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Abstract

Accessible high-quality data is the bread and butter of machine learning research,1

and the demand for data has exploded as larger and more advanced ML models are2

built across different domains. Yet, real data often contain sensitive information,3

subject to various biases, and are costly to acquire, which compromise their quality4

and accessibility. Synthetic data have thus emerged as a complement, sometimes5

even a replacement, to real data for ML training. However, the landscape of6

synthetic data research has been fragmented due to the large number of data7

modalities (e.g., tabular data, time series data, images, etc.) and various use cases8

(e.g., privacy, fairness, data augmentation, etc.). This poses practical challenges9

in comparing and selecting synthetic data generators in different problem settings.10

To this end, we develop Synthcity, an open-source Python library that allows11

researchers and practitioners to perform one-click benchmarking of synthetic data12

generators across data modalities and use cases. In addition, Synthcity’s plug-in13

style API makes it easy to incorporate additional data generators into the framework.14

Beyond benchmarking, it also offers a single access point to a diverse range of15

cutting-edge data generators. Through examples on tabular data generation and16

data augmentation, we illustrate the general applicability of Synthcity, and the17

insight one can obtain.18

1 Introduction19

Access to high quality data is the lifeblood of AI. Although AI holds strong promise in numerous high-20

stakes domains, the lack of high-quality datasets creates a significant hurdle for the development of21

AI, leading to missed opportunities. Specifically, three prominent issues contribute to this challenge:22

data scarcity, privacy, and bias [Mehrabi et al., 2021, Gianfrancesco et al., 2018, Tashea, 2017,23

Dastin, 2018]. As a result, the dataset may not be available, accessible, or suitable for building24

performant and socially responsible AI systems [Sambasivan et al., 2021].25

This challenge is especially prominent for tabular datasets, which are often curated in highly regulated26

industries including healthcare, finance, manufacturing etc. Synthetic tabular data has the potential27

to fuel the development of AI by unleashing the information in datasets that are small, sensitive or28

biased. To achieve this, we need high-performance generative models that both faithfully capture the29

data distribution and satisfy additional constraints for the desired use cases.30

To date, the landscape of synthetic data research has been fragmented because the combination of31

use cases (i.e. fairness, privacy, and augmentation) and data modalities (e.g. static tabular data, time32

series data, etc.) creates a plethora of problem settings. In response to the large problem space, the33
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community has taken a divide-and-conquer approach: highly-specialized generative models have34

been developed to fit in one particular setting. This has led to a proliferation of specialized generative35

models [Jordon et al., 2018, Yoon et al., 2020, Ho et al., 2021, Mehrabi et al., 2021, van Breugel36

et al., 2021, Zhu et al., 2017, Yoon et al., 2018, Saxena and Cao, 2021].37

This fragmented landscape has created four main challenges for benchmarking synthetic data genera-38

tors, which would hamper the research progress if left unaddressed.39

1. Challenge in use case specific evaluation. Most existing studies in generative model only focus40

on the fidelity of the synthetic data, i.e. how they resemble the real data in distribution Wang et al.41

[2019], Tucker et al. [2020], Goncalves et al. [2020], Wang et al. [2021], Kokosi and Harron [2022].42

However, additional evaluation is needed to assess the specific use cases. For example, the utility to43

downstream models and the data privacy. This calls for the introduction of new metrics as well as44

new evaluation pipelines.45

2. Challenge in off label uses. Although specialized generative models are developed for one use46

case, the practical application often requires them to cover multiple use cases (e.g. data augmentation47

with privacy). Hence, generative models are often used outside the designed scope. Prior work has48

shown that this may lead to undesirable and unpredictable consequences [Pereira et al., 2021, Ganev49

et al., 2022]. As a result, researchers need to comprehensively evaluate the generative model across a50

variety of use cases to assess the risk of off label uses.51

3. Challenge in comparing with a large number of baselines. In practice, it is often very52

challenging to systematically compare with a large number of existing baselines because the interfaces53

(API) of these models are often inconsistent and incompatible (e.g. they may require different formats54

of input data and conflicting software dependencies). As a result, the researcher usually needs to55

spend time and effort to harmonize the code rather than focusing on the research question itself.56

