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Abstract

This paper provides statistical sample complexity bounds for score-matching and
its applications in causal discovery. We demonstrate that accurate estimation of the
score function is achievable by training a standard deep ReLU neural network using
stochastic gradient descent. We establish bounds on the error rate of recovering
causal relationships using the score-matching-based causal discovery method of
Rolland et al. [2022], assuming a sufficiently good estimation of the score function.
Finally, we analyze the upper bound of score-matching estimation within the score-
based generative modeling, which has been applied for causal discovery but is also
of independent interest within the domain of generative models.

1 Introduction

Score matching Hyvärinen [2005], an alternative to the maximum likelihood principle for unnormal-
ized probability density models with intractable partition functions, has recently emerged as a new
state-of-the-art approach that leverages machine learning for scalable and accurate causal discovery
from observational data Rolland et al. [2022]. However, the theoretical analysis and guarantees in the
finite sample regime are underexplored for causal discovery even beyond score-matching approaches.

Contributions: In this work, we give the first sample complexity error bounds for score-matching
using deep ReLU neural networks. With this, we obtain the first upper bound on the error rate of the
method proposed by Rolland et al. [2022] to learn the topological ordering of a causal model from
observational data. Thanks to the wide applicability of score-matching in machine learning, we also
discuss applications to the setting of score-based generative modeling. Our main contributions are:

1. We provide the analysis of sample complexity bound for the problem of score function
estimation in causal discovery for non-linear additive Gaussian noise models which has a
convergence rate of log n/n with respect to the number of data. Importantly, our results
require only mild additional assumptions, namely that the non-linear relationships among
the causal variables are bounded and that the score function is Lipschitz. To the best of our
knowledge, this is the first work to provide sampling complexity bounds for this problem.

2. We provide the first analysis of the state-of-the-art topological ordering-based causal dis-
covery method SCORE [Rolland et al., 2022] and provide a correctness guarantee for the
obtained topological order. Our results demonstrate that the algorithm’s error rate converges
linearly with respect to the number of training data. Additionally, we establish a connection
between the algorithm’s error rate and the average second derivative (curvature) of the
non-linear relationships among the causal variables, discussing the impact of the causal
model’s inherent characteristics on the algorithm’s error rate in identification.
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3. We present sample complexity bounds for the score function estimation problem in the
standard score-based generative modeling method, ScoreSDE [Song et al., 2021]. In
contrast to previous results [Chen et al., 2023a], our bounds do not rely on the assumption
of low-dimensional input data, and we extend the applicability of the model from a specific
encoder-decoder network architecture to a general deep ReLU neural network.

High-level motivation and background: Causal discovery and causal inference refer to the
process of inferring causation from data and reasoning about the effect of interventions. They
are highly relevant in fields such as economics [Varian, 2016], biology [Sachs et al., 2005], and
healthcare [Sanchez et al., 2022]. In particular, some causal discovery methods aim to recover the
causal structure of a problem solely based on observational data.

The causal structure is typically represented as a directed acyclic graph (DAG), where each node
is associated with a random variable, and each edge represents a causal mechanism between two
variables. Learning such a model from data is known to be NP-hard [Chickering, 1996]. Traditional
approaches involve testing for conditional independence between variables or optimizing goodness-of-
fit measures to search the space of possible DAGs. However, these greedy combinatorial optimization
methods are computationally expensive and difficult to extend to high-dimensional settings.

An alternative approach is to reframe the combinatorial search problem as a topological ordering
task [Teyssier and Koller, 2012, Solus et al., 2021, Wang et al., 2021, Rolland et al., 2022, Montagna
et al., 2023b,a, Sanchez et al., 2023], where nodes are ordered from leaf to root. This can significantly
speed up the search process in the DAG space. Once a topological ordering is found, a feature selection
algorithm can be used to prune potential causal relations between variables, resulting in a DAG.

