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Abstract

Spiking Neural Networks (SNNs) are biologically-inspired models that are capable
of processing information in streams of action potentials. However, simulating and
training SNNs is computationally expensive due to the need to solve large systems
of coupled differential equations. In this paper, we introduce SparseProp, a novel
event-based algorithm for simulating and training sparse SNNs. Our algorithm
reduces the computational cost of both the forward and backward pass operations
from O(N) to O(log(N)) per network spike, thereby enabling numerically exact sim-
ulations of large spiking networks and their efficient training using backpropagation
through time. By leveraging the sparsity of the network, SparseProp eliminates
the need to iterate through all neurons at each spike, employing efficient state
updates instead. We demonstrate the efficacy of SparseProp across several classical
integrate-and-fire neuron models, including a simulation of a sparse SNN with one
million LIF neurons. This results in a speed-up exceeding four orders of magnitude
relative to previous event-based implementations. Our work provides an efficient
and exact solution for training large-scale spiking neural networks and opens up
new possibilities for building more sophisticated brain-inspired models.

1 Introduction

The cortex processes information via streams of action potentials - commonly referred to as spikes
- that propagate within and between layers of recurrent neural networks. Spiking neural networks
(SNNs) provide a more biologically plausible description of neuronal activity, capturing in contrast
to rate networks membrane potentials and temporal sequences of spikes. Moreover, SNNs promise
solutions to the high energy consumption and CO2 emissions of deep networks [1, 2], as well as the
ability to transmit information through precise spike timing [3, 4, 5].

Unlike commonly used iterative ODE solvers that necessitate time discretization, event-based sim-
ulations resolve neural network dynamics precisely between spike events. This approach ensures
machine-level precision in simulations, thereby alleviating the necessity for verification of result
robustness with respect to time step size ∆t and mitigating numerical issues, for instance in the
vicinity of synchronous regimes [6]. However, a major drawback of event-based simulations is the
computational cost of iterating through all neurons at every network spike time.

To tackle this challenge, we introduce SparseProp, an novel event-based algorithm designed for simu-
lating and training sparse SNNs. Our algorithm reduces the computational cost of both the forward
and backward pass from O(N) to O(log(N)) per network spike. This efficiency enables numerically
exact simulations of large spiking networks and their efficient training using backpropagation through
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time. By exploiting network sparsity and utilizing a change of variable to represent neuron states as
times to the next spikes on a binary heap, SparseProp avoids iterating through all neurons at every
spike and employs efficient state updates.

We demonstrate the utility of SparseProp by applying it to three popular spiking neuron models.
While the current implementation is for univariate neuron models, we discuss a potential extension to
more detailed multivariate models later.

Our contributions include:

• Introducing SparseProp, a novel and efficient algorithm for numerically exact event-based
simulations of recurrent SNNs (section 2 and appendix A for minimal example code).

• Conducting a numerical and analytical scaling analysis that compares the computational
cost of our proposed algorithm to conventional event-based spiking network simulations
(section 3, Fig 3 and table 1).

• Providing concrete implementations of the algorithm for recurrent networks of leaky
integrate-and-fire neurons and quadratic integrate-and-fire neurons (section 4 and here)

• Extending the algorithm to neuron models that lack an analytical solution for the next spike
time using Chebyshev polynomials (section 5 and appendix B).

• Extending the algorithm to heterogeneous spiking networks (section 6).

In summary, our proposed SparseProp algorithm offers a promising approach for simulating and
training SNNs with both machine precision and practical applicability. It enables the simulation and
training of large-scale SNNs with significantly reduced computational costs, paving the way for the
advancement of brain-inspired models.

2 Algorithm for Efficient Event-Based Simulations in Recurrent Networks

We consider the dynamics of a spiking recurrent neural network of N neurons that is described by a
system of coupled differential equations [7, 8, 9, 10, 11, 12, 13, 14]:

τm
dVi
dt

= F (Vi) + Iexti +
∑
j,s

Jij h(t− t(s)j ). (1)

Here, the rate of change of the membrane potential Vi depends on its internal dynamics F (Vi), an
external input Iexti and the recurrent input

∑
j,s

Jij h(t − t(s)j ). τm is the membrane time constant.

Thus, when presynaptic neuron j spikes at time t(s)j the ith postsynaptic neuron is driven by by some
temporal kernel h(τ) and coupling strength Jij .

For event-based simulations, the dynamics of Eq 1 are evolved from network spike to network spike,
usually based on an analytical solution of the membrane potential Vi(t) as a function of time t,
instead of using iterative ODE solvers like the Runge–Kutta methods. A key aspect of this method
for spiking networks is that the spike times are not confined to the time steps of a numerical solver,
allowing them to be obtained with machine precision.To simulate the entire network dynamics this
way involves four simple steps:

1. Find the next spiking neuron j∗ and its spike time tj∗ .
2. Evolve the state Vi of every neuron to the next network spike time tj∗ .
3. Update the neurons i postsynaptic to j∗ using the weight Jij .
4. Reset the state of the spiking neuron Vj∗ = Vreset.

