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Abstract

Training large models from scratch usually costs a substantial amount of resources.
Towards this problem, recent studies such as bert2BERT and LiGO have reused
small pretrained models to initialize a large model (termed the “target model”),
leading to a considerable acceleration in training. Despite the successes of these
previous studies, they grew pretrained models by mapping partial weights only,
ignoring potential correlations across the entire model. As we show in this paper,
there are inter- and intra-interactions among the weights of both the pretrained and
the target models. As a result, the partial mapping may not capture the complete
information and lead to inadequate growth. In this paper, we propose a method
that linearly correlates each weight of the target model to all the weights of the
pretrained model to further enhance acceleration ability. We utilize multi-linear
operators to reduce computational and spacial complexity, enabling acceptable
resource requirements. Experiments demonstrate that our method can save 76%
computational costs on DeiT-base transferred from DeiT-small, which outperforms
bert2BERT by +12.0% and LiGO by +20.7%, respectively.

1 Introduction
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Figure 1: Expanding operators. Ws and Wt

mean small pretrained and target weights, re-
spectively. �✓w

and �✓d
denote width and depth

expanding operators with parameters ✓w and ✓d.

Transformers [47] have recently achieved great
successes in various scenarios [11, 4, 20]. Gener-
ally, Transformers tend to be larger for more ex-
pressive power and better performance (e.g., ViT-
G [6] and GPT-3 [3]). As the size of models con-
tinues to grow, training Transformers takes longer
and can result in higher CO2 emissions, which con-
flicts with the principles of Green AI [43]. Thus,
training Transformers efficiently is crucial not only
for financial gain but also for environmental sustainability [5]. To achieve efficient training, it is a
wise option to grow a pretrained small model into a larger one, since the pretrained small model
has already learned knowledge from the data, which allows for faster training compared to starting
from scratch. [13]. Moreover, there are numerous pretrained models that are easily accessible [53],
reducing the cost of utilizing a smaller pretrained model. Furthermore, empirical evidence shows
that Transformers have inductive biases that facilitate scaling fitting [42, 22]. This demonstrates the
feasibility of learning from pretrained models [53].
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Figure 2: Attention pattern maps between BERT-Small (shorted as “S”) and BERT-Base (shorted as
“B”) in four examples. “L” represents the layer index, while “A” denotes the index of the attention
head. For example, “S-(L10, A6)” denotes the attention map from layer 10, head 6 of the BERT-Small
model. The examples are derived from different sentences. In each example, we can observe the
similarities of attention maps in both inter-layer and intra-layer connections, even across different
scaled models.

The concept of reusing pretrained models essentially involves exploring the efficient mapping from
the pretrained model to the target model. This mapping process can be represented as linear growth
operators, as depicted in Figure 1. One viable approach to mapping is to leverage knowledge from
other weights. For instance, StackBERT [13] utilizes low-layer information to construct new higher
layers, by duplicating layers to increase depth during training epochs. bert2BERT [5] expands
width through the expanding operator of Net2Net [7]. Differently, bert2BERT utilizes weights of
neighbor layers for enhancing the ability, which also shows the benefit of taking knowledge from
other weights. Moreover, distinct from the aforementioned research directly employing a fixed
operator, LiGO [53] trains expanding operators which are tied with layers to achieve superior transfer
accuracy by considering knowledge from other layers, which is advantageous for training efficiency.
However, they neglect the potential connectivity between models.

Potential Connectivity between Models. The attention maps of BERT, as depicted in Figure 2,
indicate that there are similarities not only in the weights of the same or different layers, but also
across different models. These similarities suggest that we can leverage a full mapping transformation
to capture this correlation in both inter-layer and intra-layer connections, even across different
scaled models. By doing so, we can reuse the parameters of pretrained small models and accelerate
the training of larger models. However, previous studies have overlooked the overall network
connectivity and have instead expanded each weight through partial mapping transformation. For
instance, Net2Net [7] only considers preserving functionality by transforming weights individually,
while bert2BERT [5] increases model width head by head in Transformers. On the other hand,
LiGO [53] primarily focuses on extending the weights of the same type (e.g., query, key, and value in
Transformers), which heavily affects the performance of the transferred models.