Recently, Rolland et al. [2022] proposed the SCORE algorithm, which utilizes the Jacobian of the
score function to perform topological ordering. By identifying which elements of the Jacobian matrix
of the score function remain constant across all data points, leaf nodes can be iteratively identified
and removed. This approach provides a systematic way to obtain the topological ordering and infer
the causal relations within the entire model. This method has achieved state-of-the-art results on
multiple tasks Rolland et al. [2022] and has been extended to improve scalability Montagna et al.
[2023b] also using diffusion models Sanchez et al. [2023] and to non-Gaussian noise Montagna et al.
[2023a]. Interestingly, these approaches separate the concerns of statistical estimation of the score
function from the causal assumption used to infer the graph (e.g., non-linear mechanisms and additive
Gaussian noise). This opens an opportunity to study the convergence properties of these algorithms
in the finite data regime, which is generally under-explored in the causal discovery literature. In
fact, if we had error bounds on the score estimate without additional complications from causal
considerations, we could study their downstream effect when the score is used for causal discovery.

Unfortunately, this is far from trivial as the theoretical research on score matching lags behind its
empirical success and progress would have far-reaching implications. Even beyond causal discovery,
error bounds on the estimation of the score functions would be useful for score-based generative
modeling (SGM) [Song and Ermon, 2019, Song et al., 2021]. These have achieved state-of-the-art
performance in various tasks, including image generation [Dhariwal and Nichol, 2021] and audio
synthesis [Kong et al., 2021]. There has been significant research investigating whether accurate
score estimation implies that score-based generative modeling provably converges to the true data
distribution in realistic settings [Chen et al., 2023b, Lee et al., 2022, 2023]. However, the error bound
of score function estimation in the context of score-based generative modeling remains an unresolved
issue due to the non-convex training dynamics of neural network optimization.

Notations: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We denote by
a(n) ≲ b(n): there exists a positive constant c independent of n such that a(n) ⩽ cb(n). The
Gaussian distribution is N (µ, σ2) with the µ mean and the σ2 variance. We follow the standard
Bachmann–Landau notation in complexity theory e.g., O, o, Ω, and Θ for order notation. Due to
space constraints, a detailed notation is deferred to Appendix A.

2 Preliminaries

As this paper concerns topics in score matching estimation, diffusion models, neural network theory,
and causal discovery, we first introduce the background and problem setting of our work.
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2.1 Score matching

For a probability density function p(x), we call the score function the gradient of the log density with
respect to the data x. To estimate the score function ∇ log p(x), we can minimize the ℓ2 loss over
the function space S.

min
s∈S

Ep[∥s(x)−∇ log p(x)∥2] , ŝ = argmin
s∈S

Ep[∥s(x)−∇ log p(x)∥2] .

The corresponding objective function to be minimized is the expected squared error between the true
score function and the neural network:

JESM(s, p(x)) = Ep(x)

[
1

2

∥∥∥∥s(x)− ∂ log p(x)

∂x

∥∥∥∥2 ] , (1)

We refer to this formulation as explicit score matching (ESM).

Denoising score matching (DSM) is proposed by Vincent [2011] to convert the inference of the
score function in ESM into the inference of the random noise and avoid the computing of the
second derivative. For the sampled data x, x̂ is obtained by adding unit Gaussian noise to x. i.e.
x̂ = x + ϵ, ϵ ∼ N (0, σ2I). We can derive the conditional probability distribution and its score
function:

p(x̂|x) = 1

(2π)d/2σd
exp(−∥x− x̂∥2

2σ2
) ,

∂ log p(x̂|x)
∂x̂

=
x− x̂

σ2
.

Then the DSM is defined by:

JDSM(s, p(x, x̂)) = Ep(x,x̂)

[
1

2

∥∥∥∥s(x̂− ∂ log p(x̂|x)
∂x̂

)∥∥∥∥2 ] = Ep(x,x̂)

[
1

2

∥∥∥∥s(x̂)− x− x̂

σ2

∥∥∥∥2 ] .
(2)

Vincent [2011] have proven that minimizing DSM is equivalent to minimizing ESM and does not
depend on the particular form of p(x̂|x) or p(x).

2.2 Neural network and function space

In this work, we consider a standard depth-L width-m fully connected ReLU neural network.
Formally, we define a DNN with the output sl(x) in each layer

sl(x)=

{
x l = 0 ,

ϕ(⟨Wl, sl−1(x)⟩) 1≤ l≤L−1,
⟨WL, sL−1(x)⟩ l = L ,

(3)

where the input is x ∈ Rd, the output is sL(x) ∈ Rd, the weights of the neural networks are
W1 ∈ Rm×d, Wl ∈ Rm×m, l = 2, . . . , L − 1 and WL ∈ Rd×m. The neural network parameters
formulate the tuple of weight matrices W := {Wi}Li=1 ∈ {Rm×d × (Rm×m)L−2 ×Rd×m}. The S
denotes the function space of Eq. (3).

