b,i(t)=1

(
p
↵max +

p
�)
q

log(t)
nb,i(t)


T̃ hi(T )X

n=1

(
p
↵max +

p
�)
q

log(T )
n

 (
p
↵max +

p
�)
q

T̃ hi(T ) log(T )


(
p
↵max +

p
�)2
p

(M �K⇤ + 1)

(BK⇤ �Bi)
log(T ).
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Let jmax(t) = argmaxj2[M ]

⇣
(Sj � SK⇤) + (

p
↵s,j +

p
�)
q

log(t)
nb,j(t)

⌘
. We have under the event

E(�) = [T
t=1E

(�)
t and ↵min > �,
X

t

✓
max

j2Ps(t)
sj(t)� SK⇤

◆


X

t

max
j2Ps(t)

✓
(Sj � SK⇤) + (

p
↵max +

p
�)
q

log(t)
nb,j(t)

◆


X

j2[M ]

X

t:�s,j(t)=1,jmax(t)=j

✓
(Sj � SK⇤) + (

p
↵max +

p
�)
q

log(t)
nb,j(t)

◆

Further, under the event E(�) and ↵min > �, we know that K(t) � K
⇤, which implies at least one

seller j � K
⇤ is active. Hence, for any j < K

⇤, jmax(t) = j only if

nb,j(t)  T̃ hj(T ) = min
j0�K⇤

(
p
↵max +

p
�)2

(Sj0 � Sj)2
log(T ) =

(
p
↵max +

p
�)2

(SK⇤ � Sj)2
log(T ).

Also, the maximum number of times any seller j � (K⇤ + 1) participates under the event E(�) and
↵min > � is Thj(T ) � (N�K⇤+1)(

p
↵max+

p
�)2

(Sj�SK⇤ )2 log(T ), according to 13.

Therefore, we can proceed as
X

t:�b,̃i(t)=1

( max
j2Ps(t)

sj(t)� SK⇤)


X

j2[M ]

X

t:�s,j(t)�s,̃i(t)=1,jmax(t)=j

✓
(Sj � SK⇤) + (

p
↵max +

p
�)
q

log(t)
nb,j(t)

◆


X

j�(K⇤+1)

X

t:�s,j(t)=1

✓
(Sj � SK⇤) + (

p
↵max +

p
�)
q

log(t)
nb,j(t)

◆

+
X

jK⇤

X

t:�s,j(t)�b,̃i(t)=1,jmax(t)=j

✓
(Sj � SK⇤) + (

p
↵max +

p
�)
q

log(t)
nb,j(t)

◆


X

j�(K⇤+1)

0

@Thj(T )(Sj � SK⇤) +

Thj(T )X

n=1

(
p
↵max +

p
�)
q

log(T )
n

1

A

+
X

j<K⇤

T̃ hj(T )X

n=1

(
p
↵max +

p
�)
q

log(T )
n +

nb,̃i(T )X

n=1

(
p
↵max +

p
�)
q

log(T )
n


X

j�(K⇤+1)

✓
Thj(T )(Sj � SK⇤) + (

p
↵max +

p
�)
q
Thj(T ) log(T )

◆

+
X

j<K⇤

(
p
↵max +

p
�)
q
T̃ hj(T ) log(T ) + (

p
↵max +

p
�)
q

nb,̃i(T ) log(T )


X

j�(K⇤+1)

 
(N �K

⇤ + 1)(
p
↵max +

p
�)2

(Sj � SK⇤)
+

p
(N �K⇤ + 1)(

p
↵max +

p
�)2

(Sj � SK⇤)

!
log(T )

+
X

j<K⇤

(
p
↵max +

p
�)2

(SK⇤ � Sj)
log(T ) + (

p
↵max +

p
�)
q
nb,̃i(T ) log(T )

Combining the above bounds, we get

2
X

t:�b,̃i(t)=1

(p(t)� p
⇤)
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 2(
p
↵max +

p
�)
q

nb,̃i(T ) log(T )
| {z }

price setting buyer and seller

+
X

j<K⇤

(
p
↵max +

p
�)2

(SK⇤ � Sj)
log(T )

| {z }
non-price setting participant sellers

+
X

i�(K⇤+1)

(
p
↵max +

p
�)2
p
(M �K⇤ + 1)

(BK⇤ �Bi)
log(T )

| {z }
non-participating buyers

+
X

j�(K⇤+1)

 
(N �K

⇤ + 1)(
p
↵max +

p
�)2

(Sj � SK⇤)
+

p
(N �K⇤ + 1)(

p
↵max +

p
�)2

(Sj � SK⇤)

!
log(T )

| {z }
non-participating sellers

.

