
A Computationally Efficient Sparsified Online Newton
Method

Devvrit ∗ †

Department of Computer Science
The University of Texas at Austin

devvrit.03@gmail.com

Sai Surya Duvvuri∗
Department of Computer Science
The University of Texas at Austin
subramanyamdvss@gmail.com

Rohan Anil
Google DeepMind

rohananil@google.com

Vineet Gupta
Google

vineet@google.com

Cho-Jui Hsieh
CS Department, UCLA & Google

chohsieh@cs.ucla.edu

Inderjit Dhillon
Google

isd@google.com

Abstract

Second-order methods hold significant promise for enhancing the convergence of
deep neural network training; however, their large memory and computational de-
mands have limited their practicality. Thus there is a need for scalable second-order
methods that can efficiently train large models. In this paper, we introduce the
Sparsified Online Newton (SONew) method, a memory-efficient second-order al-
gorithm that yields a sparsified yet effective preconditioner. The algorithm emerges
from a novel use of the LogDet matrix divergence measure; we combine it with
sparsity constraints to minimize regret in the online convex optimization framework.
Empirically, we test our method on large scale benchmarks of up to 1B parameters.
We achieve up to 30% faster convergence, 3.4% relative improvement in validation
performance, and 80% relative improvement in training loss, in comparison to
memory efficient optimizers including first order methods. Powering the method is
a surprising fact – imposing structured sparsity patterns, like tridiagonal and banded
structure, requires little to no overhead, making it as efficient and parallelizable
as first-order methods. In wall-clock time, tridiagonal SONew is only about 3%
slower per step than first-order methods but gives overall gains due to much faster
convergence. In contrast, one of the state-of-the-art (SOTA) memory-intensive
second-order methods, Shampoo, is unable to scale to large benchmarks. Addition-
ally, while Shampoo necessitates significant engineering efforts to scale to large
benchmarks, SONew offers a more straightforward implementation, increasing its
practical appeal. SONew code is available at: https://github.com/devvrit/SONew

1 Introduction

Stochastic first order methods which use the negative gradient direction to update parameters have
become the standard for training deep neural networks (DNNs). Gradient-based preconditioning
involves finding an update direction, by multiplying the gradient with a preconditioner matrix
carefully chosen from gradients observed in previous iterations, to improve convergence. (Full-

∗equal contribution, † Work done while at Google

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/devvrit/SONew

matrix) Adagrad [15], online Newton method [25] and natural gradient descent [3] use a full-matrix
preconditioner, but computing and storing the full matrix is infeasible when there are millions of
parameters. Thus, diagonal versions such as diagonal Adagrad, Adam [33], and RMSprop [28] are
now widely used to train DNNs due to their scalability.

Several higher-order methods have previously been applied to deep learning ([24, 5, 23, 38]). All
these methods use Kronecker product factorizations that reduce computational and storage costs to
make them feasible for training neural networks. However, to precondition a d1 × d2 parameter
matrix, these methods require matrix inverse operations, which take O(d31 + d32) time and O(d21 + d22)
space. In comparison, first-order methods use O(d1d2) time and memory, which is linear in the
number of parameters. For instance, when d1 = kd2, the memory used by Shampoo, d21 + d22 floating
point numbers is O(k) times the number of parameters, which could be arbitrarily large depending
on k. This calls for further research in developing efficient second-order optimization techniques to
train DNNs with memory and time complexity linear in the number of parameters.

In this paper, we present a novel Sparsified Online Newton (SONew) method, which only requires
linear time and space complexity, to train large-scale DNNs. We derive the algorithm through two
steps, classical regret analysis followed by a sparsification step. In more detail, regret analysis
when using a preconditioner reveals that the error is bounded by two terms, the first depends on the
change in the preconditioning matrix, while the second depends on the generalized gradient norm
(see Section 3 for more details). We take a novel approach of minimizing the second term while
regularizing two successive preconditioners to be close in the LogDet matrix divergence measure [34]
(see Section 3 for the intuition behind choosing LogDet divergence). This analysis naturally yields
us an Online Newton method [25]. To make it computationally efficient, we further sparsify the
preconditioner by finding a sparse approximation that is close in LogDet divergence. Thus we are
consistent in using the same measure (LogDet divergence) in both the regularization and sparsification
steps. This gives us our SONew method, which achieves linear complexity by leveraging structured
sparsity patterns, such as tridiagonal and banded, in the preconditioner. This is unlike most existing
online Newton methods that require quadratic space and cubic time complexity. By making each
step linear time, the SONew method can be applied to train modern DNNs as efficiently as first order
methods. Further, our method is embarrassingly parallelizable thus making negligible the overhead
of computing the preconditioner. We also show that introducing sparsity allows us to reduce the
condition number of the problem dynamically to improve numerical stability.

We strengthen the relationship between sparse LogDet divergence minimization and online convex
optimization by establishing an optimal O(

√
T) regret upper bound for tridiagonal sparsity pattern.

In our experiments on an MLP Autoencoder and Graph Neural Network (GNN), we found that our
method outperformed first-order methods in terms of training loss within the same training time,
while Shampoo (second-order method) takes significantly longer. In our experiments on Vision
Transformers on Imagenet and GNN on OGBG-molpcba, we achieve a target validation performance
using 10% and 30% fewer iterations respectively compared to Adam, the SOTA optimizer for both
benchmarks. Furthermore, using the same number of iterations as Adam we observe 0.7% and 3.4%
relative improvement for ViT and GNN respectively in validation performance. From an optimization
point of view, SONew achieves 9% and 80% better relative training loss for ViT and GNN
respectively. It is worth noting that Shampoo statistics required ∼ 7×#params for ViT whereas
tridiag-SONew uses only 2 ×#params for its statistics. We also test another recently proposed
memory efficient second order optimizer, rfdSON [37], but found its performance suboptimal to the
best performing first order method. Owing to SONew’s scalability, we train a Large Language Model
(LLM) with 1 billion parameters and compare it with AdaFactor [45], a popularly used first order
optimizer to train LLMs [11]. SONew achieves the same performance as AdaFactor using 26% fewer
steps, resulting in a 1.35× faster training. When using the same number of steps, SONew obtained
a 1.7% relative better train loss. In terms of implementation, SONew is just a few lines of code
(Equation (13)) without complex engineering challenges, rendering it even more useful and practical.

2 Background

The inner product between matrices is defined as ⟨A,B⟩ = Tr(ATB), where Tr(.) denotes the
matrix trace. The Frobenius norm of a matrix A is ∥A∥F =

√
Tr(ATA), while its spectral norm is

∥A∥2 = maxx ∥Ax∥2 / ∥x∥2. We use In ∈ Rn×n to denote an identity matrix. We use Sn, S++
n to

denote the set of symmetric, and positive definite matrices respectively. The generalized norm of a

2

vector x ∈ Rn with respect to matrix A ∈ S++
n is defined as ∥x∥A =

√
xTAx. We use det (A) to

denote the determinant of matrix A, and diag(A) to denote the diagonal matrix with diag(A)ii = Aii.
We use G and G̃ to denote a graph and its sub-graph with a vertex set [n] = {1, . . . , n}. Let EG
denote set of edges in graph G, and neigG(i) denote neighbours of vertex i in graph G. A sparse
symmetric matrix A ∈ Rn×n follows a sparsity structure graph G if Ai,j = 0 ∀(i, j) /∈ EG , . Note
that set of all such matrices form a linear subspace. We use Sn(G)++ to denote the set of positive
definite matrices with sparsity structure given by graph G, i.e, if X ∈ Sn(G)++, then Xij = 0
∀(i, j) /∈ E(G). Sn(G)++ is an open convex set. Given an index set I = {i1, i2, .., in}, we use AII

to denote the corresponding principal sub-matrix of A.

2.1 LogDet matrix divergence

Let ϕ : S++
n → R be a strictly convex, differentiable function. The Bregman matrix divergence

between X,Y ∈ S++
n is defined as [8, 34]: Dϕ(X,Y) = ϕ(X) − ϕ(Y) − Tr(∇ϕ(Y)T (X − Y)).

Since ϕ is convex, Dϕ(X,Y) ≥ 0 for all X,Y ∈ S++
n . For example if ϕ(X) = ∥X∥2F , the

corresponding Bregman divergence Dϕ(X,Y) = ∥X − Y ∥2F is the squared Frobenius distance.
In this paper, we extensively use the convex function ϕ(X) = − log det (X); the corresponding
divergence measure Dℓd(X,Y) is called the LogDet matrix divergence:

Dℓd(X,Y) = − log det
(
XY −1

)
+Tr(XY −1)− n. (1)

The LogDet divergence is scale invariant to invertible matrices A, i.e. Dℓd(A
TXA,ATY A) =

Dℓd(X,Y). LogDet divergence can be written in terms of eigendecompositions of X = V ΣV T and
Y = UΘUT [34]:

Dℓd(X,Y)=
∑
i

∑
j

(vTi uj)
2(σi/θj−log(σi/θj)−1). (2)

These two properties are later used in Section 3 to highlight the significance of LogDet divergence in
our algorithm.

3 SONew: Sparsified Online Newton Method

We now present our proposed algorithm SONew.

3.1 Regret minimization via LogDet divergence

We set up our problem under the online convex optimization framework (OCO) [43, 26], where at each
round the learner makes a prediction wt and receives a convex loss ft(wt) and gradient gt = ∇ft(wt)
as feedback. The goal of the learner is to reduce regret RT by predicting wt so that a low aggregate
loss

∑T
t=1 ft(wt) is achieved compared to the best possible, w∗ = argminw

∑T
t=1 ft(w). Formally,

regret is given by

RT (w1, . . . , wT) =

T∑
t=1

ft(wt)−
T∑

t=1

ft(w
∗).

Using [10], R regret in online setting yields R/T convergence rate in the stochastic setting. To
upper bound this regret, we proceed as in [26] by analyzing the error in the iterates for the update
wt+1 := wt − ηXtgt, where Xt ∈ Rn×n. Then ∥wt+1 − w∗∥2X−1

t
= ∥wt − ηXtgt − w∗∥2X−1

t
=

∥wt − w∗∥2X−1
t

+η2gTt Xtgt−2η(wt−w∗)T gt. The convexity of ft implies that ft(wt)−ft(w
∗) ≤

(wt −w∗)T gt leading to ft(wt)− ft(w
∗) ≤ 1

2η (∥wt − w∗∥2X−1
t

− ∥wt+1 − w∗∥2X−1
t

+ η2gTt Xtgt).
Summing over all t ∈ [T] and rearranging reveals the following upper bound on overall regret:

RT ≤ 1

2η
∥w1 − w∗∥2X−1

1
+

η

2

T∑
t=1

gTt Xtgt +
1

2η

T∑
t=2

(wt − w∗)T (X−1
t −X−1

t−1)(wt − w∗). (3)

3

Since w∗ is unknown, finding Xt which minimizes (3) is infeasible. So to minimize regret, we
attempt to minimize the second term in (3) while regularizing X−1

t to be “close” to X−1
t−1. The

nearness measure we choose is the LogDet matrix divergence, thus leading to the following objective

Xt = argmin
X∈S++

n

gTt Xgt, such that Dℓd (X,Xt−1) ≤ ct, (4)

where Dℓd is as in (1). Why do we use the LogDet divergence? From (2), due to the term λi/θj ,
Dℓd(X,Xt−1) prioritizes matching the smaller eigenvalues of Xt−1 with those of X , i.e., matching
the larger eigenvalues of X−1

t−1 and X−1. As a consequence, LogDet divergence regularizes X by
matching up its large eigenvalues with those of Xt−1. For example if smallest and largest eigenvalue
of Xt−1 are θn and θ1, then for an eigenvalue σ of X , when σ > θn, θ1, the penalty from (2) for θn
is higher than for θ1, (σ/θn − log(σ/θn)− 1) > (σ/θ1 − log(σ/θ1)− 1). This intuition leads us to
formulate (4) as our objective. We recall that there is precedence of using the LogDet divergence in
the optimization literature; indeed the celebrated BFGS algorithm [9, 17, 22, 44] can be shown to
be the unique solution obtained when the LogDet divergence between successive preconditioners,
subject to a secant constraint, is minimized (as shown in the 4-page paper by [18]).