Multi-linear Operators. Based on the above observations, we propose mapping the entire pretrained
model to each weight of the target model, instead of employing a partial transformation. This
approach can ensure high expressive power, promoting the potential connectivity in models for better
training efficiency. However, the completed mapping has a huge parameter tensor, occupying an
enormous space (see Section 3.2). To address this issue, we propose Mango, a multi-linear structure
(i.e., tensor ring [33, 52, 51]), which decomposes the large mapping tensor into four smaller tensors
that are bonded by ranks to construct multi-linear operators. Mango allows for efficient training
by reducing the space required for the mapping tensor. Formally, Mango can be considered as a
generalization of LiGO and bert2BERT (see Section 3.3). By using the full mapping approach, Mango
can save 76% computational costs on DeiT-base transferred from DeiT-small, which outperforms
bert2BERT [5] by +12.0% and LiGO [53] by +20.7%, respectively.

2 Related Work

Efficient Training from Scratches. Model scratches can be roughly regarded as models without
knowledge priors. Some training strategies for scratches are universal and orthogonal to our method.
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For example, Adam [23] and large-batch size training [66] accelerate the training process from
angles of optimizer and magnitude of input data, respectively. Wang et al. [50] enable the training
of very deep neural networks with limited computational resources via a technique called active
memory. Shoeybi et al. [45] use mixed precision training to assist training. Low-rank methods
benefit training for less memory and time [21]. Wu et al. [59] take notes of rare words for better data
efficiency. Dropping layers [68], knowledge inheritance [38], and merging tokens [2] are also efficient
methods for training. Another line of work [13, 63, 14, 44] is termed progressive training, which
gradually increases the model size within the training process for training efficiency. Li et al. [27]
employ a neural architecture search (NAS) method to search optimal sub-networks for progressive
training on ViTs. Xia et al. [60] suggest a three-phase progressive training regime to achieve a good
trade-off between training budget and performance. Wang et al. [55] introduces a novel curriculum
learning approach for training efficiency through firstly learning simpler patterns, then progressively
introducing more complex patterns.

Efficient Training from Pretrained Models. Pretrained models usually contain abundant data
knowledge, which is helpful for training [32]. By preserving the function of a pretrained model
while expanding the model size, it is feasible to give the corresponding larger model an initial state
with high performance. Net2Net [7] is the first work to propose the concept of function-preserving
transformations by expanding width by splitting neurons and growing depth with identity layers.
However, Net2Net splits neurons randomly. Towards this problem, a series of studies [56, 58, 49, 57]
propose to select the optimal subset of neurons to be split by utilizing functional steepest descent.
bert2BERT [5] expands small transformers by following the function preserving idea. Recently,
LiGO [53] utilizes a trainable linear operator to learn a good expanding formula. Different from these
prior studies, our method tries to implement a full mapping that achieves comprehensive utilization
of the whole smaller model.

Neural Network Initialization. Our method is related to neural network initialization techniques.
Xavier [12] and Kaiming [16] initialization aim to control input variance equal to that of output.
Generalizing Xavier and Kaiming methods, a universal weight initialization paradigm proposed by
Pan et al. [34] can be widely applicable to arbitrary Tensorial CNNs. In addition, Hardt and Ma
[15] has shown theoretically that network training benefits from maintaining identity, particularly for
improving the efficiency of residual networks. Fixup [67] and ZerO [70] both set residual stem to 0
(not residual connections) to ensure the identity of signals, thereby successfully initializing ResNets.
SkipInit [8] replaces Batch Normalization with a multiplier whose value is 0. ReZero [1], on the
other hand, adds extra parameters of value 0 to maintain identity, resulting in faster convergence.
IDInit is an initialization approach to keep the identity matrix for stable training of networks [36]. In
comparison, our work explores fully reusing smaller pretrained models as efficient initialization.

Low-rank Techniques in Neural Networks. Low-rank methods are feasible for reducing spatial
and temporal complexities in neural networks [52, 35, 62]. For example, Idelbayev and Carreira-
Perpiñán [19] uses matrix decomposition to compress convolutional neural networks (CNNs) for faster
inference. LoRA [17] applies low-rank matrices for fine-tuning large language models (LLMs) in
affordable resources. As a parameter-efficient tuning (PETuning) method [69] for federated learning,
FedPara [18] utilizes the Hadamard product on low-rank parameters for reducing communication
time in federated learning. Pan et al. [33] and Li et al. [28] use tensor ring decomposition for reducing
the size of neural networks. Tucker decomposition and block-term Tucker decomposition have been
used in T-Net and BT-layers [24, 64] for improving the model performance, respectively. Ma et al.
[30] apply block-term Tucker to compress Transformers. Yin et al. [65] propose to use ADMM to
optimize tensor training to achieve better compression and performance. These techniques have built
a solid foundation for our work to implement multi-linear transformation for transferring knowledge
from pretrained models to target models.