4. Challenge in understanding the performance gain. Generative models are complex systems57

that involve many components, such as the model architecture, the objective function, and the hyper-58

parameters. These aspects all encode prior assumptions and inductive biases, which would bring59

unique strengths and weaknesses to the models [Bond-Taylor et al., 2021]. However, it is often60

difficult to pinpoint the exact component that leads to the performance gain. Most existing studies61

evaluate the model as a whole and neglect the role of different components.62

Contribution. In this work, we present Synthcity, an open-source Python library available on pip63

and GitHub, as a solution to these benchmark challenges. Synthcity offers diverse data modalities64

and supports various use cases. It provides an extensive set of evaluation metrics for assessing65

dataset fidelity, privacy, and utility, making it a robust tool for evaluating synthetic data across66

different applications. With a wide array of state-of-the-art generators and customizable architectures,67

users can perform consistent comparisons with existing models, gaining insights into performance68

improvements. Accessible through an intuitive interface, Synthcity facilitates tabular data generation69

and augmentation, demonstrated through two case studies. Researchers can employ Synthcity for70

benchmarks and guidance in synthetic data research71

2 The synthcity library72

2.1 Overview of the synthcity workflow73

Despite the fragmented landscape in synthetic data research, Synthcity implements a unified workflow74

for benchmark studies. We formalize the process as follows. Let X be the random variable of75

interest (which could be static, temporal or censored). The real data is composed with observations76

xi ∼ P (X) drawn from the true (but unknown) distribution. For benchmark evaluation, the real data77

is split into a training (Dr
train) and test (Dr

test) set. The generator is trained using the training set78

Dr
train. During training, the generator (explicitly or implicitly) learns the distribution P̂ (X) in order79

to sample from it. After training, the generative model generates synthetic data Ds, which will be80

evaluated with respect to the test set Dr
test (or in some special cases, the training set Dr

train).81
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Figure 1: Standard workflow of generating and evaluating synthetic data with synthcity.

The synthcity library captures the entire workflow of synthetic data benchmark in four steps (Figure82

1). This workflow applies to all use cases, generative models and data modalities.83

1. Loading the dataset using a DataLoader. The DataLoader class provides a consistent interface for84

loading, storing, and splitting different types of input data (e.g. tabular, time series, and survival85

data). Users can also provide meta-data to inform downstream algorithms, like specifying sensitive86

columns for privacy-preserving algorithms.87

2. Training the generator using a Plugin. In synthcity, the users instantiate, train, and apply different88

data generators via the Plugin class. Each Plugin represents a specific data generation algorithm.89

The generator can be trained using the fit() method of a Plugin.90

3. Generating synthetic data. After the Plugin is trained, the user can use the generate() method to91

generate synthetic data. Some plugins also allow for conditional generation.92

4. Evaluating synthetic data. Synthcity provides a large set of metrics for evaluating different aspects93

of synthetic data. The Metrics class allows users to perform evaluation.94

In addition, synthcity also has a Benchmark class that wraps around all four steps. This provides95

a one-line interface for comparing and evaluating different generators and produces an evaluation96

report at the end of the process.97

2.2 Evaluation for diverse use cases98

Synthetic data has many different use cases including fairness, privacy, data augmentation. As a99

benchmarking framework, Synthcity provides the users with a comprehensive list of metrics and100

routines to evaluate various aspects of synthetic data, including metrics that are specific to these use101

cases. In this section, we describe the use cases of synthetic data and how Synthcity performs its102

evaluation. A full list of metrics can be found in Appendix.103

2.2.1 Standard data generation104

Standard data generation refers to the most basic generation task, where the synthetic data should be105

generated as faithfully as possible to the real-data distribution [van Breugel et al., 2023, Hansen et al.,106

2023]. This is captured by the fidelity metrics.107

Fidelity. The fidelity of synthetic data captures how much the synthetic data resembles real data. The108

fidelity metrics typically evaluate the closeness between the true distribution P and the distribution109

learned by the generator P̂ using samples from these two distributions. Synthcity supports distribu-110

tional divergence measures (e.g. Jensen-Shannon distance, Wasserstein distance, and maximal mean111

discrepancy) as well as two sample detection scores (i.e. scores that measure how well a classifier112

can distinguish real versus synthetic data) [Gretton et al., 2012, Lopez-Paz and Oquab, 2016, Snoke113

et al., 2018].114
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Use case Method Evaluation Reference