Reversing the role of buyer and seller in the above derivation, and leveraging the symmetry in the
system, we can get

2
X

t:�s,j̃(t)=1

(p⇤ � p(t))

 2(
p
↵max +

p
�)
q
ns,j̃(T ) log(T )

| {z }
price setting buyer and seller

+
X

i<K⇤

(
p
↵max +

p
�)2

(Bi �BK⇤)
log(T )

| {z }
non-price setting participant buyers

+
X

j�(K⇤+1)

(
p
↵max +

p
�)2
p
(N �K⇤ + 1)

(Sj � SK⇤)
log(T )

| {z }
non-participating sellers

+
X

i�(K⇤+1)

 
(M �K

⇤ + 1)(
p
↵max +

p
�)2

(BK⇤ �Bi)
+

p
(M �K⇤ + 1)(

p
↵max +

p
�)2

(BK⇤ �Bi)

!
log(T )

| {z }
non-participating buyers

.

B Proofs of the Lower Bounds

B.1 Minimax lower bound on individual regret

We show a minimax regret lower bound of ⌦(
p
T ) in Lemma 21 by considering a simpler system

that decouples learning and competition. In this system, the seller is assumed to (i) know her exact
valuation, and (ii) always ask her true valuation as the selling price, i.e., is truthful in her asking price
in all the rounds. Furthermore, the pricing at every round is fixed to the average pt =

Bt+St
2 in the

event that Bt � S. The utility of the buyer at time t is defined as Ut = (pt �B)1(Bt � S).

Lemma 18. The utility maximizing action of an oracle buyer that knows B and S is to bid Bt =
S1(B � S) + (S � ")1(B < S) for any " > 0, at all times. In words, the oracle buyer either bids
S and pays the price S or “abstains" by bidding less than S.
Corollary 19. To minimize expected utility in the simple system, it suffices for the buyer each round to
decide to either bid S and participate in the market by paying price S, or abstain without participation
and obtain no reward.

Reduction to a two armed bandit problem: Corollary 19 gives that at each time, it suffices for the
buyer that does not know her true valuation to either bid S and participate at price S, or abstain from
participating. In any round t that the buyer participates, she obtains a mean reward of B � S, while
she receives 0 reward in rounds she abstains from participating. Thus, the actions of the buyer are
equivalent to a two armed bandit, one with mean B � S and the other is deterministic 0 mean. The
reduction is formalized in the following Corollary.
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Corollary 20. Any bidding policy given in Definition 24 describes a two-armed bandit policy
(Definition 25) with arm-means B � S and 0.

Lemma 21. For every bidding policy, there exists a system such that E[RT ] � 1
36

p
T .

The proof follows from [28] and is reproduced in Appendix B.4 for completeness. Further, we show
in Appendix B.6 the lower bound can be extended to a system of multiple buyers and sellers. Thus,
our upper bound of O(

p
T ) is order-wise optimal as Lemma 21 and Corollary 20 show that O(

p
T )

regret bound is un-avoidable even in the absence of competition.

B.2 Lower bound on Social Welfare Regret

The key observation is that social-welfare regret in Equation (1) is independent of the pricing
mechanism and only depends on the participating buyers Pb(t) and sellers Ps(t) at each time
t. We will establish a lower bound on a centralized decision maker (DM), who at each time,
observes all the rewards obtained by all agents thus far, and decides Pb(t) and Ps(t) for each t.
In the Appendix in Section B.7, we show that the actions of the DM can be coupled to that of a
combinatorial semi-bandit model [14], where the base set of arms are the set of all buyers and sellers
{B1, · · · , BM} [ {S1, · · · , SN} is the set of buyers and sellers, the valid subset of arms are those
that have an equal number of buyers and sellers and the mean reward of any valid subset A ✓ 2D is
the difference between the sum of all valuations of buyers in A and of sellers in A.
Proposition 22. The optimal action for the centralized DM is to pick P⇤

b [ P⇤
s .