3 Mango Operator

This section presents the proposed Mango operator. First, we provide an overview of the tensor
diagram, the concept of the tensor ring matrix product operator (TR-MPO), and the formulation of
Transformer architecture in Sec. 3.1. Next, we delve into the details of the proposed multi-linear
mapping operator (i.e., Mango) in Sec. 3.2. Finally, we compare Mango with recent advances in
terms of tensor diagrams in Sec. 3.3.
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3.1 Preliminary

A 3rd-order Tensor Tensor Contraction

Figure 3: Tensor diagram instances.

Tensor Diagram. Tensor decomposition is a tech-
nique that involves splitting a tensor into multiple
smaller tensors, typically more than the two matrices
that result from matrix factorization. To better illus-
trate the interactions among multiple tensors, tensor
diagrams are often used. A tensor diagram is com-
posed of two primary elements: a tensor vertex and a tensor contraction. A tensor vertex represents a
tensor, and its order is determined by the number of edges connected to it. Each edge is assigned an
integer that indicates the dimension of the corresponding mode. As shown in Figure 3, a 3rd-order
tensor T 2 Ri0⇥i1⇥i2 can be drawn as a circle with three edges. The process of taking the inner
product of two tensors on their matching modes is called tensor contraction. For example, Two
tensors, M 2 Ri0⇥i1⇥i2 and N 2 Rj0⇥j1⇥j2 , can be contracted in corresponding positions to form
a new tensor of Ri0⇥i1⇥j2⇥j3 , when they have equal dimensions: i2 = j0 , e0. The contraction
operation can be formulated as

(M⇥0
2 N )i0,i1,j2,j3 =

e0�1X

m=0

Mi0,i1,mNm,j2,j3 . (1)

The tensor diagram is an elegant tool for succinctly visualizing and manipulating multi-dimensional
arrays or tensors. By representing tensor operations as networks of nodes and edges, these diagrams
provide an intuitive way to understand the underlying mathematical operations and their interactions.
As a result, we have chosen to use tensor diagrams to illustrate our method and to analyze the
connections between our approach and prior studies.

Tensor Ring Matrix Product Operator (TR-MPO). TR-MPO means tensor ring (TR) of an
MPO [37] format. Given a 2N -order tensor X 2 RI1⇥J1⇥I2⇥J2...IN⇥JN , its TR-MPO decomposition
can be mathematically expressed as

X i1,j1,i2,j2...,iN ,jN
⇡

R1,R2,...,RNX

r1,r2,...,rN=1

G(1)
r1,i1,j1,r2

G(2)
r2,i2,j2,r3

G(3)
r3,i3,j3,r4

· · ·G(N)
rN ,iN ,jN ,r1

, (2)

where {R1, R2, . . . , RN} denote the ranks, G(n) 2 RRn⇥In⇥In⇥Rn+1 denotes a 4th-order core
tensor and R1 = RN+1, which indicates ring-like structure.

Transformer Architecture. The Transformer [47] is a deep learning architecture that has revolution-
ized the artificial intelligence field including computer vision (CV) and natural language processing
(NLP). As shown in Figure 4, a Transformer block consists of two main sub-layers: the multi-head
self-attention (MHSA) layer and the feed-forward neural network (FFN) layer.

(1) MHSA Layer. The MHSA layer in the Transformer block computes the attention scores between
each input element and every other element, allowing the model to attend to different parts of the
input sequence during processing. Inputs of MHSA are query matrix Q 2 RI , key matrix K 2 RI

and value matrix V 2 RI with parameters WQ 2 RI⇥O
,WK 2 RI⇥O

,WV 2 RI⇥O
,WO 2

RI⇥O. Usually, it constrains I = O. Moreover, MHSA separates these parameters into n heads:
{WQ,i}n, {WK,i}n, {WV,i}n, {WO,i}n. The MHSA mechanism can be formulated as follows:

Atti(Q,K,V) = softmax

✓
QWQ,i

(KWK,i
)
T

p
dk

◆
VWV,iWO,i

T

,

MHSA((Q,K,V)) =

nX

i=1

Atti(Q,K,V), (3)

where dk is the dimensionality of the key vectors. The self-attention mechanism is performed multiple
times in parallel, each time using a different set of learned parameters WQ,i, WK,i, and WV,i to
compute multiple "heads" of attention. The resulting attention heads are linearly transformed by a
learned weight matrix WO,i to produce the output. At last, MHSA concatenates the output as the
final result of the MHSA layer.