Such event-based simulation schemes are usually used for neuron models that have an analytical
solution of the individual neurons’ dynamics Vi(t) [10, 14, 15, 16, 17, 18]. The precision of the
solution of event-based simulation is then limited only by the machine precision of the computer. In
contrast, solving spiking network dynamics with an iterative ODE solver requires asserting that results
are not dependent on the integration step size ∆t of the integration scheme. The total accumulated
error usually scale with O ((∆t)p), where p is the order of the ODE solver. However, both iterating
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Figure 1: Change of reference frame allows efficient evolution of network state. A We map all
membrane potentials Vi(t) to phases φi(t) that evolve linearly between spikes with phase velocity ω
[10, 11, 15]. B At spike times ts, the phase transition curve (PTC) g(φ(ts) has to be evaluated that
tells neuron i how its phase φi changes when it receives an input spike. C In the phase representation,
phases φi(t) evolve linearly in time between spikes, but the amount of change when the neuron
receives an input spike depends on its phase. In this example at input spike time t1, the phase change
is much larger than at input spike time t2, despite having same size in the voltage representation.
D In conventional event-based simulations, the phase of all N neurons is shifted at every network
spike time by ∆φi = ω∆t, where ∆t = (ts+1 − ts) is the time to the next network spike. Instead, in
SparseProp just threshold and reset are changed at every spike.

through all neurons to find the next spiking neuron (step 1) and evolving all neurons to the next spike
time (step 2) conventionally require O (N) calculations per network spike. In the following, we
suggest an algorithm that for sparse networks only requires O (log(N)) calculations per network
spike by using a change of reference frame and an efficient data structure. In the next paragraphs, we
will describe these two features in more detail.

2.1 Change of Reference Frame

For clarity of presentation, we describe our algorithm first for a network of neurons that can be mapped
to pulse-coupled phase oscillators like the leaky integrate-and-fire neuron and the quadratic integrate-
and-fire neuron (Fig 1 A, C), and discuss later a more general implementation. For pulse-coupled
oscillators, the network dynamics can be written as [10, 11, 14, 15, 16, 17, 18, 19]:

f
(
φi(ts)

)
=

{
g
(
φi(ts) + ω(ts+1 − ts)

)
for i ∈ post(j∗)

φi(ts) + ω(ts+1 − ts) else
(2)

where ω is the constant phase velocity and g(φ) is the phase transition curve (PTC) evaluated for the
neurons that are postsynaptic to the spiking neuron j∗ just before the next network spike. In this
phase representation, in the absence of recurrent input pulses, each phase evolves linearly in time
with constant phase velocity ω from reset phase φreset to threshold phase φth (Fig 1 C). Thus, finding
the next spiking neuron in the network j∗ amounts for homogeneous networks where all neurons have
identical phase velocity to taking the maximum over all phases φj∗(ts) = max

i
(φi(ts)). The next

network spike time ts+1 is given by tj∗ =
φth−φj∗

ω . g(φ) quantifies the phase change of a neuron upon
receiving an input spike as a function of its phase (Fig 1 B). In this conventional form of the event-
based algorithm [10, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21], all N phases must be linearly evolved to
the state immediately before the next network spike time ts+1: φi(ts+1) = φi(ts) + ω(ts+1 − ts).

This operation, with a computational cost of O (N), can be avoided in our proposed algorithm.
Instead, we introduce a modification where just the threshold and reset phase are changed by a global
phase offset ∆φ:

∆
(s+1)
φ = ∆

(s)
φ + ω(ts+1 − ts), (3)
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Figure 2: A suitable data structure allows efficient search for next spiking neuron for numeri-
cally exact simulation of large spiking networks. A By using a priority queue, the next spiking
neuron can be found without iteration through all neurons of the network at every spike time. One
implementation of a priority queue is a binary heap, as the example shown. In a max-heap, each child
node has a value less or equal to its parent node. If an element is deleted, removed, or added, the
heap property is restored by swapping parents and children systematically. Finding the node highest
priority has a numerical complexity of O (1) and changing the value of any element has an amortized
time complexity of O (log(N)). B Array implementation of binary heap shown in A. As per spike
all postsynaptic neurons and the spiking neuron have to be updated, this requires on average K + 1
operation, thus an amortized time complexity O (K · log(N)) [23].

starting with ∆φ = 0 at t = 0. Thus φth
s+1 = φth −∆

(s+1)
φ . Similarly, φreset

s+1 = φreset −∆
(s+1)
φ . See

Fig 1D for an illustration. In inhibition-dominated networks, the phases φ(ts) will thus become
increasingly negative. For long simulations, all phases and the global phase should therefore be
reset if the global phase exceeds a certain threshold ∆th

φ , to avoid numerical errors resulting from
subtractive cancellation due to floating-point arithmetic [22]. We discuss this in more detail in
appendix C. In summary, this change of variables reduces the computational cost of propagating the
network state from O (N) to O (1). Note, that we assumed here identical phase velocity ω for all
neurons, but we will relax this assumption later in section 6.

2.2 Efficient Data Structure

We next address the computational bottleneck encountered in very large sparse networks when
finding the next spiking neuron, which has a numerical time complexity of O (N). To overcome this
limitation, we introduce an efficient implementation using a priority queue. The priority queue is
a data structure that facilitates returning elements with the highest priority and supports insertion
and priority updates [24]. We implement the priority queue as a heap-ordered binary tree, where
each node’s value is greater than its two children’s values. This structure enables returning elements
with the highest priority in constant time, with a time complexity of O (1), and inserting elements
or updating priorities in logarithmic time, with a time complexity of O (log(N)) [23]. Thus, only
O (K log(N)) operations have to be performed per network spike, as for K postsynaptic neurons
and for one spiking neuron, a new phase needs to be updated in the priority queue.
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Algorithm 1 SparseProp: Efficient Event-Based Simulation of Sparse Spiking Network
1: initialize φ(t0), ∆φ = 0
2: heapify φ(t0)
3: warm-up of network φ(t0)
4: for s = 1→ t do
5: get phase of next spiking neuron: j, φj = peek(φi(ts))
6: calculate phase increment: dφ = φth − φj(ts) + ∆φ

7: update global phase shift: ∆φ += dφ
8: evaluate phase transition curve: φ+i∗(ts) = g

(
φ−i∗(ts) + ∆φ

)
9: reset spiking neuron: φj(ts+1) = φre −∆φ

10: if ∆φ > ∆th
φ then

11: φ += ∆φ

12: ∆φ = 0
13: end if
14: end for

where peek(φi(ts)) retrieves the highest-priority element without extracting it from the heap. In a
min-heap—utilized for the phase representation here —the function fetches the smallest element,
representing the next spike time. Conversely, in a max-heap—employed for heterogeneous networks—
it obtains the largest element, signifying the maximum phase. The operation generally executes
in constant time, O(1), given that the target element resides at the heap’s root. Nonetheless, this
function leaves the heap structure unaltered.