Proof is deferred to Section B.7. Thus, the regret of the centralized decision maker is RSB =
T (
P

i2P⇤
b
Bi �

P
j2P⇤

s
Sj) �

PT
t=1(

P
i2Pb(t)

Bi �
P

j2Ps(t)
Sj). By by adding and subtractingP

j2[M ] Sj to both sides, we get that RSB is identical to RSW given in Equation (1). Thus, a lower
bound on RSB implies a lower bound on RSW .
Lemma 23 (Theorem 1 [14]). Suppose the reward distributions for all agents (buyers and sellers)
are unit variance gaussians. Then, the regret of any uniformly good policy6 for the combinatorial
semi-bandit suffers regret lim supT!1

RT
log(T ) = c((µa)a2D), where the constant c((µa)a2D) > 0

is strictly positive if the best and the next best subsets have different mean rewards.

A restatement and proof is given in Appendix B.7. Thus our upper bound of O(log(T )) social welfare
regret under the decentralized setting is order optimal since even a centralized system must incur
⌦(log(T )) regret.

B.3 Proof of Lemma 18

Proof. Assume the oracle buyer knows B, S, the average price mechanism and the fact that the seller
is not strategizing.

Case I : B < S. If the buyer bids Bt � S, then the buyer will be matched with price pt � S and
will receive an utility Ut := B � pt < 0. If on the other hand, the buyer puts any bid Bt < S, then
the buyer is not matched and receives an utility of 0. Thus, the optimal choice for the oracle buyer in
this case is to place any bid Bt < S. Thus, bidding Bt := S � ", for every " > 0 is optimal.

Case II : B � S. If the buyer bids Bt � S, then the buyer will be matched with price pt =
Bt+S

2

and will receive an utility Ut := B � pt =
2B�Bt�S

2 . Observe that the utility Ut is non-decreasing
in the bid-price Bt. If Bt < S however, no match occurs and the oracle buyer will receive 0 utility. If
on the other-hand S  Bt  B, then B � Bt � 0 and B � S � 0. Thus, the utility Ut � 0. This
along with the non-increasing nature of Ut gives that the optimal action is to play Bt = S.

B.4 Proof of Lemma 21

Proof. This follows the same recipe of bandit lower bounds [28]. Let the bidding policy be arbitrary
as in the hypothesis of the lemma. Fix a system and denote by " := S � B. We will choose an

6This is a standard technical condition defined in the Appendix in Section B.8
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appropriate value of " later in the proof. Denote by this system where S �B = " as ⌫. Denote by the
system in which B = S + " as ⌫

0
. We denote by RT and R

0

T to be the regret obtained by the bidding
policy in system ⌫ and ⌫

0
respectively. The first observation we will make is that the divergence

decomposition lemma gives

E⌫

"
TX

t=1

Zt

#
D(�", ") � log

✓
1

2(P⌫(A) + P⌫0 (A{))

◆
, (5)

for any measurable event A. The proof of this claim follows from the well known Bretagnolle–Huber
inequality (Theorem 14.2 [28]) and the divergence decomposition lemma (Lemma 15.1 [28]) to
compute the divergence between the system ⌫ and ⌫

0
. The formula from Lemma 15.1 of [28] when

applied to our system simplifies to the LHS of Equation (5) by observing the fact that in both
system ⌫ and system ⌫

0
, not participating in the market gives a deterministic 0 reward. Thus, the KL

divergence between the reward distributions for not participating is 0.

The rest of the proof is to verbatim follow the proof of Theorem 15.2 of [28] to re-arrange Equation
(5) to yield the desired result. We denote by the event A :=

nPT
t=1 Zt � T/2

o
. Thus, trivially,

RT � "T
2 P⌫ [A] and R

0

T � "T
2 P⌫ [A{]. Furthermore, E

hPT
t=1 Zt

i
 T . Now, using the fact that for

unit variance gaussians, D(�", ") = 2"2 and plugging these estimates in Equation (5), we obtain that

RT +R
0

T � "T

4
exp

�
�2"2T

�
.

As " > 0 was arbitrary, we can set it to be equal to 1p
T

, and use the well known fact that for any
non-negative a, b, we have a+ b  2max(a, b), to get

max(RT , R
0

T ) �
1

36

p
T .

B.5 Proof of Corollary 19

Definition 24 (Bidding Policy). A sequence of binary random variables (Zt)t�1, such that for all
t � 1, Zt 2 {0, 1} denotes whether the buyer participates (by placing a bid of S) in the tth round or
not such that Zt is measurable with respect to the sigma-algebra generated by decisions and rewards
Z1Yb,1, · · · , Zt�1Yb,t�1 observed till time t� 1.