The ϕ = max(0, x) is the ReLU activation function. According to the property ϕ(x) = xϕ′(x) of
ReLU, we have sl = DlWlsl−1, where Dl is a diagonal matrix defined as below.
Definition 1 (Diagonal sign matrix). For l ∈ [L− 1] and k ∈ [m], the diagonal sign matrix Dl is
defined as: (Dl)k,k = 1 {(Wlsl−1)k ≥ 0}.

Initialization: We make the standard random Gaussian initialization [Wl]i,j ∼ N (0, 2
m ) for

l ∈ [L− 1] and [WL]i,j ∼ N (0, 1
d ).

2.3 Causal discovery

In this paper, we follow the setting in Rolland et al. [2022] and consider the following causal model,
a random variable x ∈ Rd is generated by:

x(i) = fi(PAi(x)) + ϵi , i ∈ [d] , (4)
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where fi is a non-linear function, ϵi ∼ N (0, σ2
i ) and PAi(x) represent the set of parents of x(i) in x.

Then we can write the probability distribution function of x as:

p(x) =

d∏
i=1

p(x(i)|PAi(x)) . (5)

For such non-linear additive Gaussian noise models Eq. (4), Rolland et al. [2022] provides Algorithm 1
to learn the topological order by score matching as follows:

Algorithm 1 SCORE matching causal order search (Adapted from Algorithm 1 in Rolland et al.
[2022])

Input: training data {(x(i))
N
i=1}.

Initialize: π = [], nodes = {1, . . . , d}
for k = 1, . . . , d do

Estimate the score function snodes = ∇ log pnodes by deep ReLU network with SGD.
Estimate Vj = V̂arxnodes

[
∂sj(x)

∂x(j)

]
.

l← nodes[argminj Vj ]
π ← [l, π]
nodes← nodes− {l}
Remove l-th element of x

end for
Get the final DAG by pruning the full DAG associated with the topological order π.

2.4 Score-based generative modeling (SGM)

In this section, we give a brief overview of SGM following Song et al. [2021], Chen et al. [2023b].

2.4.1 Score-based generative modeling with SDEs

Forward process: The success of previous score-based generative modeling methods relies on
perturbing data using multiple noise scales, and the proposal of the diffusion model is to expand upon
this concept by incorporating an infinite number of noise scales. This will result in the evolution
of perturbed data distributions as the noise intensity increases, which will be modeled through a
stochastic differential equation (SDE).

dxt = f(xt, t)dt+ gtdw, x0 ∼ p0 . (6)
The expression describes xt, where the standard Wiener process (also known as Brownian motion)
is denoted as w, the drift coefficient of xt is represented by a vector-valued function called f , and
the diffusion coefficient of xt is denoted as gt, a scalar function. In this context, we will refer to
the probability density of xt as pt, and the transition kernel from xs to xt as pst(xt|xs), where
0 ≤ s < t ≤ T . The Ornstein–Uhlenbeck (OU) process is a Gaussian process that is both time-
homogeneous and a Markov process. It is distinct in that its stationary distribution is equivalent to
the standard Gaussian distribution γd on Rd.

Reverse process: We can obtain samples of x0 ∼ pSDE
0 by reversing the process starting from

samples of xT ∼ pSDE
T . An important finding is that the reversal of a diffusion process is a diffusion

process as well. It operates in reverse time and is described by the reverse-time SDE:

dxt =

(
f(xt, t)− g2t∇x log pt(xt)

)
dt+ gtdw . (7)

When time is reversed from T to 0, w is a standard Wiener process with an infinitesimal negative
timestep of dt. The reverse diffusion process can be derived from Eq. (7) once the score of each
marginal distribution,∇ log pt(xt), is known for all t. By simulating the reverse diffusion process,
we can obtain samples from pSDE

0 .

