


function) SG to mesh with the backpropagation scheme [78]. The use of this ad-hoc technique in SNN
research is popular, particularly for large-scale networks. It allows for compatibility with popular
automatic di↵erentiation packages such as PyTorch and TensorFlow, simplifying the implementation
of SNNs. This surrogate gradient function can be a triangular, rectangular (gate), sigmoidal, or ERF
function [78]. In SGL, the gradient gl w.r.t. synaptic weights of layer l is calculated by

SGL: ĝl =
X

m

r✓l u
l,m
t SG(ul,m

t � vth)|           {z           }
Surrogate the exact derivative @ol,m

t /@ul,m
t

rol,m
t
Lt, (10)

where l,m denotes neuron m in layer l, and Lt is the instant loss value.

C Leveraging Noisy Spiking Neural Models

Here we use the implementation in [53] to leverage the power of noisy spiking neural models. Spiking
neurons with noisy neuronal dynamics have been extensively studied in prior literature [25]. Recent
research of Ma et al. [53] extended them to larger networks by providing a general formularization
and demonstrating their computational advantages theoretically and empirically. The Noisy LIF
presented here is based on previous works that use di↵usive approximation [79, 80, 25], where the
sub-threshold dynamic is described by the Ornstein-Uhlenbeck process:

⌧m
du
dt
= �(u � ureset) + RI(t) + ⇠(t), eq. du = �(u � ureset)

dt
⌧m
+ RI(t)

dt
⌧m
+ �dWt, (11)

the white noise ⇠ is a stochastic process, � is the amplitude of the noise and dWt are the increments
of the Wiener process in dt [25]. As �dWt are random variables drawn from a zero-mean Gaussian,
this formulation is directly applicable to discrete-time simulations. Specifically, using the Euler-
Maruyama method, we get a Gaussian noise term added on the right-hand side of the noise-free LIF
dynamic. Without loss of generality, we extend the additive noise term in the discrete form to general
continuous noise [81], the sub-threshold dynamic of Noisy LIF can be represented as:

Noisy LIF sub-threshold dynamic: ut = ⌧ut�1 + It + ✏, (12)

where It is the input, the noise ✏ is independently drawn from a known distribution and satisfies
E[✏] = 0 and p(✏) = p(�✏). The constant ⌧ here combines the simulation timestep length and the real
membrane decay ⌧m, which is a simplification when the timestep we cope with is fixed. This work
considers the Gaussian noise ✏ ⇠ N(0, 0.22).

The membrane potentials and spike outputs become random variables due to random noise injection.
Leveraging noise as a medium, we naturally obtain the firing probability distribution of Noisy LIF
based on the threshold firing mechanism:

P[firing at time t] = P [ut + ✏ > vth]|          {z          }
Threshold-based firing

= P[✏ < ut � vth] , F✏(ut � vth)|                               {z                               }
Cumulative Distribution Function definition

,

where F denotes the cumulative distribution function. Therefore, we have that,

ot =

(
1,with probability F✏(ut � vth),
0,with probability (1 � F✏(ut � vth)) .

(13)

The expressions above exemplify how noise acts as a resource for computation [82]. Thereby, we can
formulate the firing process of Noisy LIF as

Noisy LIF probabilistic firing: ot ⇠ Bernoulli
�
F✏(ut � vth)

�
, (14)

Specifically, it relates to previous literature on noise escape models, in which the di↵erence u � vth
governs the neuron firing probabilities [83, 79, 25]. In addition, Noisy LIF employs the same resetting
mechanism as the LIF model.

C.1 Noise-Driven Learning in Networks of Noisy LIF Neurons

The Noise-Driven Learning (NDL) rule [53] in networks of Noisy LIF neurons is a theoretically
sound general form of Surrogate Gradient Learning. In particular, the gradient w.r.t to synaptic
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weights in layer l is computed by

NDL: ĝl =
X

m

r✓l u
l,m
t| {z }

Pre-synaptic factor

Post-synaptic factorz          }|          {
F0✏(u

l,m
t � vth) rol,m

t
Lt

| {z }
Global learning signal

, (15)

where the superscript l,m denotes neuron m in layer l, L is the loss value. Here the post-synaptic
factor in NDL is calculated by the probability distribution function of the postsynaptic neuron’s
membrane potential noise.

