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(a) Appearance on a fine-grained scale (b) and on a class-agnostic scale.

Figure 1: An example of the responsive Type-to-Track. The user provides a video sequence and a prompting
request. During tracking, the system is able to discriminate appearance attributes to track the target subjects
accordingly and iteratively responds to the user’s tracking request. Each box color represents a unique identity.

Abstract

One of the recent trends in vision problems is to use natural language captions
to describe the objects of interest. This approach can overcome some limitations
of traditional methods that rely on bounding boxes or category annotations. This
paper introduces a novel paradigm for Multiple Object Tracking called Type-to-
Track, which allows users to track objects in videos by typing natural language
descriptions. We present a new dataset for that Grounded Multiple Object Tracking
task, called GroOT, that contains videos with various types of objects and their
corresponding textual captions describing their appearance and action in detail.
Additionally, we introduce two new evaluation protocols and formulate evaluation
metrics specifically for this task. We develop a new efficient method that models
a transformer-based eMbed-ENcoDE-extRact framework (MENDER) using the
third-order tensor decomposition. The experiments in five scenarios show that our
MENDER approach outperforms another two-stage design in terms of accuracy
and efficiency, up to 14.7% accuracy and 4× speed faster.

1 Introduction

Tracking the movement of objects in videos is a challenging task that has received significant attention
in recent years. Various methods have been proposed to tackle this problem, including deep learning
techniques. However, despite these advances, there is still room for improvement in intuitiveness
and responsiveness. One potential way to improve object tracking in videos is to incorporate user
input into the tracking process. Traditional Visual Object Tracking (VOT) methods typically require
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Table 1: Comparison of current datasets. # denotes the number of the corresponding item. Bold numbers are the
best number in each sub-block, while highlighted numbers are the best across all sub-blocks.

Datasets Task NLP #Videos #Frames #Tracks #AnnBoxes #Words #Settings
OTB100 [8] SOT ✗ 100 59K 100 59K - -
VOT-2017 [9] SOT ✗ 60 21K 60 21K - -
GOT-10k [10] SOT ✗ 10K 1.5M 10K 1.5M - -
TrackingNet [11] SOT ✗ 30K 14.43M 30K 14.43M - -

MOT17 [12] MOT ✗ 14 11.2K 1.3K 0.3M - -
TAO [13] MOT ✗ 1.5K 2.2M 8.1K 0.17M - -
MOT20 [14] MOT ✗ 8 13.41K 3.83K 2.1M - -
BDD100K [15] MOT ✗ 2K 318K 130.6K 3.3M - -

LaSOT [6] SOT ✓ 1.4K 3.52M 1.4K 3.52M 9.8K 1
TNL2K [7] SOT ✓ 2K 1.24M 2K 1.24M 10.8K 1
Ref-DAVIS [16] VOS ✓ 150 94K 400+ - 10.3K 2
Refer-YTVOS [17] VOS ✓ 4K 1.24M 7.4K 131K 158K 2
Ref-KITTI [18] MOT ✓ 18 6.65K - - 3.7K 1
GroOT (Ours) MOT ✓ 1,515 2.25M 13.3K 2.57M 256K 5

users to manually select objects in the video by points [1], bounding boxes [2, 3], or trained object
detectors [4, 5]. Thus, in this paper, we introduce a new paradigm, called Type-to-Track, to this task
that combines responsive typing input to guide the tracking of objects in videos. It allows for more
intuitive and conversational tracking, as users can simply type in the name or description of the object
they wish to track, as illustrated in Fig. 1. Our intuitive and user-friendly Type-to-Track approach has
numerous potential applications, such as surveillance and object retrieval in videos.

We present a new Grounded Multiple Object Tracking dataset named GroOT that is more advanced
than existing tracking datasets [6, 7]. GroOT contains videos with various types of multiple objects
and detailed textual descriptions. It is 2× larger and more diverse than any existing datasets, and it
can construct many different evaluation settings. In addition to three easy-to-construct experimental
settings, we propose two new settings for prompt-based visual tracking. It brings the total number
of settings to five, which will be presented in Section 5. These new experimental settings challenge
existing designs and highlight the potential for further advancements in our proposed research topic.

In summary, this work addresses the use of natural language to guide and assist the Multiple Object
Tracking (MOT) tasks with the following contributions. First, a novel paradigm named Type-to-Track
is proposed, which involves responsive and conversational typing to track any objects in videos.
Second, a new GroOT dataset is introduced. It contains videos with various types of objects and their
corresponding textual descriptions of 256K words describing definition, appearance, and action. Next,
two new evaluation protocols that are tracking by retrieval prompts and caption prompts, and three
class-agnostic tracking metrics are formulated for this problem. Finally, a new transformer-based
eMbed-ENcoDE-extRact framework (MENDER) is introduced with third-order tensor decomposition
as the first efficient approach for this task. Our contributions in this paper include a novel paradigm, a
rich semantic dataset, an efficient methodology, and challenging benchmarking protocols with new
evaluation metrics. These contributions will be advantageous for the field of Grounded MOT by
providing a valuable foundation for the development of future algorithms.