Some special settings: In order to simplify the writing of symbols and proofs, in this work we
choose that f(xt, t) = − 1

2xt and g(t) = 1 which has been widely employed in prior research [Chen
et al., 2023a,b, De Bortoli et al., 2021] for theoretical analysis in Ornstein–Uhlenbeck process in
score-based generative modeling.
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2.4.2 Score matching in diffusion model

We aim to minimize the equivalent objective for score matching:

min
s∈S

∫ T

0

w(t)Ex0∼p0

[
Ext∼p0t(xt|x0)

[
∥∇xt

log p0t(xt|x0)− s(xt, t)∥22
]]
dt .

The transition kernel has an analytical form∇xt
log p0t(xt|x0) = −xt−α(t)x0

h(t) , where α(t) = e−
t
2

and h(t) = 1− α(t)2 = 1− e−t.

The empirical score matching loss is:

min
s∈S
L̂(s) = 1

n

n∑
i=1

ℓ(x(i); s) , (8)

where the loss function ℓ(x(i); s) is defined as:

ℓ(x(i); s) =
1

T − t0

∫ T

t0

Ext∼p0t(xt|x0=x(i))

[ ∥∥∇xt
log p0t(xt|x0 = x(i))− s(xt, t)

∥∥2
2

]
dt .

Here we choose w(t) = 1
T−t0

, and we define the expected loss L(·) = Ex∼p0 [L̂(·)].

3 Theoretical results for causal discovery

In this section, we state the main theoretical results of this work. We present the assumptions on non-
linear additive Gaussian noise causal models in Section 3.1. Then, we present the sample complexity
bound for score matching in causal discovery in Section 3.2. In Section 3.3 we provide the upper
bound on the error rate for causal discovery using the Algorithm 1. The full proofs of Theorem 1
and 2 are deferred to Appendix E and F, respectively.

3.1 Assumptions

Assumption 1 (Lipschitz property of score function). The score function ∇ log p(·) is 1-Lipschitz.

Remark: The Lipschitz property of the score function is a standard assumption commonly used in
the existing literature [Block et al., 2020, Lee et al., 2022, Chen et al., 2023b,a]. However, for causal
discovery, this assumption limits the family of mechanisms that we can cover.
Assumption 2 (Structural assumptions of causal model). Let p be the probability density function of
a random variable x defined via a non-linear additive Gaussian noise model Eq. (4). Then, ∀i ∈ [d]
the non-linear function is bounded, |fi| ≤ Ci. And ∀i, j ∈ [d], if j is one of the parents of i, i.e.
x(j) ⇒ x(i), then there exist a constant Cm that satisfy:

Ep(x)

(
∂2fi(PAi(x))

∂x(j)2

2)
≥ Cmσ2

i .

Remark: This is a novel assumption that we introduce, relating the average second derivative of a
mechanism (related to its curvature) to the noise variance of the child variable. This will play a crucial
yet intuitive role in our error bound: identifiability is easier when there is sufficient non-linearity of
a mechanism with respect to the noise of the child variable. Consider the example of a quadratic
mechanism, where the second derivative is the leading constant of the polynomial. If this constant is
small (e.g., close to zero), the mechanism is almost linear and we may expect that the causal model
should be harder to identify. Similarly, if the child variable has a very large variance, one may expect
it to be more difficult to distinguish cause from effect, as the causal effect of the parent is small
compared to the noise of the child. According to Assumption 2, we can derive the identified ability
margin for leaf nodes and parent nodes.
Lemma 1. If a non-linear additive Gaussian noise model Eq. (4) satisfies Assumption 2. Then,
∀i, j ∈ [d], we have:

i is a leaf⇒ Var
(
∂si(x)

∂x(i)

)
= 0, j is not a leaf⇒ Var

(
∂sj(x)

∂x(j)

)
≥ Cm.
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This lemma intuitively relates our identifiability margin with the decision rule of SCORE Rolland
et al. [2022] to identify leaves. Non-leaf nodes should have the variance of their score Jacobian
sufficiently far from zero. As one may expect, we will see in Theorem 2 that the closer Cm is to zero,
the more likely it is that the result of the algorithm will be incorrect given finite samples.

3.2 Error bound for score matching in causal discovery

We are now ready to state the main result of the score matching in causal discovery. We provide
the sample complexity bounds of the explicit score matching Eq. (1) that using denoising score
matching Eq. (2) in Algorithm 1 for non-linear additive Gaussian noise models Eq. (4).