An example implementation of SparseProp in Julia [25] is available here. There are two core
innovations in our suggested algorithm: First, we perform a change of variables into a co-moving
reference frame, which avoids iterating through all neurons in step 2 (Fig 1). Second, for finding the
next spiking neuron in the network, we put the network state in a priority heap (Fig 2). A binary
heap has efficient operations for returning the elements with the lowest (highest) key and insertion of
new elements or updating of keys [24]. We will next analyze the computational cost of SparseProp
empirically and theoretically.

3 Computational Cost Scaling

Overall, the total amortized cost per network spike of SparseProp scales with O (K log(N)). For
sparse networks, where K is fixed and only N is growing, the computational complexity of Sparse-
Prop per network spike thus only scales with O (log(N)).

As the number of network spikes for a given simulation time grows linearly with network size, the
overall computational cost for a given simulation time of SparseProp scalesO (KN log(N)), which
for sparse networks is far more efficient compared to a conventional implementation (see Fig. 3).
Specifically, the linearithmic scaling with network size N of our approach, grants remarkable effi-
ciency gains compared to the quadratic scaling of conventional event-based simulations, particularly
for sparse networks. For example, simulating a network of 106 neurons and K = 100 synapses for
100s takes less then one CPU hour with SparseProp, but would take more then 3 CPU years with the
conventional algorithm1. We provide a detailed comparison of the computational cost in table 1.

4 Example Implementation for Integrate-And-Fire Neuron Models

4.1 Pseudophase Representation of Leaky Integrate-And-Fire Neurons

For a network of pulse-coupled leaky integrate-and-fire neurons, Eq. 1 reads in dimensionless notation

τm
dVi
dt

= −Vi + Iext + τm

∑
j,s

Jij δ(t− t(s)j ) (4)

1These numbers are based on the benchmark on a Xeon® CPU E5-4620 v2 @ 2.60 GHz and 512 GB RAM
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conventional algorithm SparseProp

Find next spiking neuron min
i

(φth − φi/ω) peek(φi)

Evolve neurons φi += ω dt ∆+ = ∆φ

Update postsynaptic neurons K operations K operations + K key updates O (log(N))

Reset spiking neuron one array operation O (log(N))

Memory cost O (N) O (N)

total amortized costs per net-
work spike

O (N +K) O (K log(N))

total amortized costs for fixed
simulation time

O
(
N2

)
O (KN log(N))

Table 1: Comparison of computational cost for event-based simulation and training of recur-
rent spiking networks for different algorithms N denotes number of neurons, K is the aver-
age number of synapses per neuron. For large sparse networks (K � N ) and a fixed number
of synapses per neuron K, the dominant term grows quadratic for the conventional algorithm
[10, 11, 11, 26, 27, 28] and linearithmic (O (log(N))) for the SparseProp algorithm.
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Figure 3: Benchmark of SparseProp vs. conventional algorithm. The computational cost per
network spike scales linear with network size N in a conventional event-based implementation. In
the large sparse network limit, the computational bottleneck is to find the next spiking neuron in
the network and to propagate all neurons phases to the next network spike. Both operations can be
implemented efficiently. First, instead of shifting all neurons phases, the threshold and reset values
can be shifted. Second, by using a binary heap as a data structure for the phases, finding the next
phase and keeping the heap-ordering has computational complexity of O (K log(N)). A: CPU time
per network spike as a function of network sizeN for an inhibitory network of leaky integrate-and-fire
neurons with fixed number of synapses per neuron K [9]. B: CPU time per simulation time shows a
quadratic scaling for conventional algorithm, but only linearithmic scaling for the novel SparseProp
agorithm, Benchmark was performed on an Intel® Xeon® CPU E5-4620 v2 @ 2.60 GHz and 512
GB RAM. Parameters: mean firing rate ν̄ = 1 Hz, J0 = 1, τm = 10 ms, K = 100.

If a membrane potential Vi reaches threshold Vth, it is reset to Vre. Without loss of generality, we set
Vth = 0 and Vre = −1. Between two network spikes, the solution is given by:

Vi(ts+1) = Iext −
(
Iext − Vi(ts)

)
exp

(
− ts+1 − ts

τm

)
(5)

In this pseudophase representation (slightly different from [11, 28]), the phases φi ∈ (−∞, 0]
describe the neuron states relative to the unperturbed interspike interval.
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To obtain the unperturbed interspike interval T free, we have to solve Eq. 5 between reset and threshold
in the absence of synaptic input.

T free = −τm ln

(
Vth − Iext

Vre − Iext

)
(6)

= τm ln

(
1 +

1

Iext

)
. (7)

Its inverse is the phase velocity ω = 1/T free. The phase φi is thus given by φi = −ω ln
(

Iext

Iext−Vi

)
.

The reverse transformation is Vi = Iext
(

1− exp
[
− φi

ωτm

])
. Therefore, the phase transition curve is

g
(
φi∗(t−s+1)

)
= −ω ln

(
exp

(
−φi∗(t−s+1)/ω

)
+ c
)
, (8)

where c is the effective coupling strength c = J
Iext and J is the synaptic coupling strength taken here

to be identical for connected neurons. Usually, as discussed later in the appendix E in the section on
balanced networks, J is scaled with J = J0√

K
, where K is the number of synapses per neuron. An

example implementation of a LIF network with SparseProp in Julia [25] is available here.