2 Related Work

2.1 Visual Object Tracking Datasets and Benchmarks

Datasets. To develop and train VOT models for the computer vision task of tracking objects in videos,
various datasets have been created and widely used. Some of the most popular datasets for VOT
are OTB [19, 8], VOT [9], GOT [10], MOT challenges [12, 14] and BDD100K [15]. Visual object
tracking has two sub-tasks: Single Object Tracking (SOT) and Multiple Object Tracking (MOT).
Table 1 shows that there is a wide variety of object tracking datasets in both types available, each
with its own strengths and weaknesses. Existing datasets with NLP [6, 7] only support the SOT task,
while our GroOT dataset supports MOT with approximately 2× larger in description size.

Benchmarks. Current benchmarks for tracking can be broadly classified into two main categories:
Tracking by Bounding Box and Tracking by Natural Language, depending on the type of initialization.
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Table 2: Comparison of key features of tracking
methods. Cls-agn is for class-agnostic, while Feat
is for the approach of feature fusion and Stages
indicates the number of stages in the model design
incorporating NLP into the tracking task. NLP
indicates how text is utilized for the tracker: assist
(w/ box) or can initialize (w/o box).

Approach Task NLP Cls-agn Feat Stages
GTI [27] SOT assist ✗ concat single
TransVLT [28] SOT assist ✗ attn single
TrackFormer [4] MOT – ✗ – –

MDETR+TFm MOT init ✓ attn two
TransRMOT [18] MOT init ✓ attn two
MENDER MOT init ✓ attn single

Table 3: Statistics of GroOT’s settings.
Datasets #Videos #Frames #Tracks #AnnBoxes #Words Parts

MOT17∗∗
Train 7 5,316 546∗ 112,297∗ 3,792 (1)
Test 7 5,919 785∗ 188,076∗ 5,757 (2)

Total 14 11,235 1,331∗ 300,373∗ 9,549

TAO∗∗

Train 500 764,526 2,645 54,639 19,222 (3)
Val 993 1,460,666 5,485 113,112 39,149 (4)
Test 914 2,221,846 7,972 164,650 -

Total 2,407 4,447,038 16,089 332,401 58,371

MOT20∗∗
Train 4 8,931 2,332∗ 1,336,920∗ - (5)
Test 4 4,479 1,501∗ 765,465∗ - (6)

Total 8 13,410 3,833∗ 2,102,385∗ -

GroOT∗∗

nm 1,515 2,249,837 13,294 2,570,509 21,424 all
syn 1,515 2,249,837 13,294 2,570,509 53,540 all
def 1,515 2,249,837 13,294 2,570,509 99,218 all
cap 1,507 2,236,427 9,461 468,124 67,920 w/o MOT20
retr 993 1,460,666 1,952 - 13,935 uses (4)

all uses (1, 2, 3, 4, 5, 6) and w/o MOT20 uses (1, 2, 3, 4).
∗ Statistics from the official site, including objects other than human.
∗∗ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Previous benchmarks [20, 19, 8, 9, 21, 22, 22, 23] were limited to test videos before the emergence
of deep trackers. The first publicly available benchmarks for visual tracking were OTB-2013 [19]
and OTB-2015 [8], consisting of 50 and 100 video sequences, respectively. GOT-10k [10] is a
benchmark featuring 10K videos classified into 563 classes and 87 motions. TrackingNet [11], a
subset of the object detection benchmark YT-BB [24], includes 31K sequences. Furthermore, there
are long-term tracking benchmarks such as OxUvA [25] and LaSOT [6]. OxUvA spans 14 hours
of video in 337 videos, comprising 366 object tracks. On the other hand, LaSOT [6] is a language-
assisted dataset consisting of 1.4K sequences with 9.8K words in their captions. In addition to
these benchmarks, TNL2K [7] includes 2K video sequences for natural language-based tracking and
focuses on expressing the attributes. LaSOT [6] and TNL2K [7] support one benchmarking setting
with their provided prompts, while our GroOT dataset supports five settings. Ref-KITTI [18] is built
upon the KITTI [26] dataset and contains only two categories, including car and pedestrian, while
our GroOT dataset focuses on category-agnostic tracking, and outnumbers the frames and settings.

A similar task with a different nomenclature to the Grounded MOT task is Referring Video Object
Segmentation (Ref-VOS) [16, 17], which primarily measures the overlapping area between the ground
truth and prediction for a single foreground object in each caption, with less emphasis on densely
tracking multiple objects over time. In contrast, our proposed Type-to-Track paradigm is distinct
in its focus on responsively and conversationally typing to track any objects in videos, requiring
maintaining the temporal motions of multiple objects of interest.