The optimization problem in (4) is convex in X since the LogDet divergence is convex in its
first argument. The Lagrangian L(X,λt) = gTt Xgt + λt(Dℓd(X,Xt−1) − ct) = Tr(Xgtg

T
t) +

λt(− log det
(
XX−1

t−1

)
+Tr(XX−1

t−1)−n))− λtct. Setting ∇L(X,λt) = 0, and using the fact that
∇ log det (X) = X−1 we get the following update rule:

X−1
t = X−1

t−1 + gtg
T
t /λt. (5)

We emphasize that the update rule (5) arises naturally from our novel use of LogDet divergence
to minimize the regret. Moreover, Equation (5) can be seen as a general update rule applicable to
numerous existing optimizers. For example, setting ct = 0 (equivalently λt = ∞) ∀t ∈ [n] in (4)
results in no change to the preconditioner in any round. In this case, with X0 = In, we get online
gradient descent [54]. On the other hand, setting λt = 1 gives the update rule of the online Newton
method [25]. Our update rule differs from (full-matrix) Adagrad [15] which has X−2

t = X−2
t−1+gtg

T
t .

Maintaining and updating Xt as in (5) is possible by using Sherman-Morrison formula but requires
O(n2) storage and time complexity. This becomes impractical when n is in the order of millions
which is typically the case in DNNs.

3.2 Sparsifying the Preconditioner

To minimize the memory needed for maintaining and updating Xt using (5), we adopt the strategy of
sparsifying the preconditioner. For existing optimizers such as (full-matrix) Adagrad or the Online
Newton method, it is unclear how to sparsify a given preconditioner. Specifically, there is no intuitive
approach to assessing the quality of a sparse preconditioner compared to a full-matrix preconditioner.
However, since our update rule (5) originates from using LogDet divergence in the regret bound
analysis, it gives us a natural metric to measure the quality of a sparse preconditioner. Let’s consider
the following problem: find a sparse positive definite X with ∥X∥0 ≤ αn, α > 1, such that the
objective Dℓd(X, (X−1

t−1 + gtg
T
t /λt)

−1) is minimized. Essentially, this problem imposes a sparsity
constraint while requiring the sparse preconditioner to remain close to the full-matrix preconditioner
in terms of LogDet divergence.

Due to the L0-norm constraint, this is a non-convex problem, which makes it difficult to solve exactly.
Since L1-norm serves as a convex relaxation for the L0 norm, we could use it instead, resulting in
the following optimization problem also known as graphical lasso estimator [19]:

min
X∈S++

n

Dℓd (X, (X−1
t−1 + gtg

T
t /λt)

−1) + γ ∥X∥1 .

However, the time taken to solve the above problem, even with the current best methods [7, 29, 16, 53],
can still be too large (as these methods take several minutes for a matrix of size million), making it
impractical to embed in DNN training.

In this paper, we take a different direction where we use fixed sparsity pattern constraints, specified
by a fixed undirected graph G. To sparsify the solution in (5), we formulate the subproblem

Xt = argmin
X∈Sn(G)++

Dℓd (X, (X−1
t−1 + gtg

T
t /λt)

−1), (6)

4

where Sn(G)++ denotes the set of positive definite matrices with the fixed sparsity pattern correspond-
ing to the adjacency matrix of graph G. Note that both steps (4) and (6) use the same LogDet measure.

Owing to the structure of LogDet divergence, (6) can be surprisingly solved in O(n) and easily paral-
lelizable, for certain sparsity structures G. Algorithm 1 and 2 presents an instantiation of the proposed
SONew method, which solves (6) using O(n) time and memory for banded matrices with band size b.
In particular a tridiagonal matrix, corresponding to a chain graph, is a banded matrix with bandsize 1.

Algorithm 1 Sparsified Online Newton
(SONew) Algorithm

Inputs: λt := coefficient in the update (10),
G := sparsity graph (banded/tridiagonal),
ϵ := damping parameter,
T := total number of iterations/mini-batches,
ηt := step size/learning rate.
Output: wT+1

1: H0 = ϵId, w1 = 0
2: for t ∈ {1, . . . , T} do
3: compute gt = ∇ft(wt)
4: Ht := Ht−1 + PG(gtg

T
t /λt) ∈ Sn(G) with

PG as in (8). ▷ O(n) time & memory
5: Get L,D = SPARSIFIED_INVERSE (Ht,G),

where Xt = LDLT solves (11).
6: Compute descent direction ut = LDLT gt,
7: wt+1 = wt − ηtut

8: end for
9: return wT+1

Algorithm 2 SPARSIFIED_INVERSE(H,G) in
O(n) flops

Inputs:H ∈ Sn(G), is as (10).
G := the banded graph of band size b ≪ n
Outputs: lower triangular banded L ∈ Rn×n

and diagonal matrix D ∈ Rn×n

1: function SPARSIFIED_INVERSE(H , G)
2: L := 0, D := 0
3: Ljj := 1, ∀j ∈ [n]
4: for j ∈ {1, . . . , n} do ▷ parallelizable
5: Let HjIj and HIjIj be defined

as in Section 2, where Ij =
{j + 1, . . . , j + b} ∩ [n],

6: Solve for LIjj in the linear system
HIjIjLIjj = −HIjj ▷ O(b3) time.

7: Djj := 1/(Hjj +HT
Ijj

LIjj)
8: end for
9: return L,D

10: end function

Maintaining Ht ∈ Sn(G) in line 4. Solving the subproblem in (6) naively is impractical since
X−1

t−1 is a dense matrix. However, the structure of the LogDet divergence comes to the rescue; the
optimization problem in (6) can be expanded as follows:

argmin
X∈Sn(G)++

−log det (X)+Tr(X(X−1
t−1 + gtg

T
t /λt)). (7)

Let us define the projection onto Sn(G), PG : Rn×n → Rn×n as:

PG(M)ij =

{
Mij if (i, j) ∈ EG ,

0 otherwise.
(8)

Note that the Tr(.) term in (7) is dependent only on the non-zero elements of X ∈ Sn(G)++, since
Tr(AB) = ⟨A,B⟩, for symmetric matrices A and B. Hence, (7) can be written as

argmin
X∈Sn(G)++

− log det (X) + ⟨X,PG(X
−1
t−1 + gtg

T
t /λt)⟩, (9)

Computing the entire matrix X−1
t−1 can be avoided by analyzing the optimality condition of (9). Let

g(X) = − log det (X) + ⟨X,PG(X
−1
t−1 + gtg

T
t /λt)⟩ denote the objective function in (9), then the

optimality condition of (9) is PG(∇g(X)) = PG(∇(− log det(X)+⟨X,PG(X
−1
t−1+gtg

T
t /λt))⟩ = 0,

since gradients with respective nonzero entries of X should be zero, ∂g(X)
∂Xi,j

= (∇X(g(X)))i,j = 0,
∀(i, j) ∈ EG . Using ∇(− log det(X)) = −X−1, ∇X(⟨X,Y ⟩) = Y , and setting X = Xt gives:

PG(X
−1
t)− PG(X

−1
t−1 + gtg

T
t /λt) = 0,

Ht = Ht−1 + PG(gtg
T
t /λt), where Ht = PG(X

−1
t) (10)

Thus we only need to maintain Ht = PG(X
−1
t). This matrix is updated as Ht = Ht−1 +

PG(gtg
T
t /λt). Since Ht ∈ Sn(G), the update can be done in O(|EG |) memory and time, while

computing the matrix X−1
t would have cost O(n2). In SONew (Algorithm 1), this key observation is

used to maintain Ht in line 4.

5

Computing Xt in line 5. Now that Ht is known at every round t, we can replace PG(X
−1
t−1+gtg

T
t /λt)

in (9) with Ht as:
Xt = argmin

X∈Sn(G)++

− log det (X) + Tr(XHt). (11)

For an arbitrary graph G, solving (11) might be difficult. Theorems 3.1 and 3.2 show embarrassingly
parallelizable explicit solutions to the subproblem (11) for tridiagonal and banded sparsity patterns.
Theorem 3.1 (Explicit solution of (11) for tridiagonal structures/chain graph). Let the sparsity
structure G be a chain with edges EG = {(i, j) : |i− j| ≤ 1, 1 ≤ i, j ≤ n}. Also, let H ∈ Sn(G) be
such that any submatrix of H corresponding to a complete subgraph of G is positive definite, then
the solution of (11) is given by X̂ = LDLT , where the unit lower bidiagonal matrix L and diagonal
matrix D have the following non-zero entries:

Ljj = 1, Lj+1j = − Hj+1j

Hj+1j+1
, D−1

jj = Hjj −
H2

j+1j

Hj+1j+1
, j ≤ n− 1 & D−1

nn = Hnn (12)

Computing this explicit solution involves conducting paralellizable operations on 2 × 2 principle
submatrices (highlighted in red) of the tridiagonal matrix H to find the X̂ as shown in the following
3× 3 example:

H =

 H11 H12 0
H21 H22 H23

0 H32 H33

 =

 H̃11 H̃12 0

H̃21 H̃22 H̃23

0 H̃32 H̃33

+

 g21 g1g2 0
g1g2 g22 g2g3
0 g2g3 g23

 (13)

→ X̂ =

 1 0 0
−H21

H22
1 0

0 −H32
H33

1

 H11 − H2

21
H22

0 0

0 H22 − H2
23

H33
0

0 0 H33

 1 −H21

H22
0

0 1 −H32
H33

0 0 1

Conducting these operations take O(n) time and memory complexity, and similarly the descent

direction can be found sequentially by Xtgt = L(D(LT gt)), which can take O(n) time complexity,
due to unit lower bidiagonal structure of L, furthermore, these operations can be easily parallelized.
We also generalize the explicit solution to banded sparsity structures with band size b.
Theorem 3.2 (Explicit solution of (11) for banded structures). Let the sparsity pattern G be a
banded matrix of band size b, i.e. EG = {(i, j) : |i− j| ≤ b, 1 ≤ i, j ≤ n}. For every vertex j, let
Ij = {j + 1, . . . , j + b}. Then Xt = LDLT is the solution of (11) with nonzero entries of L and D
defined as follows :

Ljj = 1, LIjj = −H−1
IjIj

HIjj , D−1
jj = (Hjj −HT

IjjH
−1
IjIj

HIjj), 1 ≤ j ≤ n. (14)

where, H ∈ Sn(G) any submatrix of H corresponding to a complete subgraph of G is positive
definite.

Note that Theorem 3.1 is a special case of Theorem 3.2 when b is set to 1, and the proof for
Theorem 3.2 is given in Appendix A.1. Computing the above solution requires solving n linear
systems of size b (which is small) as shown in Algorithm 2, and takes O((n− b+ 1)b3) flops. Since
b ≪ n, the number of flops is O(n).

3.3 Regret bound analysis of SONew

The following theorem establishes optimal regret guarantee [26] for SONew in the online convex
optimization framework mentioned in Section 3.1.
Theorem 3.3. When G = tridiagonal/chain graph as defined in Theorem 3.1, then setting ϵ =
ϵ̂G∞

√
T , λt = G∞

√
t and ηt = D2

ϵ̂
√
n

in Algorithm 1, where ∥wt − w∗∥2 ≤ D2, ∥gt∥∞ ≤ G∞

incurs a regret RT = O(
√
nG∞D2

√
T).

The proof sketch involves deriving an explicit expression for entries of X−1
t in Lemma A.2, to upper

bound the term (wt − w∗)T (X−1
t −X−1

t−1)(wt − w∗) in regret upper bound (3). Upper bounding
η
2

∑T
t=1 g

T
t Xtgt involves using the Loewner order Xt ⪯ ∥Xt∥2 In ⪯ ∥Xt∥∞In. A detailed proof

sketch and proof is given in Appendix A.2. We note here that though the regret bound presented here is
for convex losses, there are connections to non-convex convergence guarantees by using OCO (online
convex optimization) learners, presented in Appendix A.2.5. While our main focus is on deep neural
network training, which is typically non-convex, we also conducted convex experiments in Table 9.

6

Optimizer Time com-
plexity

Memory
complexity

Adam O(d1d2) d1d2
rfdSON(m) O(m2d1d2) md1d2
Shampoo O(d31 + d32) (d21 + d22)
tridiag-SONew O(d1d2) 2d1d2
band-4-SONew O(d1d2) 5d1d2

Table 1: Consider preconditioning a d1×d2 param-
eter matrix. Time complexity of tridiag and banded
SONew inverse scale linearly with number of param-
eters, but, Shampoo is cubic in the dimensions of
the matrix. Memory used to store second-moments
of gradients by tridiag-SONew can be significantly
lower than Shampoo, for e.g. if d1 = 4d2, then
Shampoo takes > 2 times more memory.

