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Abstract

While policy optimization algorithms have played an important role in recent
empirical success of Reinforcement Learning (RL), the existing theoretical under-
standing of policy optimization remains rather limited—they are either restricted
to tabular MDPs or suffer from highly suboptimal sample complexity, especially in
online RL where exploration is necessary. This paper proposes a simple efficient
policy optimization framework—OPTIMISTIC NPG for online RL. OPTIMISTIC
NPG can be viewed as a simple combination of the classic natural policy gradient
(NPG) algorithm [Kakade, 2001] and an optimistic policy evaluation subroutine
to encourage exploration. For d-dimensional linear MDPs, OPTIMISTIC NPG is
computationally efficient, and learns an ϵ-optimal policy within Õ(d2/ϵ3) samples,
which is the first computationally efficient algorithm whose sample complexity has
the optimal dimension dependence Θ̃(d2). It also improves over state-of-the-art
results of policy optimization algorithms [Zanette et al., 2021] by a factor of d. For
general function approximation that subsumes linear MDPs, OPTIMISTIC NPG, to
our best knowledge, is also the first policy optimization algorithm that achieves the
polynomial sample complexity for learning near-optimal policies.

1 Introduction

Policy optimization algorithms [Schulman et al., 2017, 2015] with neural network function approxi-
mation have played an important role in recent empirical success of reinforcement learning (RL), such
as robotics [Finn et al., 2016], games [Berner et al., 2019] and large language models [OpenAI, 2022].
Motivated by the empirical success, the theory community made a large effort to design provably
efficient policy optimization algorithms that work in the presence of linear function approximation
[Agarwal et al., 2021, Bhandari and Russo, 2019, Liu et al., 2019, Neu et al., 2017, Abbasi-Yadkori
et al., 2019, Agarwal et al., 2020, Zanette et al., 2021, Shani et al., 2020, Cai et al., 2020]. Early works
focused on proving that policy optimization algorithms are capable to learn near-optimal policies
using a polynomial number of samples under certain reachability (coverage) assumptions. [e.g.,
Agarwal et al., 2021, Bhandari and Russo, 2019, Liu et al., 2019, Neu et al., 2017, Abbasi-Yadkori
et al., 2019]. While this was good for laying down the foundations for future work, the reachability
assumptions basically imply that the state space is already well-explored or rather easy to explore,
which avoids the challenge of performing strategic exploration — one of the central problems in both
empirical and theoretical RL.

∗This work was done when QL interned at DeepMind.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Table 1: A comparison of sample-complexity results for linear MDPs.

Algorithms Sample Complexity Computationally
Efficient

Policy
Optimization

Zanette et al. [2020]
Jin et al. [2021] Θ̃(d2/ϵ2) × ×

He et al. [2022]
Agarwal et al. [2022]

Wagenmaker et al. [2022]
Õ(d2/ϵ2 + d≥4/ϵ) ✓ ×

Agarwal et al. [2020] Õ(poly(d)/ϵ11) ✓ ✓

Zanette et al. [2021] Õ(d3/ϵ3) ✓ ✓

Optimistic NPG (this work) Õ(d2/ϵ3) ✓ ✓

To address this limitation, later works [Agarwal et al., 2020, Zanette et al., 2021] proposed policy
optimization algorithms that enjoy polynomial sample-complexity guarantee without making any
reachability assumption, but at the cost of either complicating the algorithm design (and analysis) with
various tricks or getting highly suboptimal sample-complexity guarantees. For example, the PC-PG
algorithm [Agarwal et al., 2020], which, to our knowledge was the first policy optimization algorithm
for learning linear MDPs without reachability assumptions, requires Õ(poly(d)/ϵ11) samples to
learn an ϵ-optimal policy for d-dimensional linear MDPs. That Õ(1/ϵ11) samples were necessary for
this task is highly unlikely. Indeed, Zanette et al. [2021] greatly improved this sample complexity to
Õ(d3/ϵ3) at the cost of considerably complicating the algorithm design and the analysis. Moreover,
we are not aware of efficient guarantees of policy optimization for generic function approximation,
which is rich enough to subsume linear MDPs. This motivates us to ask the following question:

Can we design a simple, general policy optimization algorithm
with sharp sample-complexity guarantees in the exploration setting2?

In particular, we aim to achieve sharper sample complexity than Zanette et al. [2021] in the linear
MDP setting, and achieve low-degree polynomial sample complexity in the general function approxi-
mation setting. This paper answers the highlighted question affirmatively by making the following
contributions:

• Sharper rate. We propose a computationally efficient policy optimization algorithm—
OPTIMISTIC NPG with sample complexity

Õ(d2/ϵ3)

for learning an ϵ-optimal policy in an online fashion while interacting with a d-dimensional
linear MDP. This result improves over the best previous one [Zanette et al., 2021] in policy
optimization by a factor of d. Moreover, to our knowledge, this is the first computation-
ally efficient algorithm to achieve the optimal quadratic dimension dependence. Before
moving on, we remark that previous FQI-style algorithms [Zanette et al., 2020, Jin et al.,
2021] achieve the optimal sample complexity Θ̃(d2/ϵ2) [Zanette et al., 2020] but they are
computationally inefficient due to the mechanism of global optimism in their algorithm
design. Several very recent works [He et al., 2022, Agarwal et al., 2022, Wagenmaker et al.,
2022] achieve the sample complexity Õ(d2/ϵ2 + d≥4/ϵ) using computationally efficient
algorithms. Compared to our work, the aforementioned rate has worse dependence on d and
better dependence on ϵ. Nonetheless, our result is better in the practically important regime
where the feature dimension d is typically very large and the target accuracy ϵ is not too
small. To summarize, the sample complexity of OPTIMISTIC NPG strictly improves over
the best existing policy optimization algorithms and is not dominated by that of any existing
computationally efficient algorithm.

2By “exploration setting“, we mean a setup where there is no simulator nor reachability assumption and a
learner can only influence the evolution of environmental states by taking actions.
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To our best knowledge, this paper also achieves the first polynomial sample-complexity
guarantee for policy optimization under general function approximation.

• Simple on-policy algorithm. At a high level, OPTIMISTIC NPG is almost an on-policy
version of natural policy gradient (NPG) [Kakade, 2001] with Boltzmann policies that use
linear function approximation for optimistic action-value estimates. By “on-policy”, we
mean the transition-reward data used to improve the current policy are obtained exactly by
executing the current policy. However, the algorithm has a tuneable parameter (denoted
by m in Algorithm 1) that allows it to reuse data sampled from earlier policies. By using
such data, the algorithm becomes off-policy. The optimal choice of the tuneable parameter
is dictated by theoretical arguments. Interestingly, our analysis shows that even the purely
on-policy version of the algorithm (i.e., set m = 1 in Algorithm 1) enjoys a well-controlled
sample complexity of Õ(d2/ϵ4). To the best of our knowledge, this is the first time an
on-policy method is shown to have polynomial sample complexity in the exploration setting,
given that all previous policy optimization or Q-learning style or model-based algorithms
[e.g., Jin et al., 2020, Zanette et al., 2020, 2021, Agarwal et al., 2020, Cai et al., 2020, Shani
et al., 2020, etc] are off-policy.

