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Abstract

We focus on the problem of generating high-quality, private synthetic glucose1

traces, a task generalizable to many other time series sources. Existing methods for2

time series data synthesis, such as those using Generative Adversarial Networks3

(GANs), are not able to capture the innate characteristics of glucose data and cannot4

provide any formal privacy guarantees without severely degrading the utility of the5

synthetic data. In this paper we present GlucoSynth, a novel privacy-preserving6

GAN framework to generate synthetic glucose traces. The core intuition behind our7

approach is to conserve relationships amongst motifs (glucose events) within the8

traces, in addition to temporal dynamics. Our framework incorporates differential9

privacy mechanisms to provide strong formal privacy guarantees. We provide a10

comprehensive evaluation on the real-world utility of the data using 1.2 million11

glucose traces; GlucoSynth outperforms all previous methods in its ability to12

generate high-quality synthetic glucose traces with strong privacy guarantees.13

1 Introduction14

The sharing of medical time series data can facilitate therapy development. As a motivating example,15

sharing glucose traces can contribute to the understanding of diabetes disease mechanisms and the16

development of artificial insulin delivery systems that improve people with diabetes’ quality of life.17

Unsurprisingly, there are serious legal and privacy concerns (e.g., HIPAA, GDPR) with the sharing of18

such granular, longitudinal time series data in a medical context [1]. One solution is to generate a set19

of synthetic traces from the original traces. In this way, the synthetic data may be shared publicly in20

place of the real ones with significantly reduced privacy and legal concerns.21

This paper focuses on the problem of generating high-quality, privacy-preserving synthetic glucose22

traces, a task which generalizes to other time series sources and application domains, including23

activity sequences, inpatient events, hormone traces and cyber-physical systems. Specifically, we24

focus on long (over 200 timesteps), bounded, univariate time series glucose traces. We assume25

that available data does not have any labels or extra information including features or metadata,26

which is quite common, especially in diabetes. Continuous Glucose Monitors (CGMs) easily and27

automatically send glucose measurements taken subcutaneously at fixed intervals (e.g., every 528

minutes) to data storage facilities, but tracking other sources of diabetes-related data is challenging29

[2]. We characterize the quality of the generated traces based on three criteria— synthetic traces30

should (1) conserve characteristics of the real data, i.e., glucose dynamics and control-related metrics31

(fidelity); (2) contain representation of diverse types of realistic traces, without the introduction of32

anomalous patterns that do not occur in real traces (breadth); and (3) be usable in place of the original33

data for real-world use cases (utility).34

Generative Adversarial Networks (GANs) [3] have shown promise in the generation of time series35

data. However, previous methods for time series synthesis, e.g., [4, 5, 6], suffer from one or more of36
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Motif 1: High Peak
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Motif 2: Deep Trough
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Motif 3: Stable Line

Figure 1: Example Real Glucose Traces and Glucose Motifs from our Dataset.
the following issues when applied to glucose traces: 1) surprisingly, they do not generate realistic37

synthetic glucose traces – in particular, they produce human physiologically impossible phenomenon38

in the traces; 2) they require additional information (features, metadata or labels) to guide the model39

learning which are not available for our traces; 3) they do not include any privacy guarantees, or, in40

order to uphold a strong formal privacy guarantee, severely degrade the utility of the synthetic data.41

Generating high-quality synthetic glucose traces is a difficult task due to the innate characteristics of42

glucose data. Glucose traces can be best understood as sequences of events, which we call motifs,43

shown in Figure 1, and they are more event-driven than many other types of time series. As such, a44

current glucose value may be more influenced by an event that occurred in the far past compared to45

values from immediate previous timesteps. For example, a large meal eaten earlier in the day (30-9046

minutes ago) may influence a patient’s glucose more than the glucose values from the past 15 minutes.47

As a result, although there is some degree of temporal dependence within the traces, only conserving48

the immediate temporal relationships amongst values at previous timesteps does not adequately49

capture the dynamics of this type of data. In particular, we find that the main reason previous methods50

fail is because they may not sufficiently learn event-related characteristics of glucose traces.51

Contributions. We present GlucoSynth, a privacy-preserving GAN framework to generate synthetic52

glucose traces. The core intuition behind our approach is to conserve relationships amongst motifs53

(events) within the traces, in addition to the typical temporal dynamics contained within time series.54

We formalize the concept of motifs and define a notion of motif causality, inspired from Granger55

causality [7], which characterizes relationships amongst sequences of motifs within time series traces56

(Section 4). We define a local motif loss to first train a motif causality block that learns the motif57

causal relationships amongst the sequences of motifs in the real traces. The block outputs a motif58

causality matrix, that quantifies the causal value of seeing one particular motif after some other motif.59

Unrealistic motif sequences (such as a peak to an immediate drop in glucose values) will have causal60

relationships close to 0 in the causality matrix. We build a novel GAN framework that is trained61

to optimize motif causality within the traces in addition to temporal dynamics and distributional62

characteristics of the data (Section 5). Explicitly, the generator computes a motif causality matrix63

from each batch of synthetic data it generates, and compares it with the real causality matrix. As64

such, as the generator learns to generate synthetic data that yields a realistic causal matrix (thereby65

identifying appropriate causal relationships from the motifs), it implicitly learns not to generate66

unrealistic motif sequences. We also integrate differential privacy (DP) [8] into the framework67

(Section 6), which provides an intuitive bound on how much information may be disclosed about68

any individual in the dataset, allowing the GlucoSynth model to be trained with privacy guarantees.69

Finally, in Section 7, we present a comprehensive evaluation using 1.2 million glucose traces from70

individuals with diabetes collected across 2022, showcasing the suitability of our model to outperform71

all previous models and generate high-quality synthetic glucose traces with strong privacy guarantees.72

2 Related Work73

We focus the scope of our comparison on current state-of-the-art methods for synthetic time se-74

ries which all build upon Generative Adversarial Networks (GANs) [3] and transformation-based75

approaches [9]. An extended related work is in Appendix A.76

Time Series. Brophy et al. [10] provides a survey of GANs for time series synthesis. TimeGan [4] is a77

popular benchmark that jointly learns an embedding space using supervised and adversarial objectives78

in order to capture the temporal dynamics amongst traces. Esteban et al. [11] develops two time79

series GAN models (RGAN/RCGAN) with RNN architectures, conditioned on auxiliary information80
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(a) Glucose Motif 1 (b) Glucose Motif 2 (c) Temporal Motif 1 (d) Temporal Motif 2

Figure 2: Temporal Distributions of Sample Motifs. Each radial graph displays the temporal
distribution of a motif; there are 24 radial bars from 00:00 to 23:00, and each segment displays the %
of motif occurrences by each hour. Glucose motifs 1 and 2 are from Fig. 1; they are not temporally-
dependent and show up across the day. Temporal motifs 1 and 2 are from a cardiology dataset [15].