(2) FFN Layer. The FFN layer in the Transformer block is responsible for applying a non-linear
transformation to the output of the self-attention layer. X 2 RI is the input. The weights are
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Figure 4: The full mapping of the Mango operator. The left sub-figure shows that the parameters
of a Transformer layer are WQ

,WK
,WV

,WO, WIN and WOUT . I means an input dimension
size. O denotes an output dimension size. L is the layer number. We concatenate all the parameters
into a tensor M and then consider a full mapping operator S to transform this tensor. However, S
is huge, thereby, we use a multi-linear method TR-MPO to decompose it into four smaller tensors
{SB ,SI ,SO,SL} form the Mango operator �SB ,SI ,SO,SL

.

WIN 2 RI⇥kO and WOUT 2 RkI⇥O, where usually I = O and k is a ratio that is often set to 4.
The FFN layer can be formulated as

FFN(X) = GeLU(XWIN
)WOUT

. (4)

We neglect biases in the formulation as it is usually set to 0 at initialization. The output of the FFN
layer is obtained by applying two linear transformations to the output of the MHSA layer.

Finally, both the self-attention output and the FFN output are processed through a residual connection
and layer normalization to prevent the model from collapsing or overfitting to the training data.
Apparently, the parameters in a Transformer are mainly based on its linear transformation matrices,
i.e., WQ

,WK
,WV

,WO, WIN and WOUT .

3.2 Multi-linear Operator

The essential of model growth is to transfer the knowledge from the small model to the bigger
counterpart. Prior study [5] finds that taking weights from the neighbor layer as initial parameters can
further improve the convergence speed, which gives the insights that knowledge from other layers
can help training as there are many similar attention maps among layer. Nevertheless, the fact is
that this similarity exists all over the pretrained model as shown in Figure 2, which motivates us to
consider the possibility of whether we can utilize the knowledge from all weights. Based on this
consideration, we construct a mapping of the whole model. As the correlation is hard to formulate
heuristically, we learn the mapping parameter to implicitly transfer the pretrained model.

Notation. Here, we give the notations for clearly formulating our method. A model with L layers and
a D hidden size can be denoted as M(L,D). Following Section 3.1, parameters of j-th layer are a
set ✓j = {WQ

j
2 RI⇥O

,WK

j
2 RI⇥O

,WV

j
2 RI⇥O

,WO

j
2 RI⇥O

,WIN

j
2 RI⇥kO

,WOUT

j
2

RkI⇥O}, j 2 [L], usually satisfying I = O = D. The weight of M(L,D) is ✓L,D
= {✓j}Lj=1. A

growth operator with parameter S is denoted as �S . A mapping from M(L1, D1) ! M(L2, D2)

can be denoted as ✓L2,D2 = �S(✓L1,D1). In the case of L1 < L2, this mapping represents a growth
mapping. After growing, ✓L2,D2 will be used as initial weights for the target model.

Full Mapping Operator. To utilize all weights for knowledge transferring, we first concate-
nate weights across layers. As shown in Figure 4, we concatenate j-th layer to form a tensor
of shape B ⇥ I ⇥O along with order I and O where B = 2k + 4. Then the final weight tensor
M 2 RB⇥I⇥O⇥L can be derived by combining the concatenated tensors of L layers. Giving
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bert2BERT LiGO Mango

Figure 5: Growth processes with the tensor diagram. The circle with an oblique stroke means a
super-diagonal tensor. The blue color means a trainable operator, while the gray color denotes an
untrainable operator. The red color means the smaller model. Each tensor diagram means the growth
process that growing M1 to a bigger model through growth the operator S⇤.

a small model M1 2 RB2⇥I1⇥O1⇥L1 , a big model M2 2 RB1⇥I2⇥O2⇥L2 , and a parameter
S 2 RB1⇥I1⇥O1⇥L1⇥B2⇥I2⇥O2⇥L2 of a full mapping operator �S , we can transfer M1 to M2 as

(M2)b2,i2,o2,l2 =

X

b1,i1,o1,l1

(M1)b1,i1,o1,l1Sb1,i1,o1,l1,b2,i2,o2,l2 , (5)

where b1, i1, o1, l1, b2, i2, o2, and l2 are entries of corresponding tensors.