Theorem 1. Given a DNN defined by Eq. (3) trained by SGD for minimizing empirical denoising
score matching objective. Suppose Assumption 1 and 2 are satisfied. For any ε ∈ (0, 1) and
δ ∈ (0, 1), if σi ≂ σ and Ci

σi
≂ 1 , ∀i ∈ [d]. Then with probability at least 1− 2δ − 4 exp(− d

32 )−
2L exp(−Ω(m))− 1

nd over the randomness of initialization W , noise ϵ and ϵi, it holds that:

JESM(ŝ, p(x)) ≲
σ2d log nd

nε2
log
Nc(

1
n ,S)
δ

+
1

n
+ dε2 ,

where the Nc(
1
n ,S) is the covering number of the function space S for deep ReLU neural network.

Remark:

1): To the best of our knowledge, our results present the first upper bound on the explicit sampling
complexity of score matching for topological ordering Algorithm 1 in non-linear additive Gaussian
noise causal models. This novel contribution provides valuable insights into the efficiency and
effectiveness of utilizing score matching for topological ordering in non-linear additive Gaussian
noise causal models.

2): By choosing ε2 = 1√
n

, the bound is modified to JESM(ŝ, p(x)) ≲ σ2d lognd√
n

log Nc(1/n,S)
δ . This

expression demonstrates that the ℓ2 estimation error converges at a rate of logn√
n

when the sample size
n is significantly larger than the number of nodes d.

3): The bound is also related to the number of nodes d, the variance of the noise in denoising score
matching σ and causal model σi, the covering number of the function space Nc(

1
n ,S), and the upper

bound of the data Cd. If these quantities increase, it is expected that the error of explicit score
matching will also increase. This is due to the increased difficulty in accurately estimating the score
function.

4): Theorem 1 is rooted in the generalization by sampling complexity bound. It is independent of the
specific training algorithm used. The results are broadly applicable and can be seamlessly extended
to encompass larger batch GD.

Next, we will establish a connection between score matching and the precise identification of the
topological ordering.

3.3 Error bound for topological order in causal discovery

Based on the previously mentioned sample complexity bound of score matching, we establish an upper
bound on the error rate of the topological ordering of the causal model obtained through Algorithm 1.

Theorem 2. Given a DNN defined by Eq. (3) trained by SGD with a step size η = O( 1
poly(n,L)m log2 m

)

for minimizing empirical score matching objective. Then under Assumption 2, for m ≥ poly(n,L),
with probability at least:

1− exp(−Θ(d))− (L+ 1) exp(−Θ(m))− 2n exp(− nC2
md2

24L+5(logm)2(m2 + d2)
) ,

over the randomness of initialization W and training data that Algorithm 1 can completely recover
the correct topological order of the non-linear additive Gaussian noise model.

Remark:
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1): The foundation of Theorem 2 rests upon Theorem 1, it can be seen as an embodiment of applying
the upper bound of score matching for causal discovery. To the best of our knowledge, our results
provide the first upper bound on the error rate of topological ordering in non-linear additive Gaussian
noise causal models using Algorithm 1.

2): Considering that when m ≂ d and L ≂ 1 the probability degenerates to:

1−Θ(e−m)− 2n exp

(
−Θ

( nC2
m

(logm)2
))

.

The first term of the error arises due to the initialization of the neural network. As for the second
term of the error, if the number of training data n satisfies n

logn ≳ (logm)2, then it will have that

2n exp
(
−Θ

( nC2
m

(logm)2

))
≲ 1. This implies that the second term of the error probability exhibits linear

convergence towards 0 when n is sufficiently large. Therefore, when the sample size n
logn ≳ (logm)2,

the contribution of the second term to the full error becomes negligible.

3): The theorem reveals that a smaller value of the constant Cm increases the probability of algorithm
failure. This observation further confirms our previous statement that a smaller average second
derivative of the nonlinear function makes it more challenging to identify the causal relationship in
the model. Additionally, when the causal relationship is linear, our theorem does not provide any
guarantee for the performance of Algorithm 1.

4): Consider the two variables case. If a child node is almost a deterministic function of its parents,
the constant Cm can take on arbitrarily large values, according to Assumption 2. Consequently, the
second term of the error probability, 2n exp

(
− Θ

( nC2
m

(logm)2

))
, tends to zero. This implies that the

errors in Algorithm 1 are primarily caused by the random initialization of the neural network. The
identifiability of this setting is consistent with classical results Daniušis et al. [2010], Janzing et al.
[2015]. Intuitively, as long as the non-linearity is chosen independently of the noise of the parent
variable2, the application of the non-linearity will increase the distance to the reference distribution of
the parent variable (in our case Gaussian). Note that for the derivative in Assumption Assumption 2
to be defined, the parent node cannot be fully deterministic.