provided at each timestep during training. TTS-GAN [5] trains a GAN model that uses a transformer81

encoding architecture in order to best preserve temporal dynamics. Transformation-based approaches82

such as real-valued non-volume preserving transformations (NVP) [9] and Fourier Flows (FF) [12],83

have also had success for time series data. These methods model the underlying distribution of the84

real data to transform the input traces into a synthetic data set. Methods that only focus on learning the85

temporal or distributional dynamics in time series are not sufficient for generating realistic synthetic86

glucose traces due to the lack of temporal dependence within sequences of glucose motifs.87

Differentially-Private GANs. To protect sensitive data, several GAN architectures have been88

designed to incorporate privacy-preserving noise needed to satisfy differential privacy guarantees [13].89

Frigerio et al. [14] extends a simple differentially-private architecture (dpGAN) to time-series data90

and RDP-CGAN [6] develops a convolutional GAN architecture specifically for medical data. These91

methods find large gaps in performance between the non-private and private models. Providing strong92

theoretical DP guarantees using these methods often results in synthetic data with too little fidelity93

for use in real-world scenarios. Our framework carefully integrates DP into the motif causality block94

and each network of the GAN, resulting in a better utility-privacy tradeoff than previous methods.95

3 Preliminaries96

3.1 Motifs97

Glucose (and many other) traces can be best understood as sequences of events or motifs. Motifs98

characterize phenomenon in the traces, such as peaks or troughs. We define a motif, µ, as a short,99

ordered sequence of values (v) of specified length τ , µ = [vi, vi+1, . . . , vi+τ ] and σ is a tolerance100

value to allow approximate matching (within σ for each value). Some examples of glucose traces101

and motifs are shown in Figure 1. We denote a set of n time series traces as X = [x1, ..., xn]. Each102

time series may be represented as a sequence of motifs: xi = [µi1 , µi2 ...] where each ij gives the103

index of the motif in the set that matches xij·τ , ...xi(j+1)·τ−1
. Given the motif length τ , the motif104

set is the union of all size-τ chunks in the traces. This definition is chosen for a straightforward105

implementation but motifs can be generated in other ways, such as through the use of rolling windows106

or signal processing techniques [16, 17]. Motifs are pulled from the data such that there is always a107

match from a trace motif to a motif from the set (if multiple matches, the closest one is chosen).108

3.2 Glucose Dynamics (Why Standard Approaches Fail)109

We first present a study of the characteristics of glucose data in order to motivate the development110

of our framework. Although there are general patterns in sequences of glucose motifs (e.g., motif111

patterns corresponding to patients that eat 2x vs. 3x a day), individual glucose motifs are typically112

not time-dependent, as illustrated in Figure 2. The radial graphs display the temporal distribution of113

the first two glucose motifs from Figure 1 and two temporally-dependent motifs from a cardiology114

dataset [15]. There are 24 radial bars from 00:00 to 23:00 for each hour of the day, and the bar value115

is the percentage of total motif occurrences at that hour across the entire dataset (i.e., value of 10116

would indicate that 10% of the time that motif occurs during that hour). Note that the glucose motifs117
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show up fairly evenly across all hours of the day whereas the motifs from the cardiology dataset have118

shifts in their distribution and show up frequently at specific hours of the day. The lack of temporal119

dependence in glucose motifs is likely due to the diverse patient behaviors within a patient population.120

Glucose in particular is highly variable and influenced by many factors including eating, exercise,121

stress levels, and sleep patterns. Moreover, due to innate variability within human physiology, motif122

occurrences can differ even for the same patient across weeks or months. These findings indicate that123

only conserving the temporal relationships within glucose traces (as many previous methods do) may124

not be sufficient to properly learn glucose dynamics and output realistic synthetic traces.125

3.3 Granger Causality126

Granger causality [7] is commonly used to quantify relationships amongst time series without limiting127

the degree to which temporal relationships may be understood as done in other time series models,128

e.g., pure autoregressive ones. In this framework, an entire system (set of traces) is studied together,129

allowing for a broader characterization of their relationships, which may be advantageous, especially130

for long time series. We define xt ∈ Rn as an n-dimensional vector of time series observed across n131

traces and T timesteps. To study causality, a vector autoregressive model (VAR) [18] may be used.132

A set of traces at time t is represented as a linear combination of the previous K lags in the series:133

xt =
∑K

k=1 A
(k)xt−k + et where each A(k) is a n× n dimensional matrix that describes how lag k134

affects the future timepoints in the series’ and et is a zero mean noise. Given this framework, we state135

that time series q does not Granger-cause time series p, if and only if for all k, A(k)
p,q = 0. To better136

represent nonlinear dynamics amongst traces, a nonlinear autoregressive model (NAR) [19], g, may137

be defined, in which xt = g (x1<t
, ..., xn<t

) + et where xp<t
=

(
xp1

..., xpt−1
, xpt

)
describes the138

past of series p. The NAR nonlinear functions are commonly modeled jointly using neural networks.139

4 Motif Causality140

Using Granger causality as defined would overwhelm the generator with too much information,141

resulting in convergence issues for the GAN. Instead of looking at traces comprehensively, we142

need a way to scope how the generator understands relationships between time series. To this143

end, we aim to use the same intuition developed from Granger causality, namely developing an144

understanding of relationships comprehensively using less stringent temporal constraints, but scope145

these relationships specifically in terms of motifs. Therefore, we develop a concept of motif causality146

which, by learning causal relationships amongst sequences of motifs, allows the generator to learn147

realistic motif sequences and produce high quality synthetic traces as a result.148

4.1 Extending Granger Causality to Motifs149

In order to quantify the relationships amongst sequences of motifs to best capture glucose dynamics,150

we extend the idea of Granger causality to work with motifs. Given a motif set with m motifs,151

we build a separate (component) model, called a motif network in our method, for each motif,152

resulting in m motif networks. For a single motif µi at time t, µit , we define a function gi specifying153

how motifs in previous timesteps are mapped to that motif: µit = gi (µ1<t , ..., µm<t) + eit where154

µj<t
=

(
µj1 ..., µjt−1

, µjt

)
describes the past of motif µj . The output of gi is a vector, which is155

added to the noise vector eit . Essentially, we define motif µi in terms of its relationship to past motifs.156

The gi function takes in some mapping that describes how motifs in previous timesteps are mapped157

to the current motif µit . The mapping is not specified in this notation, and could be defined in many158

different ways. In our case, we instantiate gi using a single-layer LSTM, described next.159