3.4 Numerical Stability of SONew

In Theorem 3.1 and Theorem 3.2, as mentioned, any submatrix of Ht corresponding to a complete
subgraph of G should be positive definite, however, in practice, due to finite precision, each entry of H
is inherently perturbed with an error proportional to O(ϵmach), where ϵmach is machine epsilon [27].
We notice in practice that the subtraction operation in D−1

jj = Sjj = Hjj − H2
j+1j/Hj+1j+1

(line 7 Algorithm 2), which has a condition number κsub = |Hjj |/|Sjj |, can be high as Sjj can

be arbitrarily low due to near singular submatrices
[

Hii Hii+1

Hi+1i Hi+1i+1

]
. Thus small perturbation

in H can lead to high perturbations in the preconditioner X̂ . We formalize this notion by deriv-
ing an end-to-end componentwise condition number (pg. 135, problem 7.11 in [27]) of SPARSI-
FIED_INVERSE in Theorem A.10,Appendix A.3. To reduce this condition number upper bound
and be robust to perturbations in Ht caused by finite precision, for a tridiagonal graph G, we can
remove edges (j, j + 1) which correspond to low Sjj < γ, where γ ≥ 0 denotes a tolerance
parameter. We show in Theorem A.11,Appendix A.3 that this reduces the condition number up-
perbound of SPARSIFIED_INVERSE. Furthermore, we generalize this to banded sparsity pattern in
Algorithm 3,Appendix A.3.

4 Related Work

Online Newton method is a second order method in online convex optimization framework with
properties such as scale invariance [35] and logarithmic regrets in exp-concave and strongly convex
functions [25, 26]. However, it has a time complexity of O(n2), making it infeasible for large n.
However, introduction of LogDet divergence measure in SONew allows us to set different sparsity
graphs as G such as banded graph with band-size b, for which our preconditioning process is more
computationally efficient with a time complexity of O(b3(n− b+ 1)) compared to online-newton
method O(n2).

Shampoo [24, 5] approximates full gradient statistics matrix using Kronecker factored preconditioners
to reduce the memory and time complexity from O(n2) to O(d21 + d22) and O(d31 + d32) respectively.
Here, n = d1d2 denotes number of parameters for a linear layer of dimensions d1 × d2. The time
complexity of matrix inversion takes a heavy toll in Shampoo’s compute time even with the Kronecker
product assumption on the preconditioner, whereas, our method has a time complexity of O(b3d1d2)
quadratic in dimensions of the linear layer (note that b = 1 for tridiagonal structure).

KFAC [38], similar to Shampoo, uses Kronecker factored preconditioning, but to approximate the
Fisher-information matrix. FishLeg [20] instead approximates the inverse Fisher matrix directly by
expressing it in terms of the solution to an optimisation problem. Both these methods have memory
and time complexity similar to Shampoo. In this work, we compare with Shampoo among the class of
Kronecker factored optimizers due to its widespread testing and adoption within the community [46].
We also point the readers to Eva [52], a concurrent work aimed at devising memory efficient optimizer
by maintaining rank one matrix approximation to the Kronecker factors of KFAC matrices. For
completeness, we include comparison with KFAC, FishLeg, and Eva on Autoencoder benchmark.

There is prior work [35, 36] in reducing the complexity - O(n2) flops of Online Newton Step (ONS)
to O(n) flops using sketching. These ONS variants maintain a low rank approximation of Ht

(as in Algorithm 1) and updating it with a new gradient gt at every iteration requires conducting
SVD [36]/orthonormalization [35] of a tall and thin matrix in Rn×r, where r denotes the rank of
approximation of Ht. In Section 5, we conduct large scale experiments and compare SONew against
rfdSON [37] as it’s more stable than Oja-SON [35].

7

Table 2: float32 experiments on Autoencoder benchmark. We observe that diag-SONew performs the
best among all first order methods while taking similar time. tridiag and band-4 SONew perform significantly
better than first order methods while requiring similar linear space and time. Shampoo performs best but takes
O(d31+d32) time for computing preconditioner of a linear layer of size d1×d2, whereas our methods take O(d1d2)
time, as mentioned in Section 3.3. rfdSON takes similar space as SONew but performs considerably worse.

Optimizer First Order Methods Second Order Methods
Adagrad RMSProp Adam diag-SONew Shampoo(20) rfdSON(1) rfdSON(4) tridiag-SONew band-4-SONew

Train CE loss 54.393 53.330 53.591 53.025 50.702 56.21 55.55 51.723 51.357

Time(s) 62 62 62 63 371 85 300 70 260

LogDet problem in equation 11 is closely related to the Maximum Determinant Matrix Comple-
tion (MDMC) [4, 49]. The MDMC problem is the dual of LogDet problem (11), and has explicit
solutions for chordal graphs [4]. Thus the explicit solutions in (14) are the same as the ones proved
in [4]. Also, we noticed that the tridiagonal explicit solution has been used previously in KFAC [38]
in the context of a gaussian graphical model interpretation of gradients, specifically, KFAC used
a block-tridiagonal preconditioner to incorporate correlation within consecutive layers.

5 Experimental Results

We describe our experiments on standard Autoencoder benchmark [42] trained on MNIST
dataset [12], Vision Transformer [13] on Imagenet training, GraphNetwork [6, 21] on OGBG-
molpcba dataset [30], and a Large Language Model [47]. For all second order optimizers, we use
grafting [2], a technique used to transfer step size between optimization algorithms. Specifically,
given an update v1 of Optimizer-1 and v2 of Optimizer-2, grafting allows to use the direction
suggested by Optimizer-2 with step size suggested by Optimizer-1. The final update is given by
∥v1∥
∥v2∥ · v2. Grafting has been shown to take advantage of a tuned optimizer step size and improve
performance. For SONew and rfdSON, we use Adam grafting - using Adam optimizer step size
∥v1∥ with SONew/rfdSON direction v2/∥v2∥. For Shampoo, we use its default RMSProp grafting.
We couldn’t find rfdSON official implementation, so we use our own implementation using which
we reproduced the numbers on convex losses (Appendix A.4) reported in their paper [37].

5.1 Autoencoder benchmark

Setup: We use three sparsity patterns for SONew - a) diagonal sparsity, resulting in a diagonal
preconditioner similar to adaptive first order methods like Adam and Adagrad; b) tridiagonal sparsity,
corresponding to a chain graph; and c) banded sparsity, represented by "band-k" in tables and figures
for band size of k. We compare SONew against widely used first order methods including SGD [32]),
SGD with Momentum [41], Nesterov [40], Adagrad [14], Adam [33], and Rmsprop [48]. We also
compare with rfdSON [37], a recently proposed memory efficient second order optimizer and with
Shampoo [24], a state of the art second-order optimizer used in practice, albeit with considerable mem-
ory and time requirements. Because of space constraint, we report only the best performing first order
methods while include the entire set in the appendix. As previously mentioned, rfdSON maintains
a low rank approximation of the Online Newton method’s statistics matrix

∑
i gig

T
i . We observed

rfdSON with adam grafting always performed better than without grafting, hence report the corre-
sponding numbers. We evaluate rfdSON with rank m approximation, denoted as rfdSON(m), which
requires (m+ 1) ∗#params space when using grafting. For a fair comparison with tridiag-SONew
and band-4-SONew, we test rfdSON with m = 1 and m = 4, respectively. For shampoo, computing
preconditioner at every step could be infeasible, instead it is computed every t steps - referred to
as Shampoo(t). Section 3.3 compares time and memory complexities of rfdSON, Shampoo, tridiag-
SONew, band-4-SONew. Note that d21 + d22 ≥ 2d1d2 ∀d1, d2, thus memory used by tridiag-SONew
is never more than Shampoo. We use a 2.72M parameters Autoencoder and each experiment is per-
formed using one V100 GPU having 16 GB memory. Further setup details are given in Appendix A.4.

Results: In Table 2 we observe that among first order methods, diag-SONew performs the best
while taking same amount of time. Increasing the number of edges in the sparsity graph to tridiag
or banded sparsity with band size 4 enhances the performance further. Tridiag-SONew runs 5×
faster than Shampoo at a marginal cost to the loss - even when Shampoo updates preconditioner once
every 20 steps. Using same space, rfdSON performs considerably worse than SONew. To test the
numerical stability and robustness of SONew, we reduce the precision to bfloat16 and conduct similar

8

(a) VIT validation error (b) GraphNetwork validation avg. precision

Figure 1: (a) Best validation error runs for tridiag-SONew vs Momentum, RMSProp, Adam, rfdSON, and
Shampoo on (a) VIT benchmark (b) GraphNetwork benchmark. We notice that tridiag-SONew achieves same
performance as Adam, the next best baseline using similar space and time, with 10% and 30% less steps/time in
ViT and GraphNetwork respectively. While using the same number of steps, SONew achieves relatively 0.7%
and ∼ 3.4% better validation error respectively. Shampoo doesn’t fit in the 16GB memory of TPU v2 for ViT
benchmark, hence we couldn’t perform hyperparameter tuning on it. On GraphNetwork, compared to Shampoo,
tridiag-SONew gives similar performance while being far more memory efficient (Refer Appendix A.4.2 for
more details).

Figure 2: (a) Comparison of SONew with first-order op-
timizers, rfdSON, and Shampoo on Autoencoder bench-
mark in float32 training. We observe that SONew per-
forms better than all first order methods, and second
order methods using the same memory.

Figure 3: Comparison of SONew and Adafactor on
LLM training. SONew takes 26% less steps to reach
the same performance as AdaFactor. Using the same
number of steps, it achieves ∼ 1.7% relative better
log perplexity.

experiments in Appendix A.4.4 (Table 8). We notice that SONew undergoes the least degradation in
performance compared to all other optimizers. We refer the reader to Appendix A.4.4 for a thorough
comparison and study of bfloat16 experiments. In Figure 2 we plot the loss curves of all the baselines
and SONew for float32 experiments. Moreover, in Appendix A.4.1 Table 4 we provide ablation
on performance of SONew with varying batch sizes.

Conparison with other baselines: We further compare SONew with KFAC [38], FishLeg [20], and
Eva [52] for completeness. Since these methods lack a JAX implementation, we adopted the authors’
official Pytorch implementations. When we attempted to integrate their code with our Autoencoder
benchmark, the results were unsatisfactory; for instance, FishLeg recorded a loss of approximately
∼ 60.0. This was notably unexpected as it underperformed Adam, a benchmark that the authors
themselves compared against. Given these results and to minimize modifications to the official code,
we decided to test our optimizer, SONew, directly on their provided autoencoder architecture. We
present the results in Appendix A.4.4 and notice that SONew outperforms these baselines as well by
a large margin.

5.2 VIT and GraphNetwork benchmark

Setup: We compare tridiag-SONew with Momentum, RMSProp, and Adam, on VIT (∼22M
parameters) and GraphNetwork (∼3.5M parameters) benchmark. For each experiment, we search

9

over 200 hyperparameters using 4 16 GB TPUs (v2) for each run. In order to conduct a fair
comparison of the running times, we executed the optimal hyperparameter configurations on 4 32GB
TPUs (v4) [31]. This is because certain operations, including reshapes and transposes, are not
optimized on TPUs (v2). Consequently, methods like rfdSON, Shampoo or SONew, which utilize
these operations, could potentially be disadvantaged if TPUs (v2) were used, skewing the comparative
results. All memory-efficient methods, including rfdSON, first-order methods, and SONew, exhibit
similar runtimes, with differences of approximately ∼ 5%. For ViT, we evaluate their performance
based on the same number of steps, as this also effectively compares wall-clock time. However, for
GraphNetwork, we train Shampoo for 20% fewer steps to achieve a comparable wall-clock time.