Standard data generation Generative model Fidelity Gretton et al. [2012]
Cross domain augmentation Domain transfer Utility Bing et al. [2022]

ML fairness Balancing distribution Minority performance Lu et al. [2018]
Causal fairness Algorithmic fairness Xu et al. [2018]

Privacy preservation Differential privacy Privacy metrics Abadi et al. [2016]
Threat model Attack simulation Shokri et al. [2017]

Table 1: Synthcity is a unified framework to benchmark diverse use cases of synthetic data. It supports
a range of methods and evaluation metrics, and also allows evaluation of off label uses.

2.2.2 Cross domain augmentation115

Here we consider a dataset that is collected from multiple domains or sources (e.g. data from different116

countries). Often the practitioner is interested in augmenting one particular data source that suffers117

from data scarcity issues (e.g. it is difficult to collect data from remote areas) by leveraging other118

related sources. This challenge has been studied in the deep generative model literature [Antoniou119

et al., 2017, Dina et al., 2022, Das et al., 2022, Bing et al., 2022]. By learning domain-specific and120

domain-agnostic representations, the generator is able to transfer knowledge across domains, making121

data augmentation more efficient. Synthcity offers a clean interface so that the user can benchmark122

the downstream utility of cross-domain generation using only one line of code..123

Utility. Synthcity measures the performance for cross domain augmentation through its utility to124

downstream tasks. Our approach adapts the common practice of train-on-synthetic evaluate-on-real125

[Beaulieu-Jones et al., 2019], where a downstream predictive model is trained on fully synthetic126

training data and then validated on real testing data.127

For data augmentation, Synthcity augments the data-scarce domain in the training data Dr
train with128

the synthetic data Ds. A predictive model is then trained on this augmented dataset and evaluated on129

the domain of interest in the testing data Dr
test. Synthcity supports various types of predictive tasks,130

including regression, classification and survival analysis. In addition to linear predictive models,131

synthcity supports Xgboost and neural nets as downstream models due to their wide adoption in data132

analytics. In practice, the user may average the performance of several predictive models to reduce133

the model uncertainty.134

As a naive baseline, Synthcity reports the predictive performance where no data augmentation is135

performed. Synthcity provides a pre-configured pipeline to automatically handle this entire procedure,136

reducing the code and preventing mistakes.137

2.2.3 Synthetic data for ML fairness138

Existing research has considered two different ways where Synthetic data could promote fairness.139

Table 2 shows the corresponding models in synthcity.140

1. Balancing distribution. In this setting, certain groups of people are underrepresented in a dataset141

that is used for training downstream ML systems. This may lead to a bias being introduced into these142

ML systems [Lu et al., 2018, de Vassimon Manela et al., 2021, Kadambi, 2021]. As a remedy, one143

could generate synthetic records for the minority group to augment the real data, thereby achieving144

balance in distribution. This often requires the data generator to learn the conditional distribution145

P (X|G), where G is the group label.146

2. Causal fairness. The second approach is to generate fairer synthetic data from a biased real dataset147

and to use synthetic data alone in downstream tasks [Zemel et al., 2013, Xu et al., 2018, 2019a, van148

Breugel et al., 2021]. In this setting, it is postulated that the real distribution P (X) reflects existing149

biases (e.g. unequal access to healthcare). The task for the generator is to learn a distribution P̂ (X)150

that is free from such biases but also stay as close to P (X) as possible (to ensure high data fidelity).151

Typically, notions of causality are employed in the bias removal process.152
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Fairness. Synthcity allows users to benchmark both use cases by training a downstream predictive153

model on the fully synthetic or augmented data and presenting their performance or characteristics.154

For example, one can evaluate the performance gain on any specified (minority) group as an indicator155

of the utility of synthetic data. In addition, Synthcity also supports standard algorithmic fairness156

metrics for the trained predictive model, such as Fairness Through Unawareness, Demographic Parity157

and Conditional Fairness [van Breugel et al., 2021]158

2.2.4 Synthetic data for privacy159

Methods for generating privacy-preserving synthetic data mainly fall into two categories: the ones160

that employ differential privacy, and the ones that are designed for specific threat models.161