A gi function for each motif µi in the motif set is modeled using a motif network with a single-160

layer RNN architecture. For a RNN predicting a single component motif, let ht ∈ Rm represent161

the m-dimensional hidden state at time t. This represents the historical context of the motifs in162

the series for predicting a component motif at time t, µit . At time t, the hidden state is updated:163

ht = gi(ht−1) + eit . gi here is the function describing how motifs in previous timesteps are mapped164

to the current motif, and is modeled (instantiated) as a single-layer LSTM as they are good at modeling165

long, nonlinear dependencies amongst traces [20]. The output for a motif µi at time t, µit can be166

obtained by a linear decoding of the hidden state, µit = W oht + eit , where W o is a matrix of the167

output weights. These weights control the update of the hidden state and thereby control the influence168
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Figure 3: Motif Causality Block.

of past motifs on this component motif. Essentially, this function learns a weighting that quantifies169

how helpful motifs in previous timesteps are for predicting the specified motif µi at time t. We note170

that we define causality in this way based on how Granger causality models such relationships, which171

is different from traditional causality models.172

If all elements in the jth column of W o are zero (W o
:j = 0), this is a sufficient condition for an173

input motif µj being motif non-causal on an output µi. Therefore, we can find the motifs that are174

motif-causal for motif µi using a group lasso penalty optimization across the columns of W o:175

min
W

T∑
t=2

(µit − gi(µ0<t
, ..., µm<t

))2 +

m∑
j=1

||W o
:j ||2

We define this as the local motif loss, Lml, which is optimized in each motif network using proximal176

gradient descent.177

4.2 Training the Motif Causality Block178

We next describe how the motif causality block is trained to learn motif causal relationships amongst179

traces, displayed in Figure 3. The block is structured in this way to accommodate the privacy180

integration (Section 6.2); here, we present its implementation without any privacy noise.181

Partition data. First, the data is partitioned into r partitions (Step 1, Figure 3) such that no models182

are trained on overlapping data. The number of partitions, r, is a user-specified hyperparameter.183

Build motif network for each motif. Next, within each data partition a set of motif networks is184

trained. As a pre-processing step, we assume each trace has been chunked into a sequence of motifs185

of size τ (Section 3.1). τ is a hyperparameter, which we suggest chosen based on the longest effect186

time of a trace event. We use τ = 48, corresponding to 4 hours of time, because large glucose events187

(from behaviors like eating) are encompassed within that time frame. We assume a tolerance of σ = 2188

mg/dL, chosen to allow for reasonable variations in glucose. To model motif causality for an entire189

set of data, a gi function is implemented for each motif via a separate RNN motif net following the190

description provided previously, resulting in m total networks (Step 2a, Figure 3).191

Combine outputs of individual motif networks. Each motif network outputs a vector of weights192

W o of dimensionality 1×m, corresponding to the learned causal relationships (Step 2b, Figure 3).193

Values in the vector are between 0 (no causal relationship) and 1 (strongest causal relationship) and194

give the degree to which every other motif is motif causal of the particular motif µi the RNN was195

specialized for. To return a complete matrix that summarizes causal relationships amongst all motifs,196

we stack the weights (Step 2c). The output of each data partition is a complete motif causality matrix,197

resulting in r total matrices, each of dimensionality m×m.198

Aggregate matrices and integrate with GAN. After motif causality matrices have been outputted199

from each data partition, the weights in the matrices are aggregated (Step 3, Figure 3) to return the final200

aggregate causality matrix, M (Step 4). In the nonprivate version, the weights are averaged. Finally,201

M is sent to the generator to help it learn how to conserve motif relationships within sequences of202

motifs in the synthetically generated data. Details are described next in the subsequent section.203
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Figure 4: Overview of GlucoSynth Architecture.

5 GlucoSynth204

The complete GlucoSynth framework, shown in Figure 4, comprises four key blocks: the motif205

causality block (explained previously in Section 4), an autoencoder, a generator and a discriminator.206

We walk through the remaining components of the framework surrounding the GAN next.207

5.1 GAN Architecture Components208

Autencoder. We use an autoencoder (AE) with an RNN architecture to learn a lower dimensional209

representation of the traces, allowing the generator to better preserve underlying temporal dynamics210

of the traces. The autoencoder consists of two networks: an embedder and a recovery network.211

The embedder uses an encoding function to map the real data into a lower dimensional space:212

Enc(x) : x ∈ Rn → xe ∈ Re while the recovery network reverses this process, mapping the213

embedded data back to the original dimensional space: Dec(xe) : xe ∈ Re → x̃ ∈ Rn. A foolproof214

autoencoder perfectly reconstructs the original input data, such that x = x̃ ≡ Dec(Enc(x)). This215

process yields the Reconstruction Loss, LR, the Mean Square Error (MSE) between the original data216

x and the recovered data, x̃: MSE(x, x̃).217

Generator. We implement the generator via an RNN or LSTM. Importantly, the generator works in218

the embedded space, by receiving the input traces passed through the embedder (xe). To generate219

synthetic data, a random vector of noise, z is passed through the generator and then the recovery220

network to return the synthetic traces in the original dimensional space. To learn how to produce221

high-quality synthetic data, the generator receives three key pieces of information:222

1 – Stepwise. The generator receives batches of real data to guide the generation of realistic next step223

vectors. To do this, a Stepwise Loss, LS , is computed at time t using the MSE between the batch of224

embedded real data, xet, and the batch of embedded synthetic data, x̂et: MSE(xet, x̂et). This allows225

the generator to compare (and learn to correct) the discrepancies in stepwise data distributions.226

2 – Motif Causality. The generator needs to preserve sequences of motifs in addition to temporal227

dynamics. Using the aggregate causality matrix M returned from the Motif Causality Block, the228

generator computes a motif causality matrix, Mx̂, on the set of synthetic data x̂. Because the original229

causality matrix was not trained on data in the embedded space, we first run the set of embedded230

synthetic data through the recovery network x̂e → x̂. From there, the Motif Causality Loss, LM , is231

computed as the MSE error between the two matrices: MSE(M,Mx̂). These matrices give a causal232

value of seeing a motif µi in the future after some motif µj— unrealistic motif sequences will have233

causal values close to 0. As the generator learns to generate synthetic data that yields a realistic causal234

matrix (thereby identifying appropriate causal relationships from the motifs), it implicitly learns to235

not generate unrealistic motif sequences.236

3 – Distributional. To guide the generator to produce a diverse set of traces, the generator computes a237

Distributional Loss, LD, the moments loss (MML), between the overall distribution of the real data238

xe and the distribution of the synthetic data x̂e: MML(xe, x̂e). The MML is the difference in the239

mean and variance of two matrices.240
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Discriminator. The discriminator is a traditional discriminator model using an RNN, the only change241

being it also works in the embedded space. The discriminator yields the Adversarial Loss Real, LAr,242

the Binary Cross Entropy (BCE) between the discriminator guesses on the real data yxe and the243

ground truth y, a vector of 0’s, BCE(yxe
, y) and the Adversarial Loss Fake, LAf , the BCE between244

the discriminator guesses on the fake data yx̂e
and the ground truth y, a vector of 1’s, BCE(yx̂e