4.2 Phase Representation of Quadratic Integrate-And-Fire Neurons

The quadratic integrate-and-fire (QIF) neuron has, in contrast to the LIF neuron, a dynamic spike
generation mechanism and still has an analytical solution Vi(t) between network spikes.

For a network of QIF neurons, Eq. 1 reads in dimensionless voltage representation:

τm
dVi
dt

= V 2
i + Iext + τm

∑
j,s

Jij δ(t− t(s)j ) (9)

The quadratic integrate-and-fire model can be mapped via a change of variables V = tan(θ/2) to
the theta model with a phase variable θ ∈ (−π, π] [29, 30, 31]. The dynamical equation between
incoming spikes is the topological normal form for the saddle-node on a limit cycle bifurcation
(SNIC) and allows a closed-form solution of the next network spike thanks to the exact derivation
of the phase response curve [32]. Therefore, the quadratic integrate-and-fire neuron is commonly
used to analyze networks of spiking neurons [10, 33, 34, 35, 36]. When Iexti > 0 ∀ i, the right-hand
side of the dynamics is strictly positive and all neurons would spike periodically in the absence of
incoming postsynaptic potentials. In this case, we can choose another particularly tractable phase
representation, called phi-representation with Vi(t) =

√
Iext tan(φi(t)/2), where the neuron has a

constant phase velocity [10]. This transformation directly yields the phase transition curve

g(φi) = 2 arctan

(
tan

φi
2

+ c

)
, (10)

where c is the effective coupling strength c = J√
Iext

. The phase velocity is given by ω = 2
√
Iext. We

considered homogeneous networks here, where all neurons have identical external input and identical
membrane time constant, and will later consider the more general case of heterogeneous networks in
section 6. An example implementation of a QIF network with SparseProp in Julia [25] is available
here.

5 Event-Based Simulation via Chebyshev Polynomials

SparseProp can also be used for univariate neuron models where no analytical solution between
spike times is known, e.g., the exponential integrate-and-fire model (EIF)[37, 38]. In this case, the
phase transition curve can be calculated numerically before the network simulation. During run
time, the phase transition curve and its derivative can be interpolated from the precomputed lookup
tables or using Chebyshev polynomials (see appendix B). An example implementation of an EIF
network with SparseProp in Julia [25] is available here. To test the numerical accuracy of the solution
based on a lookup table or Chebyshev polynomials, we compared the spike times of two identical
networks of LIF neurons with identical initial condition that were simulated either with the analytical
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phase transition curve or using the numerically interpolated solution. We used LIF networks for
this comparison, because pulse-coupled inhibitory LIF networks are non-chaotic [11, 21, 39, 40, 41].
Thus, numerical errors originating at the level of machine precision are not exponentially amplified
unlike in the chaotic pulse-coupled QIF network dynamics [10]. We show in Fig. 4 that the difference
in spike time between the two networks remain close to machine precision and the temporal order
of the network spikes is not altered, when replacing the analytical phase transition curve by the
numerical one.

Figure 4: Left: Error of individual spike times for SparseProp are close to machine precision. Right:
Error in spike index. Note that despite the small errors in the spike times that are close to machine
precision, for non-chaotic network dynamics the spike index is still correct.

6 Time-based SparseProp for Heterogeneous Networks

For heterogeneous networks, where there is heterogeneity of external input current Iexti , or membrane
time constant τi, or threshold voltages V ith, every neuron has a different phase velocity ωi and a single
global phase shift as described in section 2.1 does not suffice.

In that case, we suggest yet another representation. Instead of having a priority queue of phases,
instead, we suggest a priority queue of the next unperturbed spike time for all neurons, denoted by
n(t0), as this can take heterogeneity into account. In this case, the algorithm for network simulation
still consists of four steps: First finding the next spiking neuron, then updating the time followed by
the update of the postsynaptic neurons by the incoming spikes, finally, resetting the spiking neuron to
the reset value. This algorithm also has a numerical complexity of O (K log(N)) per network spike.
We provide pseudocode for SparseProp in the time-based representation below:

Algorithm 2 SparseProp: Event-Based Simulation of Heterogeneous Sparse Spiking Network
1: Initialize heterogeneous phase velocity ωi based on the neuron model
2: Initialize unperturbed interspike interval Ti
3: Initialize time to next spike for all neurons n(t0)
4: Initialize global time shift ∆t = 0
5: Heapify n(t0)
6: Perform warm-up of network state n(t0)
7: for s = 1→ t do
8: Get index and spike time of next spiking neuron: j, nj = peek(n(ts))
9: Calculate time increment: dt = nj(ts)−∆t

10: Update global time shift: ∆t += dt
11: Update postsynaptic neurons i∗: n+i∗(ts) = update(

(
n−i∗(ts),∆t

)
12: Reset spiking neuron: nj(ts+1) = ∆t + Ti
13: if ∆t > ∆th

t then
14: n −= ∆t

15: ∆t = 0
16: end if
17: end for

Again, peek(n(ts)) retrieves the highest-priority element without extracting it from the heap, which in
this case is the minimum over all neurons’ next unperturbed spike time. An example implementation
of a heterogeneous QIF network with SparseProp in this time-based representation is available here.
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Note that this can also easily be extended to mixed networks of excitatory and inhibitory neurons (or
to k population networks with different external input [42]).