2.2 Grounded Object Tracking

Grounded Vision-Language Models accurately map language concepts onto visual observations
by understanding both vision content and natural language. For instance, visual grounding [29]
seeks to identify the location of nouns or short phrases (such as a black hat or a blue bird) within an
image. Grounded captioning [30, 31, 32] can generate text descriptions and align predicted words
with object regions in an image. Visual dialog [33] enables meaningful dialogues with humans about
visual content using natural, conversational language. Some visual dialog systems may incorporate
referring expression recognition [34] to resolve expressions in questions or answers.

Grounded Single Object Tracking is limited to tracking a single object with box-initialized and
language-assisted methods. The GTI [27] framework decomposes the tracking by language task into
three sub-tasks: Grounding, Tracking, and Integration, and generates tubelet predictions frame-by-
frame. AdaSwitcher [7] module identifies tracking failure and switches to visual grounding for better
tracking. [35] introduce a unified system using attention memory and cross-attention modules with
learnable semantic prototypes. Another transformer-based approach [28] is presented including a
cross-modal fusion module, task-specific heads, and a proxy token-guided fusion module.

2.3 Discussion

Most existing datasets and benchmarks for object tracking are limited in their coverage and diversity
of language and visual concepts. Additionally, the prompts in the existing Grounded SOT benchmarks
do not contain variations in covering many objects in a single prompt, which limits the application of
existing trackers in practical scenarios. To address this, we present a new dataset and benchmarking
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(a) Our MOT17 [12] subset sample with captions in both action and appearance types.

(b) Our TAO [13] subset samples with captions. Best viewed in color and zoom in.

Figure 2: Example sequences and annotations in our dataset.

(a) Our MOT17 [12] subset.

(b) Our TAO [13] subset.

Figure 3: Some words in our language
description.

metrics to support the emerging trend of the Grounded MOT, where the goal is to align language
descriptions with fine-grained regions or objects in videos.

As shown in Table 2, most of the recent methods for the Grounded SOT task are not class-agnostic,
meaning they require prior knowledge of the object. GTI [27] and TransVLT [28] need to input
the initial bounding box, while TrackFormer [4] need the pre-defined category. The operation used
in [27] to fuse visual and textual features is concatenation which can only support prompts describing
a single object. A Grounded MOT can be constructed by integrating a grounded object detector, i.e.
MDETR [36], and an object tracker, i.e. TrackFormer [4]. However, this approach is low-efficient
because the visual features have to be extracted multiple times. In contrast, our proposed MOT
approach MENDER formulates third-order attention to adaptively focus on many targets, and it is an
efficient single-stage and class-agnostic framework. The scope of class-agnostic in our approach is
constructing a large vocabulary of concepts via a visual-textual corpus, following [37, 38, 39].

3 Dataset Overview

3.1 Data Collection and Annotation

Existing object tracking datasets are typically designed for specific types of video scenes [40, 41, 42,
43, 44, 2]. To cover a diverse range of scenes, GroOT was created using official videos and bounding
box annotations from the MOT17 [12], TAO [13], and MOT20 [14]. The MOT17 dataset comprises
14 sequences with diverse environmental conditions such as crowded scenes, varying viewpoints,
and camera motion. The TAO dataset is composed of videos from seven different datasets, such
as the ArgoVerse [45] and BDD [15] datasets containing outdoor driving scenes, while LaSOT [6]
and YFCC100M [46] datasets include in-the-wild internet videos. Additionally, the AVA [47],
Charades [48], and HACS [49] datasets include videos depicting human-human and human-object
interactions. By combining these datasets, GroOT covers multiple types of scenes and encompasses a
wide range of 833 objects. This diversity allows for a wide range of object classes with captions to be
included, making it an invaluable resource for training and evaluating visual grounding algorithms.

We release our textual description annotations in COCO format [50]. Specifically, a new key
‘captions’ which is a list of strings is attached to each ‘annotations’ item in the official
annotation. In the MOT17 subset, we attempt to maintain two types of caption for well-visible
objects: one describes the appearance and the other describes the action. For example, the caption
for a well-visible person might be [‘a man wearing a gray shirt’, ‘person walking on
the street’] as shown in Fig. 2a. However, 10% of tracklets only have one caption type, and
3% do not have any captions due to their low visibility. The physical characteristics of a person or
their personal accessories, such as their clothing, bag color, and hair color are considered to be part
of their appearance. Therefore, the appearance captions include verbs ‘carrying’ or ‘holding’
to describe personal accessories. In the TAO subset, objects other than humans have one caption
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describing appearance, for instance, [‘a red and black scooter’]. Objects that are human
have the same two types of captions as the MOT17 subset. An example is shown in Fig. 2b. These
captions are consistently annotated throughout the tracklets. Fig. 3 is the word-cloud visualization of
our annotations.