, y).245

5.2 Training Procedure246

First, the motif causality block is trained following the procedure described in Section 4.2, and then247

the rest of the GAN is trained. The autoencoder is optimized to minimize LR + αLS , where α is248

a hyperparameter that balances the two loss functions. If the AE only receives LR (as is typically249

done), it becomes overspecialized, i.e., it becomes too good at learning the best lower dimensional250

representation of the data such that the embedded data are no longer helpful to the generator. For251

this reason, the AE also receives LS , enabling the dual training of the generator and embedder. The252

generator is optimized using min(1−LAf ) + η(LS +LD) +LM , where η is a hyperparameter that253

balances the effect of the stepwise and distributional loss. Finally the discriminator is optimized using254

the traditional adversarial feedback minLAf + LAr. The networks are trained in sequence (within255

each epoch) in the following order: autoencoder, generator, then discriminator. In our experiments256

we set α = 0.1 and η = 10 as they enable GlucoSynth to converge fastest, i.e., in the fewest epochs.257

6 Providing Differential Privacy258

There are two components to our privacy architecture, described in the following two subsections:259

(1) each network in the GAN (Embedder, Recovery, Generator and Discriminator networks) is260

trained in a differentially private manner using the Differentially-Private Stochastic Gradient Descent261

(DP-SGD) algorithm from Abadi et al. [21]; and (2) the motif causality block is trained using262

the PATE framework from Papernot et al. [22]. Importantly, two completely separate datasets are263

used for the training of the motif causality block (dataset B in Figure 4) and the GAN (dataset264

A in Figure 4). We structure the privacy integration in this way to allow for better privacy-utility265

trade-offs. Our design satisfies the formal differential privacy notion introduced by Dwork et al.266

[23]. Differential Privacy (DP) provides an intuitive bound on the amount of information that can267

be learned about any individual in a dataset. A randomized algorithm M satisfies (ϵ, δ)-differential268

privacy if, for all datasets D1 and D2 differing by at most a single unit, and all S ⊆ Range(M),269

Pr[M(D1) ∈ S] ≤ eϵPr[M(D2) ∈ S] + δ. The parameters ϵ and δ determine the privacy loss270

budget, which provide a way to tradeoff privacy and utility; smaller values have stronger privacy.271

6.1 Training the GAN Networks with DP272

To add privacy to the GAN components, each of the networks (Embedder, Recovery, Generator and273

Discriminator) is trained in a differentially private manner using DP-SGD [21]. Although the overall274

GAN framework is complicated, the individual networks all use simple RNN or LSTM architectures275

with Adam optimizers. As such, adding DP noise to their network weights is straightforward. We276

employ the following procedure using Tensorflow Privacy functions [24]. Since there are four277

networks being trained with DP, we divide the privacy loss budget evenly to get the budget per278

network, ϵnet = ϵ/4. Then, we use Tensorflow’s built-in DP accountant to determine how much noise279

must be added to the weights of each network based on the number of epochs, batch size, number280

of traces and ϵnet. This function returns a noise multiplier, which we use when we instantiate a281

Tensorflow DP Keras Adam Optimizer for each network. Finally, we train each of the networks using282

their respective DP Keras Adam Optimizer, which automatically trains the network using DP-SGD.283

6.2 Training the Motif Causality Block with DP284

We train the motif causality block using the PATE framework [22]. PATE provides a way to return285

aggregated votes about the class a data point belongs to. First, the data is partitioned into r partitions,286

where r is determined based on the size of the dataset and the privacy loss budget. Then, a class287

membership model is trained independently for each partition. The class membership votes from288

each partition are aggregated by adding noise to the vote matrix and the noisiest votes are returned289

using the max-of-Laplacian mechanism (LNMax), tuned based on the privacy budget and r.290
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We use PATE to train the motif causality block: instead of predicting the degree of class membership291

we predict causal membership, e.g., does motif µi have a causal relationship to µj . The motif292

causality block is trained in the same procedure described in Section 4.2 with two changes: (1) the293

number of data partitions, r, is determined based on the privacy budget, instead of a user-specified294

value; (2) the final causality matrix M is aggregated using DP across the partitions. In normal PATE,295

carefully calibrated noise is added to a matrix of votes for each class, such that the classes with the296

noisiest votes are outputted. In our use, each value in a motif causality matrix may be likened to a297

class (i.e., causal “class" prediction between motif µi and µj). Thus, we use the LNMax mechanism298

(from predefined Tensorflow Privacy functions [24]) to aggregate the matrices weights and return M .299

We use PATE instead of training each motif network using DP-SGD for better privacy-utility trade-300

offs. With DP-SGD, we would need to add noise to every motif net, eating up our privacy budget301

quickly and severely impacting the quality of the returned casuality matrices. PATE allows us to train302

each of the motif networks without any noise on the gradients, but then aggregates their returned303

causality matrices in a privacy-preserving manner, resulting in a better privacy-utility trade-off.304

7 Evaluation305

Evaluating synthetic data is notoriously difficult [25], so we provide an extensive evaluation across306

three criteria. Synthetic data should: 1) conserve characteristics of the real data (fidelity, Section 7.1);307

2) contain diverse patterns from the real data without the introduction of anomalous patterns (breadth,308

Section 7.2); and 3) be usable in place of the original for real-world use cases (utility, Section 7.3).309

Data and Benchmarks. We use 100,000 single-day glucose traces randomly sampled across each310

month from January to December 2022, for a total of 1.2 million traces, collected from Dexcom’s311

G6 Continuous Glucose Monitors (CGMs) [26]. Data was recorded every 5 minutes (T = 288) and312

each trace was aligned temporally from 00:00 to 23:59. We restrict our comparison to the five most313

closely related state-of-the-art models for generating synthetic univariate time series with no labels or314

auxiliary data: Three nonprivate—TimeGAN [4], Fourier Flows (FF) [12], non-volume preserving315

transformations (NVP) [9]; and two private—RGAN [11] and dpGAN [14]. Additional experimental316

details and all hyperparameter settings are available in Appendix B.317

7.1 Fidelity318

Population Statistics. To evaluate fidelity on a population scale, we compute a common set of glucose319

metrics and test if the difference between the synthetic and real data is statistically significant. Table 1320

provides an abbreviated summary of the results; Appendix C.2 has complete results. GlucoSynth321

performs the best, with few statistical differences between the real and synthetic data for ϵ ≥ 0.1.322

Distributional Comparisons. We visualize differences in distributions between the real and synthetic323

data by plotting the distribution of variances and using PCA [27]. Figure 5 shows the variance324

distribution for the nonprivate models. Additional comparisons across privacy budgets are available325

in Appendix C.3. In both nonprivate and private settings, GlucoSynth produces synthetic distributions326

closest to the real ones, better than all other models.327

7.2 Breadth328

We quantify breadth in terms of glucose motifs. For each model’s synthetic traces, we build a motif329

set (see Section 3.1). Given a real motif set from the validation traces Sx, for each synthetic motif set330