Multi-linear Mapping Operator. Note that S is extremely big, which makes it infeasible to display
this mapping by applying a whole transformation tensor. Therefore, we propose a multi-linear operator
named Mango which decomposes S through a tensor ring matrix product operator (TR-MPO) in
four small tensors {SB 2 RR1⇥B1⇥B2⇥R2 ,SO 2 RR2⇥O1⇥O2⇥R3 ,SL 2 RR3⇥L1⇥L2⇥R4 ,SI 2
RR4⇥I1⇥I2⇥R1}. R = {R1, R2, R3, R4} is the rank of TR-MPO. Then, we can update �S to
�SB ,SI ,SO,SL

, and Eq. (5) can be reformulated with a multi-linear form as

(M2)b2,i2,o2,l2 =

X

b1,i1,o1,l1,r1,r2,r3,r4

(M1)b1,i1,o1,l1(SB)r1,b1,b2,r2(SO)r2,o1,o2,r3(SL)r3,l1,l2,r4(SI)r4,i1,i2,r1 . (6)

The total size of SB , SI , SO, and SL is exponentially less than S, which makes Mango viable for
practical implementation while maintaining the full correlation between the small and big models.

Training Target. After designing the multi-linear operators, we train these operators to obtain the
function preserving M2. The training target can be denoted as

min
SB ,SI ,SO,SL

EX⇠DL(X,M2), w.r.t M2 = �SB ,SI ,SO,SL
(M1), (7)

where L is a loss function, and D is a data distribution. By replacing the full space of S with four
small spaces, the spatial requirements of the training process are reduced exponentially.

Procedures of Applying Mango. The procedures of Mango can be divided into four steps: (i) con-
catenating weights ✓L1,D1 of a pretrained model M(L1, D1) to construct a tensor M1; (ii) training
the growth operator �SB ,SI ,SO,SL

items of Eq. (7) in a few steps (e.g., 100) to make transferred
models maintaining function; (iii) recovering weight tensor M2 through the multi-linear operator
�SB ,SI ,SO,SL

; (iv) splitting M2 to the weight ✓L2,D2 of the target model M(L2, D2) as initializa-
tion to continue training.

Remark. Tensor decomposition is often used to compress neural networks. Actually, there are spaces
for further reducing the operator size. However, we are not exploring the border of compression
ratio, but the possibility of the learning ability of multi-linear operators and the influence on model
growth. Therefore, we decompose the huge S into four interpretable smaller tensors. SB means the
interactions on the parameters in the same layer. SI and SO denote the transformations of input and
output dimensions in one parameter, respectively. SL indicates the relationship among layers. R
means the low-rank level of S. Smaller R means less correlation of these four tensors.
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3.3 Comparison with Recent Advances

Basically, the goal of model growth is to widen and deepen the width and depth of the pretrained
models, and operation on width and depth can be easy to implement. Therefore, most of the previous
studies grow width and depth separately, although there may exist some correlation that may influence
the training efficiency. In this part, we analyze the difference among methods of model growth with
the help of the tensor diagrams.

We illustrate a comparison among bert2BERT, LiGO, and Mango in Figure 5. The red circle means a
pretrained model, while the blue and gray circles denote trainable and untrainable operator parameters,
respectively. The circle with an oblique stroke represents a super-diagonal tensor, where the diagonal
elements are all 1. This super-diagonal tensor means that growth operators expand other modes along
the mode of the super-diagonal tensor.

Table 1: The comparison among bert2BERT, LiGO and Mango. In a case of M(L1, D1) !
M(L2, D2), there usually are I1 = O1 = D1 and I2 = O2 = D2. R = max(R1, R2, R3, R4).