As shown in Equation 15, NDL is well-compatible with the backpropagation computation paradigm
in trending libraries like PyTorch. Therefore we can wrap the inference and learning of Noisy LIF
neurons into a module. By replacing the original LIF neuron module (with Surrogate Gradient
Learning) with the Noisy LIF module (with NDL), we can easily implement noisy spiking neural
networks of arbitrary architectures in a plug-and-play manner. An example of that can be found at
https://github.com/genema/Noisy-Spiking-Neuron-Nets.

D Derivation of the Optimization Objective of TeCoS-LVM Models

Basic formulation – from an e�cient coding [38] perspective We denote a sequence of visual
stimuli as x = (xt)t=1···T , where xt 2 Rdim[xt], dim[xt] stands for the dimension of xt. Similarly, we
denote neural population response (target) as y = (yt) 2 {0, 1}T⇥dim[yt], where dim[yt] denotes the
number of retinal ganglion cells (RGCs). At each timestep t, one high-dimensional visual stimulus xt
is received, and we want to predict the neural population response yt. This is implemented by an LVM
which first compresses the visual stimuli into a low-dimensional latent representation zt 2 Rdim[zt], and
then decodes the neural population response from it. Inspired by the information compression feature
in the neural coding process [34, 35, 36, 37], we further encourage this LVM to construct a latent
space in which z have maximal predictive power regarding y while being maximally compressive
about x. Therefore, our target to model the neural coding of visual stimuli turns into an optimization
problem within the IB framework. Note that stimulus from other modalities can be processed in a
similar vein, but here we use the visual case as an example.

Following previous IB literature [31, 32, 33], we assume a factorization of the joint distribution as
follows,

p(x, y, z) = p(z|x, y)p(y|x)p(x) = p(z|x)p(y|x)p(x), (16)
namely, we assume a Markov chain y$ x$ z, which implies p(z|x, y) = p(z|x), indicating that the
latent representation z cannot directly depend on the target response y. Recall that, according to the
IB principle [31], our objective has the form

IB objective: max[ I(z, y)|{z}
Predictive term

��I(z, x)|    {z    }
Compressive term

]. (17)

The predictive term encourages predictive power, while the compressive term enforces information
compression. And it is equivalent to minimizing a loss function �I(z, y) + �I(z, x).

Let us examine the predictive term I(z, y) first. The mutual information between z and y is given by

I(z, y) =
Z

dydzp(y, z) log
p(y, z)

p(y)p(z)

=

Z
dydzp(y, z) log

p(y|z)
p(y)

.

(18)

According to the assumed Markov chain (16), the likelihood p(y|z) is defined by

p(y|z) =
Z

dxp(x, y|z) =
Z

dxp(y|x)p(x|z) =
Z

dxp(y|x)
p(z|x)p(x)

p(z)
, (19)

and is approximated by a variational decoder p(y|z; dec) in our case. Given the fact that
KL[p(y|z)kp(y|z; dec)] � 0, we can writeZ

dyp(y|z) log
p(y|z)

p(y|z; dec)
� 0

)
Z

dyp(y|z) log p(y|z) �
Z

dyp(y|z) log p(y|z; dec).
(20)
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Therefore,

I(z, y) �
Z

dydzp(y, z) log
p(y|z; dec)

p(y)

=

Z
dydzp(y, z) log p(y|z; dec) + H(y).

(21)

Since the target information entropy H(y) is independent of the optimization procedure of the
parametric model, it can be ignored. Thus, max I(z, y) = max

R
dydzp(y, z) log p(y|z; dec). By Eq.

16, p(y, z) =
R

dxp(x)p(y|x)p(z|x), therefore,

max I(z, y) = max
Z

dxdydzp(x)p(y|x)p(z|x) log p(y|z; dec). (22)

We now consider the compressive term �I(z, x) in the IB objective (17), and we temporally discard
the constant factor �. The mutual information between input stimuli and latent representation is given
by

I(z, x) =
Z

dxdzp(x, z) log
p(z|x)
p(z)

=

Z
dxdzp(x, z) log p(z|x) �

Z
dzp(z) log p(z).