Results: We plot the runs that give best validation error rate (for VIT) or validation average precision
(for GraphNetwork) in Figure 1. tridiag-SONew requires ∼ 10% less steps to reach the same
performance as Adam for VIT, and ∼ 30% less steps for GraphNetwork benchmark. Training for
the same number of steps, we get ∼ 0.7% better relative validation error for VIT and ∼ 3.4% better
relative validation average precision for GraphNetwork. On GraphNetwork benchmark, tridiag-
SONew performs 1.3% relatively worse in average precision compared to Shampoo, while being
1.25× faster. On VIT benchmark, Shampoo doesn’t fit in a 16 GB TPU v2. Its statistics require
155M entries (∼ 7×#params) while tridiag-SONew requires only 44M entries (2×#params).
Hence, we could not tune it. rfdSON takes same memory but slightly more time because of its SVD
computations. We also notice rfdSON performs worse than Adam on both benchmarks; we leave
a thorough investigation of this behavior as a future work.
We show in Appendix A.4 that corresponding to the best validation runs, tridiag-SONew optimizer’s
training loss is also less than that of Adam. Furthermore, from an optimization point of view we
also show in Appendix A.4 that among all the 200 hyperparameter sweeps, the best training loss of
tridiag-SONew is 9% relatively better on ViT and 80% relatively better on GraphNN than that of
Adam. We further compare Adam and tridiag-SONew on a 248M parameter Transformer Model in
Appendix A.4.4. In next subsection, we present results on a decoder only large scale Language Model.

5.3 Experiments on Language Models

Setup: Owing to SONew’s scalability, we test it on a Large Language Model (LLM) [47] with 1
billion parameters. We compare SONew with AdaFactor (without factoring), a commonly used first
order optimizer for training LLMs [51, 11]. AdaFactor is similar to Adam except that in addition
it offers benefits like "parameter scaling", which has an effect of layerwise damping of the learning
rate. We defer the reader to [45] for more details. We trained the LLM for 5B tokens with a batch
size of 64k tokens. All experiments were performed on 16 TPU v4s. To support efficient training
of large models, we implemented a sharded tridiag-SONew following model parallelism approach.

Results: We report the experiment in Figure 3 where we find that SONew beats Adafactor by a large
margin. Specifically, SONew achieves the same log perplexity using 26% less steps. Moreover, using
the same number of tokens, SONew achieves 1.7% relative better performance on train loss, leading
to 1.35× speedup. This shows the potential of SONew as a scalable optimizer that can be used to
train large models while using second order information.

6 Conclusions and Future Work

In this paper we have introduced a novel Sparsified Online Newtwon (SONew) method that yields a
computationally efficient sparse preconditioner that can effectively train very large DNNs. The time
and memory complexity of SONew is linear in the number of parameters, unlike current Kronecker-
factorization based second-order methods for training deep networks. Our experimental results
show that SONew uses similar time as first order methods and achieves much better validation and
training performance in various benchmarks. In the future, we plan to explore different sparsity
graphs for which efficient solutions exist for the LogDet subproblem (11) and develop corresponding
regret bound analyses. Some of the limitations of SONew include: 1) explicit solutions akin to
Theorem 3.1 & 3.2 need not exist for all sparsity graphs G; 2) Not all graphs allow for efficient
optimizer implementation; 3) Among graphs permitting efficient optimizer implementation—like
tridiagonal sparsity—the ordering of parameters remains unexplored. An alternative ordering might
position closely related parameters adjacently, potentially enhancing performance; 4) Comprehensive
exploration of methods to scale final updates is needed. While we employ grafting [2], other
techniques, such as clipping [45, 38], merit investigation.

10

References
[1] N. Agarwal, B. Bullins, X. Chen, E. Hazan, K. Singh, C. Zhang, and Y. Zhang. Efficient

full-matrix adaptive regularization. In International Conference on Machine Learning, pages
102–110. PMLR, 2019.

[2] N. Agarwal, R. Anil, E. Hazan, T. Koren, and C. Zhang. Learning rate grafting: Transferability
of optimizer tuning, 2022.

[3] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[4] M. S. Andersen, J. Dahl, and L. Vandenberghe. Logarithmic barriers for sparse matrix cones.
Optimization Methods and Software, 28(3):396–423, 2013.

[5] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer. Scalable second order optimization for
deep learning. arXiv preprint arXiv:2002.09018, 2020.

[6] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and
graph networks, 2018. URL https://arxiv.org/abs/1806.01261.

[7] M. Bollhöfer, A. Eftekhari, S. Scheidegger, and O. Schenk. Large-scale sparse inverse covari-
ance matrix estimation. SIAM Journal on Scientific Computing, 41(1):A380–A401, 2019.

[8] L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR computational
mathematics and mathematical physics, 7(3):200–217, 1967.

[9] C. G. Broyden. Quasi-Newton methods and their application to function minimisation. Mathe-
matics of Computation, 21(99):368–381, 1967.

[10] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. Advances in neural information processing systems, 14, 2001.

[11] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope,
J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev,
H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan,
H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai,
T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean,
S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways, 2022.

[12] L. Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale, 2020. URL https://arxiv.org/abs/
2010.11929.

[14] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

[15] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[16] S. Fattahi and S. Sojoudi. Graphical lasso and thresholding: Equivalence and closed-form
solutions. Journal of machine learning research, 2019.

11

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
http://jmlr.org/papers/v12/duchi11a.html

[17] R. Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):
317–322, 1970.

[18] R. Fletcher. A new variational result for quasi-Newton formulae. SIAM Journal on Optimization,
1(1):18–21, 1991.

[19] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

[20] J. R. Garcia, F. Freddi, S. Fotiadis, M. Li, S. Vakili, A. Bernacchia, and G. Hennequin. Fisher-
legendre (fishleg) optimization of deep neural networks. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
c9lAOPvQHS.

[21] J. Godwin*, T. Keck*, P. Battaglia, V. Bapst, T. Kipf, Y. Li, K. Stachenfeld, P. Veličković,
and A. Sanchez-Gonzalez. Jraph: A library for graph neural networks in jax., 2020. URL
http://github.com/deepmind/jraph.

[22] D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics
of computation, 24(109):23–26, 1970.

[23] D. Goldfarb, Y. Ren, and A. Bahamou. Practical quasi-Newton methods for training deep neural
networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

[24] V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning, pages 1842–1850. PMLR, 2018.

[25] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69(2):169–192, 2007.

[26] E. Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

[27] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[28] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

[29] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and R. Poldrack. BIG & QUIC:
Sparse inverse covariance estimation for a million variables. Advances in neural information
processing systems, 26, 2013.

[30] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph
benchmark: Datasets for machine learning on graphs, 2020. URL https://arxiv.org/abs/
2005.00687.

[31] N. P. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil, S. Subramanian, A. Swing,
B. Towles, C. Young, X. Zhou, Z. Zhou, and D. Patterson. Tpu v4: An optically reconfigurable
supercomputer for machine learning with hardware support for embeddings, 2023.

[32] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Regression Function.
The Annals of Mathematical Statistics, 23(3):462 – 466, 1952. doi: 10.1214/aoms/1177729392.
URL https://doi.org/10.1214/aoms/1177729392.

[33] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with Bregman matrix
divergences. Journal of Machine Learning Research, 10(2), 2009.

[35] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient second order online learning
by sketching. Advances in Neural Information Processing Systems, 29, 2016.

[36] L. Luo, C. Chen, Z. Zhang, W.-J. Li, and T. Zhang. Robust frequent directions with application
in online learning. The Journal of Machine Learning Research, 20(1):1697–1737, 2019.

12

https://openreview.net/forum?id=c9lAOPvQHS
https://openreview.net/forum?id=c9lAOPvQHS
http://github.com/deepmind/jraph
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1214/aoms/1177729392

[37] L. Luo, C. Chen, Z. Zhang, W.-J. Li, and T. Zhang. Robust frequent directions with application
in online learning. Journal of Machine Learning Research, 20(45):1–41, 2019. URL http:
//jmlr.org/papers/v20/17-773.html.

[38] J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International conference on machine learning, pages 2408–2417. PMLR, 2015.

[39] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

[40] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). 1983.

[41] N. Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12
(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-6080(98)00116-6.
URL https://www.sciencedirect.com/science/article/pii/S0893608098001166.

[42] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–
117, jan 2015. doi: 10.1016/j.neunet.2014.09.003. URL https://doi.org/10.1016%2Fj.
neunet.2014.09.003.

[43] S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

[44] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics
of computation, 24(111):647–656, 1970.

[45] N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost, 2018.

[46] H.-J. M. Shi, T.-H. Lee, S. Iwasaki, J. Gallego-Posada, Z. Li, K. Rangadurai, D. Mudigere,
and M. Rabbat. A distributed data-parallel pytorch implementation of the distributed shampoo
optimizer for training neural networks at-scale, 2023.

[47] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for efficient
transformers for language modeling, 2022.

[48] T. Tieleman and G. Hinton. Lecture 6.5—rmsprop: Divide the gradient by a running average of
its recent magnitude. coursera: Neural networks for machine learning. 2012.

[49] L. Vandenberghe, M. S. Andersen, et al. Chordal graphs and semidefinite optimization. Foun-
dations and Trends® in Optimization, 1(4):241–433, 2015.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need, 2023.

[51] T. Wang, A. Roberts, D. Hesslow, T. L. Scao, H. W. Chung, I. Beltagy, J. Launay, and C. Raffel.
What language model architecture and pretraining objective work best for zero-shot generaliza-
tion?, 2022.

[52] L. Zhang, S. Shi, and B. Li. Eva: Practical second-order optimization with kronecker-vectorized
approximation. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=_Mic8V96Voy.

[53] R. Zhang, S. Fattahi, and S. Sojoudi. Large-scale sparse inverse covariance estimation via
thresholding and max-det matrix completion. In International Conference on Machine Learning,
pages 5766–5775. PMLR, 2018.

[54] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pages 928–936,
2003.

13

http://jmlr.org/papers/v20/17-773.html
http://jmlr.org/papers/v20/17-773.html
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://openreview.net/forum?id=_Mic8V96Voy

A Supplementary material

A.1 Properties of LogDet subproblem . 14

A.2 Regret bound analysis . 15

A.2.1 Regret bound decomposition . 15

A.2.2 Properties of tridiagonal preconditioner 16

A.2.3 Upperbounding Regret . 17

A.2.4 O(
√
T) Regret . 20

A.2.5 Non-convex guarantees . 23

A.3 Numerical stability . 23

A.3.1 Condition number analysis . 24

A.3.2 Degenerate Ht . 25

A.3.3 Numerically Stable SONew proof . 26

A.4 Additional Experiments, ablations, and details . 26

A.4.1 Ablations . 26

A.4.2 Memory Requirements . 27

A.4.3 Hyperparaeter search space . 27

A.4.4 Additional Experiments . 27

A.4.5 Convex experiments . 30

A.1 Properties of LogDet subproblem

Proof of Theorem 3.2

The optimality condition of (11) is PG(X
−1) = PG(H), X ∈ S++

n (G). Let Z = L−TD−1L−1,
then PG(Z) = H

ZL = L−TD−1 =⇒ ZLej = L−TD−1ej

Let Jj = Ij ∪ j, where Ij = {j + 1, . . . , j + b} as defined in the theorem, then select Jj indices of
vectors on both sides of the second equality above and selecting the Jj indices :

[
Zjj ZjIj
ZIjj ZJjJj

] [
1
LIj

]
=

[
1/djj
0

]
(15)

Note that L−T is an upper triangular matrix with ones in the diagonal hence J th
j block of L−T ej

will be [1, 0, 0, . . .]. Also, since PG(Z) = H[
Zjj ZjIj
ZIjj ZJjJj

]
=

[
Hjj HjIj
HIjj HJjJj

]
Substituting this in the linear equation 15[

Hjj HjIj
HIjj HJjJj

] [
1
LIj

]
=

[
1/djj
0

]
[
Hjj HjIj
HIjj HJjJj

] [
djj

djj · LIj

]
=

[
1
0

]
Hjjdjj + djjH

T
IjjLIjj = 1

HIjjdjj + djjHIjIjLIjj = 0

The lemma follows from solving the above equations. Note that here we used that lower triangular
halves of matrices L and H have the same sparsity patterns, which follows from the fact that banded

14

graph is a chordal graph with perfect elimination order {1, 2, . . . , n}. Furthermore, Xt is positive
definite, since as (Hjj − HT

Ijj
H−1

IjIj
HIjj) is a schur complement of submatrix of H formed by

Jj = Ij ∪ {j}.

Proof of Theorem 3.1 The proof follows trivially from Theorem 3.1, when b is set to 1.