3.2 Type-to-Track Benchmarking Protocols

Let V be a video sample lasts t frames, where V =
{
It | t < |V|

}
and It be the image sample at a

particular time step t. We define a request prompt P that describes the objects of interest, and Tt is
the set of tracklets of interest up to time step t. The Type-to-Track paradigm requires a tracker network
T (It,Tt−1,P) that efficiently take into account It, Tt−1, and P to produce Tt = T (It,Tt−1,P).
To advance the task of multiple object retrieval, another benchmarking set is created in addition to
the GroOT dataset. While training and testing sets follow a One-to-One scenario, where each caption
describes a single tracklet, the new retrieval set contains prompts that follow a One-to-Many scenario,
where a short prompt describes multiple objects. This scenario highlights the need for diverse
methods to improve the task of multiple object retrieval. The retrieval set is provided with a subset of
tracklets in the TAO validation set and three custom retrieval prompts that change throughout the

tracking process in a video {Pt1=0,Pt2 ,Pt3}, as depicted in Fig. 1(a). The retrieval prompts are
generated through a semi-automatic process that involves: (i) selecting the most commonly occurring
category in the video, and (ii) cascadingly filtering to the object that appears for the longest duration.
In contrast, the caption prompts are created by joining tracklet captions in the scene and keeping
it consistent throughout the tracking period. We name these two evaluation scenarios as tracklet
captions cap and object retrieval retr . With three more easy-to-construct scenarios, five scenarios
in total will be studied for the experiments in Section 5. Table 3 presents the statistics of the five
settings, and the data portions are highlighted in the corresponding colors.

3.3 Class-agnostic Evaluation Metrics

As indicated in [51], long-tailed classification is a very challenging task in imbalanced and large-scale
datasets such as TAO. This is because it is difficult to distinguish between similar fine-grained classes,
such as bus and van, due to the class hierarchy. Additionally, it is even more challenging to treat every
class independently. The traditional method of evaluating tracking performance leads to inadequate
benchmarking and undesired tracking results. In our Type-to-Track paradigm, the main task is not to
classify objects to their correct categories but to retrieve and track the object of interest. Therefore,
to alleviate the negative effect, we reformulate the original per-category metrics of MOTA [52],
IDF1 [53], HOTA [54] into class-agnostic metrics:

MOTA =
1

|CLSn|

CLSn∑
cls

(
1−
∑

t (FNt + FPt + IDSt)∑
t GTt

)
cls

, CA-MOTA = 1−
∑

t (FNt + FPt + IDSt)CLS1∑
t (GTCLS1)t

(1)

IDF1 =
1

|CLSn|

CLSn∑
cls

( 2× IDTP
2× IDTP + IDFP + IDFN

)
cls

, CA-IDF1 =
(2× IDTP)CLS1

(2× IDTP + IDFP + IDFN)CLS1

(2)

HOTA =
1

|CLSn|

CLSn∑
cls

(√
DetA · AssA

)
cls

, CA-HOTA =
√

(DetACLS1) · (AssACLS1) (3)

where CLSn is the category, set size n is reduced to 1 by combining all elements: CLSn → CLS1.

4 Methodology

4.1 Problem Formulation

Given the image It and the request prompt P describing the objects of interest, which can adaptively
change between {Pt1 , Pt2 , Pt3} in the retr setting, and K is the prompt’s length |P| = K,
let enc(·) and emb(·) be the visual encoder and the word embedding model to extract features
of image tokens and prompt tokens, respectively. The resulting outputs, enc(It) ∈ RM×D and
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emb(P) ∈ RK×D, where D is the length of feature dimensions. A list of region-prompt associations
Ct, which contains objects’ bounding boxes and their confident scores, can be produced by Eqn. (4):

Ct = dec
γ

(
enc(It)×̄emb(P)⊺, enc(It)

)
=
{
ci = (cx, cy, cw, ch, cconf )i | i < M

}
t

(4)

where (×̄) is an operation representing the region-prompt correlation, that will be elaborated in the
next section, dec

γ
(·, ·) is an object decoder taking the similarity and the image features to decode to

object locations, thresholded by a scoring parameter γ (i.e. cconf ≥ γ). For simplicity, the cardinality
of the set of objects |Ct| = M , implying each image token produces one region-text correlation.

We define Tt =
{
trj = (trx, try, trw, trh, trconf , trid)j | j < N

}
t

produced by the tracker T ,

where N = |Tt| is the cardinality of current tracklets. i, j, k, and t are consistently denoted as
indexers for objects, tracklets, prompt tokens, and time steps for the rest of the paper.

Remark 1 Third-order Tensor Modeling. Since the Type-to-Track paradigm requires three input com-
ponents It, Tt−1, and P, an auto-regressive single-stage end-to-end framework can be formulated
via third-order tensor modeling.