The update of the postsynaptic neurons in line 11 is analogous to the evaluation of the phase transition
curve in the homogeneous SparseProp, but takes into account the different phase velocities. For
example, in the case of a QIF neuron, it takes the form

update
(
n−i∗(ts),∆t

)
=
π − g

(
π − (ni −∆t)ωi

)
ωi

+ ∆t (11)

Here, the phase transition curve, denoted as g(φi), is the same as previously described in Eq. 10:
g(φi) = 2 arctan

(
tan φi

2 + c
)

with effective coupling strength c. For the QIF neuron, the period Ti

is given by Ti = 2π/ωi, with ω = 2
√
Iext.

7 Efficient Event-Based Training of Spiking Neural Networks

SparseProp can also be used for efficient event-based training of spiking neural networks. While
surrogate gradients seem to facilitate training spiking networks [43, 44, 45, 46], it was recently
claimed that EventProp, which uses exact analytical gradients based on spike times, can also yield
competitive performance [47]. To obtain precise gradients for event-based simulations, this algorithm
makes use of the adjoint method from optimization theory [48, 49]. In this approach, in the forward
pass the membrane potential dynamics (Eq. 1) is solved in an event-based simulation and spike times
are stored. In the backward pass, an adjoint system of variables is integrated backward in time, and
errors in spike times are back-propagated through the size of the jumps in these adjoint variables
at the stored spike times. For event-based simulations of neuron models where the next spike time
is analytically known or can be obtained like in section 5, the entries adjoint integration is being
taken care of by differential programming [47]. Besides the previously mentioned advantages of
event-based simulation regarding precision, this approach is not only sparse in time but also sparse
with respect to the synapses, as only synaptic events are used.

We suggest here to further improve the efficiency of event-based training using SparseProp. As the
backward pass has the identical amortized time complexity of O (log(N)) per network spike as the
forward pass, we expect a significant boost of training speed for large sparse networks [47, 50, 51].
Regrettably, the implementation of EventProp presented in [47] was not publicly available during
the time of submission. In contrast, the authors of [50] made their re-implementation of EventProp
publicly available, but they did not use an event-based implementation but forward Euler to integrate
the network dynamics. It will be an important next step to also benchmark the performance of
SparseProp training. As the gradients are identical, we expect similar results to [47, 50, 51]

8 Limitations

In this work, we focus exclusively on recurrent networks of pulse-coupled univariate neuron models
such as the quadratic integrate-and-fire neuron, leaky integrate-and-fire neuron, and the exponential
integrate-and-fire neuron thereby excluding the exploration of multivariate neuron models. Extending
our approach to encompass multivariate models, such as the leaky- or quadratic integrate-and-fire
neurons with slow synapses [19, 28, 51, 52], remains a promising direction for future research.

A more fundamental limitation of our study is the apparent incompatibility of event-based simulations
with surrogate gradient techniques [46, 53]. While one could introduce ’ghost spikes’ in the event-
based simulation to emulate surrogate gradients when neurons hit a lower threshold. However, it
remains unclear how to preserve the favorable computational scaling of SparseProp in this case.

Furthermore, SparseProp requires an analytical solution of Vi(t) given the initial state and the
neuronal dynamics V̇i(t) is necessary. This limitation excludes conductance-based models [54, 55,
56], for example. Additionally, time-varying input can only be introduced in the form of deterministic
currents or point processes, such as Poisson input. Incorporating stochastic input without an analytical
solution of Vi(t) would require further development.

Moreover, the reduction in computational cost per network spike fromO (N) toO (log(N)) can only
be achieved in sparse networks, where the number of synapses per neuron K is much smaller than the
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total number of neurons N . For dense networks where the number of synapses scales proportionally
to the number of neurons [13], a priority queue implemented by a binary heap is disadvantageous
compared to a conventional array in the large network limit, as every network spike involves changing
the priority of O (N) neurons thus O ((N + 1) log(N)) flops per network spike which corresponds
to O ((N + 1) ·N log(N)) flops for a fixed simulation time. A batch-update of all postsynaptic
neurons might be faster for very large networks [57] but this is beyond the scope of this work. It
would involve O (K + log(K) log(N)) flops corresponding to O (N + log(N) log(N)) in dense
networks. In the case of purely excitatory sparse spiking networks, a Fibonacci heap might be a more
efficient implementation in the large network limit [58], as the ’decrease key’ operation takes constant
time O (1) compared to O (log(N)) in the case of a binary heap. Note that for practical purposes,
the asymptotic scaling of the computational complexity of Fibonacci heaps has an unfavorably large
prefactor [59]. Therefore, other heap structure implementations might be faster [60]. While large
mammalian brains are sparse N � K, for models of small brains or local circuits with dense
connectivity the conventional event-based simulations might be faster.

Additionally, SparseProp cannot currently model biophysically detailed neuron features, including
dendrites, threshold adaptation, slow synaptic timescales, and short-term plasticity. Incorporating
these features would be another valuable avenue for future computational neuroscience research.

Lastly, we did not yet perform a comprehensive systematic benchmark of training with challenging
tasks. Such benchmarks would offer further insights into the training performance of our proposed
framework.

9 Discussion

We introduce SparseProp, an efficient and numerically exact algorithm for simulating and training
large sparse spiking neural networks in event-based simulations. By exploiting network sparsity, we
achieve a significant reduction in computational cost per network spike from O (N) to O (log(N)).
This speedup is achieved by optimizing two critical steps in the event-based simulation: finding the
next spiking neuron and evolving the network state to the next network spike time. First, we employ
a binary heap data structure for finding the next spiking neuron and updating the membrane potential
of postsynaptic neurons. Second, we utilize a change of variables into a co-moving reference frame,
avoiding the need to iterate through all neurons at every spike.

Our results demonstrate the scalability and utility of SparseProp in numerical experiments. We
demonstrate that SparseProp speeds up the simulation and training of a sparse SNN with one million
neurons by over four orders of magnitude compared to previous implementations. In contrast to the
conventional event-based algorithm, which would require three CPU years to simulate 100 seconds
of network dynamics, SparseProp achieves the same simulation in just one CPU hour.