A.2 Regret bound analysis

Proof sketch of Theorem 3.3. We decompose the regret into RT ≤ T1 + T2 + T3 in Lemma A.1
and individually bound the terms. Term T2 = 1

2η ·
∑T−1

t=1 (wt+1 −w∗)T (X−1
t+1 −X−1

t)(wt+1 −w∗)

depends on closeness of consecutive inverses of preconditioners, (X−1
t+1 − X−1

t), to upperbound
this we first give explicit expressions of X−1

t for tridiagonal preconditioner in Lemma A.2 in
Appendix A.2.2. This explicit expression is later used to bound each entry of (X−1

t+1 −X−1
t) with

O(1/
√
t) in Appendix A.2.4, this gives a O(

√
T) upperbound on T2. To show an upperbound on

T3 =
∑T

t=1
η
2 ·g

T
t Xtgt, we individually bound gTt Xtgt by using a Loewner order Xt ⪯ ∥Xt∥2 In ⪯

∥Xt∥∞In and show that ∥Xt∥∞ = O(1/
√
T) and consequently T3 = O(

√
T).

A.2.1 Regret bound decomposition

In this subsection we state Lemma A.1 which upper bound the regret RT using three terms T1, T2,
T3.

Lemma A.1 ([26]). In the OCO problem setup, if a prediction wt ∈ Rn is made at round t and is
updated as wt+1 := wt − ηXtgt using a preconditioner matrix Xt ∈ S++

n

RT ≤ 1

2η
· (∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥X−1

T
) (16)

+
1

2η
·
T−1∑
t=1

(wt+1 − w∗)T (X−1
t+1 −X−1

t)(wt+1 − w∗) (17)

+

T∑
t=1

η

2
· gTt Xtgt (18)

Proof.

∥wt+1 − w∗∥2X−1
t

= ∥wt − ηXtgt − w∗∥2X−1
t

= ∥wt − w∗∥2X−1
t

+ η2gTt Xtgt

− 2η(wt − w∗)T gt

=⇒ 2η(wt − w∗)T gt = ∥wt − w∗∥2X−1
t

− ∥wt+1 − w∗∥2X−1
t

+ η2gTt Xtgt

Using the convexity of ft, ft(wt) − ft(w
∗) ≤ (wt − w∗)T gt, where gt = ∆ft(wt) and summing

over t ∈ [T]

RT ≤
T∑

t=1

1

2η
·
(
∥wt − w∗∥2X−1

t
− ∥wt+1 − w∗∥2X−1

t

)
(19)

+
η

2
· gTt Xtgt (20)

15

The first summation can be decomposed as follows

T∑
t=1

(
∥wt − w∗∥2X−1

t
− ∥wt+1 − w∗∥2X−1

t

)
=
(
∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥2X−1

T

)
+

T−1∑
t=1

(wt+1 − w∗)T (X−1
t+1 −X−1

t)(wt+1 − w∗)

Substituting the above identity in the Equation (19) proves the lemma.

Let RT ≤ T1 + T2 + T3, where

• T1 = 1
2η · (∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥X−1

T
)

•

T2 =
1

2η
·
T−1∑
t=1

(wt+1 − w∗)T (X−1
t+1 −X−1

t)(wt+1 − w∗) (21)

• T3 =
∑T

t=1
η
2 · gTt Xtgt

A.2.2 Properties of tridiagonal preconditioner

In this subsection, we derive properties of the tridigonal preconditioner obtained from solving the
LogDet subproblem (11) with G set to a chain graph over ordered set of vertices {1, . . . , n}:

Xt = argmin
X∈Sn(G)++

− log det (X) + Tr(XHt) (22)

= argmin
X∈Sn(G)++

Dℓd (X,H−1
t) (23)

The second equality holds true only when Ht is positive definite. Although in Algorithm 1 we
maintain a sparse Ht = Ht−1 + PG(gtg

T
t /λt), H0 = ϵIn which is further used in (22) to find the

preconditioner Xt, our analysis assumes the full update Ht = Ht−1 + gtg
T
t /λt, H0 = ϵIn followed

by preconditioner Xt computation using (23). Note that the preconditioners Xt generated both ways
are the same, as shown in Section 3.2.

The following lemma shows that the inverse of tridiagonal preconditioners used in Algorithm 1, will
restore Hi,j , when (i, j) fall in the tridiagonal graph, else, the expression is related to product of
Hi+k,i+k+1 corresponding to the edges in the path from node i to j in chain graph. This lemma will
be used later in upperbounding T2.

Lemma A.2 (Inverse of tridiagonal preconditioner). If G = chain/tridiagonal graph and X̂ =

argminX∈Sn(G)++ Dℓd (X,H−1), then the inverse X̂−1 has the following expression

(X̂−1)ij =

{
Hij |i− j| ≤ 1
Hii+1Hi+1i+2...Hj−1j

Hi+1i+1...Hj−1j−1

(24)

Proof.

X̂−1X̂(j) = ej

Where X̂(j) is the jth column of X̂ . Let Ŷ denote the right hand side of Equation (24).

(Ŷ X̂)jj = X̂jj Ŷjj + X̂j−1j Ŷj−1j + X̂jj+1Ŷjj+1

= X̂jjHjj + X̂j−1jHj−1j + X̂jj+1Hjj+1

= 1

16

The third equality is by using the following alternative form of Equation (12):

(X̂(1))i,j =

0, if j − i > 1

−Hi,i+1

(HiiHi+1,i+1−H2
i+1,i+1)

, if j = i+ 1

1
Hii

(
1 +

∑
j∈neigG(i)

H2
ij

HiiHjj−H2
ij

)
, if i = j

, (25)

where i < j. Similarly, the offdiagonals of Ŷ X̂ can be evaluated to be zero as follows.

(Ŷ X̂)ij = ŶijX̂jj + Ŷij−1X̂j−1j + Ŷij+1X̂j+1j

= ŶijX̂jj + Ŷij
Hj−1j−1

Hj−1j
+ Ŷij

Hjj+1

Hjj
X̂j+1j

= 0

Lemma A.3. Let y ∈ Rn,
β = maxt maxi∈[n−1] |(Ht)ii+1| /

√
(Ht)ii(Ht)i+1i+1 < 1, then

yTX−1
t y ≤ ∥y∥22 ∥diag(Ht)∥2

(
1 + β

1− β

)
,

where Xt is defined as in Lemma A.2.

Proof. Let X̃−1
t = diag(Ht)

−1/2X̂t diag(Ht)
−1/2

yTX−1
t y ≤

∥∥∥diag(Ht)
1/2y

∥∥∥2
2

∥∥∥X̃−1
t

∥∥∥
2

(26)

Using the identity of spectral radius ρ(X) ≤ ∥X∥∞ and since X̃ is positive definite,
∥∥∥X̃−1

t

∥∥∥
2
≤

∥X̃−1
t ∥∞

∥∥∥X̃−1
t

∥∥∥
2
≤ max

i

∑
j

∣∣∣(X̃−1
t)ij

∣∣∣

≤ 1 + 2(β + β2 + . . .)

≤ 1 + β

1− β

The second inequality is using Lemma A.2. Substituting this in Equation (26) will give the lemma.

A.2.3 Upperbounding Regret

The following Lemma is used in upperbounding both T1 and T3. In next subsection, we’ll upper
bound T2 as well.

Lemma A.4. Let β = maxt∈[T] maxi∈[n−1] |(Ht)ii+1| /
√
(Ht)ii(Ht)i+1i+1, then

1/(1− β) ≤ 8/ϵ̂2,

where, ϵ̂ is a constant in parameter ϵ = ϵ̂G∞
√
T and consequently used in initializing H0 = ϵIn in

line 1 in Algorithm 1,

17

Proof.

1/(1− β) = max
t

max
i∈[n−1]

1

1−
∣∣∣(Ĥt)ii+1

∣∣∣ (27)

= max
t

max
i∈[n−1]

1 +
∣∣∣(Ĥt)ii+1

∣∣∣
1− (Ĥt)2ii+1

(where (Ĥt)ii+1 =
(Ht)ii+1√

(Ht)ii(Ht)i+1i+1)

≤ max
t

max
i∈[n−1]

2(Ht)ii(Ht)i+1i+1

(Ht)ii(Ht)i+1i+1 − (Ht)2ii+1

(since |(Ht)ii+1| ≤
√

(Ht)ii(Ht)i+1i+1)

≤ max
t

max
i∈[n−1]

2(Ht)ii(Ht)i+1i+1

det

([
(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

]) (28)

Note that
[

(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

]
⪰ ϵ

[
1 0
0 1

]
(using line 1 in Algorithm 1), thus

det

([
(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

])
≥ det

(
ϵ

[
1 0
0 1

])
= ϵ2. The numerator last inequality can

be upperbounded by bounding (Ht)ii individually as follows:

(Ht)ii =

t∑
s=1

(gs)
2
i /λs

=

t∑
s=1

(gs)
2
i /λs

=

t∑
s=1

(gs)
2
i /(G∞

√
s)

≤
t∑

s=1

G2
∞/(G∞

√
s)

≤
t∑

s=1

G∞√
s

≤ 2G∞
√
t (29)

Substituting the above in (28) gives

1/(1− β) ≤ max
t

8G2
∞t

ϵ̂2G2
∞T

≤ 8

ϵ̂2

Lemma A.5 (Upperbound of T1).

T1 ≤ 16D2
2G∞

√
T

ϵ̂2η
, (30)

where D2 = maxt∈[T] ∥wt − w∗∥2 and G∞ = maxt∥gt∥∞

18

Proof. Since XT is positive definite

T1 ≤
∥w1 − w∗∥2X−1

1

2η

=
(y(1))TX−1

1 y(1)

2η
(where y(1) = w1 − w∗)

≤
∥∥y(1)∥∥2

2
∥diag(H1)∥2
2η

· 1 + β

1− β
(Lemma A.3)

≤ D2
2(G

2
∞/λ1 + ϵ)

2η
· 1 + β

1− β
(line 4 in Algorithm 1)

≤ 8D2
2(G

2
∞/λ1 + ϵ)

ϵ̂2η
(Lemma A.4)

≤ 8D2
2(G∞ + ϵ̂G∞

√
T)

ϵ̂2η
(Since λt = G∞

√
t and ϵ = ϵ̂G∞

√
T)

≤ 16D2
2G∞

√
T

ϵ̂2η
(ϵ̂ < 1)

Lemma A.6 (O(
√
T) upperbound on T3).

T3 =

T∑
t=1

η

2
· gTt Xtgt ≤

4nG∞η

ϵ̂3

√
T

where, ∥gt∥∞ ≤ G∞ and parameters ϵ = ϵ̂G∞
√
T , λt = G∞

√
t in Algorithm 1.

Proof. Using Theorem 3.1, nonzero entries of Xt can be written as follows:

(Xt)ii =
1

Hii

1 +
∑

(i,j)∈EG

H2
ij

HiiHjj −H2
ij

(Xt)ii+1 = − Hii+1

HiiHi+1i+1 −H2
ii+1

where, EG denote the set of edges of the chain graph G in Theorem 3.1. Also, for brevity, the subscript
is dropped for Ht. Let X̂t =

√
diag(H)Xt

√
diag(H), then X̂t can be written as

(X̂t)ii =

1 +
∑

(i,j)∈EG

Ĥ2
ij

1− Ĥ2
ij

 ,

(X̂t)ii+1 = − Ĥii+1

1− Ĥ2
ii+1

,

where, Ĥij = Hij/
√
HiiHjj . Note that X̂t ⪯ ∥X̂t∥2In ⪯ ∥X̂t∥∞In, using

max{|λ1(X̂t)|, . . . , |λn(X̂t)|} ≤ ∥X̂t∥∞ (property of spectral radius). So we upperbound ∥X̂t∥∞ =

maxi∈[n]{|(X̂t)11|+ |(X̂t)12|, . . . , |(X̂t)ii−1|+ |(X̂t)ii|+ |(X̂t)ii+1|, . . . , |(X̂t)nn|+ |(X̂t)nn−1|}
next. Individual terms |(X̂t)ii−1|+ |(X̂t)ii|+ |(X̂t)ii+1| can be written as follows:

19

∑
(i,j)∈EG

|(X̂t)ij | = 1 +
∑

(i,j)∈EG

Ĥ2
ij

1− Ĥ2
ij

+
|Ĥij |

1− Ĥ2
ij

= 1 +
∑

(i,j)∈EG

|Ĥij |
1− |Ĥij |

≤ 2 max
i∈[n−1]

1

1− |Ĥii+1|

The last inequality is because |Ĥij | ≤ 1. Thus, ∥X̂t∥∞ ≤ 2maxi∈[n−1]
1

1−|Ĥii+1|
. Now

gTt Xtgt ≤ gTt diag(Ht)
−1/2X̂t diag(Ht)

−1/2gt

≤ ∥X̂t∥∞∥diag(Ht)
−1/2gt∥22

(∥∥∥X̂t

∥∥∥
2
≤
∥∥∥X̂t

∥∥∥
∞

)
≤ 2 max

i∈[n−1]

1

1− |Ĥii+1|
gTt diag(Ht)

−1gt.