To achieve this objective, a combination of initialization, object decoding, visual encoding, feature
extraction, word embedding, and aggregation can be formulated as in Eqn. (5):

Tt =

{
initialize(Ct) t = 0

dec
γ

(
1D×D×D ×1 enc(It)×2 ext(Tt−1)×3 emb(P), enc(It)

)
∀t > 0

(5)

where ext(·) denotes the visual feature extractor of the set of tracklets, ext(Tt−1) ∈ RN×D,
1D×D×D is an all-ones tensor has size D × D × D, ( ×n ) is the n-mode product of the third-
order tensor [55] to aggregate many types of token1, and initialize(·) is the function to ascendingly
assign unique identities to tracklets for the first time those tracklets appear.

Let T ∈ RM×N×K be the resulting tensor T = 1D×D×D ×1 enc(It) ×2 ext(Tt−1) ×3 emb(P).
The objective function can be expressed as the log softmax of the positive region-tracklet-prompt
triplet over all possible triplets, defined in Eqn. (6):

θ∗enc,ext,emb = arg max
θenc,ext,emb

(
log
( exp(Tijk)∑K

l

∑N
n

∑M
m exp(Tlnm)

))
(6)

where θ denotes the network’s parameters, the combination of the ith image token, the jth tracklet,
and the kth prompt token is the correlated triplet.

In the next subsection, we elaborate our model design for the tracking function T (It,Tt−1,P),
named MENDER, as defined in Eqn. (5), and loss functions for the problem objective in Eqn. (6).

4.2 MENDER for Multiple Object Tracking by Prompts

The correlation in Eqn. (5) has the cubic time and space complexity O(n3), which can be intractable
as the input length grows and hinder the model scalability.

Remark 2 Correlation Simplification. Since both enc(·) and ext(·) are visual encoders, the
region-prompt correlation can be equivalent to the tracklet-prompt correlation. Therefore, the
region-tracklet-prompt correlation tensor T can be simplified to lower the computation footprint.

To design that goal, the extractor and encoder share network weights for computational efficiency:

ext(Tt−1)j = ext
(
{trj}t−1

)
=
{
enc(It−1)i : ci 7→ trj

}
, therefore

(
(T:j:)t−1 = (Ti::)t

)
: ci 7→ trj

2

(7)
where T:j: and Ti:: are lateral and horizontal slices. In layman’s terms, the region-prompt correlation
at the time step t− 1 is equivalent to the tracklet-prompt correlation at the time step t, as visualized
in Fig. 4(a). Therefore, one practically needs to model the region-tracklet and tracklet-prompt

1 implemented by a single Python code with Numpy: np.einsum(‘ai, bj, ck -> abc’, P, I, T).
2 If P changes, the equivalence still holds true, see Appendix for the full algorithm.
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(a) Because the tracklet set Tt−1 pools visual features
of the image It−1, the region-prompt is equivalent with
tracklet-prompt (only need to filter unassigned objects).

(b) The structure of our proposed MENDER. It employs a visual backbone to
extract visual features and a word embedding to extract textual features. We
model the tracklet-prompt correlation ext(Tt−1)×̄emb(P)⊺ instead of
the region-prompt to avoid unnecessary computation caused by no-object
tokens [56]. Best viewed in color and zoom in.

Figure 4: The auto-regressive manner takes advantage of the equivalent components. Simplifying the correlation
in (a) turns the solution to MENDER in (b), and reduces complexity to O(n2) where n denotes the size of tokens.

correlations which reduces time and space complexity from O(n3) to O(n2), significantly lowering
computation footprint. We alternatively rewrite the decoding step in Eqn. (5) as follows:

Tt = dec
γ

((
enc(It)×̄ext(Tt−1)

⊺
)
×
(
ext(Tt−1)×̄emb(P)⊺

)
, enc(It)

)
∀t > 0 (8)

Correlation Representations. In our approach, the correlation operation (×̄) is modelled by the
multi-head cross-attention mechanism [57], as depicted in Fig. 4(b). The attention matrix can be
computed as:

σ(X)×̄σ(Y) = AX|Y = softmax

((
σ(X)×WX

Q

)
×
(
σ(Y)×WY

K

)⊺
√
D

)
(9)

where X and Y tokens are one of these types: region, tracklet, prompt. σ(·) is one of the operations
enc(·), emb(·), ext(·) as the corresponding operation to X or Y. Superscript WQ, WK , and WV are
the projection matrices corresponding to X or Y as in the attention mechanism.