5): Instead of focusing on the kernel regime, we directly cover the more general neural network
training. The kernel approach of Rolland et al. [2022] is a special case of our analysis. The basis
of Theorem 2 lies in the proof of SGD/GD convergence of the neural network, These convergence
outcomes also apply to BatchGD, as demonstrated in Jentzen and Kröger [2021]. Hence, Theorem 2
can naturally be expanded to incorporate Batch GD as well.

Proof sketch: The proof of Theorem 2 can be divided into three steps. The first and most important
step is to derive the upper bound of ∂si(x)

∂x(i) . Here, we utilize the properties of deep ReLU neural
networks to derive the distribution relationship between features of adjacent layers, then accumulate
them and combine it with the properties of Gaussian initialization, yielding the upper bound for
∂si(x)
∂x(i) . The second step is to use the upper bound of ∂si(x)

∂x(i) obtained in the first step combined with
the concentration inequality to derive the upper bound of the error of Var

(∂si(x)
∂x(i)

)
. The third step is to

compare the upper bound in the second step with Lemma 1 to obtain the probability of successfully
selecting leaf nodes in each step. After accumulation, we can obtain the probability that Algorithm 1
can completely recover the correct topological order of the non-linear additive Gaussian noise model.

4 Theoretical results for score-based generative modeling (SGM)

In this section, we present the additional assumption required for the theoretical analysis of score
matching in score-based generative modeling. Then, we provide the sample complexity bound associ-
ated with score matching in this framework. The full proof in this section is deferred to Appendix G.
Assumption 3 (Bounded data). We assume that the input data satisfy ∥x∥2 ≤ Cd , x ∼ p0.

Remark: Bounded data is standard in deep learning theory and also commonly used in practice [Du
et al., 2019b,a, Allen-Zhu et al., 2019, Oymak and Soltanolkotabi, 2020, Malach et al., 2020].

2 Daniušis et al. [2010], Janzing et al. [2015] have formalized independence of distribution and function via
an information geometric orthogonality condition that refers to a reference distribution (e.g., Gaussian)
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Theorem 3. Given a DNN defined by Eq. (3) trained by SGD for minimizing empirical denoising score
matching loss Eq. (8). Suppose Assumption 1 and 3 are satisfied. For any ε ∈ (0, 1) and δ ∈ (0, 1).
Then with probability at least 1− 2δ − 2L exp(−Ω(m)) over the randomness of initialization W
and noise ϵ in denoising score matching, it holds:

1

T − t0

∫ T

t0

∥∇ log pt(·)− ŝ(·, t)∥2ℓ2(pt)
dt ≲

1

nε2

(
d(T − log(t0))

T − t0
+C2

d

)
log
Nc(

1
n ,S)
δ

+
1

n
+dε2 ,

where the Nc(
1
n ,S) is the covering number of the function space S for deep ReLU neural network.

Remark:

1): Theorem 3 and Theorem 1 study similar problems between causal discovery and score-based
generative modeling and share similar techniques drawn from statistical learning theory and deep
learning theory. These two domains are connected by a common theoretical foundation centered on
the upper bound of score matching.

2): Our result extends the results for score matching in diffusion models presented in Chen et al.
[2023a] which rested on the assumption of low-dimensional data structures, employing this to
decompose the score function and engineer specialized network architectures for the derivation
of the upper bound. Our work takes a distinct route. Our conclusions are based on the general
deep ReLU neural network instead of a specific encoder-decoder network and do not rely on the
assumptions of low-dimensional data used in Chen et al. [2023a]. We harness the inherent traits
and conventional techniques of standard deep ReLU networks to directly deduce the upper error
bound. This broader scope allows for a more comprehensive understanding of the implications and
applicability of score-based generative modeling in a wider range of scenarios.