Using diag(Ht) ⪰ ϵIn (step 1 in Algorithm 1), where ϵ = ϵ̂G∞
√
T as set in Lemma A.8, gives

gTt Xtgt ≤ 2 max
i∈[n−1]

1

1− |Ĥii+1|
∥gt∥22

ϵ̂G∞
√
T

≤ 2 max
i∈[n−1]

nG∞

ϵ̂(1− |Ĥii+1|)
√
T

≤ 2nG∞

ϵ̂(1− β)
√
T

(where β = max
t∈[T]

max
i∈[n−1]

∣∣∣(Ĥt)ii+1

∣∣∣)
Summing up over t gives∑

t

η

2
gTt Xtgt ≤

∑
t

16nG∞η

ϵ̂3
√
T

(Using Lemma A.4)

≤ 16nG∞η

ϵ̂3

√
T

A.2.4 O(
√
T) Regret

In this section we derive a regret upper bound with a O(T 1/2) growth. For this, we upper bound
T2 as well in this section. In (21), T2 =

∑T
t=2(wt − w∗)T (X−1

t −X−1
t−1)(wt − w∗) can be upper

bounded to a O(T 1/2) by upperbounding entries of X−1
t −X−1

t−1 individually. The following lemmas
constructs a telescoping argument to bound

∣∣(X−1
t −X−1

t−1)i,j
∣∣.

Lemma A.7. Let H, H̃ ∈ S++
n , such that H̃ = H + ggT /λ, where g ∈ Rn, then

H̃ij√
H̃iiH̃jj

− Hij√
HiiHjj

=
gigj

λ
√
H̃iiH̃jj

+
Hij√
HiiHjj

(√
HiiHjj

H̃iiH̃jj

− 1

)
= θij

20

Proof.

H̃ij√
H̃iiH̃jj

− Hij√
HiiHjj

=
1√

HiiHjj

(H̃ij

√
HiiHjj√
H̃iiH̃jj

−Hij)

=
1√

HiiHjj

gigj

√
HiiHjj√
H̃iiH̃jj

+Hij

√HiiHjj√
H̃iiH̃jj

− 1

The following Lemma bounds the change in the inverse of preconditioner Y −1, when there is a rank
one perturbation to H ≻ 0 in following LogDet problem (11) :

Y = argmin
X∈Sn(G)++

− log det (X) + Tr(XH)

= argmin
X∈Sn(G)++

Dℓd(X,H)

Lemma A.8 (Rank 1 perturbation of LogDet problem (11)). Let H, H̃ ∈ S++
n , such that

H̃ = H + ggT /λ, where g ∈ Rn. Also, Ỹ = argminX∈Sn(G)++ Dℓd(X, H̃) and Y =

argminX∈Sn(G)++ Dℓd(X,H), where G is a chain graph, then∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣ ≤ G2
∞κ(kβ + k + 2)βk−1/λ,

where i, i + k ≤ n, G∞ = ∥g∥∞ and maxi,j |Hij |/
√

HiiHjj ≤ β < 1. Let κ(diag(H)) :=

condition number of the diagonal part of H , then κ := max(κ(diag(H)), κ(diag(H̃))).

Proof. Using Lemma A.2 will give the following:∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣
=

∣∣∣∣∣ H̃ii+1 . . . H̃i+k−1i+k

H̃i+1i+1 . . . H̃i+k−1i+k−1

− Hii+1 . . . Hi+k−1i+k

Hi+1i+1 . . . Hi+k−1i+k−1

∣∣∣∣∣
=

∣∣∣∣√H̃iiÑii+1 . . . Ñi+k−1i+k

√
H̃i+ki+k

−
√

HiiNii+1 . . . Ni+k−1i+k

√
Hi+ki+k

∣∣∣
=

√
H̃iiH̃i+ki+k

∣∣∣Ñii+1 . . . Ñi+k−1i+k −Nii+1 . . . Ni+k−1i+k

√
HiiHi+ki+k/H̃iiH̃i+ki+k

∣∣∣∣
where Nij = Hij/

√
HiiHjj < 1 (Since determinants of 2x2 submatrices of H are positive).

Expanding Ñii+1 = Nii+1 + θii+1 (from Lemma A.7), subsequently Ñii+2 = Nii+2 + θii+2 and so
on will give∣∣∣Ñii+1 . . . Ñi+k−1i+k −Nii+1 . . . Ni+k−1i+k

√
HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣ =∣∣∣θii+1Ñi+1i+2 . . . Ñi+k−1i+k +Nii+1

(
Ñi+1i+2 . . . Ñi+k−1i+k −Ni+1i+2 . . . Ni+k−1i+k

√
HiiHi+ki+k

H̃iiH̃i+ki+k

)
|

21

= |θii+1Ñi+1i+2 . . . Ñi+k−1i+k +Nii+1θi+1i+2Ñii+3 . . . Ñi+k−1i+k + · · ·+Nii+1 . . . Nii+k−1θi+k−1i+k

+Nii+1 . . . Nii+k

(
1−

√
HiiHi+ki+k

H̃iiH̃i+ki+k

)
|

≤ (

k−1∑
l=0

|θi+li+l+1|)βk−1 + βk−1

∣∣∣∣∣1−
√

HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣ ,
=⇒

∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣ ≤√H̃iiH̃i+ki+k ·

(
(

k−1∑
l=0

|θi+li+l+1|)βk−1 + βk−1

∣∣∣∣∣1−
√

HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣
)

where maxi,j |Ni,j |, maxi,j |Ñi,j | ≤ β < 1. Expanding θi+li+l+1 from Lemma A.7 in the term

|θi+li+l+1|
√
H̃iiH̃i+ki+k will give:

|θi+li+l+1|
√
H̃iiH̃i+ki+k

=

∣∣∣∣∣∣
√

H̃iiH̃i+ki+k
gi+lgi+l+1

λ
√
H̃i+li+lH̃i+l+1i+l+1

+

√
H̃iiH̃i+ki+kNi+li+l+1

(√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

− 1

)∣∣∣∣∣
≤

∣∣∣∣∣∣
√

H̃iiH̃i+ki+k
gi+lgi+l+1

λ
√
H̃i+li+lH̃i+l+1i+l+1

∣∣∣∣∣∣+
∣∣∣∣∣
√
H̃iiH̃i+ki+kNi+li+l+1

(
1−

√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

)∣∣∣∣∣
Since Hi+li+lHi+l+1i+l+1 ≤ H̃i+li+lH̃i+l+1i+l+1,

1−

√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

≤ max

(
1− Hi+li+l

H̃i+li+l

, 1− Hi+l+1i+l+1

H̃i+l+1i+l+1

)
≤ max

(
g2i+l

λH̃i+li+l

,
g2i+l+1

λH̃i+l+1i+l+1

)
Using the above, Hi,i/Hj,j ≤ κ, and |gi| ≤ G∞, ∀i, j ∈ [n], gives√

H̃iiH̃i+ki+k|θi+li+l+1| ≤ G2
∞κ/λ+ βG2

∞κ/λ

≤ G2
∞κ(1 + β)/λ

Thus the following part of
∣∣∣∣(Ỹ −1 − Y −1

)
ii+k

∣∣∣∣ can be upperbounded:

√
H̃iiH̃i+ki+k

(
(

k−1∑
l=0

|θi+li+l+1|)βk−1

)
≤ G2

∞κ(1 + β)kβk−1/λ

Also,
√

H̃iiH̃i+ki+kβ
k−1

∣∣∣1−√HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣ ≤ βk−1κG2
∞/λ, so∣∣∣∣(Ỹ −1 − Y −1

)
ii+k

∣∣∣∣ ≤ G2
∞κ(kβ + k + 2)βk−1/λ

Lemma A.9 (O(
√
T) upper bound of T2). Given that κ(diag(Ht)) ≤ κ, ∥wt − w∗∥2 ≤ D2,

maxi,j |(Ht)ij |/
√

(Ht)ii(Ht)jj ≤ β < 1, ∀t ∈ [T] in Algorithm 1, then T2 in Appendix A.2.1 can
be bounded as follows:

T2 ≤ 2048
√
T

ηϵ̂5
(G∞D2

2)

where λt = G∞
√
t, and ϵ = ϵ̂G∞

√
T in Algorithm 1, and ϵ̂ ≤ 1 is a constant.

22

Proof. Note that T2 = 1
2η ·

∑T−1
t=1 (wt+1 − w∗)T (X−1

t+1 − X−1
t)(wt+1 − w∗) ≤∑T−1

t=1 D2
2

∥∥(X−1
t+1 −X−1

t)
∥∥
2
/(2η). Using ∥A∥2 = ρ(A) ≤ ∥A∥∞ for symmetric matrices A,

we get ∥∥X−1
t+1 −X−1

t

∥∥
2
≤ ∥X−1

t+1 −X−1
t ∥∞

= max
i

(
∑
j

∣∣(X−1
t+1 −X−1

t)ij
∣∣)

≤ 16
G∞κ√
t(1− β)2

(Lemma A.8)

≤ 1024 · G∞κ√
tϵ̂4

Now using κ ≤ 2/ϵ̂ (using Equation (29) and (Ht)ii > ϵ̂) and summing up terms in T2 using the
above will give the result.

Putting together T1, T2 and T3 from Lemma A.5, Lemma A.9 and Lemma A.6 respectively, when ϵ,
λt are defined as in Lemma A.9:

T1 ≤16D2
2G∞

√
T

ϵ̂2η
,

T2 ≤2048
√
T

ηϵ̂5
(G∞D2

2) (31)

T3 ≤ 4nG∞η

ϵ̂3

√
T (32)

Setting η = D2

ϵ̂
√
n

RT ≤ T1 + T2 + T3 ≤ O(
√
nG∞D2

√
T)

A.2.5 Non-convex guarantees

Minimizing smooth non-convex functions f is a complex yet interesting problem. In Agarwal
et al. [1], this problem is reduced to an online convex optimization, where a sequence of objectives
ft(w) = f(w) + c ∥w − wt∥22 are minimized. Using this approach Agarwal et al. [1] established
convergence guarantees to reach a stationary point via regret minimization. Thus non-convex
guarantees can be obtained from regret guarantees and is our main focus in the paper.

A.3 Numerical stability

In this section we conduct perturbation analysis to derive an end-to-end componentwise condition
number (pg. 135, problem 7.11 in [27]) upper bound of the tridiagonal explicit solution in Theo-
rem 3.1. In addition to this, we devise Algorithm 3 to reduce this condition number upper bound
for the tridiagonal sparsity structure, and be robust to Ht which don’t follow the non-degeneracy
condition: any principle submatrix of Ht corresponding to a complete subgraph of G.
Theorem A.10 (Condition number of tridiagonal LogDet subproblem (11)). Let H ∈ S++

n be such
that Hii = 1 for i ∈ [n]. Let ∆H be a symmetric perturbation such that ∆Hii = 0 for i ∈ [n], and
H +∆H ∈ S++

n . Let PG(H) be the input to 11, where G is a chain graph, then

κℓd
∞ ≤ max

i∈[n−1]
2/(1− β2

i) = κ̂ℓd
∞, (33)

where, βi = Hii+1,κℓd
∞ := componentwise condition number of (11) for perturbation ∆H .

The tridiagonal LogDet problem with inputs H as mentioned in Theorem A.10, has high condition
number when 1 − β2

i = Hii − H2
ii+1/Hi+1i+1 are low and as a result the preconditioner Xt in

23

SONew (Algorithm 1) has high componentwise relative errors. We develop Algorithm 3 to be robust
to degenerate inputs H , given that Hii > 0. It finds a subgraph G̃ of G for which non-degeneracy
conditions in Theorem 3.2 is satisfied and (14) is well-defined. This is done by removing edges
which causes inverse H−1

IjIj
to be singular or (Hjj −HT

Ijj
H−1

IjIj
HIjj) to be low. In the following

theorem we also show that the condition number upper bound in Theorem A.10 reduces in tridiagonal
case. To test the robustness of this method we conducted an ablation study in Table 5, in an
Autoencoder benchmark (from Section 5) in bfloat16 where we demonstrate noticeable improvement
in performance when Algorithm 3 is used.