Then, the attention weight from the image It to the prompt P are computed by the matrix multiplica-
tion for AI|T and AT|P to aggregate the information from two matrices as in Eqn. (8). The result is
the matrix AI|T×T|P = AI|T ×AT|P that shows the correlation between each input or output. Then,
the resulting attention matrix AI|T×T|P is used to produce the object representations at time t:

Zt = AI|T×T|P ×
(
emb(P)×WP

V

)
+AI|T ×

(
ext(Tt−1)×WT

V

)
(10)

Object Decoder dec(·) utilizes context-aware features Zt that are capable of preserving identity
information while adapting to changes in position. The tracklet set Tt is defined in the auto-regressive
manner to adjust to the movements of the object being tracked as in Eqn. (8). For decoding the final
output at any frame, the decoder transforms the object representation by a 3-layer FFN to predict
bounding boxes and confidence scores for frame t:

Tt =
{
trj = (trx, try, trw, trh, trconf )j

}
t

trconf≥γ
= FFN

(
Zt + enc(It)

)
(11)

where the identification information of tracklets, represented by trid, is not determined directly by
the FFN model. Instead, the trid value is set when the tracklet is first initialized and maintained till
its end, similar to tracking-by-attention approaches [4, 58, 59, 60].
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4.3 Training Losses

To achieve the training objective function as in Eqn. (6), we formulate the objective function into two
loss functions LI|T and LT|P for correlation training and one loss LGIoU for decoder training:

L = γT|PLT|P + γI|TLI|T + γGIoULGIoU (12)

where γT|P, γI|T, and γGIoU are corresponding coefficients, which are set to 0.3 by default.

Alignment Loss LT|P is a contrastive loss, which is used to assure the alignment of the ground-truth
object feature and caption pairs (T,P) which can be obtained in our dataset. There are two alignment
losses used, one for all objects normalized by the number of positive prompt tokens and the other for
all prompt tokens normalized by the number of positive objects. The total loss can be expressed as:

LT|P =

− 1

|P+|

|P+|∑
k

log

(
exp

(
ext(T)⊺j × emb(P)k

)
K∑
l

exp
(
ext(T)⊺j × emb(P)l

)
)

− 1

|T+|

|T+|∑
j

log

(
exp

(
emb(P)⊺k × ext(T)j

)
N∑
l

exp
(
emb(P)⊺k × ext(T)l

)
)

(13)

where P+ and I+ are the sets of positive prompts and image tokens corresponding to the selected
enc(I)i and emb(P)k, respectively.

Objectness Losses. To model the track’s temporal changes, our network learns from training samples
that capture both appearance and motion generated by two adjacent frames:

LI|T = −
N∑
j

log

(
exp

(
ext(T)⊺j × enc(I)i

)
∑N

l exp
(
ext(T)⊺j × enc(I)l

)) , and LGIoU =

N∑
j

ℓGIoU (trj ,obji) (14)

LI|T is the log-softmax loss to guide the tokens’ alignment as similar to Eqn. (13). In the LGIoU loss,
obji is the ground truth object corresponding to trj . The optimal assignment between trj or obji
to the ground truth object is computed efficiently by the Hungarian algorithm, following DETR [56].
ℓGIoU is the Generalized IoU loss [61].

5 Experimental Results

5.1 Implementation Details

Experimental Scenarios. We create three types of prompt: category name nm , category synonyms
syn , category definition def . One tracklet captions cap scenario is constructed by our detailed

annotations and one more objects retrieval retr scenario is given in our custom request prompts as
described in Subsec. 3.2. The dataset contains 833 classes, each has a name and a corresponding set of
synonyms that are different names for the same category, such as [man, woman, human, pedestrian,
boy, girl, child] for person. Additionally, each category is described by a category definition
sentence. This definition makes the model deal with the variations in the text prompts. We join the
names, synonyms, definitions, or captions and filter duplicates to construct the prompt. Trained models
use as the same type as testing. We annotated the raw tracking data of the best-performant tracker
(i.e., BoT-SORT [62] at 80.5% MOTA and 80.2% IDF1) at the time we constructed experiments and
used it as the sub-optimal ground truth of MOT17 and MOT20 (parts (2, 4) in Table 3). That is also
the raw data we used to evaluate all our ablation studies.

Datasets and Metrics. RefCOCO+ [63] and Flickr30k [64] serve as pre-trained datasets for acquiring
a vocabulary of visual-textual concepts [37]. The ext(·) operation is not involved in this training
step. After obtaining a pre-trained model from RefCOCO+ and Flickr30k, we train and evaluate
our model for the proposed Type-to-Track task on all five scenarios on our GroOT dataset and the
first-three scenarios for MOT20 [14]. The tracking performance is reported in class-agnostic metrics
CA-MOTA, CA-IDF1, and CA-HOTA as in Subsec. 3.3 and mAP50 as defined in [13].