• New proof techniques. To achieve the improved rate, we introduce several new ideas in
the proof, including but not limited to (a) exploiting the softmax parameterization of the
policies to reuse data and improve sample efficiency (Lemma 3), (b) controlling on-policy
uncertainty (Lemma 4) instead of cumulative uncertainty as in previous off-policy works,
and (c) using a bonus term that is smaller than those in previous works by a factor of

√
d

(see Lemma 2 and the discussions that follow).

1.1 Related works

Since this paper studies policy optimization algorithms in the setting of linear MDPs, below we
restrict our focus to previous theoretical works on either policy optimization or linear MDPs.

Policy optimization. This work is inspired by and builds upon two recent works [Shani et al., 2020,
Cai et al., 2020] that combine NPG with bonus-based optimism to handle exploration. In terms of
algorithmic design, this paper (OPTIMISTIC NPG) utilizes on-policy fresh data for value estimation
while Shani et al. [2020], Cai et al. [2020] are off-policy and reuse all the historical data. In terms of
theoretical guarantees, Shani et al. [2020] and Cai et al. [2020] only study tabular MDPs and linear
mixture MDPs [Zhou et al., 2021] respectively, while this paper considers the more challenging
setting of linear MDPs [Jin et al., 2020] (in our view, linear MDPs are more challenging as there the
number of model parameters scale with the number of states). We remark that due to some subtle
technical challenge, so far it still remains unknown whether it is possible to generalize the analysis of
Cai et al. [2020] to handle linear MDPs. Agarwal et al. [2020], Zanette et al. [2021] derive the first
line of policy optimization results for RL in linear MDPs without any reachability- (or coverage-)
style assumption. Compared to Agarwal et al. [2020], Zanette et al. [2021], our work considers the
same setting but designs a simpler algorithm with cleaner analysis and sharper sample-complexity
guarantee. Nevertheless, we remark that in certain model-misspecification settings, the algorithms of
Agarwal et al. [2020], Zanette et al. [2021] can potentially achieve stronger guarantees. Since we
focus on the well-specified setting (that is, the environment is perfectly modeled by a linear MDP),
we refer interested readers to Agarwal et al. [2020] for more details. Finally, there have been a long
line of works [e.g., Agarwal et al., 2021, Bhandari and Russo, 2019, Liu et al., 2019, Neu et al.,
2017, Abbasi-Yadkori et al., 2019, etc] that study policy optimization under reachability (or coverage)
assumptions, which eliminates the need for performing strategic exploration. Throughout this paper
we do not make any such assumption and directly tackle the exploration challenge.

Linear MDPs. For linear MDPs, Jin et al. [2020] proposed a computationally efficient algorithm
(LSVI-UCB) with Õ(d3/ϵ2) sample complexity. Later on, Zanette et al. [2020] utilized the idea
of global optimism to obtain the optimal sample complexity Θ̃(d2/ϵ2) at the cost of sacrificing
computational efficiency. Recently, He et al. [2022], Agarwal et al. [2022], Wagenmaker et al.
[2022] designed new computationally efficient algorithms that can achieve Õ(d2/ϵ2+d≥4/ϵ) sample
complexity. Compared to the above works, the sample complexity of OPTIMISTIC NPG is not
strictly worse than that of any known computationally efficient algorithm. In fact, it is the only
computationally efficient method to achieve the optimal dimension dependence. Nonetheless, for
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learning a near-optimal policy with a vanishing suboptimality ϵ, the current sample complexity of
OPTIMISTIC NPG is loose by a factor of ϵ−1.

2 Preliminaries

MDP. We consider the model of episodic Markov Decision Processes (MDPs). Formally, an MDP
is defined by a tuple (S,A,P, R,H) where S denotes the set of states, A denotes the set of actions,
both of which are assumed to be finite, P = {Ph}h∈[H] denotes the set of transition probability
functions so that Ph(s

′ | s, a) is equal to the probability of transitioning to state s′ given that action a
is taken at state s and step h, R = {Rh}h∈[H] denotes the collection of expected reward functions so
that Rh(s, a) is equal to the expected reward to be received if action a is taken at state s and step
h, and H denotes the length of each episode. An agent interacts an MDP in the form of episodes.
Formally, we assume without loss of generality that each episode always starts from a fixed initial
state s1. At the hth step of this episode, the agent first observes the current state sh, then takes action
ah and receives reward rh(sh, ah) satisfying

E[rh(sh, ah) | sh, ah] = Rh(sh, ah) .

After that, the environment transitions to

sh+1 ∼ Ph(· | sh, ah) .
The current episode terminates immediately once rH is received. Throughout this paper, we assume
P and R are unknown to the learner.

Linear MDP. A d-dimensional linear MDP [Jin et al., 2020] is defined by two sets of feature
mappings, {ϕh}h∈[H] ⊆ (S × A → Rd) and {ψh}h∈[H] ⊆ (S → Rd), and a set of vectors
{w⋆

h}h∈[H] ⊆ Rd so that the transition probability functions can be represented as bilinear functions
of feature mappings {ϕh}h∈[H] and {ψh}h∈[H], and the reward functions can be represented as linear
functions of {ϕh}h∈[H]. Formally, we have that for all (s, a, s′) ∈ S ×A× S:

Ph(s
′ | s, a) = ⟨ϕh(s, a), ψh(s

′)⟩,
Rh(s, a) = ⟨ϕh(s, a), w⋆

h⟩.
For the purpose the regularity, linear MDPs also require that

max
h,s,a
∥ϕh(s, a)∥2 ≤ 1, max

h
∥w⋆

h∥2 ≤
√
d,

and for any function Vh+1 : S → [0, 1],∥∥∥∥∫
s∈S

Vh+1(s)ψh+1(s)ds

∥∥∥∥
2

≤
√
d.

Throughout this paper, we assume only {ϕh}h∈[H] is available to the learner while {ψh}h∈[H] and
{w⋆

h}h∈[H] are not.