Theorem A.11 (Numerically stable algorithm). Algorithm 3 finds a subgraph G̃ of G, such that
explicit solution for G̃ in (14) is well-defined. Furthermore, when G is a tridiagonal/chain graph, the
component-wise condition number upper bound in (33) is reduced upon using Algorithm 3, κ̂G̃

ℓd < κ̂G
ℓd,

where κ̂G̃
ℓd, κ̂G

ℓd are defined as in Theorem A.10 for graphs G̃ and G respectively.

The proofs for Theorems A.10 and A.11 are given in the following subsections.

Algorithm 3 Numerically stable banded LogDet solution
1: Input: G− tridiagonal or banded graph, H− symmetric matrix in Rn×n with sparsity structure G and

Hii > 0, γ− tolerance parameter for low schur complements.
2: Output: Finds subgraph G̃ of G without any degenerate cases from Lemma A.13 and finds preconditioner

X̂ corresponding to the subgraph
3: Let Ei = {(i, j) : (i, j) ∈ EG} be edges from vertex i to its neighbours in graph G.
4: Let V +

i = {j : i < j, (i, j) ∈ EG} and V −
i = {j : i > j, (i, j) ∈ EG}, denote positive and negative

neighbourhood of vertex i.
5: Let K =

{
i : Hii −HT

Iii
H−1

IiIi
HIii is undefined or ≤ γ

}
6: Consider a new subgraph G̃ with edges EG̃ = EG \ (

⋃
i∈K Ei ∪ (V +

i × V −
i))

7: return X̂ := SPARSIFIED_INVERSE (H̃t, G̃), where H̃t = PG̃(Ht)

A.3.1 Condition number analysis

Theorem A.12 (Full version of Theorem A.10). Let H ∈ S++
n such that Hii = 1, for i ∈ [n]

and a symmetric perturbation ∆H such that ∆Hii = 0, for i ∈ [n] and H + ∆H ≻ 0. Let X̂ =

argminX∈Sn(G)++ Dℓd

(
X,H−1

)
and X̂ + ∆X̂ = argminX∈Sn(G)++ Dℓd

(
X, (H +∆H)−1

)
,

here G := chain/tridiagonal sparsity graph and Sn(G)++ denotes positive definite matrices which
follows the sparsity pattern G.

κℓd = lim
ϵ→0

sup

∣∣∣∆X̂ij

∣∣∣
ϵ
∣∣∣X̂ij

∣∣∣ : |∆Hk,l| ≤ |ϵHk,l| , (k, l) ∈ EG

≤ max

i∈[n−1]
1/(1− β2

i)

where, κℓd := condition number of the LogDet subproblem, κ2(.) := condition number of a matrix in
ℓ2 norm, βi = Hii+1/

√
HiiHi+1i+1

Proof. Consider the offdiagonals for which (X̂ + ∆X̂)ii+1 = −Hii+1/(1 − H2
ii+1) =

f(Hii+1),where f(x) = −x/(1 − x2). Let y = f(x), ŷ = f(x + ∆x) and |∆x/x| ≤ ϵ then
using Taylor series ∣∣∣∣ (ŷ − y)

y

∣∣∣∣ = ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ ∣∣∣∣∆x

x

∣∣∣∣+O((∆x)2)

=⇒ lim
ϵ→0

∣∣∣∣ (ŷ − y)

ϵy

∣∣∣∣ ≤ xf ′(x)

f(x)

24

Using the above inequality, with x := Hii+1 and y := X̂ii+1,

lim
ϵ→0

∣∣∣∣∣∆X̂ii+1

ϵX̂ii+1

∣∣∣∣∣ ≤ 1 +H2
ii+1

1−H2
ii+1

(34)

≤ 2

1−H2
ii+1

Let g(x) = x2/(1− x2), let y1 = g(w1), y2 = g(x2), ŷ1 = g(w1 +∆x), ŷ2 = g(x2 +∆x). Using
Taylor series ∣∣∣∣ (ŷ1 − y1)

y1

∣∣∣∣ = ∣∣∣∣x1f
′(x1)

f(x1)

∣∣∣∣ ∣∣∣∣∆x1

x1

∣∣∣∣+O((∆x1)
2)∣∣∣∣ (ŷ2 − y2)

y2

∣∣∣∣ = ∣∣∣∣x2f
′(x2)

f(x2)

∣∣∣∣ ∣∣∣∣∆x2

x2

∣∣∣∣+O((∆x2)
2)

=⇒ lim
ϵ→0

∆y1 +∆y2
ϵ(1 + y1 + y2)

≤ max

(
2

1− x2
1

,
2

1− x2
2

)
Putting x1 := Hii+1, x2 := Hii−1 and analyzing y1 := H2

ii+1/(1−H2
ii+1) and y2 := H2

ii−1/(1−
H2

ii−1) will result in the following

lim
ϵ→0

∣∣∣∣∣∆X̂ii

X̂ii

∣∣∣∣∣ ≤ max

(
2

1−H2
ii+1

,
2

1−H2
ii−1

)
(35)

Since X̂ii = 1 + H2
ii+1/(1 − H2

ii+1) + H2
ii−1/(1 − H2

ii−1). Putting together Equation (35) and
Equation (34), the theorem is proved.

A.3.2 Degenerate Ht

In SONew (1), the Ht = PG(
∑t

s=1 gsg
T
s /λt) generated in line 4 could be such that the matrix∑t

s=1 gsg
T
s /λt need not be positive definite and so the schur complements Hii −H2

ii+1/Hi+1i+1

can be zero, giving an infinite condition number κℓd
∞ by Theorem A.10. The following lemma

describes such cases in detail for a more general banded sparsity structure case.
Lemma A.13 (Degenerate inputs to banded LogDet subproblem). Let H = PG(GGT), when ϵ = 0

in Algorithm 1, where G ∈ Rn×T and let g(i)1:T be ith row of G, which is gradients of parameter i for

T rounds, then Hij =
〈
g
(i)
1:T , g

(j)
1:T

〉
.

• Case 1: For tridiagonal sparsity structure G: if g
(j)
1:T = g

(j+1)
1:T , then Hjj −

H2
jj+1/Hj+1j+1 = 0.

• Case 2: For b > 1 in (14): If rank(HJjJj
) = rank(HIjIj) = b, then (Hjj −

HT
Ijj

H−1
IjIj

HIjj) = 0 and Djj = ∞. If rank(HIjIj) < b then the inverse H−1
IjIj

doesn’t
exist and Djj is not well-defined.

Proof. For b = 1, if g
(j)
1:T = g

(j+1)
1:T , then Hjj+1 = Hjj = Hj+1j+1 =

∥∥∥g(j)1:T

∥∥∥2
2
, thus Hjj−

H2
jj+1/Hj+1j+1 = 0.

For b > 1, since HIjIj , using Guttman rank additivity formula, rank(Hjj −H2
jj+1/Hj+1j+1) =

rank(HJjJj
)− rank(HIjIj) = 0, thus Hjj −H2

jj+1/Hj+1j+1 = 0.
Furthermore, if rank(H) ≤ b, then all b+ 1× b+ 1 principal submatrices of H have rank b, thus ∀j,
HJjJj

have a rank b, thus Djj for all j are undefined.

If GGT =
∑T

i=1 gigi is a singular matrix, then solution to the LogDet problem might not be well-
defined as shown in Lemma A.13. For instance, Case 1 can occur when preconditioning the input
layer of an image-based DNN with flattened image inputs, where jth and (j + 1)th pixel can be
highly correlated throughout the dataset. Case 2 can occur in the first b iterations in Algorithm 1
when the rank of submatrices rank(HIjIj) < b and ϵ = 0.

25

Table 3: float32 experiments on Autoencoder benchmark using different band sizes. Band size 0
corresponds to diag-SONew and 1 corresponds to tridiag-SONew. We see the training loss getting
better as we increase band size

Band size 0 (diag-SONew) 1 (tridiag-SONew) 4 10

Train CE loss 53.025 51.723 51.357 51.226

A.3.3 Numerically Stable SONew proof

Proof of Theorem A.11

Let Ii = {j : i < j, (i, j) ∈ EG} and I ′i =
{
j : i < j, (i, j) ∈ EG̃

}
Let K ={

i : Hii −HT
Iii

H−1
IiIi

HIii is undefined or 0, i ∈ [n]
}

denote vertices which are getting removed by
the algorithm, then for the new graph G̃, Dii = 1/Hii,∀i ∈ K since Hii > 0.
Let K̄ =

{
i : Hii −HT

Iii
H−1

IiIi
HIii > 0, i ∈ [n]

}
. Let for some j ∈ K̄, if

l = argmin {i : j < i, i ∈ K ∩ Ij} ,

denotes the nearest connected vertex higher than j for which Dll is undefined or zero, then according
to the definition EG̃ in Algorithm 3, I ′j = {j + 1, . . . l− 1} ⊂ Ij , since Djj is well-defined, HIjIj is
invertible, which makes it a positive definite matrix (since H is PSD). Since Hjj −HT

Ijj
H−1

IjIj
HIjj >

0, using Guttman rank additivity formula HJjJj
≻ 0, where Jj = Ij ∪ j. Since HJ′

jJ
′
j

is a submatrix
of HJjJj , it is positive definite and hence its schur complement Hjj −HT

I′
jj
H−1

I′
jI

′
j
HI′

jj
> 0. Thus

for all j ∈ [n], the corresponding Djj’s are well-defined in the new graph G̃.

Note that κG̃
ℓd = maxi∈[n−1] 1/(1− β2

i) < maxi∈K̄ 1/(1− β2
i) = κG

ℓd, for tridiagonal graph, where
βi = Hii+1, in the case where Hii = 1. This is because the argmaxi∈[n−1] 1/(1− β2

i) ∈ K.

A.4 Additional Experiments, ablations, and details

A.4.1 Ablations

Effect of band size in banded-SONew Increasing band size in banded-SONew captures more
correlation between parameters, hence should expectedly lead to better preconditioners. We confirm
this through experiments on the Autoencoder benchmark where we take band size = 0 (diag-SONew),
1 (tridiag-SONew), 4, and 10 in Table 3.

Effect of mini-batch size To find the effect of mini-batch size, in Table 4, We empirically compare
SONew with state of the art first-order methods such as Adam and RMSProp, and second-order
method Shampoo. We see that SONew performance doesn’t deteriorate much when using smaller
or larger batch size. First order methods on the other hand suffer significantly. We also notice that
Shampoo doesn’t perform better than SONew in these regimes.

Table 4: Comparison on Autoencoder with different batch-sizes
Baseline\Batch size 100 1000 5000 10000
RMSProp 55.61 53.33 58.69 64.91

Adam 55.67 54.39 58.93 65.37

Shampoo(20) 53.91 50.70 53.52 54.90

tds 53.84 51.72 54.24 55.87

bds-4 53.52 51.35 53.03 54.89

Effect of Numerical Stability Algorithm 3 On tridiag-SONew and banded-4-SONew, we observe
that using Algorithm 3 improves training loss. We present in Table 5 results where we observed
significant performance improvements.

26

Table 5: bfloat16 experiments on Autoencoder benchmark with and without Algorithm 3. We
observe improvement in training loss when using Algorithm 3

Optimizer Train CE loss - without Algorithm 3 Train CE loss - with Algorithm 3
tridiag-SONew 53.150 51.936

band-4-SONew 51.950 51.84

Table 6: A rough estimate of memory requirement comparisons of different optimizers tested across
benchmarks.

Benchmark # model parameters K-FAC Shampoo FishLeg Eva Adam SGD+Momentum RMSprop tds-SONew
Autoencoder n=1.4M 5.56n 6.56n 4.28n n 2n n n 3n

GraphNetwork n=3.5M 8.6n 10.6n 4.8n n 2n n n 3n

Vision Transformer n=22M 6.4n 7.2n 3.7n n 2n n n n

Language Model n=1.3B 5.6n 6.6n 3.3n n 2n n n 3n

A.4.2 Memory Requirements

We present a list of approximate memory requirements of different optimizers across different
benchmarks in Table 6. Note that for K-FAC and Shampoo, because preconditioner is updated once
only a few steps, they require storing the latest computed preconditioners as well along with the
statistics, causing even higher memory overhead.