Sx̂, we compute “Validation Motifs", (VM), the fraction of motifs found in the validation motif set331

that are present in the synthetic motif set, VM/|Sx̂|. This metric quantifies how good our synthetic332

motif set is (e.g., are its motifs mostly similar to motifs found in real traces). We also compute metrics333

related to coverage, the fraction of motifs in the validation motif set that are found in our synthetic334

data, defined as VM/|Sx|. This gives a sense of the breadth in a more traditional manner. To compare335

actual distributions of motifs (not just counts), we compute the MSE between the distribution of336

real motifs Sx and the distribution of synthetic motifs Sx̂. This gives a measure about how close the337

synthetic motif distribution is to the real one. We want high VM and coverage, and low MSE. Results338

are in Table 1 with additional analysis in Appendix D; overall our model provides the best breadth.339
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Table 1: Fidelity, Breadth and Utility Evaluation. Fidelity: bolded values do not have a statistically
significant difference from the real data (what we want). Breadth and Utility: VM = fraction found
validation motifs; We want high VM, Coverage and low MSE, RMSE; Bolded values indicate the
best ones at each privacy budget (nonprivate compared with private models when ϵ = ∞).

Fidelity (metric, p-val) Breadth Utility
Model ϵ Variance Time-in-Range VM Coverage MSE RMSE

GlucoSynth

0.01 2576, <1e−5 61.8, 2e−5 1.000 0.010 99.0 0.038± 3e−4
0.1 2809, 0.356 60.1, 0.532 1.000 0.083 11.2 0.036± 3e−4
1 2761, 0.022 60.6, 0.410 0.992 0.145 6.7 0.030± 1e−4
10 2801, 0.316 60.2, 0.845 1.000 0.167 5.0 0.029± 1e−4
∞ 2812, 0.503 60.2, 0.682 0.987 0.534 1.6 7e−3± 2e−4

TimeGAN ∞ 2235, 8e−3 62.3, 0.420 0.625 6e−3 107.7 0.061± 3e−4

FF ∞ 2836, 0.902 46.6, <1e−5 0.642 0.405 2.0 0.038± 3e−4

NVP ∞ 1789, <1e−5 65.5, <1e−5 0.482 0.328 1.9 0.029± 3e−5

RGAN

0.01 57, <1e−5 78.8, <1e−5 0.013 1e−3 108.6 0.819± 0.010
0.1 53, <1e−5 71.6, 3e−5 0.015 0.031 107.3 0.688± 6e−3
1 67, <1e−5 78.2, <1e−5 0.015 0.033 103.3 0.651± 0.018
10 77, <1e−5 83.7, <1e−5 0.017 0.053 100.3 0.619± 0.016
∞ 90, <1e−5 78.0, <1e−5 0.026 0.091 79.6 0.460± 0.013

dpGAN

0.01 451, <1e−5 95.3, <1e−5 0.094 0.054 180.1 0.205± 5e−3
0.1 1057, <1e−5 86.4, <1e−5 0.390 0.195 28.9 0.045± 2e−4
1 875, <1e−5 86.6, <1e−5 0.480 0.239 23.2 0.030± 2e−5
10 1030, <1e−5 88.1, <1e−5 0.743 0.251 16.1 0.035± 8e−5
∞ 1121, <1e−5 81.8, <1e−5 0.855 0.293 10.9 0.028± 5e−5

(a) GlucoSynth (b) TimeGAN (c) FF (d) NPV

Figure 5: Distributional Variance for Nonprivate Models

7.3 Utility340

We evaluate our synthetic glucose traces for use in a glucose forecasting task using the common341

paradigm TSTR (Train on Synthetic, Test on Real), in which the synthetic data is used to train342

the model and then tested on the real validation data. We train an LSTM network optimized for343

glucose forecasting tasks [28] and report the Root Mean Square Error (RMSE) in Table 1. Since344

RMSE provides a limited view about the model’s predictions, we also plot the Clarke Error Grid [29],345

which visualizes the differences between a predictive and reference measurement, and is a basis for346

evaluating the safety of diabetes-related medical devices. More details are in Appendix E. GlucoSynth347

provides the best forecasting results compared to all other models across all privacy budgets.348

8 Limitations & Conclusion349

Limitations. In order to train on a huge set of glucose traces, we used a private dataset, not publicly350

available (one of the motivations for this project was actually to share a synthetic version of these351

traces). That being said, smaller samples of glucose traces with similar patient populations are352

available at OpenHumans [30] and T1D Exchange Registry [31]. In addition, one of the reasons our353

privacy results perform well is because we use two separate datasets for the training of the motif354

causality block and the GAN. However, this may be a limiting factor for others that do not have a355

large enough set of traces available to be able to train adequately on partitioned data.356

Conclusion. In this paper we have presented GlucoSynth, a novel GAN framework with integrated357

differential privacy to generate synthetic glucose traces. GlucoSynth conserves motif relationships358

within the traces, in addition to the typical temporal dynamics contained within time series. We pre-359

sented a comprehensive evaluation using 1.2 million glucose traces wherein our model outperformed360

all previous models across three criteria of fidelity, breadth and utility.361
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Table 2: Summary of Previous Methods for Time Series Synthesis. *CI = conditional information or
extra features

Name Private? No Labels Required? No CI*? Length
TimeGAN [4] x ✓ ✓ 24 - 58
TTS-GAN [5] x x ✓ 24 - 150

SigCWGAN [32] x ✓ x 80,000
RGAN [11] ✓ ✓ ✓ 16 - 30

RCGAN [11] ✓ ✓ x 16 - 30
dpGAN [14] ✓ ✓ ✓ 96

RDP-CGAN [6] ✓ ✓ x 2 - 4097
DoppelGANger [33] ✓ ✓ x 50 - 600
GlucoSynth (Ours) ✓ ✓ ✓ 288+

A Extended Related Work461

We overview related work in three lines of research: time series, conditional time series, and time462

series methods that employ differential privacy. Table 2 summarizes previous time series synthesis463

methods. We note that there have been exciting developments for adjacent research tasks (data464

augmentation, forecasting) such as diffusion models [34], but there are not yet any publicly available465

models specifically for the generation of complete synthetic time series datasets. As such, we focus466

the scope of our comparison on the current state-of-the-art methods for synthetic time series which all467

build upon Generative Adversarial Networks (GANs) [3] and transformation-based approaches [9].468