Policy and value. A (Markov) policy is a set of conditional probability functions π = {πh}h∈[H]

so that πh(· | s) ∈ ∆A gives the distribution over the action set conditioned on the current state s
at step h. We define the V-value functions of policy π by {V π

h }h∈[H] ⊆ (S → R) so that V π
h (s) is

equal to the expected cumulative reward an agent will receive if she follows policy π starting from
state s and step h. Formally,

V π
h (s) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah′ ∼ πh′(sh′), s′h+1 ∼ Ph(· | s′h, a′h)

]
,

where the expectation is with respect to the randomness of the transition, the reward and the policy.
Similarly, we can define the Q-value functions of policy π by {Qπ

h}h∈[H] ⊆ (S ×A → R) so that
Qπ

h(s, a) is equal to the expected cumulative reward an agent will receive if she follows policy π
starting from taking action a at state s and step h. Formally,

Qπ
h(s, a) = E

[
H∑

h′=h

rh′(sh′ , ah′) | (sh, ah) = (s, a), ah′ ∼ πh′(sh′), s′h+1 ∼ Ph(· | s′h, a′h)

]
.
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We denote by π⋆ = {π⋆
h}h∈[H] the optimal policy such that π⋆ ∈ argmaxπV

π
h (s) for all (s, h) ∈

S × [H]. By backward induction, one can easily prove that there always exists an optimal Markov
policy. For simplicity of notations, we denote by V ⋆

h = V π⋆

h and Q⋆
h = Qπ⋆

h the optimal value
functions. Note that given an MDP, the optimal value functions are unique despite that there may
exist multiple optimal policies.

Learning objective. The objective of this paper is to design an efficient policy optimization
algorithm to learn an ϵ-optimal policy π such that V π

1 (s1) ≥ V ⋆
1 (s1)− ϵ. Here the optimality is only

measured by the value at the initial state s1, because (a) each episode always starts from s1, and (b)
this paper studies the online exploration setting without access to a simulator, which means some
states might be unreachable and learning optimal policies starting from those states is in general
impossible.

3 Optimistic Natural Policy Gradient

In this section, we present the algorithm OPTIMISTIC NPG (Optimistic Natural Policy Gradient) and
its theoretical guarantees.

3.1 Algorithm

The pseudocode of OPTIMISTIC NPG is provided in Algorithm 1. At a high level, the algorithm
consists of the following three key modules.

• Periodic on-policy data collection (Lines 4-6): Similarly to the empirical PPO algorithm
[Schulman et al., 2017] , OPTIMISTIC NPG discards all the old data, and executes the
current policy πk to collect a batch of fresh data Dk after every m steps of policy update.
These data will later be used to evaluate and improve the policies in the next m steps.
Noticeably, this on-policy data mechanism is very different from most existing works in
theoretical RL, where they either need to keep the historical data or have to rerun historical
policies to refresh the dataset for the technical purpose of elliptical potential arguments in
proofs. In comparison, OPTIMISTIC NPG only uses fresh data collected by the current (or
very recent) policy, which resembles practical policy optimization algorithms such as PPO
[Schulman et al., 2017] and TRPO [Schulman et al., 2015].

• Optimistic policy evaluation (Line 8): Given the above collected dataset Dk, we estimate
the value functions of the current policy πk by invoking Subroutine OPE (optimistic policy
evaluation). In Section 4, we show how to implement Subroutine OPE for tabular MDPs,
linear MDPs and RL problems of low eluder dimension.

• Policy update (Line 9): Given the optimistic value estimates {Qk

h}h∈[H] of πk, OPTIMISTIC

NPG performs one-step mirror ascent from πk
h(· | s) with gradient Q

k

h(s, ·) to obtain
πk+1
h (· | s) at each (h, s). Importantly, this step can be implemented in a computationally

efficient way, because by the update rule of mirror ascent πk
h(· | s) ∝ exp(η

∑k−1
t=1 Q

t

h(s, ·)),
we only need to store {{Qt

h}h∈[H]}t∈[K], from which any πk
h(· | s) can be computed on the

fly.

3.2 Theoretical guarantee

OPTIMISTIC NPG is a generic policy optimization meta-algorithm, and we can show it provably
learns near-optimal policies as long as subroutine OPE satisfies the following condition.
Condition 1 (Requirements for OPE). Suppose parameter m and η in OPTIMISTIC NPG satisfy
m ≤ (ηH2)−1. Then with probability at least 1− δ, OPE(πk,Dk) returns {Qk

h}h∈[H] ⊆ (S ×A →
[0, H]) that satisfy the following properties for all k ∈ [K].

(1A) Optimism: For all (s, a, h) ∈ S ×A× [H]

Q
k

h(s, a) ≥ (T πk

h Q
k

h+1)(s, a)

where (T π
h f)(s, a) = Rh(s, a) + E [f(s′, a′) | s′ ∼ Ph(· | s, a), a′ ∼ πh+1(s

′)] .
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Algorithm 1 OPTIMISTIC NPG
1: input: number of iterations K, period of collecting fresh data m, batch size N , learning rate η
2: initialize: for all (h, s) ∈ [H]× S set π1

h(· | s) = Uniform(A)
3: for k = 1, . . . ,K do
4: if k ≡ 1(mod m) then
5: Dk ← {N fresh trajectories i.i.d.∼ πk}
6: else
7: Dk ← Dk−1

8: {Qk

h}h∈[H] ← OPE(πk,Dk)

9: for all (h, s) ∈ [H]× S update πk+1
h (· | s) ∝ πk

h(· | s) · exp(η ·Q
k

h(s, ·))
10: output: πout that is sampled uniformly at random from {πk}k∈[K]

(1B) Consistency: There exists an absolute complexity measure L ∈ R+ such that

V
k

1(s1)− V πk

1 (s1) ≤
√
(L/N)× log2(NKL/δ),

where V
k

1(s1) = E
[
Q

k

1(s1, a1) | a1 ∼ πk(s1)
]
.

Condition (1A) requires that the Q-value estimate returned by OPE satisfies the Bellman equation
under policy πk optimistically. Requiring optimism is very common in analyzing RL algorithms,
as most algorithms rely on the principle of optimism in face of uncertainty to handle exploration.
Condition (1B) requires that the degree of over-optimism at initial state s1 is roughly of order

√
1/N

with respect to the number of samples N . This is intuitive since as more data are collected from
policy πk or some policy similar to πk (as is enforced by the precondition m ≤ (ηH2)−1), the
value estimate at the initial state should be more accurate. In Section 4, we will provide concrete
instantiations of Subroutine OPE for tabular MDPs, linear MDPs and RL problems of low eluder
dimension, all of which satisfy Condition 1 with mild complexity measure L.

Under Condition 1, we have the following theoretical guarantees for OPTIMISTIC NPG, which we
prove in Appendix A.
Theorem 1. Suppose Condition 1 holds. In Algorithm 1, if we choose

K = Θ

(
H4 log |A|

ϵ2

)
, N = Θ

(
L log2(LK/δ)

ϵ2

)
, η = Θ

( ϵ

H3

)
, m ≤ Θ

(
H

ϵ

)
,

then with probability at least 1/2, πout is O(ϵ)-optimal.