(23)

Let p(z; �prior) be a variational approximation to the marginal p(z), because KL[p(z)kp(z; �prior)] � 0,
we have that Z

dzp(z) log p(z) �
Z

dzp(z) log p(z; �prior). (24)

With Eq. 23 in tow and using a parametric encoder q(z|x; enc), we have the following upper bound:

I(z, x) 
Z

dxdzp(x)q(z|x; enc) log
q(z|x; enc)
p(z; �prior)

. (25)

By Eqs. 22, 25, we have a lower bound for the IB objective as follows,

I(z, y) � �I(z, x) �
Z

dxdydzp(x)p(y|x)q(z|x; enc) log p(y|z; dec)

� �
Z

dxdzp(x)q(z|x; enc) log
q(z|x; enc)
p(z; �prior)

.
(26)

Using ✓ to denote all the parameters (�prior, enc, dec and other learnable parameters, like those of
the feature extractor) of the model following the main text, we have that

max
✓

[I(z, y; ✓) � �I(z, x; ✓)] = min
✓
L, (27)

where
L = �

Z
dxdydzp(x)p(y|x)q(z|x; enc) log p(y|z; dec)

|                                                            {z                                                            }
Lpred: encouraging predictive power

+ �

Z
dxdzp(x)q(z|x; enc) log

q(z|x; enc)
p(z; �prior)|                                              {z                                              }

Lcomp: encouraging compression

.

(28)

As for now, we have the formulation presented in Eq. 3 in the main text. We proceed to derive
the exact loss function for TeCoS-LVM model learning. Following previous literature [32], we can
approximate the data distribution p(x, y) using the empirical data distribution 1

T
PT

t=1 �(x�x1:t)�(y�yt),
where � is the dirac delta function. Hence, we have that

L ⇡ 1
T

TX

t=1

h
Eq(zt |x1:t ; enc)[� log p(yt |zt; dec)]
|                                  {z                                  }

Lpred
t

+�KL[q(zt |x1:t; enc)kp(zt; �prior)]|                                  {z                                  }
Lcomp

t

i

=
1
T

X

t

Lpred
t

|        {z        }
Predictive term (total): Lpred

+�
1
T

X

t

Lcomp
t

|         {z         }
Compressive term (total): Lcomp

.
(29)
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As we adopt Gaussian distributions in our temporal conditioning prior and encoder, we can analytically
compute the compressive loss term Lcomp composed of Kullback-Leibler divergences.

We then turn to the predictive term in our objective (17). As our model directly produces simulated
spike trains, we compute the spike train dissimilarity between the prediction ŷ1:t and the real record
y1:t to assess the predictive power of our model directly. This dissimilarity is used as the predictive
loss term at each timestep. In particular, we employ the Maximum Mean Discrepancy (MMD) to
measure the distance between spike trains. This approach has been proven suitable for spike trains in
previous literature [26, 50]. Following ref. [50], we use a postsynaptic potential (PSP) function kernel
for MMD. We employ the first-order synaptic model as the PSP function to capture the temporal
dependencies in spike train data e↵ectively [51]. The PSP kernel we shall use is given by

PSP (ŷ1:t, y1:t) =
tX

⌧=1

PSP(ŷ1:⌧)PSP(y1:⌧),where PSP(y1:⌧) = (1 � 1
⌧s

)PSP(y1:⌧�1) +
1
⌧s

y⌧, (30)

here ⌧s is a synaptic time constant set to 2 by default. We can write the (squared) PSP kernel MMD
between the empirical data distribution and the predictive distribution as

MMD
⇥
p dec (ŷ1:t), p(y1:t)

⇤2
=

tX

⌧=1

����Eŷ1:⌧⇠p dec [PSP(ŷ1:⌧)] � Ey1:⌧⇠p[PSP(y1:⌧)]
����

2
(31)

In practice, we approximate the spike train dissimilarity, which is measured by the squared PSP
kernel MMD in Eq. 31 by

P
⌧ kPSP(ŷ1:⌧) � PSP(y1:⌧)k2 [50]. Therefore, the predictive loss term is

given by

Lpred
t =

tX

⌧=1

kPSP(ŷ1:⌧) � PSP(y1:⌧)k2 . (32)

Together with the compressive term Lcomp
t = KL[q enc (zt)kp�prior (zt)], by Eq. 29, we can calculate the

loss function and optimize TeCoS-LVM models. To allow direct backpropagation through a single
sample of the stochastic latent representation, we use the reparameterization trick as described in
[84].