Definition 25 (Two-armed bandit policy:). A sequence of {0, 1} valued random variables ( bZt)t�1

such that for all time t, bZt is measurable with respect to a sequence of R valued random variables
Ft�1 := �( bX1, · · · , bXt�1) such that for all time t, conditioned on bZt, (i) bXt is independent of Ft�1,
and (ii) bXt ⇠ PbZt

, where Pi, i 2 {1, 2} are two fixed probability distributions on R.

This definition formalizes the intuitive notion that a sequence of binary decisions made at each time,
with the decision being measurable function of all past observations and the observations themselves
being independent conditioned on the arm chosen.

Proof. A sequence of binary valued random variables {Z‘, · · · , ZT } and R valued observation
random variables {Y1, · · · , YT } describes a policy for a two armed stochastic bandits if and only if
(i) Zt is measurable with respect to the sigma-algebra Ft�1 := �(Y1, · · · , Yt�1) generated by all
observed rewards upto time t � 1, and (ii) conditioned on the arm Zt, the observed reward Yt is
conditionally independent of (Y1, · · · , Yt�1) and (Z1, · · · , Zt�1) the actions and rewards obtained
in the past. It is easy to observe both of these for the bidding system described before.

B.6 Extension to the multi-agent setting

The simplified system in 5.1 specified a single buyer and seller system that had no competition as the
seller’s behaviour was fixed. In this section, we show that a

p
T minimax lower bound is inevitable

even in an appropriately simplified multi-agent system that decouples learning from competition.
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In this simplified setting, we assume (i) the selling price pt := p
⇤ is set constant for every round t,

and (ii) there is no shortage of goods, i.e., any buyer(seller) that wants to participate in a given round
by paying(selling at) p⇤, can buy(sell) so. Thus, under this setup, the entire market is a decoupled
union of individual agents interacting against a fixed environment dictated by a price p

⇤. It can be
observed, that for any buyer(seller) in this simplified setting, the lower bound from Lemma 21 applies
verbatim following the same coupling arguments.
Corollary 26. For every bidding policy for the general system, for any seller j 2 [M ] there exists a
system such that E[Rs,j(T )] � 1

36

p
T . Similarly, for any buyer i 2 [N ] there exists a system such

that E[Rb,i(T )] � 1
36

p
T .

B.7 Reduction of the centralized DM in Section B.2 to a combinatorial semi-bandit model

A combinatorial semi-bandit [11] is the following variant of the standard D := {1, · · · , D} armed
bandit problem. At each time t, the decision maker chooses a subset At ✓ D from a fixed set
of subsets A ✓ 2D. At each time t, the received reward is

P
a2At

Xt(a), where for every arm
a 2 D, (Xt(a))t�1 is an i.i.d. sequence with mean µa. Later in Lemma 27, we will assume that the
reward distriutions are unit-variance gaussians. The arm-means (µa)a2D are a-priori unknown to
the decision maker. The goal of the decision maker is to minimize the cumulative regret defined as
RSB := maxA2A T

P
a2A µa �

PT
t=1

P
a2At

µa.

Consider the centralized DM who at each time decides the participating buyers and sellers Pb(t) and
Ps(t). The base set of ‘arms’ D := {B1, · · · , BN} [ {S1, · · · , SM} is the set of buyers and sellers.
The mean reward µa for any buyer a is their unknown valuation, while µa for any seller a is the
negative of their true valuation. The set of allowed subsets A are those subsets of D that contain the
same number of buyers and sellers.

B.7.1 Proof of Proposition 22

Proof. The proof follows from two observations. (i) the mean reward for any buyer is positive and
that for the seller is negative. (ii) the set of allowed subsets to play consists of an equal number of
buyers and sellers. Thus, from definition of P⇤

b and P⇤
s , every other subset satisfying condition (ii)

will not have mean reward strictly larger than that of P⇤
b [ P⇤

s .

Thus, the regret of the centralized decision maker is RSB = T (
P

i2P⇤
b
Bi �

P
j2P⇤

s
Sj) �

PT
t=1(

P
i2Pb(t)

Bi �
P

j2Ps(t)
Sj). By by adding and subtracting

P
j2[M ] Sj to both sides, we get

that

RSB = T (
X

i2P⇤
b

Bi +
X

j2[M ]\P⇤
s

Sj)�
TX

t=1

(
X

i2Pb(t)

Bi +
X

j2[M ]\Ps(t)

Sj). (6)

As Equation (6) is identical to the definition of the social regret in Equation (1), a lower bound on
RSB implies a lower bound on the social-welfare regret RSW .
Lemma 27 (Theorem 1 [14]). Suppose the reward distributions for all agents (buyers and sellers) are
unit variance gaussians. Then, the regret of any uniformly good policy7 for the combinatorial semi-
bandit suffers regret lim supT!1

RT
log(T ) = c(A; (µa)a2D), where the constant c(A; (µa)a2D) > 0

is strictly positive if the best and the next best subsets have different mean rewards.