This advancement enables the simulation and training of more biologically plausible, large-scale
neural network models relevant to theoretical neuroscience. Furthermore, it might pave the way for
the exploration of large-scale event-based spiking neural networks in other machine learning domains,
such as natural language processing [61], embedded automotive applications [62], robotics [63], and
in silico pretraining of neuromorphic hardware [1, 64].

The impact of SparseProp extends to the recent surge of training for spiking neural networks in
theoretical neuroscience [50, 65], machine learning [61, 66, 67], and neuromorphic computing
[68, 69, 70]. This algorithm is expected to substantially accelerate the training speed in recent works
focused on event-based spiking networks [47, 50, 51].

Future extensions of SparseProp to multilayer and feedforward networks would be a promising
avenue. Integration of SparseProp with recent attempts in biologically more plausible backpropa-
gation and real-time recurrent learning [53, 65, 71, 72, 73, 74] could be used in future research in
theoretical neuroscience. To improve training performance, future studies should consider incorporat-
ing additional slow time scales, such as slowly decaying synaptic currents [72], and slow threshold
adaptation [65], which appear to enhance temporal-credit assignment in recurrent neural networks
for rudimentary tasks [53, 65, 72]. Additionally, incorporating gradient shaping and insights from
advances in event-based spiking network training [50, 51] could yield further gains in performance.
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[27] Joscha Liedtke. Geometry and organization of stable and unstable manifold in balanced
networks. Master’s thesis, Georg-August-University, Göttingen, 2013.

[28] Maximilian Puelma Touzel. Cellular dynamics and stable chaos in balanced networks. PhD
thesis, Georg-August-University Göttingen, January 2016.

[29] G. Ermentrout and N. Kopell. Parabolic Bursting in an Excitable System Coupled with a Slow
Oscillation. SIAM Journal on Applied Mathematics, 46(2):233–253, April 1986.

[30] Bard Ermentrout. Type I Membranes, Phase Resetting Curves, and Synchrony. Neural
Computation, 8(5):979–1001, July 1996.

[31] B. S. Gutkin and G. B. Ermentrout. Dynamics of Membrane Excitability Determine Interspike
Interval Variability: A Link Between Spike Generation Mechanisms and Cortical Spike Train
Statistics. Neural Computation, 10(5):1047–1065, July 1998.

[32] Eugene M. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.

[33] Remus Osan and Bard Ermentrout. Two dimensional synaptically generated traveling waves in
a theta-neuron neural network. Neurocomputing, 38–40:789–795, June 2001.

[34] B. S. Gutkin, J. Jost, and H. C. Tuckwell. Transient termination of spiking by noise in coupled
neurons. EPL (Europhysics Letters), 81(2):20005, 2008.

[35] D. Hansel and G. Mato. Asynchronous States and the Emergence of Synchrony in Large
Networks of Interacting Excitatory and Inhibitory Neurons. Neural Computation, 15(1):1–56,
January 2003.

12



[36] P. E. Latham, B. J. Richmond, S. Nirenberg, and P. G. Nelson. Intrinsic Dynamics in Neuronal
Networks. II. Experiment. Journal of Neurophysiology, 83(2):828–835, February 2000.
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Appendix

A SparseProp Code for Efficient Spiking Network Simulation in Julia

This minimal code implements the SparseProp algorithm for simulating a spiking network of N = 105 LIF neurons.

using DataStructures, RandomNumbers. Xorshifts, StatsBase, PyPlot

function lifnet(n,nstep,k,j0,ratewnt,τ,seedic,seednet)
iext = τ*sqrt(k)*j0*ratewnt/1000 # iext given by balance equation
ω,c = 1/log(1. + 1/iext),j0/sqrt(k)/(1. + iext) # phase velocity LIF
φth, φshift = 1., 0. # threshold for LIF
r = Xoroshiro128Plus(seedic) # init. random number generator
# initialize binary heap:
φ = MutableBinaryHeap{Float64, DataStructures.FasterReverse}(rand(r,n))
spikeidx = Int64[] #initialize time
spiketimes = Float64[] # spike raster
postidx = rand(Int,k)

for s = 1 : nstep # main loop

φmax, j = top_with_handle(φ) # get phase of next spiking neuron
dφ = φth - φmax - φshift # calculate next spike time
φshift += dφ # global shift to evolve network state
Random.seed!(r,j+seednet) # spiking neuron index is seed of rng
sample!(r,1:n-1,postidx;replace=false) # get receiving neuron index

@inbounds for i = 1:k # avoid autapses
postidx[i] >= j && ( postidx[i]+=1 )

end
ptc!(φ,postidx,φshift,ω,c) # evaluate phase transition curve
update!(φ,j,-φshift) # reset spiking neuron
push!(spiketimes,φshift) # store spike times
push!(spikeidx,j) # store spiking neuron index

end
nstep/φshift/n/τ*ω,spikeidx,spiketimes*τ/ω # output: rate, spike times & indices

end

function ptc!(φ, postid, φshift, ω, c) # phase transition curve of LIF
for i = postid

φ[i] = - ω*log(exp( - (φ[i] + φshift)/ω) + c) - φshift #(Eq. 12)
end

end

# set parameters:
#n: # of neurons, k: synapses/neuron, j0: syn. strength, τ: membr. time const.
n,nstep,k,j0,ratewnt,τ,seedic,seednet = 10^5,10^5,100,1,1.,.01,1,1
# quick run to compile code
@time lifnet(100, 1, 10, j0, ratewnt, τ, seedic, seednet);