Method Reference Operator Parameter Trainability Spatial Complexity
bert2BERT Chen et al. [5] SI , SO, SK 7 2L1D1D2 + L1L2

LiGO Wang et al. [53] SI , SO, SL 3 2B1D1D2 + L1L2

Mango - SB , SI , SO, SL 3 2RD1D2 +R
2
(B1B2 + L1L2)

bert2BERT. As shown in Figure 5, the parameters in the growth operator of bert2BERT are all
frozen, since they are designed by heuristic inspiration to preserve function. bert2BERT expands
modes of I1 and O1 along with the mode of L1, indicating that one weight is expanded without
knowledge from any other weight. To further increase the training ability, bert2BERT applies SK

to construct Advanced Knowledge Initialization (AKI) to utilize knowledge of other layers to help
accelerate training.

LiGO. Different from bert2BERT, the LiGO operator can be trained. In addition, LiGO expands I1
and O1 along the mode of B1. With SL, LiGO can combine knowledge among layers. Operators of
Net2Net and StackBERT grow with or depth separately, which can be regarded as a sub-solution to
SI , SO, and SL of LiGO. However, one weight in LiGO will not leverage the knowledge of weights
in the same layer. Therefore, LiGO only implements partial mapping like bert2BERT.

Mango. We employ Mango on each mode of the weight M1. Mango can approach the full mapping
tensor S as a low-rank approximation with rank R, rather than partial mapping operators like LiGO
and bert2BERT. Therefore, Mango can obtain M2 to capture adequate knowledge from pretrained
weights as formulated in Eq. 6. Moreover, the diagonal tensor in LiGO and contraction between a
diagonal tensor and SK in bert2BERT are subsets of SL and SB in Mango. Therefore, Mango can
be a generalization of bert2BERT and LiGO with more expressive power.

4 Experiment

In this section, we design a set of experiments to validate the proposed Mango. To begin with,
we conduct an ablation study to analyze the influence of Mango on width and depth in Sec. 4.1.
Then we conduct image classification with DeiT-B [46] on ImageNet to show the acceleration in
computer vision task in Sec. 4.2. Later we conduct a pretraining experiment with BERT-Base [10] to
demonstrate the effectiveness in natural language processing tasks in Sec. 4.3. At last, we also employ
a pretraining experiment with GPT-Base [39] to show the wide adaption of Mango in Sec. 4.4.

Ratio of saving FLOPs. We evaluate the training efficiency in terms of the ratio of saved floating-
point operations (FLOPs). Let us assume that training a model from scratch to convergence on metric
 (e.g., MLM loss or accuracy) necessitates ⇠Scratch FLOPs. Then, for a method that reaches the
same metric  with ⇠⇤ FLOPs, its FLOP saving ratio r can be computed as

r =
⇠Scratch � ⇠⇤

⇠Scratch

. (8)
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(a) Width: DeiT-T-A!DeiT-S. (b) Depth: DeiT-T-B!DeiT-S. (c) Both: DeiT-T-C!DeiT-S.

Figure 6: Influence from ranks on expanding width, depth, and both of them. The green curve means
the accuracy of training operators for 100 steps. The red curve means the final acceleration ratio on
training DeiT-S. Mango can achieve training acceleration in every case. Moreover, in each sub-graph,
when the accuracy increases with a higher rank, the acceleration ratio keeps almost fixed.

4.1 Ablation Study

In this experiment, we explore the influence of Mango on growing width, depth and both of them in
addition to rank setting. We use three tiny vision Transformers (ViTs) [11], i.e., DeiT-T-A, DeiT-T-B,
and DeiT-T-C, for growing to DeiT-S [46] on ImageNet [9]. Structures of these DeiTs can be found in
Table 4 of the Appendix. For ease of setting, we set all the ranks the same in the range of {1, 4, 7, 10}.
We train Mango operators for 100 steps, which only requires negligible time. We use Adam with
learning rate 1e-3 and weight decay 1e-2 for 300 epoch optimization. The batch size is 1024.

Results are shown in Figure 6. Mango achieves acceleration of at most 31.0%, 46.0%, and 41.3% on
expanding width, depth, and both of them, respectively, which shows Mango can fit various growth
scenarios. Interestingly, these acceleration ratios are higher when the operator accuracies are better
along the types of pretrained models, e.g., as DeiT-T-B at most achieves 73.81% accuracy which
is higher than 72.89% of DeiT-T-A, DeiT-T-B derives higher acceleration ratio. This phenomenon
suggests that when there are multiple pretrained models can be selected, the better accuracy for one
pretrained model through Mango, the faster training speed can be obtained for the target models.