Thus our upper bound of O(log(T )) social welfare regret under the decentralized setting is order
optimal since even a centralized system must incur ⌦(log(T )) regret.

B.8 Additional Details on Combinatorial Semi-Bandits

For completeness, we collect all relevant definitions and statements from [14] that are used in the lower
bound proof in Section B.2. Recall the setup – at each time t, the decision maker can choose a subset of
arms from a given set A ✓ 2D of subsets. In this setting, the mean reward obtained by any arm is a unit
variance gaussian random variable. Let ⇥ denote the set of possible parameters for the means which in

7This is a standard technical condition defined in the Appendix in Section B.8
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our example is the set of M+N means, i.e., ⇥ := RM+N , and ✓ 2 ⇥ denote the mean reward for the
elements in D. For any subset A 2 A, let µA(✓) :=

P
a2A ✓a. We use µA instead of µA(✓) when the

underlying instance ✓ is clear. Let the subset with highest mean be A⇤(✓) := argmaxA2A
P

a2A ✓a,
and µ

⇤(✓) be the highest reward, i.e., µ⇤(✓) = maxA2A µA(✓) := µA⇤(✓)(✓). An assumption we
make throughout in Section B.2 is that A⇤ is unique and the gap is strictly positive, i.e.

�(A; ✓) := min
A2A\{A⇤}

(µ⇤(✓)� µA(✓)) > 0. (7)

A policy ⇡ for the decision maker is a measurable function that at each time t, maps all the observed
rewards of the arms pulled to a subset A⇡

t to play. Let R⇡(T ) be the T round regret of the policy ⇡

for an instance ✓ 2 ⇥, which is defined as R⇡(T ; ✓) =
PT

t=1(µA⇤(✓)� µA⇡
t
(✓)).

Definition 28 (Uniformly Good). A policy ⇡ for the DM is uniformly good, if for all problem settings
✓ 2 ⇥ satisfying assumption in Equation (7), R⇡(T ; ✓) = o(T↵), for every ↵ 2 (0, 1).
Theorem 29 (Theorem 1 in [14]). For any instance ✓ 2 ⇥ satisfying the assumption in Equation
(7) and any uniformly good policy ⇡, lim supT!1

R⇡(T ;✓)
log(T ) � c(A; ✓), where c(A; ✓) is given by the

solution of the following optimization problem

c(A; ✓) := inf
x2R|A|

+

X

A2A
xA(µ

⇤(✓)� µA(✓)) such that

X

a2D

 
X

A2A s.t. a2A
xA

!
kl(✓a,�a) � 1, 8� 2 B(✓),

where B(✓) := {� 2 ⇥, s.t. ✓i = �i 8i 2 A⇤(✓), µ⇤(�) > µ
⇤(✓)}, and for any u, v 2 R,

kl(u, v) = 1
2 (u� v)2.

The proof of this theorem is given as the proof of theorem 1 in [14]. Although the proof in [14] is
given in the case for Bernoulli distributed arms, the proof follows verbatim for gaussian distributed
arms by using the fact that the KL divergence between two unit variance gaussians with means
u, v 2 R is kl(u, v) := 1

2 (u� v)2.

We give a simple lower bound to c(A; ✓) in the following lemma.
Lemma 30.

c(A; ✓) �
NX

i=K⇤+1

2

min(BK⇤ , SK⇤+1)�Bi
+

MX

j=K⇤+1

2

Sj �max(SK⇤ , BK⇤+1)

Proof. For ease of exposition, we will use the notation that for any buyer i 2 {1, · · · , N}, ✓b,i to be
the true valuation of buyer i under model ✓. Similarly, for any seller j 2 {1, · · · ,M}, we denote
by ✓s,j to be the true valuation of seller j under model ✓. Observe that under the mapping to the
combinatorial bandits, we denote by all agents’ indices by the set of cardinality M +N , denoted
by D. We denote by the first N indices of D to represent the buyers and the last M indices of D to
denote the sellers.