Tokens Production. emb(·) utilizes RoBERTa [65] to convert the text input into a sequence of
numerical tokens. The tokens are fed into the RoBERTa-base model for text encoding using a
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Table 4: Ablation studies. sim indicates whether
the correlation is the simplified Eqn. (8) or the
Eqn. (5). See 5.1 for the abbreviations. The two
first settings get only one word for the request
prompt, therefore, tensor T is an unsqueezed
matrix, resulting in no difference in nm (✗) vs
(✓), and syn (✗) vs (✓).
P sim CA-MOTA CA-IDF1 MT IDs mAP FPS

GroOT - MOT17 Subset

nm ✗/✓ 67.00 71.20 544 1352 0.876 10.3

syn ✗/✓ 65.10 71.10 554 1348 0.874 10.3

def ✗ 67.00 72.10 556 1343 0.876 5.8
✓ 67.30 72.40 568 1322 0.877 10.3

cap ✗ 58.20 53.20 289 1751 0.674 3.4
✓ 59.50 54.80 201 1734 0.688 7.8

GroOT - TAO Subset

nm ✓ 27.30 37.20 3523 4284 0.212 11.2

syn ✓ 25.70 36.10 3212 5048 0.198 11.2

def ✗ 15.20 27.30 2452 6253 0.154 6.2
✓ 16.80 27.70 2547 6118 0.158 10.5

cap ✗ 20.30 31.80 2943 5242 0.188 4.3
✓ 20.70 32.00 3103 5192 0.184 8.7

retr ✗ 32.40 38.40 630 3238 0.423 7.6
✓ 32.90 39.30 645 3194 0.430 11.5

GroOT - MOT20 Subset

nm ✗/✓ 72.40 67.50 823 2498 0.826 7.6

syn ✗/✓ 70.90 65.30 809 2509 0.823 7.6

def ✗ 72.90 67.70 823 2489 0.826 4.3
✓ 72.10 67.10 812 2503 0.825 7.6

Table 5: Comparisons to the two-stage baseline design. In
each dataset, the from-top-to-bottom scenarios are syn ,

def , cap and retr . Best viewed in color.
Approach CA-MOTA CA-IDF1 MT IDs mAP FPS

GroOT - MOT17 Subset

MDETR + TFm 62.60 64.70 519 1382 0.793 2.2
MENDER 65.10 71.10 554 1348 0.874 10.3
MDETR + TFm 62.60 64.70 519 1382 0.793 2.2
MENDER 67.30 72.40 568 1322 0.877 10.3
MDETR + TFm 44.80 45.20 193 1945 0.619 2.1
MENDER 59.50 54.80 201 1734 0.688 7.8

GroOT - TAO Subset

MDETR + TFm 21.30 33.20 2945 5834 0.184 3.1
MENDER 25.70 36.10 3212 5048 0.198 11.2
MDETR + TFm 14.60 21.40 1944 6493 0.137 3.1
MENDER 16.80 27.70 2547 6118 0.158 10.5
MDETR + TFm 15.30 23.60 2132 6354 0.156 3.0
MENDER 20.70 32.00 3103 5192 0.182 8.7
MDETR + TFm 25.70 26.40 513 3993 0.387 3.1
MENDER 32.90 39.30 645 3194 0.430 11.5

GroOT - MOT20 Subset

MDETR + TFm 61.20 60.40 784 2824 0.732 1.9
MENDER 70.90 65.30 809 2509 0.823 7.6
MDETR + TFm 68.00 66.30 763 2975 0.783 1.9
MENDER 72.10 67.10 812 2503 0.825 7.6

12-layer transformer network with 768 hidden units and 12 self-attention heads per layer. enc(·)
is implemented using a ResNet-101 [66] as the backbone to extract visual features from the input
image. The output of the ResNet is processed by a Deformable DETR encoder [67] to generate visual
tokens. For each dimension, we use sine and cosine functions with different frequencies as positional
encodings, similar to [68]. A feature resizer combining a list of (Linear,LayerNorm,Dropout) is
used to map to size D = 512 for all token producers.

5.2 Ablation Study

Comparisons in Different Scenarios. Table 4 shows comparisons in the performance of different
prompt inputs. For MOT17 and MOT20, the category name is ‘person’, while category definition is
‘a human being’. Since the prompt by category definition is short, it does not differ much from the
nm setting. However, the syn setting shuffles between some words, resulting in a slight decrease

in CA-MOTA and CA-IDF1. The cap setting results in prompts that contain more diverse and
complex vocabulary, and more context-specific information. It is more difficult for the model to
accurately localize the objects and identify their identity within the image, as it needs to take into
account a wider range of linguistic cues, resulting in a decrease in performance compared to def
(59.5% CA-MOTA and 54.8% CA-IDF1 vs 67.3% CA-MOTA and 72.4% CA-IDF1 on MOT17).

For TAO, the def setting has a significant number of variations and many tenuous connections in
the scene context, for example, ‘an aircraft that has a fixed wing and is powered by
propellers or jets’ for the airplane category. Therefore, it results in a decrease in perfor-
mance (16.8% CA-MOTA and 27.7% CA-IDF1) compared to cap (20.7% CA-MOTA and 32.0%
CA-IDF1), because the cap setting is more specific on the object level than category level. The best
performant setting is nm (27.3% CA-MOTA and 37.2% CA-IDF1), where names are combined.