E Data Description

)

Movie 1 (“salamander movie”) Movie 2 (“wildlife movie”)

Figure 7: Example frames from Movie 1 and Movie 2 in the data we used.

We perform evaluations and analyses on real neural recordings from RGCs of dark-adapted axolotl
salamander retinas. The original dataset [57] contains the spike neural responses (collected using
multi-electrode arrays [85, 86]) of two retinas on two movies. Movie 1 contains natural scenes of
salamanders swimming in the water. Movie 2 contains complex natural scenes of a tiger on a prey
hunt. Both movies were roughly 60 s long and were discretized into bins of 33 ms. All movie frames
were converted to grayscale with a resolution of 360 pixel⇥360 pixel at 7.5 µm⇥7.5 µm per pixel,
covering a 2700 µm⇥2700 µm area on the retina. For retina 1, we have 75 repetitions for movie 1 and
107 repetitions for movie 2. For retina 2, we have 30 and 42 repetitions for movie 1 and movie 2,
respectively. Some example frames are shown in Appendix Fig. 7.
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F Metrics, Features used in Evaluations and Visualizations

F.1 Evaluation Metrics

Pearson correlation coe�cient (Pearson CC, CC) This metric evaluates the model performance
by calculating the Pearson correlation coe�cient between the recorded and predicted firing rates
[9, 14, 15]. The higher the value, the better the performance. For spike-output TeCoS-LVM models,
the firing rates are calculated using 20 repeated trials.

Spike train dissimilarity (Spike train dissim.) This metric assesses the model performance by
computing the dissimilarity between recorded and predicted spike trains. A lower value indicates
better model performance. We use the MMD with a first-order PSP kernel [51, 52] to measure
the spike train dissimilarity [27, 50, 58]. The first-order PSP function is given by PSP(y1:t) =
(1 � 1

⌧s
)PSP(y1:t�1) + 1

⌧s
yt, where ⌧s is a synaptic constant and is set to 2. Given a recorded spike

train y1:T and a predicted spike train ŷ1:T , this metric is calculated by
PT

t=1 kPSP(y1:t) � PSP(ŷ1:t)k2.
Because of the variability of neural activities, we randomly selected ten (trials) recorded spike trains
and used their average value in our evaluations.

van Rossum distance (van Rossum) This spike train distance was introduced in ref. [87], where
the discrete spike trains are convolved by an exponential kernel Heaviside(t) exp(�t/⌧R), here we
use ⌧R = 10. The final scores are computed by averaging results calculated using ten recorded spike
trains.

Victor-Purpura distance (V.-P.) This spike train distance [88] measures the dissimilarity between
two spike trains by summing up the minimum cost of transforming one spike train into the other by
insertion, deletion, and shifting operations. We use the average results from ten trials as the final
metric.

SPIKE distance (SPIKE) The SPIKE distance [89] is a time-scale independent metric for quanti-
fying the dissimilarity between spike trains. Its value is bounded in the interval [0, 1], and zero is
obtained only for perfectly identical trains.

F.2 Spike Feature

Spike autocorrelogram The spike autocorrelogram is computed by counting the number of spikes
that occur around each spike within a predefined time window [14, 9]. The resulting trace is then
normalized to its maximum value (which occurs at the origin of the time axis by construction). In the
main text, the maximum value is set to zero for better visualization and comparison.

G Experimental Details

G.1 Experimental Platform

The models are implemented using Python and PyTorch. Our experiments were conducted on a
workstation with an Intel-10400, one NVIDIA 3090, and 64 GB RAM.