In particular TimeGAN [4], RGAN [11] and dpGAN [14] are most similar to ours and used as469

benchmarks in the evaluation in Section 7.470

Time Series. There have been promising models to generate synthetic time series across a variety of471

domains such as financial data [35], cyber-physical systems (e.g., smart homes [36]), and medical472

signals [37]. Brophy et al. [10] provides a survey of GANs for time series synthesis. TimeGan [4]473

is a popular benchmark that jointly learns an embedding space using supervised and adversarial474

objectives in order to capture the temporal dynamics amongst traces. TTS-GAN [5], trains a GAN475

model that uses a transformer encoding architecture in order to best preserve temporal dynamics.476

Transformation-based approaches have also had success for time series data. Real-valued non-477

volume preserving transformations (NVP) [9] model the underlying distribution of the real data using478

generative probabilistic modeling and use this model to output a set of synthetic data. Similarly,479

Fourier Flows (FF) [12] transform input traces into the frequency domain and output a set of synthetic480

data from the learned spectral representation of the original data. Methods that only focus on learning481

the temporal or distributional dynamics in time series are not sufficient for generating realistic482

synthetic glucose traces due to the lack of temporal dependence within sequences of glucose motifs.483

Conditional Time Series. Many works have developed time series models that supplement their484

training using extra features or conditional data. Esteban et al. [11] develops two GAN models485

(RGAN/RCGAN) with RNN architectures, conditioned on auxiliary information provided at each486

timestep during training. SigCWGAN [32] uses a mathematical conditional metric (Sig − W1)487

characterizing the signature of a path to capture temporal dependence of joint probability distributions488

in long time series data. However, our glucose traces do not have any additional information available489

so these methods cannot be used1.490

Differentially-Private GANs. To protect sensitive data, several GAN architectures (DP GANs)491

have been designed to incorporate privacy-preserving noise needed to satisfy differential privacy492

guarantees [13]. Although DP GANs such as PateGAN [38] have had great success for other data493

types and learning tasks (e.g., tabular data, supervised classification tasks), results have been less494

satisfactory in DP GANs developed for time series.495

RGAN/RCGAN [11] also includes a DP implementation, but the authors find large gaps in perfor-496

mance between the nonprivate and private models. Frigerio et al. [14] extends a simple DP GAN497

architecture (denoted dpGAN) to to time-series data. The synthetic data from their private model498

1There is a caveat here that RGAN does not use auxillary information, hence why we compare with it in our
benchmarks.
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Figure 6: Example motif causality matrix for a small motif set (m = 10). Each value in the grid is
between 0 and 1. 0 indicates no motif-causal relationship, and 1 indicates the strongest motif causal
relationship.

conserves the distribution of the real data but loses some of the variability (diversity) from the original499

samples. RDP-CGAN [6] develops a convolutional GAN architecture that uses Rényi differential500

privacy specifically for medical data. Across different datasets, they find that reasonable privacy501

budgets result in major drops in the performance of the synthetic data. Finally, DoppelGANger [33]502

develops a temporal GAN framework for time series with metadata and perform an in-depth privacy503

evaluation. Notably, they find that providing strong theoretical DP guarantees results in destroying504

the fidelity of the synthetic data, beyond anything feasible for use in real-world scenarios. Each505

of these methods touches on the innate challenge of generating DP synthetic time series due to506

very high tradeoffs between utility and privacy. Our DP framework uses two different methods507

to integrate privacy into our GAN architecture, resulting in a better utility-privacy trade-off than508

previous methods.509

B Additional Experimental Details510

Note on Data Use. As explained in the approach (Section 5), our model uses two separate datasets511

for the training of the motif causality block and the rest of the GAN. As such, we used two different512

samples of glucose traces with no overlap between patients for the training of each section (meaning513

we actually used a total of 2.4 million traces across the entire model).514

Extra Benchmark Details. TimeGAN [4] is implemented from www.github.com/jsyoon0823/515

TimeGAN; Fourier Flows (FF) [12] are implemented from www.github.com/ahmedmalaa/516

Fourier-flows; RGAN [11] is implemented from www.github.com/ratschlab/RGAN;517

and DPGAN [14] is adapted from www.github.com/SAP-samples/security-research-518

differentially-private-generative-models.519

Hyperparameters. We use a separate validation dataset (not the set of original training traces) for520

all experimental results. Throughout all our experiments we use a motif tolerance σ = 2 mg/dL,521

motif length τ = 48, and GlucoSynth model parameters of α = 0.1 and η = 10. Motif length of522

48 timesteps is equivalent to 4 hours of time; this threshold was chosen because the effect of any523

behaviors on glucose occur within 4 hours of the event (e.g., the effect from eating a meal – a rise in524

glucose – will occur within 4 hours after eating.) There are m = 5, 977, 610 total motifs in the motif525

set. We vary ϵ in our privacy experiments, but keep δ the same at 5e−4. All the benchmarks were526

trained according to their suggested parameters, with most models trained for 10,000 epochs. We527

note that we trained for more than the suggested epochs (50,000 instead of 10,000) and tried many528

additional hyperparameter settings for RGAN to attempt to improve its performance and provide the529

fairest comparison possible. Our experiments were completed in the Google Cloud platform on an530

Intel Skylake 96-core cpu with 360 GB of memory.531

C Additional Evaluation: Fidelity532

C.1 Visualizations533

Traces. We provide visualizations of sample real and synthetic glucose traces from all the models.534

Although this is not a comprehensive way to evaluate trace quality, it does give a snapshot view about535

what synthetic traces may look like. Figure 7 shows randomly sampled individual traces across the536
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nonprivate models, and Figure 8 shows traces across different privacy budgets for the private models.537

As evidenced by the figures, GlucoSynth produces highly realistic synthetic glucose traces, even at538

small privacy budgets.539

Heatmaps. We also provide a heatmap visualization of the traces, to give a slightly larger snapshot540

view of the outputted synthetic vs real traces. Each heatmap contains 100 randomly sampled glucose541

traces. Each row is a single trace from timestep 0 to 288. The values (coloring) in each row indicate542

the glucose value (between 40 mg/dL and 400 mg/dL). Figure 9 shows the nonprivate models, and543

Figures 10, 11, 12 show the private models with different privacy budgets. Upon examinging the544

heatmaps, we notice that GlucoSynth consistently generates realistic looking glucose traces, even at545

very small privacy budgets.546

Table 3: Glycemic Metric Explanations

Metric Name Explanation
VAR Signal Variance average trace variability
TIR Time in Range % of time glucose ≥ 70& ≤ 180

Hypo Time Hypoglycemic % of time glucose < 70
Hyper Time Hyperglycemic % of time glucose > 180
GVI Glycaemic Variability Index more detailed measure of glucose variability
PGS Patient Glycaemic Status metric combining GVI and TIR

Table 4: Population Data Statistics. Each cell value for the synthetic data shows the (metric, p-value)
using a 0.05 testing threshold. Bolded values do not have a statistically significant difference from
the real data (what we want).