Simplied Attention Representations. Table 4 also presents the effectiveness of different attention
representations of the full tensor T (denoted by ✗) and the simplified correlation (denoted by ✓). The
performance is reported with frame per second (FPS), which is self-measured on one GPU NVIDIA
RTX 3060 12GB. Overall, the performance of simplified correlation is witnessed with a superior
speed of up to 2× (7.8 FPS vs 3.4 FPS of cap on MOT17 and 11.5 FPS vs 7.6 FPS of retr on
TAO), resulting in and a slight increase in accuracy due to attention stability and precision gain.
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Table 6: Comparisons to the state-of-the-art approaches on the category name nm setting.
Approach Cls-agn CA-IDF1 CA-MOTA CA-HOTA MT ML AssA DetA LocA IDs

ByteTrack [69] ✗ 77.3 80.3 63.1 957 516 52.7 55.6 81.8 3,378
TrackFormer [4] ✗ 68.0 74.1 57.3 1,113 246 54.1 60.9 82.8 2,829
QuasiDense [70] ✗ 66.3 68.7 53.9 957 516 52.7 55.6 81.8 3,378
CenterTrack [71] ✗ 64.7 67.8 52.2 816 579 51.0 53.8 81.5 3,039
TraDeS [72] ✗ 63.9 69.1 52.7 858 507 50.8 55.2 81.8 3,555
CTracker [73] ✗ 57.4 66.6 49.0 759 570 45.2 53.6 81.3 5,529

MENDER ✓ 67.1 65.0 53.9 678 648 54.4 53.6 83.4 3,266

5.3 Comparisons with A Baseline Design

Due to the new proposed topic, no current work has the same scope or directly solves our problem.
Therefore, we compare our proposed MENDER against a two-stage baseline tracker in Table 5. We
use current SOTA methods to develop this approach, i.e., MDETR [36] for the grounded detector,
while TrackFormer [4] for the object tracker. It is worth noting that our MENDER relies on direct
regression to locate and track the object of interest, without the need for an explicit grounded object
detection stage. Table 5 shows our proposed MENDER outperforms the baseline on both CA-MOTA
and CA-IDF1 metrics in all four settings category synonyms, category definition, tracklet captions
and object retrieval (25.7% vs. 21.3%, 16.8% vs. 14.6%, 20.7% vs. 15.3% and 32.9% vs. 25.7%
CA-MOTA on TAO), while can maintain up to 4× run-time speed (10.3 FPS vs 2.2 FPS). The results
indicate that training a single-stage network enhances efficiency and reduces errors by avoiding
separate feature extractions for both detection and tracking steps.

5.4 Comparisons with State-of-the-Art Approaches

The category name nm setting is also the official MOT benchmark. Table 6 is the comparison of
our result on the category name setting on the official leaderboard of MOT17, compared with other
state-of-the-art approaches, including ByteTrack [69] and TrackFormer [4]. Note that our proposed
MENDER is one of the first attempts at the Grounded MOT task, not to achieve the top rankings
on the general MOT leaderboard. In contrast, other SOTA approaches benefit from the efficient
single-category design in their separate object detectors, while our single-stage design is agnostic to
the category and for flexible textual input. Compared to TrackFormer [4], our proposed MENDER
only demonstrates a marginal decrease in identity assignment (67.1% vs 68.0% CA-IDF1). The
decrease in the CA-MOTA stems from our detector’s design which integrates flexible input.

6 Conclusion

We have presented a novel problem of Type-to-Track, which aims to track objects using natural
language descriptions instead of bounding boxes or categories, and a large-scale dataset to advance
this task. Our proposed MENDER model reduces the computational complexity of third-order
correlations by designing an efficient attention method that scales quadratically w.r.t the input sizes.
Our experiments on three datasets and five scenarios demonstrate that our model achieves state-of-
the-art accuracy and speed for class-agnostic tracking.

Limitations. While our proposed metrics effectively evaluate the proposed Type-to-Track problem,
they may not be ideal for measuring precision-recall characteristics in retrieval tasks. Additionally, the
lack of the question-answering task in data and problem formulation may limit the algorithm to not
being able to provide language feedback such as clarification or alternative suggestions. Additional
benchmarks incorporating question-answering are excellent research avenues for future work. While
the performance of our proposed MENDER may not be optimal for well-defined categories, it paves
the way for exploring new avenues in open vocabulary and open-world scenarios [74].

Broader Impacts. The Type-to-Track problem and the proposed MENDER model have the potential
to impact various fields, such as surveillance and robotics, where recognizing object interactions is a
crucial task. By reformulating the problem with text support, the proposed methodology can improve
the intuitiveness and responsiveness of tracking, making it more practical for video input support in
large-language models [75] and real-world applications similar to ChatGPT. However, it could bring
potential negative impacts related to human rights by providing a video retrieval system via text.
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