G.2 Implementation Details

TeCoS-LVM models For TeCoS-LVM models, all hyper-parameters on all datasets are fixed to be
the same. We set the latent variable dimension to 32 and the hidden state dimension to 64 by default.
We used the Adam optimizer (�1 = 0.9, �2 = 0.999) with a cosine-decay learning rate of 0.0003
with a mini-batch size 64. Training of these models is carried out for 64 epochs. We used the same
architectures to implement all the TeCoS-LVM models (see Table 3). For LIF neuron TeCoS-LVM
models (denoted as TeCoS-LVM), we used surrogate gradient learning (SGL) with an ERF surrogate
gradient (see also Eq. 10) SGERF(x) = 1p

⇡
exp(�x2). For Noisy LIF neuron TeCoS-LVM models

(denoted as TeCoS-LVM Noisy), we used the Gaussian noise N(✏; 0, 0.22) and the corresponding
Noise-Driven Learning (a theoretically well-defined general form of SGL), which is described in

21



Appendix C, Eq. 15. Since random latent variables are involved in our model, we also employed the
reparameterization trick for e�cient training.

Baselines We followed the settings in their original implementations for the CNN [9, 15] and
IB-Disjoint [21] models. Some of these settings leverage the prior statistical structure information of
the firing rate, thus improving the performance of these models [9]. In particular, the CNN model is
trained with Gaussian noise injection, L-2 norm regularization (0.001) over the model parameters,
and L1 norm regularization (0.001) over the predicted activations [9, 15]. The IB-Disjoint model
is optimized with � = 0.01, which has proven to lead to better predictive power [21]. We also
use the reparameterization trick for e�cient training for the IB-Disjoint model. We use a constant
learning rate of 0.001, a mini-batch size of 64, and a default Adam optimizer for these two models.
Following their original implementations, we used the early stopping technique in training. The
network architectures of these models are listed in Appendix Table 3.

Table 3: List of network architectures (functional models) in our experiments. conv for the convolu-
tional layer, fc for the fully-connected layer, GRU for the gated recurrent unit layer.

Model Name Description

TeCoS-LVM/TeCoS-LVM Noisy (feature extractor) 16conv25-32conv11-fc64
(LIF/Noisy LIF spiking neurons, (real-valued RNN) GRU64
input channel=1); (encoder) fc64-fc64
TeCoS-LVM Rate (LIF-Rate neurons (encoder mean) fc32
input channel=1); (encoder std) fc32
TeCoS-LVM Noisy Rate (Noisy LIF-Rate (prior) fc64-fc64
neurons, input channel=1). (prior mean) fc32

(prior std) fc32
(decoder) fc64-fc#RGCs

CNN 32conv25-BatchNorm
(ReLU neurons, input channel=T) 16conv11-BatchNorm

fc#RGCs-BatchNorm
ParametricSoftPlus

IB-Disjoint 16conv25-BatchNorm-32conv11-BatchNorm
(ReLU neurons, input channel=T) fc64-BatchNorm

(encoder) fc64-BatchNorm-fc32-BatchNorm
(encoder mean) fc32-BatchNorm
(encoder std) fc32-BatchNorm
(decoder) fc64-BatchNorm-fc#RGCs-BatchNorm
ParametricSoftPlus

Symbol descriptions (parameter type parameter): channel number conv kernel size; fc channel number; GRU
hidden state dimension.

H Details of Ablation Experiments

H.1 The e↵ect of using spiking neurons

In this part, we constructed two variants (TeCoS-LVM Rate and TeCoS-LVM Noisy Rate) by
replacing all the hidden spiking neurons in the TeCoS-LVM model with neurons that exhibit the
same internal recurrence but provide non-spiking output. In other words, in these two variants, the
activation of our hidden neurons transitioned from discrete spiking Heaviside functions to continuous
functions. Specifically, we adopted the rate-output neuron model named GLIFR introduced in ref.[65].
In particular, the modified LIF-Rate neuron model we used here still uses the membrane update rules
of LIF (as well as Noisy LIF). The output activation function of the LIF-Rate model is described by
ot = sigmoid

⇣
ut�vth
�u

⌘
, where the parameter �u controls the smoothness of the membrane voltage-spike

relationship. In doing so, the internal representation is constructed in a real-valued space, rather than
in a sparse spike space as TeCoS-LVM models with all LIF and Noisy LIF neurons.
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