1. Differential privacy (DP). DP is a formal way to describe how private a data generator is [Dwork,162

2008]. Typically, generators with DP property introduce additional noise in the training procedure163

[Jordon et al., 2022]. For example, adding noise in the gradient or using a noisy discriminator in a164

GAN architecture [Abadi et al., 2016, Jordon et al., 2018, Long et al., 2019].165

2. Threat model (TM). While DP focuses on giving formal guarantees, the TM approach is designed166

for specific threat models, such as membership inference, attribute inference, and re-identification167

[Shokri et al., 2017, Kosinski et al., 2013, Dinur and Nissim, 2003]. These models often involve168

regularization terms designed to mitigate privacy attack risk [Yoon et al., 2020].169

Privacy. Synthcity evaluates the privacy of synthetic data using a list of well-established privacy met-170

rics (e.g. k-anonymity [Sweeney, 2002] and l-diversity [Machanavajjhala et al., 2007]). Furthermore,171

it can measure the privacy of data by performing simulated privacy attacks (e.g. a re-identification172

attack). The success (or failure) of such an attack quantifies the degree of privacy preservation.173

2.2.5 Evaluating off label use cases174

Synthcity allows users to conveniently evaluate the off label usage of generative models. For instance,175

one could evaluate the privacy of synthetic data even if they are not generated by a privacy-enabled176

generative model. As another example, one could evaluate the fairness for generative models that are177

differentially private, thereby enabling studies like Ganev et al. [2022].178

Off-label evaluation is made easy because Synthcity implements generative models and evaluation179

metrics in two separate modules (PlugIns and Metrics). The consistent interface enables mix and180

match of models and metrics to empower different benchmark studies.181

2.3 Baseline generative models182

As a benchmarking framework, Synthcity is a one-stop-shop for state-of-the-art benchmarks with183

a large collection of baselines covering both deep generative models and other types of generative184

models. In this way, the user can easily compare with a range of existing methods, without the need185

to worry about implementation details or interfaces. Table 2 lists the generative models in synthcity186

for different data modalities.187

Synthcity covers all major families of deep generative models, including Generative adversarial188

networks (GAN) [Goodfellow et al., 2020], Variational Autoencoders (VAE) [Kingma et al., 2019],189

Normalizing flows (NF) [Papamakarios et al., 2021], as well as Diffusion models (DDPM) [Kingma190

et al., 2021]. In the GAN family, Synthcity currently supports GOGGLE [Liu et al., 2023], CTGAN191

Xu et al. [2019b], DPGAN [Xie et al., 2018], PATEGAN [Jordon et al., 2019], ADSGAN [Yoon et al.,192

2020], DECAF [van Breugel et al., 2021] for static data, Survival GAN [Norcliffe et al., 2023] for193

censored data, TimeGAN [Yoon et al., 2019] for time series data, as well as RadialGAN [Yoon et al.,194

2018] for multi-source data. In the VAE family, it supports TVAE [Xu et al., 2019b], RTVAE for static195

data [Akrami et al., 2020], Survival VAE [Norcliffe et al., 2023] for censored data, and TimeVAE196

[Yoon et al., 2019] for time series data. In the NF family, Synthcity implements the standard NF197

[Papamakarios et al., 2021] for static data, Survival NF [Norcliffe et al., 2023] for censored data,198

and FourierFlow [Alaa et al., 2021] of time series data. Synthcity also includes the TabDDPM199
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Data Modality Model Standard Gen Privacy Fairness
DP TM Balance Causal

Static

Bayesian Net
√

NF
√

GREAT
√

ARF
√

GOGGLE
√

TabDDPM
√

TVAE
√ √

RTVAE
√ √

CTGAN
√ √

AIM
√ √

PrivBayes
√ √

DPGAN
√ √

PATEGAN
√ √

ADSGAN
√ √

DECAF
√ √

Static (Censored)
Survival GAN

√ √ √

Survival VAE
√

Survival NF
√

TimeGAN
√ √

Time Series TimeVAE
√

(regular, irregular, FourierFlow*
√

censored) Probabilistic AR*
√

Multi-source RadialGAN
√ √

Table 2: Generative models available in synthcity for different data modalities and use cases. Ab-
breviations: Differential Privacy (DP), Threat Model (TM). *FourierFlow and Probabilistic AR is
compatible with regular time series only while TimeGAN and TimeVAE support both.