Below we emphasize two special choices of m (the period of sampling fresh data) in Theorem 1:

• When choosing m = 1, OPTIMISTIC NPG is purely on-policy as it only uses data sampled
from the current policy to perform policy optimization. In this case, the total sample
complexity is

# iteration
period of sampling

× batch size =
K

m
×N = Θ̃

(
LH4

ϵ4

)
,

which, to our knowledge, is the first polynomial sample complexity guarantee for purely
on-policy algorithms.

• When choosing m = [H/ϵ], we obtain sample complexity
# iteration

period of sampling
× batch size =

K

m
×N = Θ̃

(
LH3

ϵ3

)
,

which improves over the above purely on-policy version by a factor of H/ϵ. In Section 4.2,
we will specialize this result to linear MDPs to derive a sample complexity that improves
the best existing one in policy optimization [Zanette et al., 2021] by a factor of d.

Finally we remark that for cleaner presentation, we state Theorem 1 for a fixed, constant failure
probability. However, the result is easy to extend to the case when the failure probability is some
arbitrary value of δ ∈ (0, 1) at the expense of increasing the sample complexity by a factor of
log(1/δ): one simply need to run Algorithm 1 for log(1/δ) times, estimate the values of every output
policy to accuracy ϵ, and then pick the one with the highest estimate.

6



Subroutine 1 Tabular OPE(π,D)
1: required parameter: α
2: split D evenly into H disjoint subsets D1, . . . ,DH

3: compute empirical estimate (P̂h, R̂h) of the transition and reward at step h by using Dh

4: set V H+1(s)← 0 for all s ∈ S
5: for h = H : 1 do
6: for all (s, a) ∈ S ×A, compute

Jh(s, a)←
∑

(sh,ah)∈Dh
1((sh, ah) = (s, a))

and define{
Qh(s, a) = min

{
H − h+ 1, Es′∼P̂h(s,a)

[V h+1(s
′)] + R̂h(s, a) + bh(s, a)

}
V h(s) = Ea∼πh(·|s)

[
Qh(s, a)

]
with bonus function

bh(s, a) = α(Jh(s, a) + 1)−1/2

7: output {Qh}Hh=1

4 Examples

In this section, we implement subroutine OPE for tabular MDPs, linear MDPs and RL problems of
low eluder dimension, and derive the respective sample complexity guarantees of OPTIMISTIC NPG.

4.1 Tabular MDPs

The implementation of tabular OPE (Subroutine 1) is rather standard: first estimate the transition and
reward from dataset D, then plug the estimated transition-reward into the Bellman equation under
policy π to compute the Q-value estimate backwards. And to guarantee optimism, we additionally
add standard counter-based UCB bonus to compensate the error in model estimation. Formally, we
have the following guarantee for tabular OPE.

Proposition 1 (tabular MDPs). Suppose we choose α = Θ
(
H
√
log(KH|S||A|)

)
in Subroutine 1,

then Condition 1 holds with L = SAH3.

By combining Proposition 1 with Theorem 1, we prove that OPTIMISTIC NPG with Subroutine 1
learns an ϵ-optimal policy within (KN/m) = Õ(H6|S||A|/ϵ3) episodes for any tabular MDP. This
rate is strictly worse than the best existing result Õ(H3|S||A|/ϵ2) in tabular policy optimization
[Wu et al., 2022]. Nonetheless, the proof techniques in [Wu et al., 2022] are specially tailored to
tabular MDPs and it is highly unclear how to generalize them to linear MDPs due to certain technical
difficulty that arises from covering a prohibitively large policy space. In comparison, our policy
optimization framework easily extends to linear MDPs and provides improved sample complexity
over the best existing one, as is shown in the following section.

4.2 Linear MDPs

We provide the instantiation of OPE for linear MDPs in Subroutine 2. At a high level, linear
OPE computes an upper bound Q for Qπ by using the Bellman equation under policy π backwards
from step H to step 1 while adding a bonus to compensate the uncertainty of parameter estimation.
Specifically, the step of ridge regression (Line 5) utilizes the linear completeness property of linear
MDPs in computing Qh from V h+1, which states that for any function V h+1 : S → R, there exists
θh ∈ Rd so that ⟨ϕh(s, a), θh⟩ = Rh(s, a) + Es′∼Ph(·|s,a)[V h+1(s

′)] for all (s, a) ∈ S × A. And
in Line 6, we add an elliptical bonus bh(s, a) to compensate the error between our estimate θ̂h and
the groundtruth θh so that we can guarantee Qh(s, a) ≥ (T π

h Qh+1)(s, a) for all (s, a, h) with high
probability .

θ̂h = argminθ
∑

(sh,ah,rh,sh+1)∈Dh

(
ϕh(sh, ah)

Tθ − rh − V h+1(sh+1)

)2

+ λ∥θ∥22. (1)
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Subroutine 2 Linear OPE(π,D)
1: required parameter: α, λ
2: split D evenly into H disjoint subsets D1, . . . ,DH

3: set V H+1(s)← 0 for all s ∈ S
4: for h = H : 1 do
5: perform ridge regression according to Equation (1)
6: compute covariance matrix

Σh =
∑

(sh,ah)∈Dh
ϕh(sh, ah)ϕh(sh, ah)

T

and define {
Qh(s, a) = Truncate[0,H]

(
⟨θ̂h, ϕh(s, a)⟩+ bh(s, a)

)
V h(s) = Ea∼πh(·|s)

[
Qh(s, a)

]
with bonus function

bh(s, a) := α× ∥ϕh(s, a)∥(Σh+λId×d)−1

7: output {Qh}Hh=1

Subroutine 3 General OPE(π,D)
1: required parameter: β
2: split D evenly into H disjoint subsets D1, . . . ,DH

3: set V H+1(s)← 0 for all s ∈ S
4: for h = H : 1 do
5: for (s, a) ∈ S ×A do
6: construct confidence set

Bh = {fh ∈ Fh : Lh(Dh, fh) ≤ min
gh∈Fh

Lh(Dh, gh) + β}

with loss function defined as

Lh(Dh, ζ) =
∑

(sh,ah,rh,sh+1)∈Dh

(
ζ(sh, ah)− rh − V h+1(sh+1)

)2
7: compute {

Qh(s, a) = supfh∈Bh
fh(s, a)

V h(s) = Ea∼πh(·|s)
[
Qh(s, a)

]
8: output {Qh}Hh=1

Proposition 2 (linear MDPs). Suppose we choose λ = 1 and α = Θ
(
H
√
d log(KN)

)
in Subrou-

tine 2, then Condition 1 holds with L = d2H3.