# run & benchmark network with specified parameters
GC.gc();@time rate,sidx,stimes = lifnet(n,nstep,k,j0,ratewnt,τ,seedic,seednet)

# plot spike raster
plot(stimes,sidx,",k",ms=0.1)
ylabel("Neuron Index",fontsize=20)
xlabel("Time (s)",fontsize=20);tight_layout()
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B Event-Based SparseProp With Numerical Phase Transition Curve

For neuron models where the next spike time cannot be determined analytically and/or the net-
work state cannot be temporally evolved based on a closed-form expression V (ts+t), such as the
exponential integrate-and-fire model, we present an event-based implementation that has the same
computational cost of O (K log(N)) per network spike. To achieve this, we evaluate the phase
transition curve either by employing a lookup table or by approximating it using Chebyshev poly-
nomials. We initially describe the implementation based on a lookup table and provide an example
implementation:

We begin by numerically integrating the ordinary differential equation that describes the membrane
potential V of the neuron model, without considering any external input spikes:

τm
dV

dt
= F (V ) + Iext. (12)

The integration is performed from the reset voltage Vre to the threshold voltage Vth as follows:

V (t) =

∫ t

0

(F (V ) + Iext)/τm. (13)

We obtain the numerical solution V (t) by employing the DifferentialEquation.jl package with
a callback that terminates the integration precisely at Vth.

The solution provides us with two crucial pieces of information. Firstly, for each time point t, we can
now associate a corresponding voltage V (t). Secondly, we also acquire the unperturbed interspike
interval T , which determines the phase velocity ω. Using the numerically obtained solution V (t),
we create a lookup table that maps time to voltage by employing the DataInterpolations.jl
package. By taking the inverse, we obtain a mapping from a voltage to the next spike time t(V ),
which we also store as a separate lookup table. The two lookup tables combined give us a numerical
phase transition curve g(φ). We confirmed for the leaky integrate-and-fire neuron and the quadratic
integrate-and-fire neuron that this numerical procedure indeed yields the correct phase response
curve d. Subsequently, we incorporate the numerical phase response curve d into the event-based
implementation SparseProp implementation and also confirmed the spike times remained identical
when comparing with LIF networks with the analytical phase transition curve and identical network
realization and identical initial conditions. We used an inhibitory LIF network for this sanity check,
because inhibitory pulse-coupled networks of leaky integrate-and-fire neuron are stable with respect
to infinitesimal perturbations [11, 21, 39, 40, 41]. This feature in combination with instability with
respect to finite-size perturbations renders inhibitory LIF networks as an ideal test-based for numerical
precision, because event-based simulations should result exactly in the same spike sequence. This is
not the case for networks of QIF neurons, which are typically chaotic [10] (see also [75]).

Algorithm 3 SparseProp: Event-Based Simulation Based on Lookup Tables
1: Set up the ordinary differential equation Eq. 12
2: Numerically integrate the ODE from Vre to Vth to obtain V (t).
3: Generate a lookup table based on the obtained solution V (t).
4: Generate an inverse lookup table based on the solution t(V ).
5: Combine the lookup table and inverse lookup table to obtain the phase transition curve g(φ).
6: Heapify φ(t0)
7: Perform the warm-up of network φ(t0)
8: for s = 1→ t do
9: Get index and phase of next spiking neuron: j, φj = peek(φi(ts))

10: Calculate phase increment: dφ = φth + ∆− φj(ts)
11: Update global phase shift: ∆ += dφ
12: Evaluate phase transition curve: φ+i∗(ts) = g

(
φ−i∗(ts) + ∆

)
13: Reset spiking neuron: φj(ts+1) = φre −∆
14: if ∆ > ∆th then
15: φ += ∆
16: ∆ = 0
17: end if
18: end for
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An example implementation of an EIF network using SparseProp in Julia, in the balanced state, is
available here.

As an alternative to generating two lookup tables to numerically define the phase transition curve
g(φ) using DataInterpolations.jl, we propose the use of Chebyshev Polynomials for a direct
estimation of d. We provide an example implementation using ApproxFun.jl here.

C Numerical precision of SparseProp

Since SparseProp employs event-based simulation with analytical expressions for calculating the next
spike times, the algorithm operates with a precision limited only by machine epsilon. Numerically,
over many spike events, the global phase offset ∆φ incrementally increases. For sufficiently large
values of ∆φ, catastrophic cancellation can arise. For instance, when ∆φ = 106 and this is subtracted
from a very small dφ. Under these conditions, the issue is that the adjacent floating-point number
greater than 106 in double-precision arithmetic differs by approximately 2−30 ≈ 1.16× 10−10. One
can mitigate this numerical error by resetting both the global phase shift and the phases of individual
neurons upon exceeding a specified threshold. This counteracts the subtractive cancellation errors
inherent to floating-point calculations. Nonetheless, such resets are seldom required and occur at
intervals on the order of cN steps. The coefficient c is a substantial prefactor contingent on the
tolerable floating-point error; for an error of 2−30, c would be 106. This can be verified in Julia with
the command log2(nextfloat(1.0e6)-1.0e6).

D Online Sparse Erdős–Rényi Connectivity Matrix Generation

In order to benchmark the simulation of large networks using the SparseProp algorithm in Fig 3, we
implemented online generation of the sparse Erdős–Rényi connectivity matrix. This approach allows
us to generate the set of postsynaptic neurons deterministically online, without the need to store the
entire weight matrix. Storing the entire adjacency matrix for networks with 109 neurons would be
impractical due to its prohibitively large size, even when using the compressed sparse column format.
By using this online generation method, we only require memory to store the state of all N neurons.
For a network of 109 neurons, this corresponds to approximately 64bit/double float× 109neurons×
8bytes/bit = 7.4 GB of RAM. Our implementation draws inspiration from previous works [76, 77].
It is important to note that the example code provided in appendix A has a fixed indegree, similar to
the approach in [9]. Here, we present an example of online sparse adjacency matrix generation with
truly Erdős–Rényi connectivity, where the indegree follows a binomial distribution.