In each expanding case, the accuracies of operator training tend to increase with higher ranks.
However, all the cases on the three pretrained models show that better accuracy will not lead to faster
training with the same pretrained model. For example, in Figure 6(a), the operator with rank 10 has
an accuracy that is 1.19% higher than the operator with rank 1. Nevertheless, the two ranks reach
the same acceleration ratio. This result suggests that rank 1 is enough to use, and also enjoys the
advantages of spatial and temporal complexities compared to bigger ranks. And we choose rank 1 for
Mango to construct the later experiments.

4.2 Results on Large-Scale Vision Transformer

We conduct the experiment to show the training acceleration on large-scale vision Transformers. We
train the Deit-B from Deit-S [46] on ImageNet. Structures of the two models are shown in Table 4 of
the Appendix. Ranks of Mango are all set to 1 for complexity benefit without performance loss. The
operators of Mango and Ligo are all trained within 100 steps. We use Adam as the optimizer with
learning rate 1e-3 and weight decay 1e-2. The batch size is 1024. The training epoch is 300.

Results are shown in Figure 7(a). Mango saves 76% FLOPs from Scratch which converges to an
accuracy of 80.45% in the end. Compared with schemes of training from Scratch (i.e., Srcatch and
StackBERT), methods of training from a smaller model (i.e., Mango, bert2BERT, and LiGO) can
attain 70% accuracy in a short time, even bert2BERT start in low accuracy. Compared with the recent
SOTA models, Mango has surpassed bert2BERT for +12.0%, and LiGO for +20.7%. This experiment
shows the ability of Mango to achieve significant improvement in training acceleration. To investigate
the influence of Mango on transferring ability, we also conduct an experiment on downstream tasks,
including CIFAR10 [26], CIFAR100 [26], Flowers [31], Cars [25], and ChestXRay8 [54]. Results
are shown in Table 2. It is easy to see that Mango achieves similar results to the Scratch, which
indicates Mango has not influenced the transferring ability.
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(a) DeiT-S!DeiT-B. (b) BERT-Small!BERT-Base. (c) GPT-Small!GPT-Base.

Figure 7: Results of pretraining DeiT-B, BRET-Base and GPT-Base. Compared to baselines, Mango
can achieve the highest savings in FLOPs with 76.4% for DeiT-B, 39.2% for BERT-Base, and 59.9%
for GPT-Base from the Scratch model. We also illustrate the corresponding results on wall time in
Figure 10 of the appendix.

Table 2: Results of transfer learning performance of DeiT-B. Mango can achieve similar performance
to the Scratch model in downstream tasks while saving 76.4% FLOPs.

Method
FLOPs
(⇥ 1e18)

Ratio
(Saving)

CIFAR10 CIFAR100 Flowers Cars ChestXRay8 Average

Training from Scratch

Scratch 12.9 - 99.03 90.22 97.27 91.89 55.66 86.82
StackBERT 11.3 12.6% 99.11 90.10 97.44 91.71 55.63 86.80

Training from the Pretrained Model: M(12, 384) ! M(12, 768)

bert2BERT 4.6 64.4% 98.99 90.47 97.51 91.88 55.34 86.84
LiGO 5.7 55.7% 99.11 90.52 97.18 91.82 55.45 86.82
Mango 3.0 76.4% 99.13 90.23 97.49 91.83 55.46 86.83

4.3 Pretraining on BERT

In this experiment, we conduct the validation to show the training acceleration on BERT [10, 61].
The dataset is the concatenation of English Wikipedia and Toronto Book Corpus [71]. We train the
BERT-Base from BERT-Small. The training epoch is 40. The batch size is 768. We list the structures
of the two models in Table 5 of the Appendix. The ranks of Mango are all 1. Mango and LiGO are
both warmly trained for 100 steps. The optimizer is set to AdamW. The learning rate is 1e-4 and the
weight decay is 1e-2.

We illustrate the training curves in Figure 7(b). The methods of training from BERT-Small (i.e.,
Mango, bert2BERT, and LiGO) can all surpass the progressive training StackBERT of acceleration
ratio 29.5%. bert2BERT is over StackBERT by +6.1%. Mango achieves the highest acceleration of
39.2% FLOPs which is +3.6% more than bert2BERT. Loss of StackBERT steeply decreases within
training for Stacking layers, which can also demonstrate the pretrained weights are helpful for training
efficiency. We show the effectiveness of Mango on SQuAD and GLUE benchmark as in Table 3.
Mango shows the same transferring ability with faster convergence, which indicates a promising use
for practical training.