Model ϵ VAR TIR Hypo Hyper GVI PGS
Real Data N/A 2832.76 60.31 1.58 38.11 4.03 349.23

GlucoSynth

0.01 2575.501, 0.0 61.759, 2.0e−5 1.331, 0.0 36.91, 5.66e−4 4.002, 0.085 323.056, 0.0
0.1 2803.513, 0.356 60.088, 0.532 1.264, 0.0 38.648, 0.137 3.969, 2.74e−4 347.562, 0.712
1 2760.853, 0.022 60.597, 0.41 1.512, 0.163 37.892, 0.537 4.019, 0.577 345.159, 0.368
10 2800.805, 0.316 60.24, 0.845 1.538, 0.395 38.222, 0.76 3.963, 6.7e−5 344.376, 0.28
100 2796.424, 0.244 60.138, 0.625 1.567, 0.808 38.295, 0.609 4.044, 0.32 352.679, 0.449
∞ 2811.622, 0.503 60.165, 0.682 1.54, 0.416 38.295, 0.61 4.056, 0.083 353.584, 0.339

TimeGAN ∞ 2234.576, 8.08e−3 62.315, 0.42 0.657, 8.233e−3 37.028, 0.669 5.482, 0.0 503.148, 0.2e−5

FF ∞ 2836.067, 0.902 46.578, 0.0 5.627, 0.0 47.795, 0.0 4.931, 0.0 528.773, 0.0

NVP ∞ 1789.430, 0.0 65.499, 0.0 1.507, 0.154 32.994, 0.0 6.607, 0.0 589.473, 0.0

RGAN

0.01 56.96, 0.0 78.756, 0.0 0.0, 1.78e−4 21.244, 0.0 2.52, 0.0 93.409, 0.0
0.1 52.553, 0.0 71.617, 3.7e−5 0.0, 1.78e−4 25.715, 0.0 2.208, 0.0 98.944, 0.0
1 67.346, 0.0 78.154, 0.0 0.0, 1.78e−4 21.846, 0.0 2.251, 0.0 85.417, 0.0
10 76.632, 0.0 83.681, 0.0 0.0, 1.78e−4 16.319, 0.0 2.23, 0.0 64.562, 0.0
100 84.918, 0.0 74.285, 0.0 0.0, 1.78e−4 25.715, 0.6e−5 2.208, 0.0 98.944, 0.0
∞ 89.702, 0.0 78.044, 0.0 0.0, 1.78e−4 21.956, 0.0 2.184, 0.0 82.923, 0.0

dpGAN

0.01 451.098, 0.0 95.275, 0.0 4.60, 0.0 0.124, 0.0 7.718, 0.0 41.549, 0.0
0.1 1057.205, 0.0 86.43, 0.0 0.837, 0.0 12.732, 0.0 6.349, 0.0 148.412, 0.0
1 874.663, 0.0 86.631, 0.0 1.135, 0.0 12.234, 0.0 4.794, 0.0 118.286, 0.0
10 1029.971, 0.0 88.122, 0.0 2.002, 0.0 9.876, 0.0 4.759, 0.0 93.632, 0.0
100 821.636, 0.0 89.354, 0.0 0.664, 0.0 9.982, 0.0 4.613, 0.0 82.561, 0.0
∞ 1120.553, 0.0 81.773, 0.0 1.359, 0.3e−5 16.868, 0.0 6.248, 0.0 188.991, 0.0

C.2 Population Statistics547

In order to evaluate fidelity on a population scale, we compute a common set of glucose metrics used548

to evaluate patient glycemic control on the real and synthetic data, including average trace variability549

(VAR), Time in Range (TIR), the percentage of time glucose is within the clinical guided range of550

70-180mg/dL; and time hypo- and hyper- glycemic (time below and above range, respectively) in551

Table 4. More details on each of the metrics are included in Table 3. We test if the difference in552

metrics between the synthetic and real data is statistically significant, using a p-value of 0.05. A553

p-value <0.05 indicates the difference is statistically significant. We want synthetic data that has554

similar population statistics to the real data: p-values > 0.05 such that the differences in statistics555

between real and synthetic data are not significant. GlucoSynth outperforms all other models, with no556

statistically significant difference in all metrics for privacy budgets of ϵ ≥ 100 and only one metric557

with a statistically significant difference for budgets ϵ = 1− 10.558
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(a) GlucoSynth

(b) TimeGAN

(c) FF

(d) NPV

Figure 7: Sample Traces for Nonprivate Models
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(a) GlucoSynth (b) RGAN

(c) dpGAN

Figure 8: Sample Traces for Private Models Across Privacy Budgets

17



(a) Real (b) GlucoSynth (c) TimeGAN (d) FF (e) NPV

Figure 9: Heatmaps for Nonprivate Models

Figure 10: Heatmaps for GlucoSynth Across Different Privacy Budgets

Figure 11: Heatmaps for RGAN Across Different Privacy Budgets

Figure 12: Heatmaps for dpGAN Across Different Privacy Budgets
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C.3 Distributional Comparisons559

We visualize differences in distributions between the real and synthetic data by plotting the distribution560

of variances and using PCA [27]. Figure 5 and Figure 13 show the variance distribution and PCA561

plots, respectively for the nonprivate models. We also compare distributional changes across privacy562

budgets: Figures 14 and 15 show GlucoSynth, Figures 16 and 17 show RGAN and Figures 18 and 19563

show dpGAN.564

Looking at the figures, GlucoSynth better captures the distribution of the real data compared to all of565

the nonprivate models. As evidenced in the PCA plot, (Fig. 13), FF comes the closest to capturing566

the real distribution in its synthetic data, but ours does a better job of representing the more rare types567

of traces. GlucoSynth also outperforms all of the private models across all privacy budgets. Even at568

small budgets (ϵ < 1), the general shape of the overall distribution is conserved (e.g., see Figure 14).569

D Additional Evaluation: Breadth570

Compared to all other models across all privacy budgets, our model has the best ratio of found571

validation motifs, with close to 1.0 for VM and the lowest MSEs. It also has the best coverage for572

nonprivate settings and an ϵ of 100. Interestingly, dpGAN has the best coverage compared to all other573

models for privacy budgets ϵ ≤ 10 but worse MSEs across all budgets than GlucoSynth. This means574

that although it finds a broader number of motifs contained in the real data, the overall distributions575

of motifs it creates in the synthetic data have much higher error rates. We argue that the tradeoff576

found by our model is better because although it does miss some of the types of motifs from the real577

data (misses some breadth), from the ones it does find it constructs realistic distributions of the motifs578

and generates very few anomalous ones.579

E Additional Evaluation: Utility580

Since RMSE may provide a limited view about the predictions from the glucose forecasting model,581

we also plot the Clarke Error Grid [29], which visualizes the differences between a predictive582

measurement and a reference measurement, and is the basis used for evaluation of the safety of583

diabetes-related medical devices (for example, used for evaluating glucose outputs from predictive584

models integrated into artificial insulin delivery systems). The Clarke Error Grid is implemented585

using www.github.com/suetAndTie/ClarkeErrorGrid. The grids are shown in Figure 20.586