Code example:
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This code for Julia v1.9 implements a sparse Erdős–Rényi connectivity matrix for efficiently simulat-
ing a spiking network.

using Random, DataStructures, RandomNumbers. Xorshifts, StatsBase

# before simulation:
N, K, j, seedNet = 10^6, 10^2, 2, 1

rng = Xoroshiro128Star(seedNet) # init. random number generator (Xorshift)
npostAll = Array{UInt16,1}(undef, N)
for n = 1:N

npostAll[n] = UInt16(randbinom(rng, N, K / N))
end

# before simulation when neuron j spikes:
npost = npostAll[j]
# spiking neuron index is seed of rng
Random.seed!(rng, j)
# get postsynaptic neuron index
postIdxes = sample(rng, 1:N-1, npost, replace = false)
# avoid autapses
for np = 1:npost

if postIdxes[np] >= j
postIdxes[np] += 1

end
end

# before simulation, the following function was used
function randbinom(rng, n::Integer, p::Real)

log_q = log(1.0 - p)
x = 0
sum = 0.0
while true

sum += log(rand(rng)) / (n - x)
sum < log_q && break
x += 1

end
return x

end

E Spiking Networks in the Balanced State

In order to provide a comprehensive understanding and ensure the accessibility of our work, we now
introduce the concept of the balanced state, which motivates the scaling of the synaptic coupling
strength with 1/

√
K. Neural activity in cortical tissue has typically asynchronous and irregular

pattern of action potentials [78, 79], despite the fact that individual neurons can respond reliably
[80, 81, 82, 83]. This is commonly explained by a balance of excitatory and inhibitory synaptic
currents [84, 85], which cancels large mean synaptic inputs on average. A dynamically self-organized
balance can be achieved without the fine-tuning of synaptic coupling strength in heterogeneous
networks, if the connectivity is inhibition-dominated and the couplings are strong such that a small
active fraction of incoming synapses can trigger an action potential [86]. The statistical properties
of this state are described by a mean-field theory, which is largely insensitive to the specific neuron
model [87].

In our study, we investigated large sparse networks consisting of N neurons arranged on a directed
Erdős–Rényi random graph with a mean degree of K. All neurons i = 1, . . . , N received constant
positive external currents Iext and non-delayed δ-pulses from the presynaptic neurons j ∈ pre (i).
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The values of the external currents were chosen using a bisection method to achieve a target average
network firing rate ν̄.

F Setup of the Balanced Networks

The coupling strengths in our networks were scaled with 1/
√
K, such that the magnitudes of the

input current fluctuations had the same order of magnitude in all studied networks. Assuming that
inputs from different presynaptic neurons exhibit weak correlations, which is justified in balanced
network [13, 88], the collective input spike train received by neuron i can be effectively modeled as a
Poisson process with a rate denoted as Ωi =

∑
j∈pre(i) νj ≈ Kν̄ ≡ Ω. Here, ν̄ represents the average

firing rate of the network, and K denotes the average number of presynaptic neurons. Assuming
the compound input spike train follows a Poisson process, the autocorrelation function of the input
current can be expressed as follows:

C(τ) = 〈δI(t)δI(t+ τ)〉t (14)

≈
(
J0√
K

)2

Ω

∫
δ(t− s)δ(t+ τ − s)ds (15)

=
J2
0

K
Ωδ(τ) (16)

≈ J2
0 ν̄δ(τ) (17)

where δ denotes the Dirac delta function. In the diffusion approximation, characterized by high
Poisson rate and weak coupling, fluctuations in the input currents can be described as Gaussian white
noise with a magnitude given by

σ2 = J2
0 ν̄. (18)

Note that due to the scaling of the coupling strengths J = − J0√
K

with the square root of the number of
synapsesK the magnitude of the fluctuations σ2 is independent of the number of synapses. Therefore,
the input fluctuations do neither vanish nor diverge in the thermodynamic limit and the balanced state
in sparse networks emerges robustly [86, 87].

The existence of a fixed point of the population firing rate in the balanced state for large K follows
from the equation of the network-averaged mean current:

Ī ≈
√
K(I0 − J0ν̄). (19)

In the limit of large K, self-consistency requires the balance between excitation and inhibition,
specifically I0 = J0ν̄. If limK→∞(I0 − J0ν̄) > 0, the mean current Ī would diverge to∞, resulting
in neurons firing at their maximum rate. The resulting strong inhibition would break the inequality,
leading to a contradiction. On the other hand, if limK→∞(I0 − J0ν̄) < 0, the mean current Ī would
diverge to −∞, causing the neurons to be silent. Again, the lack of inhibition breaks the inequality.
The self-consistency condition in the large K limit can only be satisfied when

I0 − J0ν̄ = O
(

1√
K

)
,

which ensures that the excitatory external drive and the mean recurrent inhibitory current cancel each
other. Note that since I0 − J0ν̄ = O(1/

√
K) the network mean current has a finite value in the large

K-limit. The average population firing rate, expressed in units of the membrane time constant τ−1m ,
can be approximated as

ν̄ =
I0
J0

+O
(

1√
K

)
. (20)

This approximation generally becomes exact for large K. For excitatory-inhibitory mixed network,
an analogous self-consistency argument can be made which results in a set of inequalities that must
be fulfilled to achieve a balanced state [87].

G Code Availability

An example implementation of networks of LIF, QIF and EIF neurons using SparseProp in Julia, in
the balanced state, is available at https://github.com/RainerEngelken/SparseProp.
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