By combining Proposition 2 with Theorem 1, we obtain that (KN/m) = Õ(d2H6/ϵ3) episodes are
sufficient for OPTIMISTIC NPG to learn an ϵ-optimal policy, improving upon the state-of-the-art
policy optimization results [Zanette et al., 2021] by a factor of d. Notably, this is also the first
computationally efficient algorithm to achieve optimal quadratic dimension dependence for learning
linear MDPs. The key factor behind this improvement is OPTIMISTIC NPG’s periodic collection
of fresh on-policy data, which eliminates the undesired correlation and avoids the union bound
over certain nonlinear function class that are commonly observed in previous works. Consequently,
OPTIMISTIC NPG uses a bonus function that is

√
d times smaller than in previous works [e.g., Jin

et al., 2020]. For further details on how we achieve this improvement, we refer interested readers to
Appendix A, specifically Lemma 2.

4.3 General function approximation

Now we instantiate OPE for RL with general function approximation. In this setting, the learner is
provided with a function class F = F1 × · · · × FH for approximating the Q values of polices, where
Fh ⊆ (S ×A → [0, H]).
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General OPE. The pseudocode is provided in Subroutine 3. At each step h ∈ [H], general
OPE first constructs a confidence set Bh which contains candidate estimates for T π

h Qh+1 (Line 6).
Specifically, Bh consists of all the value candidates fh ∈ Fh whose square temporal difference (TD)
error on dataset Dh is no larger than the smallest one by an additive factor β. Such construction
can be viewed as a relaxation of the classic fitted Q-iteration (FQI) algorithm which only keeps the
value candidate with the smallest TD error. In particular, if we pick β = 0, Bh collapses to the
solution of FQI. Equipped with confidence set Bh, general OPE then perform optimistic planning at
every (s, a) ∈ S × A by computing Qh(s, a) to be the largest possible value that can be achieved
by any candidate in confidence set Bh (Line 7). We remark that general OPE shares a similar
algorithmic spirit to the GOLF algorithm [Jin et al., 2021]. The key difference is that GOLF is a
purely value-based algorithm and only performs optimistic planning at the initial state while general
OPE performs optimistic planning at every state and is part of a policy gradient algorithm.

Theoretical guarantee. To state the main theorem, we need to first introduce two standard concepts:
value closeness and eluder dimension, which have been widely used in previous works that study RL
with general function approximation.
Assumption 1 (value closeness [Wang et al., 2020]). For all h ∈ [H] and Vh+1 : S → [0, H],
ThVh+1 ∈ Fh where [ThVh+1](s, a) = Rh(s, a) + E[Vh+1(s

′) | s′ ∼ Ph(· | s, a)].

Intuitively, Assumption 1 can be understood as requiring that the application of the Bellman operator
Th to any V-value function Vh+1 results in a function that belongs to the value function class Fh.
This assumption holds in various settings, including tabular MDPs and linear MDPs. Furthermore,
it is reasonable to assume that value closeness holds whenever the function class F has sufficient
expressive power, such as the class of neural networks.
Definition 1 (eluder dimension [Russo and Van Roy, 2013]). Let G be a function class from X
to R and ϵ > 0. We define the ϵ-eluder dimension of G, denoted as dE(G, ϵ), to be the largest
L ∈ N+ such that there exists x1, . . . , xL ∈ X and g1, g′1, . . . , gL, g

′
L ∈ G satisfying: for all l ∈ [L],∑

i<l(gl(xi)− g′l(xi))2 ≤ ϵ but gl(xl)− g′l(xl) ≥ ϵ.

At a high level, eluder dimension dE(G, ϵ) measures how many mistakes we have to make in order
to identify an unknown function from function class G to accuracy ϵ, in the worst case. It has been
widely used as a sufficient condition for proving sample-efficiency guarantee for optimistic algorithms
in RL with general function approximation, e.g., Wang et al. [2020], Jin et al. [2021].

Now we state the theoretical guarantee for general OPE.
Proposition 3 (general function approximation). Suppose Assumption 1 holds and we
choose β = Θ

(
H2 log(|F|NK/δ)

)
in Subroutine 3, then Condition 1 holds with L =

H3 log(|F|)maxh dE(Fh, 1/N).

Plugging Proposition 3 back into Theorem 1, we obtain that (KN/m) = Õ(dE log(|F|)H6/ϵ3)
episodes are sufficient for OPTIMISTIC NPG to learn an ϵ-optimal policy, which to our knowledge
is the first polynomial sample complexity guarantee for policy optimization with general function
approximation.

5 Conclusions

We proposed a model-free, policy optimization algorithm—OPTIMISTIC NPG for online RL and
analyzed its behavior in the episodic setting. In terms of algorithmic design, it is not only considerably
simpler but also more closely resembles the empirical policy optimization algorithms (e.g., PPO,
TRPO) than the previous theoretical algorithms. In terms of sample efficiency, for d-dimensional
linear MDPs, it improves over state-of-the-art policy optimization algorithm by a factor of d, and is
the first computationally efficient algorithm to achieve the optimal dimension dependence. To our
best knowledge, OPTIMISTIC NPG is also the first sample-efficient policy optimization algorithm
under general function approximation.

For future research, we believe that it is an important direction to investigate the optimal complexity
for using policy optimization algorithms to solve linear MDPs. Despite the optimal dependence on
dimension d, the current sample complexity of OPTIMISTIC NPG is worse than the optimal rate by a
factor of 1/ϵ. It remains unclear to us how to shave off this 1/ϵ factor to achieve the optimal rate.
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A Proof of Theorem 1

Recall in Algorithm 1, πout is sampled uniformly at random from {πk}k∈[K], so we have

E
[
V ⋆
1 (s1)− V πout

1 (s1)
]

=
1

K

K∑
k=1

[
V ⋆
1 (s1)− V πk

1 (s1)
]

=
1

K

K∑
k=1

[
V ⋆
1 (s1)− V

k

1(s1)
]

︸ ︷︷ ︸
Term (I)

+
1

K

K∑
k=1

[
V

k

1(s1)− V πk

1 (s1)
]

︸ ︷︷ ︸
Term (II)

.

To control Term (I), we import the following generalized policy difference lemma from [Shani et al.,
2020, Cai et al., 2020].
Lemma 1 (generalized policy-difference lemma). For any policy π and k ∈ [K],

V π
1 (s1)− V

k

1(s1)

=

H∑
h=1

Esh∼π

[
⟨πh(· | sh)− πk

h(· | sh), Q
k

h(sh, ·)⟩
]

−
H∑

h=1

E(sh,ah)∼π

[
Q

k

h(sh, ah)− (T πk

h Q
k

h+1)(sh, ah)

]
.