4.4 Pretraining on GPT

We also implement the experiment to show the training acceleration on GPT [39]. The dataset is the
concatenation of English Wikipedia and Toronto Book Corpus [71]. We train the GPT-Base from
GPT-Small. The structures of the two models are shown in Table 5 of the Appendix. The ranks of
Mango are all 1. Mango and LiGO are trained for 100 steps. We use Adamw with learning rate 1e-4
and weight decay 1e-2. The batch size is 512. The training epoch is 35.
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Table 3: Results of downstream tasks of BERT-Base on GLUE [48], SQuADv1.1 [40], and
SQuADv2.0 [41] dataset. Mango can also achieve similar performance with the Scratch model
while enjoying training efficiency.

Model
FLOPs

(⇥ 1e19)
Ratio

(Saving)
SQuADv1.1

(F1)
SQuADv2.0

(F1)
SST-2
(Acc)

MNLI
(Acc)

MRPC
(Acc)

COLA
(Mcc)

QNLI
(Acc)

STS-B
(Acc)

QQP
(Acc)

GLUE
Avg.

SQuAD
Avg.

Training from Scratch

Scratch 8.9 - 89.21 77.90 92.18 84.19 87.55 56.35 91.50 89.16 90.25 84.45 83.56
StackBERT 6.3 29.5% 89.82 78.21 92.94 84.63 87.65 61.61 90.95 87.13 90.20 85.01 84.01

Training from the Pretrained Model: M(12, 384) ! M(12, 768)

bert2BERT 5.7 35.6% 90.02 78.99 92.89 84.92 86.91 60.32 91.81 88.11 90.72 85.10 84.50
LiGO 5.9 33.5% 90.09 78.34 92.75 84.99 87.44 61.10 91.33 87.94 90.42 85.14 84.22
Mango 5.4 39.2% 90.17 78.77 92.71 84.86 87.94 62.88 91.49 88.73 90.62 85.60 84.47

We compare the Scratch model, bert2BERT, LiGO, and Mango in Figure 7(c). We observe that the
proposed Mango achieves a 59.9% acceleration ratio. While GPT is different from BERT in different
structures, including layer normalization, mask method, and training strategy, Mango can always keep
the highest performance. Although LiGO is lower than bert2BERT at the beginning, it converges
slower and reaches 38.1% at last. By contrast, the Mango is almost at the lowest loss in the whole
training process and achieves +16.7% more than bert2BERT and +21.8% more than LiGO, which
shows a significant acceleration than the baselines.

5 Conclusion

Training Transformers can pose a significant demand on computational resources. Reusing pretrained
models as an initialization strategy for the target model offers a promising approach to reducing
resource costs and accelerating training. However, previous studies only mapped partial weights
when growing models, which may fail to consider potential correlations in the whole model and result
in inadequate growth mapping. Inspired by this observation, we propose to consider the interaction
among all weights in the model to further improve acceleration ability. Specifically, we utilize a full
mapping to comprehensively reuse the pretrained model, taking into account all correlations between
model weights. As the full mapping tensor is huge and cannot be employed in practice, we propose
to use Mango, a multi-linear operator, to reduce computation and space complexity. Experimental
results demonstrate that Mango consistently achieves significant acceleration on various large-scale
models (e.g., DeiT-B, BERT-Base, and GPT-Base). In the future, we hope that this method can
contribute to green AI and significantly reduce the cost of training Transformers.

Limitation. While Mango significantly reduces training costs for large models, it still requires
weights of a small pretrained model as the prior knowledge. Additionally, the Mango operator
necessitates extra training for initializing. However, obtaining small model weights is relatively
simple within the community, and given the substantial cost savings, the resources required for
training the operator are minimal.

Societal Impact. The acceleration from Mango significantly impacts energy conservation and
environmental protection, promoting the growth of Green AI, which boosts efficiency and reduces
computational demand, minimizing energy usage and carbon emissions. Mango can also democratize
AI, allowing broader access to technologies of pertaining models without the need for large resources,
and promoting sustainable and accessible AI solutions that respect our environmental limits.
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