For every " > 0, let

B0(✓) = {� s.t. , 8i, j  K
⇤
�b,i = ✓b,i,�s,j = ✓s,j},

B1(✓; ") = {� 2 B0(✓); 9 exactly one i
0 2 {K⇤ + 1, . . . , N},�b,i0 = min(✓b,K⇤ , ✓s,K⇤+1) + "},

B2(✓; ") = {� 2 B0(✓); 9 exactly one j
0 2 {K⇤ + 1, . . . ,M},�s,j0 = max(✓s,K⇤ , ✓b,K⇤+1)� "}.

Observe by definition that for all " > 0, B1(✓, ") \ B2(✓, ") = ; and B1(✓, ") [ B2(✓, ") ⇢ B(✓).
Define by c"(A; ✓) to be the solution to the following optimization problem

c"(A; ✓) := inf
x2R|A|

+

X

A2A
xA(µ

⇤(✓)� µA(✓)) such that (8)

X

a2D

 
X

A2A s.t. a2A
xA

!
kl(✓a,�a) � 1, 8� 2 B1(✓, ") [B2(✓, ").
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The optimization problem for c"(A; ✓) differs from that for c(A; ✓) in Theorem 29 in the constraints.
Since B1(✓, ") [ B2(✓, ") ⇢ B(✓), we have that c(A; ✓) � c"(A; ✓). As this in-equality holds for
all " > 0, we have that

c(A; ✓) � sup
">0

c"(A; ✓).

In the rest of this proof, we will develop a lower bound for sup">0 c"(A; ✓).

For notational simplicity, we denote by ya :=
P

A2A:a2A xA. The constraint in the optimization
problem in Equation (8) yields that, for all buyers i

0 2 {K⇤ + 1, · · · , N} and all sellers j
0 2

{K⇤ + 1, · · · ,M}, we need to have

yb,i0 �
1

kl(✓b,i0 ,min(✓b,K⇤ , ✓s,K⇤+1) + ")
, and ys,j0 �

1

kl(✓s,j0 ,max(✓b,K⇤+1, ✓s,K⇤)� ")
.

Additionally, monotonicity yields that for any buyer i0 2 {K⇤ + 1, · · · , N},

A(i0)
b := argminA2A:Bi02A(µ

⇤(✓)� µA(✓)) =

⇢
{B1, . . . , B(K⇤�1), Bi0} [ {S1, . . . , SK⇤}, BK⇤ < SK⇤+1,

{B1, . . . , BK⇤ , Bi0} [ {S1, . . . , SK⇤ , SK⇤+1}, BK⇤ > SK⇤+1.

Similarly, for any seller j0 2 {K⇤ + 1, · · · , N},

A(j0)
s := argminA2A:Sj02A(µ

⇤(✓)� µA(✓)) =

⇢
{B1, . . . , BK⇤} [ {S1, . . . , S(K⇤�1), Sj0}, BK⇤+1 < SK⇤ ,

{B1, . . . , BK⇤ , BK⇤+1} [ {S1, . . . , SK⇤ , Sj0}, BK⇤+1 > SK⇤ .

Note that for all i0, j0, i00, j00 � (K⇤ + 1), i0 6= i
00 and j

0 6= j
00, Bi00 /2 A(i0)

b , and Sj00 /2 A(j0)
s .

Therefore, the minimizer of Equation (8) is given by assigning

8 i
0 2 {K⇤ + 1, · · · , N}, xA(i0)

b

:=
1

kl(✓b,i0 ,min(✓b,K⇤ , ✓s,K⇤+1) + ")
,

8 j
0 2 {K⇤ + 1, . . . ,M}, xA(j0)

s
:=

1

kl(✓s,j0 ,max(✓b,K⇤+1, ✓s,K⇤)� ")
,

and for all other sets A, xA = 0.

This ensures for all buyers i0 2 {K⇤ + 1, · · · , N} and all sellers j0 2 {K⇤ + 1, · · · ,M},

yb,i0 =
1

kl(✓b,i0 ,min(✓b,K⇤ , ✓s,K⇤+1) + ")
, and ys,j0 =

1

kl(✓s,j0 ,max(✓b,K⇤+1, ✓s,K⇤)� ")
.