[Kotelnikov et al., 2022] in the diffusion model family, and GREAT Borisov et al. [2022], which uses200

auto-regressive generative LLM model.201

In addition to deep generative models, Synthcity also contains generative models that are not based202

on neural networks, such as Bayesian networks [Heckerman, 1997], AIM [McKenna et al., 2022],203

Probabilistic Auto-regressive models [Deodatis and Shinozuka, 1988] and Adversarial random forests204

(ARF) [Watson et al., 2023].205

Synthcity implements all generative models using the PlugIn interface. This consistent approach206

makes it easy to add additional generative models into the benchmark. The GitHub repository207

includes tutorials and step-by-step instructions on how to add new models.208

2.4 Architecture and hyper-parameters209

To help researchers pinpoint the source of performance gain and conduct fair comparison, Synthcity210

allows the user to incarnate all the deep generative models with different network architectures and211

hyper-parameters.212

The architecture can be specified when the user creates a model instance (i.e. a PlugIn). For213

example, each time-series generative model can be configured using twelve different architectures,214

including LSTM [Hochreiter and Schmidhuber, 1997], GRU [Dey and Salem, 2017], Transformer215

[Vaswani et al., 2017], MLSTM-FCN [Karim et al., 2019], TCN [Lea et al., 2017], InceptionTime216

and InceptionTimePlus [Ismail Fawaz et al., 2020], XceptionTime [Rahimian et al., 2020], ResCNN217

[Sun et al., 2020], Omni-Scale CNN [Tang et al., 2020], and XCM [Fauvel et al., 2021]. The network218

architectures compatible with other data modalities are tabulated in the Appendix.219
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Synthcity also has a consistent interface for dealing with hyper-parameters. The library allows220

the user to list, set, and sample all relevant hyper-parameters of a generative model. Furthermore,221

this interface is compatible with all popular hyper-parameter optimization libraries, such as Optuna222

[Akiba et al., 2019]. In this way, Synthcity allows the user to perform hyper-parameter search before223

evaluating on the best-performing setting to ensure a like-for-like comparison. Furthermore, Synthcity224

also allows the user to configure various early stopping rules to control and compare the training of225

generative models.226

2.5 Data modalities227

We emphasize that “tabular data” in fact encapsulates many different data modalities, including228

static tabular data, time series data, and censored survival data, all of which may contain a mix of229

continuous and discrete features (columns). Synthcity can also handle composite datasets composed230

of multiple subsets of data. We give a detailed description of the diverse tabular data modalities231

Synthcity supports in Figure 2 and further discuss them below. In future versions, we plan to include232

more data modalities including relational database-style data, richly annotated images, and texts.233

2.5.1 Single dataset234

We start by introducing the most fundamental case where there is a single training dataset (e.g. a235

single DataFrame in Pandas). We characterize the data modalities by two axes: the observation236

pattern and the feature type. Synthcity supports all combinations.237

The observation pattern describes whether and how the data are collected over time. There are three238

most prominent patterns, static data, regular time series, and irregular time series, which are all239

supported by synthcity.240

Figure 2: Supported tabular data modalities.

The second axis, feature type, describes the do-241

main of individual features. Synthcity supports242

multivariate tabular data with mixtures of con-243

tinuous, categorical, integer, and censored fea-244

tures. Censored features are common in survival245

analysis applications (e.g. healthcare and insur-246

ance). They are represented as a tuple (x, c),247

where x ∈ R+ represents the survival time and248

c ∈ {0, 1} is the censoring indicator.249

2.5.2 Composite dataset250

A composite dataset involves multiple sub251

datasets. Synthcity can handle the benchmark-252

ing of different classes of composite datasets.253

Currently, it supports (1) static datasets with the254

same features, collected from different domains, (2) a static and a time series dataset. The latter255

setting is common in applications. For example, a patient’s medical record may contain both static256

demographic information and longitudinal follow up data.257

3 Comparison with existing libraries258

In this section, we compare synthcity with other popular open source libraries for synthetic data259

generation to demonstrate its suitability as a comprehensive benchmark framework. Here we only260

consider the libraries that can generate synthetic data while preserving the statistical properties of261

real data, which includes YData Synthetic, Gretel Synthetics, SDV, DataSynthesizer, SmartNoise262

and nbsynthetic. Libraries that generate “fake” data for software testing are not considered because263

they do not attempt to learn the distribution of real data.264
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Setting \ Software Synthcity YData Gretel SDV DataSynthesizer SmartNoise nbsynthetic