A.4.3 Hyperparaeter search space

We provide the hyperparamter search space for experiments presented in Section 5. We search over
2k hyperparameters for each Autoencoder experiment using a Bayesian Optimization package. The
search ranges are: first order momentum term β1 ∈ [1e− 1, 0.999], second order momentum term
β2 ∈ [1e − 1, 0.999], learning rate ∈ [1e − 7, 1e − 1], ϵ ∈ [1e − 10, 1e − 1]. We give the optimal
hyperparameter value for each experiment in Table 12. For VIT and GraphNetwork benchmark, we
search β1, β2 ∈ [0.1, 0.999], lr ∈ [1e− 5, 1e− 1], ϵ ∈ [1e− 9, 1e− 4], weight decay ∈ [1e− 5, 1.0],
learning rate warmup ∈ [2%, 5%, 10%]∗total_train_steps, dropout∈ [00, 0.1], label smoothing over
{0.0, 0.1, 0.2} . We use cosine learning rate schedule. Batch size was kept = 1024, and 512 for Vision
Transformer, and GraphNetwork respectively. We sweep over 200 hyperparameters in the search
space for all the optimizers.
For rfdSON [37], there’s no ϵ hyperparameter. In addition to the remaining hyperparameters, we tune
α ∈ {1e− 5, 1.0} (plays similar role as ϵ) and µt ∈ [1e− 5, 0.1].
For LLM [47] benchmark, we only tune the learning rate ∈ [1e− 2, 1e− 3, 1e− 4] while keeping
the rest of the hyperparams as constant. This is due to the high cost of running experiments hence
we only tune the most important hyperparameter. For Adafactor [45], we use factored=False, decay
method=adam, β1 = 0.9, weight decay=1e− 3, decay factor=0.99, and gradient clipping=1.0.

A.4.4 Additional Experiments

VIT and GraphNetwork Benchmarks: In Figure 5 we plot the training loss curves of runs
corresponding to the best validation runs in Figure 1. Furthermore, from an optimization point
of view, we plot the best train loss runs in Figure 6 got by searching over 200 hyperparameters.
We find that tridiag-SONew is 9% and 80% relatively better in ViT and GraphNetwork benchmark
respectively (Figure 6), compared to Adam (the next best memory efficient baseline).

Autoencoder float32 and bfloat16 experiments: We provide curves of all the baselines and SONew
in Figure 4(a) and the corresponding numbers in Table 7 for float32 experiments.

To test numerical stability of SONew and compare it with other algorithm in low precision regime,
we also conduct bfloat16 experiments on the Autoencoder benchmark (Table 8). We notice that
SONew undergoes the least degradation. Tridiagonal-sparsity SONew CE loss increases by only 0.21
absolute difference (from 51.72 in float32 (7) to 51.93), whereas Shampoo and Adam incur 0.70 loss
increase. It’s worthwhile to note that SONew performs better than all first order methods while taking
similar time and linear memory, whereas while Shampoo performs marginally better, it is 22× slower

27

Table 7: float32 experiments on Autoencoder benchmark. We observe that diag-SONew performs the best
among all first order methods while taking similar time. tridiag and band-4 perform significantly better than
first order methods while requiring similar linear space and time. Shampoo performs best but takes O(d31 + d32)
time for computing preconditioner of a linear layer of size d1 × d2, whereas our methods take O(d1d2) time, as
mentioned in Section 3.3. rfdSON takes similar space as SONew but performs considerably worse.

Optimizer First Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew

Train CE loss 67.654 59.087 54.393 58.651 53.330 53.591 53.025

Time(s) 62 102 62 67 62 62 63

Optimizer Second Order Methods
Shampoo(20) rfdSON(1) rfdSON(4) tridiag-SONew band-4-SONew

Train CE loss 50.702 53.56 52.97 51.723 51.357

Time(s) 371 85 300 70 260

Table 8: bfloat16 experiments on Autoencoder benchmark to test the numerical stability of SONew and
robustness of Algorithm 3. We notice that diag-SONew degrades only marginally (0.26 absolute difference)
compared to float32 performance. tridiag-SONew and band-4-SONew holds similar observations as well.
Shampoo performs the best but has a considerable drop (0.70) in performance compared to float32 due to
using matrix inverse, and is slower due to its cubic time complexity for computing preconditioners. Shampoo
implementation uses 16-bit quantization to make it work in 16-bit setting, leading to further slowdown. Hence
the running time in bfloat16 is even higher than in float32.

Optimizer First Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew

Train CE loss 80.454 72.975 68.854 70.053 53.743 54.328 53.29

Train time(s) 36 43 37 36 37 38 44

Optimizer Second Order Methods
Shampoo(20) rfdSON(1) rfdSON(4) tridiag-SONew band-4-SONew

Train CE loss 51.401 57.42 55.53 51.937 51.84

Train time(s) 1245 80 284 55 230

(a) float32 - autoencoder (b) bfloat16 - autoencoder

Figure 4: Training curves of all the baselines for Autoencoder benchmar (a) float32 training (b) bfloat16 training

than tridiagonal-SONew. The corresponding loss curves are given in Figure 4(b).
Note: In the main paper, our reported numbers for rfdSON on Autoencoder benchmark in Table 2
for float32 experiments are erraneuous. Please consider the numbers provided in Table 7 and the
corresponding curve in Figure 4(a). Note that there’s no qualitiative change in the results and none of
the claims made in the paper are affected. SONew is still significantly better than rfdSON. We also
meticulously checked all other experiments, and they do not have any errors.

Autoencoder on KFAC, FishLeg, Eva: For completeness, We compare SONew against KFAC
[38], FishLeg [20], and Eva [52] on Autoencoder benchmark as used in their official implementation.

28

(a) VIT train CE loss (b) GraphNetwork train CE loss

Figure 5: Train loss corresponding to the best validation runs in Figure 1 (a) VIT benchmark (b) GraphNetwork
benchmark. We observe that tridiag-SONew match or perform better than Adam.

(a) Best VIT train CE loss (b) Best GraphNetwork train CE loss

Figure 6: Best train loss achieved during hyperparam tuning. (a) VIT benchmark (b)GraphNetwork benchmark.
We observe that tridiag-SONew significantly outperforms Adam, while being comparable or better than shampoo.

Figure 7: Autoencoder benchmark run using Pytorch on KFAC, FishLeg, Eva, and tridiag-SONew.
We notice that tridiag-SONew beats all other baselines by a large margin.

The main difference is their implementation uses ReLU activation compared to Tanh that we used for
all our Autoencoder experiments. As these baselines done have JAX implementation, we use their
official PyTorch implementation and run tridiag-SONew in PyTorch as well. Hyperparameter search
is conducted for SONew similar to as reported above, over learning rate, β1, β2, and ϵ. For KFAC
and Eva, rather than β2, damping factor is tuned over [1e− 5, 10] (default value specified is 0.03).
kl_clip is tuned as well over [1e − 5, 1.0]. Preconditioners are updates once every 15 iterations to
have same wall clock time as other baselines and SONew. For FishLeg, auxiliary learning rate is
tuned ∈ [1e− 7, 1e− 1] and damping ∈ [1e− 5, 1.0]. All other hyperparameters are tuned similar to
SONew. Eva is trained for 100 epochs, and for other methods we change number of epochs such that

29

(a) Validation CE loss (b) Train CE loss

Figure 8: We observe mixed results for 248M parameter language model benchmark. This is possibly because
48 trials were insufficient for optimal tuning. We leave thorough tuning and investigating into the above
observation as future work.

each experiment takes same amount of time. Each optimizer is tuned using 600 hyperparameters.
The results are in Figure 7, where notice that tridiag-SONew beats all the baselines by a large margin.

Adam vs SONew on 248M Language Model: We conduct an additional experiment on a 248M
parameter transformer architecture [50] language model. The model is trained on WikiText103,
introduced in [39]. We train the model for 3 epochs, having 8M tokens per epoch with a batch size of
8k tokens. We search over 48 hyperparameters, tuning learning rate ∈ 2e− 2, 1e− 2, 5e− 3, 1e− 3,
β2 ∈ 0.99, 0.999, weight decay ∈ 0.0, 0.1, and ϵ ∈ 1e− 10, 1e− 8, 1e− 6, while fixing β1 = 0.9.
Validation and training loss is given in Figure 8. Our observations indicate mixed results. While
tds-SONew exhibits superior validation performance, Adam outperforms in training metrics. We
believe that the 48 trials might have been insufficient for optimal tuning. It’s conceivable that with
further trials, SONew’s training loss could surpass that of Adam. We leave this line of investigation
for future work.

A.4.5 Convex experiments

As our regret bound applies to convex optimization, we compare SONew to rfdSON [37], another
recent memory-efficient second-order Newton method. We follow [37] for the experiment setup
- each dataset is split randomly in 70%/30% train and test set. Mean squared loss is used. For
tridiag-SONew, we use a total of 2 ∗ d space for d parameters. Hence, for fair comparison we show
rfdSON with m = 2. Since the code isn’t open sourced, we implemented it ourselves. In order to
show reproducibility with respect to the reported numbers in [37], we include results with m = 5 as
well. We see in the Table 9 that tridiag-SONew consitently matches or outperforms rfdSON across all
3 benchmarks. Each experiment was run for 20 epochs and we report the best model’s performance
on test set.

Table 9: Comparison of rfdSON and tridiag-SONew in convex setting on three datasets. We
optimize least square loss

∑
t(yt − wTxt)

2 where w is the learnable parameter and (xt, yt) is
the tth training point. Reported numbers is the accuracy on the test set.

Table 10: (a) Dataset stats
Dataset # total points dimension

a9a 32,561 123
gisette 6000 5000
mnist 11791 780

Table 11: (b) RFD-SON vs tridiag-SONew
Dataset RFD-SON, m=2 RFD-SON, m=5 tridiag-SONew

a9a 83.3 83.6 84.6
gisette 96.1 96.2 96.6
mnist 93.2 94.5 96.5

30

Table 12: Optimal hyperparams for Autoencoder Benchmark

Table 13: (a) float32 experiments optimal hy-
perparamters

Baseline β1 β2 ϵ lr
SGD 0.99 0.91 8.37e-9 1.17e-2

Nesterov 0.914 0.90 3.88e-10 5.74e-3
Adagrad 0.95 0.90 9.96e-7 1.82e-2

Momentum 0.9 0.99 1e-5 6.89e-3
RMSProp 0.9 0.9 1e-10 4.61e-4

Adam 0.9 0.94 1.65e-6 3.75e-3
Diag-SONew 0.88 0.95 4.63e-6 1.18e-3

Shampoo 0.9 0.95 9.6e-9 3.70e-3
tridiag 0.9 0.96 1.3e-6 8.60e-3
band-4 0.88 0.95 1.5e-3 5.53e-3

Table 14: (b) bfloat16 experiments optimal
hyperparamters

Baseline β1 β2 ϵ lr
SGD 0.96 0.98 2.80e-2 1.35e-2

Nesterov 0.914 0.945 8.48e-9 6.19e-3
Adagrad 0.95 0.93 2.44e-5 2.53e-2

Momentum 0.9 0.99 0.1 7.77e-3
RMSProp 0.9 0.9 2.53e-10 4.83e-4

Adam 0.9 0.94 3.03e-10 3.45e-3
Diag-SONew 0.9 0.95 4.07e-6 8.50e-3

Shampoo 0.85 0.806 6.58e-4 5.03e-3
ztridiag 0.83 0.954 1.78e-6 7.83e-3
band-4 0.9 0.96 1.52e-6 4.53e-3

31

	Introduction
	Background
	LogDet matrix divergence

	SONew: Sparsified Online Newton Method
	Regret minimization via LogDet divergence
	Sparsifying the Preconditioner
	Regret bound analysis of SONew
	Numerical Stability of SONew

	Related Work
	Experimental Results
	Autoencoder benchmark
	VIT and GraphNetwork benchmark
	Experiments on Language Models

	Conclusions and Future Work
	=Supplementary material
	Properties of LogDet subproblem
	Regret bound analysis
	Regret bound decomposition
	Properties of tridiagonal preconditioner
	Upperbounding Regret
	O(T) Regret
	Non-convex guarantees

	Numerical stability
	Condition number analysis
	Degenerate Ht
	Numerically Stable SONew proof

	Additional Experiments, ablations, and details
	Ablations
	Memory Requirements
	Hyperparaeter search space
	Additional Experiments
	Convex experiments