By invoking Lemma 1 with π = π⋆, we have

Term(I) =
1

K

K∑
k=1

[
V ⋆
1 (s1)− V

k

1(s1)
]

≤ Hmax
h,s

[
1

K

K∑
k=1

〈
π⋆
h(· | s)− πk

h(· | s), Q
k

h(s, ·)
〉]

+Hmax
h,s,a

[
(T πk

h Q
k

h+1 −Q
k

h)(s, a)

]

≤ O
(
H log |A|
ηK

+ ηH3

)
+Hmax

h,s,a

[
(T πk

h Q
k

h+1 −Q
k

h)(s, a)

]
,

(2)

where the second inequality follows from the standard regret bound of online mirror ascent. By
Condition (1A) , the second term on the RHS of Equation (2) is upper bounded by zero. So we have

Term(I) ≤ O
(
H log |A|
ηK

+ ηH3

)
.

As for Term (II), we can directly upper bound it by Condition (1B) which gives:

Term(II) ≤ H
√
(L/N)× log(NKL/δ).

We complete the proof by plugging in the choice of K, N , η.

B Proofs for Examples

In this section, we prove the three instantiations of OPE in Section 4 satisfy Condition 1 with mild
complexity measure L. The proofs of the lemmas used in this section can be found in Appendix C.

B.1 Proof of Proposition 2 (linear OPE)

We start with the following lemma showing that Q
k

h is an optimistic estimate of T πk

h Q
k

h+1 and the
degree of over-optimism can be bounded by the bonus function.
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Lemma 2 (optimism of value estimates). Under the same choice of λ and α as in Proposition 2, with
probability at least 1− δ: for all (k, h, s, a) ∈ [K]× [H]× S ×A:

0 ≤ (Q
k

h − T πk

h Q
k

h+1)(s, a) ≤ 2bkh(s, a),

where {bkh}h∈[H] are the bonus functions defined in Line 6, Subroutine 2 linear OPE(πk,Dk).

Importantly, Lemma 2 holds with a bonus function that is smaller by a factor of
√
d than the typical

one used in linear function approximation [e.g., Jin et al., 2020], which is key to obtaining the optimal
dimension dependence. The main reason that this smaller bonus function suffices is that we recollect
fresh samples everym iterations and split the data (Line 2 in Subroutine 2) to eliminate the correlation
between different steps h ∈ [H].

Lemma 2 immediately implies that Condition (1A) holds. Below we prove Condition (1B).

By the second inequality in Lemma 2, the definition of V
k

and the Bellman equation under policy
πk, one can show

V
k

1(s1)− V πk

1 (s1) =

H∑
h=1

Eπk [(Q
k

h − T πk

h Q
k

h+1)(sh, ah)] ≤ 2

H∑
h=1

Eπk [bkh(sh, ah)]. (3)

Denote by tk the index of the last iteration of collecting fresh data before the kth iteration. By
exploiting the softmax parameterization structure of {πk}k∈[K], one can show that the visitation
measure over state-action pairs induced by executing policy πk is actually very close to the one
induced by πtk in the following sense.
Lemma 3 (policy Lipschitz). Suppose we choose η and m such that ηm ≤ 1/H2, then for any
k ∈ N+ and any function f : S ×A → R+:

Eπk [f(sh, ah)] = Θ (Eπtk [f(sh, ah)]) .

By combining Lemma 3 with Equation (3) and noticing that bkh = btkh , we have

V
k

1(s1)− V πk

1 (s1) ≤ O
(

max
k∈[K]

H∑
h=1

Eπtk [b
k
h(sh, ah)]

)
= O

(
max
k∈[K]

H∑
h=1

Eπtk [b
tk
h (sh, ah)]

)
.

Since the bonus function btkh is defined by using the dataset Dtk collected from executing policy πtk ,
one could expect its average under πtk should be rather small when the batch size N is large enough,
as formalized in the following lemma.
Lemma 4 (on-policy uncertainty). Let π be an arbitrary policy and λ ≥ 1. Suppose we sample
{(snh, anh)}Nn=1 i.i.d. from π. Denote Σh =

∑N
i=1 ϕh(s

i
h, a

i
h)ϕ

T
h (s

i
h, a

i
h). Then with probability at

least 1− δ:

E(sh,ah)∼π

[
∥ϕh(sh, ah)∥(Σh+λId×d)−1

]
= O

(√
d log(N/δ)

N

)
.

As a result, by Lemma 4 and the definition of bkh, we have that with probability at least 1− δ: for all
k ∈ [K],

H∑
h=1

Eπtk [b
k
h(sh, ah)] = O

Hd
√
H log2(NKH/δ)

N


where in applying Lemma 4 we use the fact |Dk

h| = N/H due to data splitting. Putting all pieces
together, we get

V
k

1(s1)− V πk

1 (s1) ≤ O

√d2H3 log2(KNH/δ)

N

 .

As a result, Condition (1B) holds with L = d2H3.
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B.2 Proof of Proposition 1 (tabular OPE)

The proof follows basically the same as that of Proposition 2. The only modification needed is to
replace Lemma 2 and 4 by their tabular counterparts, which we state below.
Lemma 5 (optimism of value estimates: tabular). Under the same choice of α as in Proposition 1,
with probability at least 1− δ: for all (k, h, s, a) ∈ [K]× [H]× S ×A:

0 ≤ (Q
k

h − T πk

h Q
k

h+1)(s, a) ≤ 2bkh(s, a),

where {bkh}h∈[H] are the bonus functions defined in Line 6, Subroutine 1 tabular OPE(πk,Dk).
Lemma 6 (on-policy uncertainty: tabular). Let π be an arbitrary policy. Suppose we sample
{(snh, anh)}Nn=1 i.i.d. from π. Denote Jh(s, a) =

∑N
i=1 1((s

i
h, a

i
h) = (s, a)). Then with probability

at least 1− δ:

E(sh,ah)∼π

[√
1

Jh(s, a) + 1

]
= O

(√
SA log(N/δ)

N

)
.

B.3 Proof of Proposition 3 (general OPE)

The proof follows basically the same as that of Proposition 2. The only modification needed is to
replace Lemma 2 and 4 by their general counterparts, which we state below.
Lemma 7 (optimism of value estimates: general). Suppose Assumption 1 holds. There exists an
absolute constant c such that with probability at least 1− δ: for all (k, h, s, a) ∈ [K]× [H]×S ×A:

0 ≤ (Q
k

h − T πk

h Q
k

h+1)(s, a) ≤ bh(s, a,Dk
h) :=


sup

fh,f ′
h∈Fh

fh(s, a)− f ′h(s, a)

s.t.
∑

(sh,ah)∈Dk
h

(fh(sh, ah)− f ′h(sh, ah))2 ≤ cβ

 .

Lemma 8 (on-policy uncertainty: general). Let π be an arbitrary policy. Suppose we sample
Dh = {(snh, anh)}Nn=1 i.i.d. from π. Then with probability at least 1− δ:

E(sh,ah)∼π [bh(s, a,Dh)] = O

(
H

√
dE(1/N,Fh)β

N
+H

√
log(1/δ)

N

)
.