Data modalities
Static data

√ √ √ √ √ √ √

Regular time series
√ √ √ √

Irregular time series
√

Censored features
√

Composite data
√ √

Use cases
Generation

√ √ √ √ √ √ √

Fairness (balance)
√ √ √ √ √

Fairness (causal)
√

Privacy (DP)
√ √ √

Privacy (TM)
√

Cross domain aug.
√

Table 3: The data modalities and use cases supported by synthcity and other open source synthetic
data libraries. Comparisons are based on the software versions available at the time of writing.

Table 3 shows that synthcity supports much broader use cases and data modalities than the alternatives.265

The existing libraries often focus on a single data modality or use case because they are intended as a266

solution to a specific problem rather than a benchmark framework. Furthermore, Synthcity includes267

many more data generators, including all major flavors of deep generative models as well as traditional268

generative models. It also contains a built-in evaluation module that assesses various aspects of the269

generator. A more detailed comparison of the supported data generators and evaluation metrics are270

available in the Appendix. The broad coverage of data modalities, use cases, data generators and271

evaluation metrics make Synthcity unique in its capacity for model evaluation and comparison.272

4 Illustrative case studies273

In this section, we present two illustrative use cases to show the type of benchmark studies that274

Synthcity can facilitate. We stress that these examples do not cover the full capability of Synthcity275

and they are used as illustrations.276

4.1 Static tabular data generative model benchmark277

We study which generative model has the strongest performance in generating synthetic tabular data.278

Synthcity allows us to compare a variety of state-of-the-art algorithms in this study, including ARF,279

GOGGLE, TabDDPM, CTGAN and TVAE. These algorithms are representative of broader families280

of generative models such as GANs, VAEs, Diffusion models, and forest-based generative models.281

Similar to prior tabular data benchmarks [Grinsztajn et al., 2022], we have selected 18 datasets from282

the OpenML benchmark, which cover common regression and classification datasets encountered in283

data science projects [Vanschoren et al., 2014]. The datasets cover a range of sample sizes (4,209 to284

1,025,010) and feature counts (5 to 771).285

Synthcity can automatically calculate more than 25 supported evaluation metrics in a benchmark. In286

this study, we focus on evaluating the fidelity of synthetic data. Similar to Liu et al. [2023], we report287

the average of the three-dimensional metrics (α-precision, β-recall, and authenticity), as proposed in288

Alaa et al. [2022], as a measure of data quality—whether the synthetic data are realistic, cover the289

true data distribution, and are generalized. Furthermore, we report the detection score, which reflects290

how often the synthetic data can be distinguished from the real data. To reduce the variability from291

the classifiers, we report the average AUROC scores from three different post-hoc data classifiers, as292

in Liu et al. [2023].293

Table 4 shows the experimental results averaged across all the datasets. We observe that the ARF294

model achieves strong performance in the quality score and stands out in terms of the detection score.295
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This suggests that the tree-based generative models are strong competitors to deep generative models296

for static tabular data. And this area is a promising avenue for further research.297

Quality Detection

ARF 0.5475 0.6721
GOGGLE 0.4054 0.9261
TabDDPM 0.5436 0.7074
CTGAN 0.5475 0.7758
TVAE 0.5487 0.7389

Table 4: Benchmark results for static tabular data generation. Quality: the higher the better; Detection:
the lower the better.

4.2 Tabular data fairness and augmentation benchmark298

We consider a benchmark study on cross-domain data augmentation for improving predictive perfor-299

mance on minority groups. We use the SIVEP-Gripe public dataset as an illustrative example, which300

contains anonymized records of COVID-19 patients in Brazil [Baqui et al., 2021]. In this dataset,301

’Mixed’ and ’White’ are the majority ethnicity groups while ’Black’, ’East Asian’ and ’Indigenous’302

are the minority groups (accounting for less than 10% of the total population). The dataset is used for303

training a downstream model to predict COVID-19 mortality. Due to the distributional imbalance,304

the downstream predictor is likely to under-perform on the minority groups, which may raise fairness305

issues (Section 2.2.3). This study aims to benchmark the utility of different generative models for306

data augmentation by measuring the AUROC of mortality prediction on the minority groups.307