3): Similar to Theorem 1, by choosing ε2 = 1√
n

, we can obtain the best bound

1
T−t0

∫ T

t0
∥∇ log pt(·)− ŝ(·, t)∥2ℓ2(pt)

dt ≲ 1√
n

(
d(T−log(t0))

T−t0
+ C2

d

)
log

Nc(
1
n ,S)

δ . This expression

demonstrates that the ℓ2 estimation error converges at a rate of 1√
n

when the sample size n is
significantly larger than the dimensionality d and time steps T .

4): The bound is also related to the data dimension d, the variance of the noise in denoising score
matching σ, the covering number of the function spaceNc(

1
n ,S), and the upper bound of the data Cd.

If these quantities increase, it is expected that the error of explicit score matching will also increase.
This is due to the increased difficulty in accurately estimating the score function.

5): When t0 = 0, the theorem lacks meaning. However, when T ≫ t0 ≂ 1, the bound simplifies to
d+C2

d√
n

log
Nc(

1
n ,S)

δ . This indicates that when T is sufficiently large, the loss estimated by the score
function in the diffusion model becomes independent of time steps T .

6): Similar to Theorem 1, the result of Theorem 3 is also broadly applicable and can be seamlessly
extended to encompass larger batch GD.

5 Numerical evidence

We conducted a series of experiments to validate the theoretical findings presented in the paper. We
took inspiration from the code provided inRolland et al. [2022] and employed the structural Hamming
distance (SHD) between the generated output and the actual causal graph to assess the outcomes. The
ensuing experimental outcomes for SHD, vary across causal model sizes d, sample sizes n, and Cm.
The experimental results are shown in Tables 1 to 3

Table 1: Fixed model size d = 100 and the number of sampling n = 100, SHD results
of causal discovery using Algorithm 1 for different Cm values (10 runs).

Cm 1 2 4 8 16

SHD 2941.0 ± 29.5 2905.7 ± 50.8 2900.6 ± 80.8 2637.1 ± 200.4 1512.4 ± 283.6

Cm 32 64 128 256 512

SHD 413.9 ± 93.4 55.0 ± 16.0 23.9 ± 4.6 21.2 ± 5.0 13.8 ± 1.8
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Table 2: Fixed model size d = 10 and Cm = 1, SHD results of causal discovery using
Algorithm 1 for the different number of sampling n (10 runs).

n 5 10 20 40 80 100 160

SHD 31.7 ± 2.1 27.8 ± 4.1 23.3 ± 2.7 23.0 ± 4.0 18.4 ± 3.3 16.5 ± 3.4 13.0 ± 4.0

Table 3: Fixed the number of sampling n = 10 and Cm = 1, SHD results of causal
discovery using Algorithm 1 for the different model size d (10 runs).

d 5 10 20 40 80 100

SHD 4.5 ± 2.0 29.6 ± 2.2 124.3 ± 4.6 522.8 ± 11.6 1965.4 ± 18.7 2923.7 ± 38.5

Analyzing the experimental outcomes, we find a notable pattern: higher values of Cm, augmented
sample sizes n, and reduced model size d all contribute to the performance of Algorithm 1 which is
consistent with the insights from Theorem 2.

6 Related Work

Score matching: Score Matching was initially introduced by Hyvärinen [2005] and extended to
energy-based models by Song and Ermon [2019]. Subsequently, Vincent [2011] proposed denoising
score matching, which transforms the estimation of the score function for the original distribution
into an estimation for the noise distribution, effectively avoiding the need for second derivative
computations. Other methods, such as sliced score matching [Song et al., 2020], denoising likelihood
score matching [Chao et al., 2022], and kernel-based estimators, have also been proposed for score
matching. The relationship between score matching and Fisher information [Shao et al., 2019], as
well as Langevin dynamics [Hyvarinen, 2007], has been explored. On the theoretical side, Wenliang
and Kanagawa [2020] introduced the concept of "blindness" in score matching, while Koehler et al.
[2023] compared the efficiency of maximum likelihood and score matching, although their results
primarily focus on exponential family distributions. Our paper, for the first time, analyzes the sample
complexity bounds of the score function estimating in causal inference.

Causal discovery: The application of score methods for causal inference for linear additive models
began with Ghoshal and Honorio [2018], which proposed a causal structure recovery method based
on topological ordering from the precision matrix (equivalent to the score in that setting). Under
certain noise variance assumptions, their method can reliably recover the DAG in polynomial time
and sample complexity.