In the figures, the x-axis is the reference value and the y-axis is the prediction. A diagonal line means587

the predicted value is exactly the same as the reference value (the best case). There are 5 total zones588

that make up the grid, listed in order from best to worst:589

• Zone A – Clinically Accurate: Predictions differ from actual values by no more than 20%590

and lead to clinically correct treatment decisions.591

• Zone B – Clinically Acceptable: Predictions differ from actual values by more than 20% but592

would not lead to any treatment decisions.593

• Zone C – Overcorrections: Acceptable glucose levels would be corrected (overcorrection).594

• Zone D – Failure to Detect: Predictions lie within the acceptable range but the actual values595

are outside the acceptable range, resulting in a failure to detect and treat errors in glucose.596

• Zone E – Erroneous Treatment: Predictions are opposite the actual values, resulting in597

erroneous treatment, opposite of what is clinically recommended.598

We show Clarke Error grids for all models (and the private models with no privacy included, ϵ = ∞).599

This is because comparing the models at different privacy budgets is not very informative – it can be600

hard to tell exactly where changes between different budgets may occur. We also present a table with601

the percentages of predicted datapoints in each category in Table 5. This table includes a comparison602

among different privacy budgets for the private models (much more effective than the figures by603

themselves.)604

Looking at the grids, we can see that GlucoSynth performs the best, with most of the values along605

the diagonal axis (Zone A and B) and less around the other zones (Zones C-E) as compared to the606
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Table 5: Clarke Error Grid Zones. Value is the percentage of predicted datapoints. Categories go
from A to E, best to worst. Bolded rows indicate the best results on the synthetic data at each privacy
budget (nonprivate models compared with private models when ϵ = ∞)

Model ϵ A: Accurate B: Acceptable C: Overcorrection D: Failure to Detect E: Error

GlucoSynth

0.01 0.858± 1.057e−3 0.131± 1.172e−3 3.271e−3± 0.0 0.017± 1.158e−4 5.79e−6± 1.2e−6
0.1 0.863± 6.947e−3 0.126± 7.526e−4 3.054e−3± 1.45e−5 0.018± 4.34e−5 5.79e−6± 0.0
1 0.862± 1.578e−3 0.128± 1.259e−3 3.343e−3± 1.45e−5 0.016± 3.329e−4 5.79e−6± 0.0
10 0.864± 6.947e−3 0.125± 6.513e−4 3.039e−3± 5.79e−5 0.017± 4.34e−5 8.68e−6± 2.89e−5
100 0.864± 1.74e−3 0.126± 1.447e−3 3.387e−3± 0.0 0.017± 2.895e−4 5.79e−6± 0.0
∞ 0.964± 1.201e−3 0.035± 1.158e−3 3.039e−4± 2.89e−5 1.732e−4± 1.158e−4 8.68e−6± 1.45e−5

TimeGAN ∞ 0.741± 0.012 0.233± 0.012 2.240e−3± 9.8e−5 0.024± 8.44e−4 2.19e−4± 1.9e−5

FF ∞ 0.824± 6.624e−3 0.156± 6.148e−3 3.547e−3± 9.0e−5 0.017± 3.940e−4 3.57e−4± 8.0e−6

NVP ∞ 0.79± 3.03e−4 0.186± 3.87e−4 3.49e−3± 1.5e−5 0.02± 1.04e−4 3.58e−4± 5.0e−6

RGAN

0.01 0.54± 0.014 0.435± 0.014 3.389e−4± 1.197e−4 0.024± 2.71e−4 2.429e−4± 3.43e−5
0.1 0.594± 1.998e−3 0.38± 1.74e−3 1.326e−3± 1.429e−4 0.025± 1.069e−4 2.873e−4± 8.68e−6
1 0.637± 6.785e−3 0.336± 6.128e−3 2.661e−3± 1.87e−5 0.024± 6.464e−4 2.792e−4± 2.95e−5
10 0.634± 3.452e−3 0.338± 3.247e−3 2.253e−3± 1.004e−4 0.025± 2.894e−4 3.027e−4± 1.71e−5
100 0.638± 4.709e−3 0.335± 4.219e−3 1.991e−3± 2.17e−5 0.025± 4.884e−4 2.949e−4± 2.26e−5
∞ 0.646± 6.89e−4 0.326± 7.19e−4 2.613e−3± 2.852e−4 0.024± 3.006e−4 2.859e−4± 1.5e−5

dpGAN

0.01 0.308± 3.482e−3 0.509± 3.71e−3 2.894e−7± 0.0 0.183± 2.33e−4 1.114e−5± 4.196e−6
0.1 0.781± 6.35e−4 0.191± 5.37e−4 3.226e−3± 5.715e−5 0.024± 3.8e−5 2.533e−4± 1.881e−6
1 0.786± 5.44e−4 0.187± 5.81e−4 2.409e−3± 2.894e−7 0.024± 3.6e−5 2.078e−4± 5.787e−7
10 0.806± 7.34e−4 0.169± 6.09e−4 2.386e−3± 1.476e−5 0.023± 1.113e−4 2.146e−4± 2.749e−6
100 0.813± 3.18e−4 0.161± 2.86e−4 2.266e−3± 2.083e−5 0.023± 5.4e−5 1.889e−4± 1.013e−6
∞ 0.819± 1.487e−3 0.16± 1.306e−3 3.193e−3± 2.677e−5 0.018± 1.60e−4 3.166e−4± 5.208e−6

other models. This means that most of the predicted glucose values from the model trained on our607

synthetic data are in the Clinically Accurate and Acceptable ranges, with less in the erroneous zones.608

Moreover, by examining the table we see that GlucoSynth outperforms all other models across all609

privacy budgets as well.610
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(a) GlucoSynth (b) TimeGAN

(c) FF (d) NPV

Figure 13: PCA Comparison for Nonprivate Models

Figure 14: GlucoSynth Distributional Variance Comparison Across Privacy Budgets
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Figure 15: GlucoSynth PCA Comparison Across Privacy Budgets
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Figure 16: RGAN distributional Variance Comparison Across Privacy Budgets
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Figure 17: RGAN PCA Comparison Across Privacy Budgets
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Figure 18: dpGAN distributional Variance Comparison Across Privacy Budgets
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Figure 19: dpGAN PCA Comparison Across Privacy Budgets
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(a) GlucoSynth (b) TimeGAN (c) FF

(d) NPV (e) RGAN (f) dpGAN

Figure 20: Clarke Error Zone Figures for All Models
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