Synthcity allows us to easily compare RadialGAN, which was designed for cross-domain data308

augmentation, and the conditional generative models (TabDDPM, CTGAN, and TVAE). We use309

Synthcity’s pre-configured pipeline for data augmentation benchmark, which reduces the amount of310

code and prevents data leakage. Synthcity also allows us to evaluate the performance gain for different311

downstream models, and we have selected a multi-layer perceptron classifier and a xgBoost classifier.312

The results are listed in Table 5. We observe that data augmentation consistently improves the313

accuracy of mortality prediction for minority groups. TabDDPM, a novel diffusion model, achieves314

the best overall performance, followed by RadialGAN.315

Neural net XgBoost

TabDDPM 0.7241 0.7786
RadialGAN 0.7137 0.7627
CTGAN 0.6477 0.7507
TVAE 0.3623 0.7794
Baseline 0.3244 0.7327

Table 5: Benchmark results for cross-domain data augmentation. The metric reported is the AUROC
of mortality prediction on the minority groups

5 Discussion316

Synthetic data is an emerging field where many novel algorithms have been proposed; yet there317

lacks an easy way to benchmark generative models across different desired or off label use cases,318

compare them with diverse baselines, and explain their performance gain. In this work, we present319

the open source Synthcity library as a solution to the benchmark challenge. Synthcity contains many320

built-in generative models, architectures and evaluation metrics, which are easily accessible through321

end-to-end evaluation pipelines. It can help researchers to perform in-depth and comprehensive322

benchmark studies with minimal programming effort.323
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A Appendix546

A.1 Code availability547

The code for the illustrative use cases are available on GitHub548

https://github.com/vanderschaarlab/synthcity-benchmarking. The synthcity library is avail-549

able on pip and GitHub. The tutorials folder contains additional illustrative examples.550

A.2 Supported algorithms and metrics551

Aspect Evaluation Metric \Software Synthcity YData Gretel SDV DataSynthesizer SmartNoise nbsynthetic

Fedelity

Jensen-Shannon distance
√

Wasserstein distance
√

Total variation distance
√

KL divergence
√

Skewness
√

Max-mean discrepancy
√ √

KS test
√ √ √

PRDC
√

Alpha–precision
√

Survival Kaplan-Meier dist.
√

Detection: linear
√ √

Detection: NN
√

Detection: XGB
√

Detection: Linear
√

Utility

Linear model
√ √

MLP
√ √

XGBoost
√ √

Static survival
√

Time-series
√

Survival time-series
√

Privacy

Correct attribution prob.
√ √

K-anonymity
√

K-map
√

Delta-presence
√

L-diversity
√

DOMIAS
√

Identifiability score
√

Table 6: The evaluation metrics supported by synthcity and other open source synthetic data libraries.
Comparisons are based on the software versions available at the time of writing.

Static Censored Time Series

Fully connected Weibull AFT LSTM
Residual network Cox PH GRU

TabNet Random Survival Forest RNN
Survival Xgboost Transformer

Deephit MLSTM_FCN
Tenn TCN
Date InceptionTime

InceptionTimePlus
XceptionTime

ResCNN
OmniScaleCNN

XCM
Table 7: Available network architectures and survival models in synthcity for different data modalities.
These components are compatible with multiple algorithms.
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Algorithm \Software Synthcity YData Gretel SDV DataSynthesizer SmartNoise nbsynthetic

AIM
√

GREAT
√

TabDDPM
√

ARF
√

GOGGLE
√

CTGAN
√ √ √ √

ACTGAN
√

TVAE
√ √

Bayesian Network
√

Normalizing Flows
√

Survial GAN
√

Survival VAE
√

DoppelGANger
√

TimeGAN
√ √

FourierFlows
√

Probabilistic AR
√ √

DECAF
√

RadialGAN
√

ADSGAN
√

DPGAN
√ √ √

PATEGAN
√ √

PrivBayes
√ √

Table 8: The data generating algorithms supported by synthcity and other open source synthetic data
libraries. Comparisons are based on the software versions available at the time of writing.
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