C Proofs of Lemmas

C.1 Proof of Lemma 1

Lemma 1 is an immediate consequence of Lemma 4.2 in [Cai et al., 2020] or Lemma 1 in [Shani
et al., 2020].

C.2 Proof of Lemma 2

Let us consider a fixed pair (k, h) ∈ [K]× [H]. Recall Q
k

h is defined as

Q
k

h(s, a) = Truncate[0,H−h+1]

(
⟨θ̂kh, ϕh(s, a)⟩+ bkh(s, a)

)
,

where

θ̂kh = argminθ
∑

(sh,ah,rh,sh+1)∈Dk
h

(
ϕh(sh, ah)

Tθ − rh − V
k

h+1(sh+1)

)2

+ λ∥θ∥22,

bkh(s, a) = α× ∥ϕh(s, a)∥(Σk
h+λId×d)−1 , and Σk

h =
∑

(sh,ah)∈Dk
h

ϕ(sh, ah)(ϕ(sh, ah))
T.

By the standard linear completeness property of linear MDPs Jin et al. [2020], there exists θkh such
that ∥θkh∥2 ≤ H

√
d and

⟨ϕh(s, a), θkh⟩ = Rh(s, a) + Es′∼P(·|s,a)

[
V

k

h+1(s
′)
]

for all (s, a) ∈ S ×A.

14



Therefore, to prove Lemma 2, it suffices to show that for all (s, a)∣∣∣⟨ϕh(s, a), θkh − θ̂kh⟩∣∣∣ ≤ bkh(s, a).
To condense notations, denote by {(sih, aih, rih, sih+1)}Mi=1 the tuples in Dk

h. By the definition of ridge
regression,∣∣∣⟨ϕh(s, a), θ̂kh − θkh⟩∣∣∣

=

∣∣∣∣〈ϕh(s, a) , (Σk
h + λId×d)

−1×(
M∑
i=1

ϕh(s
i
h, a

i
h)
(
rih + V

k

h+1(s
i
h+1)− ϕh(sih, aih)Tθkh

)
− λθkh

)〉∣∣∣∣
≤∥ϕh(s, a)∥(Σk

h+λId×d)−1×∥∥∥∥∥
M∑
i=1

ϕh(s
i
h, a

i
h)
(
rih + V

k

h+1(s
i
h+1)− ϕh(sih, aih)Tθkh

)∥∥∥∥∥
(Σk

h+λId×d)−1

+H
√
d

 ,

where the inequality follows from ∥λθkh∥(Σk
h+λId×d)−1 ≤

√
λ∥θkh∥2 ≤ H

√
d. It remains to bound

the first term in the bracket. Now here comes the key observation that helps shave off the
√
d factor

from the bonus.

Observation 1. Dk
h and V

k

h+1 are independent conditioning on πtk where tk denotes the index of
the last iteration of collecting fresh data before the kth iteration.

To see why, recall that after obtaining Dtk Algorithm 2 splits it evenly into H disjoint subsets
{Dtk

h }Hh=1 and then only uses {Dtk
h′}Hh′=h+1 for evaluating and improving {πl

h′}Hh′=h+1 for l ∈
[tk, tk + m − 1]. As a result, {V l

h+1}
tk+m−1
l=tk

(including V
k

h+1) is independent of Dtk
h = Dk

h

conditioning on πtk . By the concentration of self-normalized processes [Abbasi-Yadkori et al., 2011],
we conclude that with probability at least 1− δ: for all (k, h) ∈ [K]× [H]∥∥∥∥∥

M∑
i=1

ϕh(s
i
h, a

i
h)
(
rih + V

k

h+1(s
i
h+1)− ϕh(sih, aih)Tθkh

)∥∥∥∥∥
(Σk

h+λId×d)−1

≤ O
(
H
√
d log(MKH/δ)

)
.

C.3 Proof of Lemma 3

We first introduce the following two auxiliary lemmas about the lipschitzness continuity of softmax
paraterization.

Lemma 9. There exists an absolute constant c > 0 such that for any policy π, π̂ satisfying π̂h(a | s) ∝
πh(a | s)× exp(Lh(s, a)) where {Lh(s, a)}h∈[H] is set of functions from S × A to [−1/H, 1/H],
we have that for any τH := (s1, a1, . . . , sH , aH) ∈ (S ×A)H :

Pπ̂(τH) ≤ c× Pπ(τH).

Proof of Lemma 9. By using the relation between π and π̂ and the normalization property of policy
π, we have that for any (h, s, a):

π̂h(a | s) =
πh(a | s)× exp(Lh(s, a))∑
a′ πh(a′ | s)× exp(Lh(s, a′))

≤ πh(a | s)× exp(1/H)∑
a′ πh(a′ | s) exp(−1/H)

= πh(a | s)× exp(2/H) ≤ πh(a | s)×
(
1 +
O(1)
H

)
.
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Therefore, for any τH := (s1, a1, . . . , sH , aH)

Pπ̂(τH) =

(
H−1∏
h=1

Ph(sh+1 | sh, ah)

)
×

(
H∏

h=1

π̂h(ah | sh)

)

≤

(
H−1∏
h=1

Ph(sh+1 | sh, ah)

)
×

(
H∏

h=1

πh(ah | sh)

)
×
(
1 +
O(1)
H

)H

=O(1)×

(
H−1∏
h=1

Ph(sh+1 | sh, ah)

)
×

(
H∏

h=1

πh(ah | sh)

)
= O(1)× Pπ(τH).

Lemma 10. Let µ, ν be two probability densities defined over X such that ∥µ/ν∥∞ ≤ α, then we
have that for any function f : X → R+, Eµ[f(x)] ≤ αEν [f(x)].

Proof of Lemma 10. By definition, Eµ[f(x)] =
∫
x
f(x)µ(x)dx ≤

∫
x
f(x)(αν(x))dx =

αEν [f(x)].

By the update rule of NPG, we have

πk
h(· | s) ∝ π

tk
h (· | s)× exp

(
η

k−1∑
i=tk

Q
i

h(s, ·)

)
.

Since we choose η and m such that ηm ≤ 1/H2,∣∣∣∣∣η
k−1∑
i=tk

Q
i

h(s, ·)

∣∣∣∣∣ ≤ η(k − tk)H ≤ ηmH ≤ 1/H.

Therefore, by invoking Lemma 9 with π̂ = πk and π = πtk , we have that for any τH ∈ (S ×A)H :

Pπk

(τH) ≤ c× Pπtk
(τH).

By further invoking Lemma 10 with X = (S ×A)H , µ = Pπk

and ν = Pπtk , we obtain that for any
function f : S ×A → R+:

Eπk [f(sh, ah)] = O (Eπtk [f(sh, ah)]) .