Thus, we get

c"(A; ✓) =
NX

i0=K⇤+1

µ
⇤(✓)� µA(i0)

b

(✓)

kl(✓b,i0 ,min(✓b,K⇤ , ✓s,K⇤+1) + ")
+

MX

j0=K⇤+1

µ
⇤(✓)� µA(j0)

s
(✓)

kl(✓s,j0 ,max(✓b,K⇤+1, ✓s,K⇤)� ")
,

=
NX

i0=K⇤+1

min(✓b,K⇤ , ✓s,K⇤+1) + "� ✓b,i0

kl(✓b,i0 ,min(✓b,K⇤ , ✓s,K⇤+1) + ")
+

MX

j0=K⇤+1

✓s,j0 �max(✓s,K⇤ , ✓b,K⇤+1) + "

kl(✓s,j0 ,max(✓b,K⇤+1, ✓s,K⇤)� ")

Optimizing over " > 0 and using the fact that kl(u, v) := 1
2 (u� v)2 yields the result.

C Deviations and Incentives of Agents

We now discuss how agents may deviate under average mechanism under their own incentive. We limit
ourselves to deviations from myopic oracle agents, each of whom optimizes her single round reward,
and possess an oracle knowledge of her own valuation. Our incentives are shaped by symmetric
equilibrium in double auction [42], where all non-strategic buyers employ same strategy, and the
same hold for non-strategic sellers. In particular, all the non-strategic agents use confidence-based
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bidding. The strategic deviant agents do not deviate from a strategy if incremental deviations in bids
do not improve their own reward.

Under the above setup, for average mechanism only the price-setting agents (i.e. the K⇤-th buyer and
K

⇤-th seller) have incentive to deviate from their true valuation to increase their single-round reward
(c.f. Section 5 in [42]). For other agents, deviations from reporting their true value does not improve
their instantaneous reward. Thus average mechanism is truthful for non-price-setting agents.

For the price-setting agents, the incentives, and impact on regret are as follows.

1. Only K
⇤-th buyer deviates: The K

⇤-th buyer has an incentive to set her bid close8 to
max(SK⇤ , BK⇤+1). The long term average price is now set close to (SK⇤ +max(SK⇤ , BK⇤+1))/2.
When compared to Average mechanism outcomes this leads to (BK⇤ �max(SK⇤ , BK⇤+1))/2 aver-
age surplus in each round for participating buyers, and the same average deficit in each round for
participating sellers.

2. Only K
⇤-th seller deviates: The K

⇤-th seller has an incentive to set her bid close to
min(BK⇤ , SK⇤+1). With a long term average price of (BK⇤ +min(BK⇤ , SK⇤+1))/2, each seller
has a per round (SK⇤ �min(BK⇤ , SK⇤+1))/2 surplus, and each buyer has the same average deficit
in each round.

3. Both K
⇤-th seller and buyer deviate: The K

⇤-th seller has an incentive to set her bid close
to min((BK⇤ + SK⇤)/2, SK⇤+1). Whereas, for the K

⇤-th buyer the bid is close to max((BK⇤ +
SK⇤)/2, BK⇤+1). We can derive the long term average price, and surplus and deficit for the agents
similarly. We leave out the exact expressions due to space limitations.

We acknowledge that the study of incentive compatibility under the notions of equilibrium in
sequential games with incomplete information – where an agent can strategize thinking about her
long term consequences (c.f. [37, 27]) in presence of learning is out of scope for this paper. This is
similar to other contemporary works on learning in repeated games [29, 39, 30, 7].

D Synthetic Experiments

In this section, we present some additional synthetic experiments to study the impact of different
parameters on the performance of our algorithm. Our methodology is same as mentioned in Section 6.
Recall, that the negative regret for participant buyers/sellers is expected, as the regret increases as
(p(t)� p

⇤) for sellers, and (p⇤ � p(t)) for buyers.

D.1 Example Systems:

In Figure 3, we have a 8⇥ 8 system with 5 matches. The non-participant regret, for both buyers and
sellers, converges and assumes the log(T ). The participant regret, for both buyers and sellers, has
more noise and the envelope grows as O(

p
T ). Note that the regret that comes from price difference

has opposite sign for buyers and sellers in each sample path. Hence, if regret plot of buyers is
increasing with T then it will decrease for sellers, and vice versa. We defer the simulation studies of
other systems to appendix.We see this is Figure 4 where we have a 15⇥ 15 system with 10 matches
simulated for T = 100k. The rest of the behavior in Figure 4 is similar to Figure 3.

D.2 Impact of the gap �

We first study the impact of changing the gap � on the performance, for a system of size 8x8
and K

⇤ = 5. In Figure 5, we study three gaps, � 2 {0.1, 0.15, 0.2}. Here, we observe that the
convergence in the number of times an agent participates is delayed as we decrease the gap. As a
result, there is an increase in the regret of non-participants, and social regret which is dominated
by �, whereas the participant regret is not directly impacted by � (after the initial stage) as it is
dominated by the O(

p
T log(T )) term.