In recent years, there have been numerous algorithms developed for causal inference in non-linear
additive models. GraNDAG [Lachapelle et al., 2021] aims to maximize the likelihood of the observed
data under this model and enforces a continuous constraint to ensure the acyclicity of the causal
graph Rolland et al. [2022] proposed a novel approach for causal inference which utilize score match-
ing algorithms as a foundation for topological ordering and then employ sparse regression techniques
to prune the DAG. Subsequently, Montagna et al. [2023a] extended the method to non-Gaussian
noise, Sanchez et al. [2023] proposed to use diffusion models to fit the score function, and Montagna
et al. [2023b] proposed a new scalable score-based preliminary neighbor search techniques.

Although advances have been achieved in leveraging machine learning for causal discovery, there
is generally a lack of further research on error bounds. Other studies concentrate on broader non-
parametric models but depend on various assumptions like faithfulness, restricted faithfulness, or the
sparsest Markov representation [Spirtes et al., 2000, Raskutti and Uhler, 2018, Solus et al., 2021].
These approaches employ conditional independence tests and construct a graph that aligns with the
identified conditional independence relations [Zhang, 2008].

Theoretical analysis of score-based generative modeling: Existing work mainly focuses on two
fundamental questions: "How do diffusion models utilize the learned score functions to estimate the
data distribution?" [Chen et al., 2023b, De Bortoli et al., 2021, De Bortoli, 2022, Lee et al., 2022,
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2023] and "Can neural networks effectively approximate and learn score functions? What are the
convergence rate and bounds on the sample complexity?" [Chen et al., 2023a].

Specifically, De Bortoli et al. [2021] and Lee et al. [2022] studied the convergence guarantees of
diffusion models under the assumptions that the score estimator is accurate under the ℓ1 and ℓ2 norms.
Concurrently Chen et al. [2023b] and Lee et al. [2023] extended previous results to distributions
with bounded moments. De Bortoli [2022] studied the distribution estimation guarantees of diffusion
models for low-dimensional manifold data under the assumption that the score estimator is accurate
under the ℓ1 or ℓ2 norms.

However, these theoretical results rely on the assumption that the score function is accurately
estimated, while the estimation of the score function is largely untouched due to the non-convex
training dynamics. Recently, Chen et al. [2023a] provided the first sample complexity bounds for
score function estimation in diffusion models. However, their result is based on the assumption that
the data distribution is supported on a low-dimensional linear subspace and they use a specialized
Encoder-Decoder network instead of a general deep neural network. As a result, a complete theoretical
picture of score-based generative modeling is still lacking.

7 Conclusion and Limitations

In this work, we investigate the sample complexity error bounds of Score Matching using deep
ReLU neural networks under two different problem settings: causal discovery and score-based
generative modeling. We provide a sample complexity analysis for the estimation of the score
function in the context of causal discovery for nonlinear additive Gaussian noise models, with a
convergence rate of logn

n . Furthermore, we extend the sample complexity bounds for the estimation
of the score function in the ScoreSDE method to general data and achieve a convergence rate of 1

n .
Additionally, we provide an upper bound on the error rate of the state-of-the-art causal discovery
method SCORE [Rolland et al., 2022], showing that the error rate of this algorithm converges linearly
with respect to the number of training data.

A core limitation of this work is limiting our results to the Gaussian noise assumption. In fact,
non-linear mechanisms with additive non-gaussian noise are also identifiable under mild additional
assumptions [Peters et al., 2014] and Montagna et al. [2023a] already extended the score-matching
approach of Rolland et al. [2022] to that setting. Relaxing this assumption would also allow us to
apply our bounds to interesting corner cases, such as linear non-gaussian [Ghoshal and Honorio,
2018], and non-gaussian deterministic causal relations [Daniušis et al., 2010, Janzing et al., 2015].
It may be possible for this assumption to be relaxed in future work, but we argue that the added
challenge, the significant difference in algorithms, and the standalone importance of the non-linear
Gaussian case justify our focus.

In addition, we make other assumptions that limit the general applicability of our bounds. In particular,
the assumption of the Lipschitz property for the score function imposes a strong constraint on the
model space. Further investigating the relationship between the noise, the properties of the nonlinear
functions in the causal model Eq. (4), and the resulting Lipschitz continuity of the score function
would be an interesting extension of this work.
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