Similarly, we can show Eπtk [f(sh, ah)] = O (Eπk [f(sh, ah)]), which completes the proof of Lemma
3.

C.4 Proof of Lemma 4

To simplify notations, denote ϕih := ϕh(s
i
h, a

i
h). For the technical purpose of applying mar-

tingale concentration, we additionally define the intermediate empirical covariance matrices:
Σn

h =
∑n−1

i=1 ϕ
i
h(ϕ

i
h)

T, for n ∈ [N ]. We have that with probability at least 1− δ,

E(sh,ah)∼π

[
∥ϕh(sh, ah)∥(Σh+λId×d)−1

]
≤ 1

N

N∑
n=1

E(sh,ah)∼π

[
∥ϕh(sh, ah)∥(Σn

h+λId×d)−1

]
≤ 1

N

N∑
n=1

∥ϕnh∥(Σn
h+λId×d)−1 +O

(√
log(1/δ)

N

)

≤ O

(√
d logN

N

)
+O

(√
log(1/δ)

N

)
,

(4)

where the first inequality uses Σn
h ⪯ Σh, the second one uses Azuma-Hoeffding inequality with

λ = 1, and the last one uses Cauchy–Schwarz inequality and the the standard elliptical potential
argument.
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C.5 Proof of Lemma 5

Let us consider a fixed pair (k, h) ∈ [K]× [H]. Recall Q
k

h is defined as

Q
k

h(s, a) = min
{
H − h+ 1, Es′∼P̂k

h(s,a)
[V

k

h+1(s
′)] + R̂k

h(s, a) + bkh(s, a)
}

where P̂k
h and R̂k

h are the empirical estimates of transition and reward at step h from Dk
h, and

bkh(s, a) = α(Jk
h (s, a) + 1)−1/2 with Jk

h (s, a) =
∑

(sh,ah)∈Dk
h
1((sh, ah) = (s, a)). Therefore, to

prove Lemma 5, it suffices to show that for all (s, a)∣∣∣(Es′∼P̂k
h(s,a)

[V
k

h+1(s
′)]− Es′∼Ph(s,a)[V

k

h+1(s
′)]
)
+
(
R̂k

h(s, a)−Rh(s, a)
)∣∣∣ ≤ bkh(s, a).

By observation 1, we know {V l

h+1}
tk+m−1
l=tk

is independent of Dtk
h = Dk

h conditioning on πtk , which

implies V
k

h+1 is independent of P̂k
h. Therefore, by Azuma-Hoeffding inequality and standard union

bound, we conclude that with probability at least 1− δ: for all (k, h, s, a) ∈ [K]× [H]× S ×A,∣∣∣(Es′∼P̂k
h(s,a)

[V
k

h+1(s
′)]− Es′∼Ph(s,a)[V

k

h+1(s
′)]
)
+
(
R̂k

h(s, a)−Rh(s, a)
)∣∣∣

≤ O

(
H

√
log(KNHSA/δ)

Jk
h (s, a) + 1

)
.

C.6 Proof of Lemma 6

For the technical purpose of performing martingale concentration, we introduce the notion of
intermediate counters: Jn

h (s, a) =
∑n−1

i=1 1((sih, a
i
h) = (s, a)), for n ∈ [N ]. We have that with

probability at least 1− δ,

E(sh,ah)∼π

[√
1

Jh(s, a) + 1

]

≤ 1

N

N∑
n=1

E(sh,ah)∼π

[√
1

Jn
h (s, a) + 1

]

≤ 1

N

N∑
n=1

√
1

Jn
h (s

n
h, a

n
h) + 1

+O

(√
log(1/δ)

N

)

≤ O

(√
SA logN

N

)
+O

(√
log(1/δ)

N

)
,

(5)

where the first inequality uses Jn
h (s, a) ≤ Jh(s, a) for all (s, a) ∈ S × A, the second one uses

Azuma-Hoeffding inequality, and the last one follows the standard pigeon-hole argument.

C.7 Proof of Lemma 7

By observation 1, we know Dk
h is independent of V

k

h+1 conditioning on πtk where tk is the index
of the last iteration when OPTIMISTIC NPG collects fresh data before iteration k + 1. With this
independence relation in mind, we can easily prove that confidence set Bkh satisfy the following
properties by standard concentration inequality and union bounds.
Lemma 11. Suppose Assumption 1 holds. There exists an absolute constant c such that with
probability at least 1− δ, for all k ∈ [K] and h ∈ [H],

• T πk

h Q
k

h+1 ∈ Bkh,

• for any fh ∈ Bkh,
∑

(sh,ah)∈Dk
h
(fh(sh, ah)− T πk

h Q
k

h+1(sh, ah))
2 ≤ cβ.

The proof of Lemma 11 follows trivially from modifying the proofs of Lemma 39 and 40 in Jin et al.
[2021], which we omit here.
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Define
B̄kh = {fh ∈ Fh :

∑
(sh,ah)∈Dk

h

(fh(sh, ah)− (T πk

h Q
k

h+1)(sh, ah))
2 ≤ cβ}.

By using the first relation in Lemma 11 and the definition of Q
k

h, we immediately obtain that

(T πk

h Q
k

h+1)(s, a) ≤ sup
fh∈Bk

h

fh(s, a) = Q
k

h(s, a)

and

Q
k

h(s, a)− (T πk

h Q
k

h+1)(s, a) ≤ sup
fh,f ′

h∈Bk
h

(fh(s, a)− f ′h(s, a)) ≤ sup
fh,f ′

h∈B̄k
h

(fh(s, a)− f ′h(s, a)),

where the last inequality uses B̄kh ⊂ Bkh by Lemma 11.

C.8 Proof of Lemma 8

Recall we define

bh(s, a,Dh) :=


sup

fh,f ′
h∈Fh

fh(s, a)− f ′h(s, a)

s.t.
∑

(sh,ah)∈Dh

(fh(sh, ah)− f ′h(sh, ah))2 ≤ cβ

 ,

which implies that bh(s, a,Dh) ≤ bh(s, a,Dh) for any Dh ⊆ Dh. Let D(n)
h = {(sih, aih)}ni=1. We

have that with probability at least 1− δ,

E(sh,ah)∼π [bh(s, a,Dh)] ≤
1

N

N∑
n=1

E(sh,ah)∼π

[
bh(s, a,D(n−1)

h )
]

≤ 1

N

N∑
n=1

bh(s
n
h, a

n
h,D

(n−1)
h ) +O

(
H

√
log(1/δ)

N

)

≤ O

(
H

√
dE(1/N,Fh)β

N
+H

√
log(1/δ)

N

)
,

where the second inequality uses Azuma-Hoeffding inequality and the last one uses the standard
regret guarantee for eluder dimension (e.g., Lemma 2 in Russo and Van Roy [2013]).
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