8In this context, close means ✏ larger bids for buyers, and ✏ smaller bids for sellers for ✏ ' 0.
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(a) Regret and Matching of Buyers (b) Regret and Matching of Sellers

(c) Social Regret (d) Convergence of K(t), (p(t)� p
⇤)

Figure 3: Double Auction N = 8, M = 8, K⇤ = 5, � = 0.2, ↵1 = 4, and ↵2 = 8

(a) Regret and Matching of Buyers (b) Regret and Matching of Sellers

(c) Social Regret (d) Convergence of K(t) and (p(t)� p
⇤)

Figure 4: Double Auction N = 15, M = 15, K⇤ = 10, � = 0.4, ↵1 = 4, and ↵2 = 8
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(a) Regret and Matching of Buyers, � = 0.2 (b) Regret and Matching of Sellers, � = 0.2

(c) Social Regret, � = 0.2

(d) Regret and Matching of Buyers, � = 0.15 (e) Regret and Matching of Sellers, � = 0.15

(f) Social Regret, � = 0.15

(g) Regret and Matching of Buyers, � = 0.1 (h) Regret and Matching of Sellers, � = 0.1

(i) Social Regret, � = 0.1

Figure 5: Double Auction with varying � (N = M = 8, K⇤ = 5, ↵1 = 4, and ↵2 = 8).

D.3 Impact of the sizes M , N , and K
⇤

We now study the impact of the size of the system, and number of true participants. First, with
M = N , we vary M while keeping the (M � K

⇤) fixed. We observe in Figure 6 that the regret
of the agents do not vary a lot, which is as expected from the theory. Next, we keep M = N = 8
fixed, while varying the participant size K

⇤. We see as (M �K
⇤) increases, the regret increases in

Figure 7 as suggested by the theory.

D.4 Impact of size difference in M and N .

In this part, we assess the size difference between number of sellers M , and number of buyers N . As
the buyer and seller are symmetric, we keep N = 8, and K

⇤ = 5 fixed. We next vary M 2 {5, 8, 15}
to study the effect. In Figure 8, we observe the regret of non-participant buyers and sellers increases
with increase in M . This is mainly because, the presence of more non-participant sellers is allowing
the non-participant buyers to match with these non-participant sellers more increasing the regret.
Similar observation holds for the social regret. The participant regret which is mostly dominated by
price estimation error is mostly unaffected by this.
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(a) Regret and Matching of Buyers, N=M=8, K⇤=5 (b) Regret and Matching of Sellers, N=M=8, K⇤=5

(c) Social Regret,
N = M = 8, K⇤ = 5

(d) Regret and Matching of Buyers, N=M=10, K⇤=7 (e) Regret and Matching of Sellers, N=M=10, K⇤=7

(f) Social Regret,
N = M = 10, K⇤ = 7

(g) Regret and Matching of Buyers, N=M=12, K⇤=9 (h) Regret and Matching of Sellers, N=M=12, K⇤=9

(i) Social Regret,
N = M = 12, K⇤ = 9

Figure 6: Double Auction with varying N = M , and fixed (M � K
⇤) = 3 (� = 0.2, ↵1 = 4,

↵2 = 8)
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(a) Regret and Matching of Buyers, K⇤ = 3 (b) Regret and Matching of Sellers,K⇤ = 3

(c) Social Regret, K⇤ = 3

(d) Regret and Matching of Buyers, K⇤ = 5 (e) Regret and Matching of Sellers, K⇤ = 5

(f) Social Regret, K⇤ = 5

(g) Regret and Matching of Buyers, K⇤ = 7 (h) Regret and Matching of Sellers, K⇤ = 7

(i) Social Regret, K⇤ = 7

Figure 7: Double Auction with varying K
⇤ (N = M = 8, � = 0.2, ↵1 = 4, ↵2 = 8)
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(a) Regret and Matching of Buyers, M = 5 (b) Regret and Matching of Sellers,M = 5

(c) Social Regret, M = 5

(d) Regret and Matching of Buyers, M = 8 (e) Regret and Matching of Sellers, M = 8

(f) Social Regret, M = 8

(g) Regret and Matching of Buyers, M = 15 (h) Regret and Matching of Sellers, M = 15

(i) Social Regret, M = 15

Figure 8: Double Auction with varying M (N = 8, K⇤ = 5, � = 0.2, ↵1 = 4, ↵2 = 8)
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