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Abstract

We introduce the problem of Bayesian optimization with cost-varying variable
subsets (BOCVS) where in each iteration, the learner chooses a subset of query
variables and specifies their values while the rest are randomly sampled. Each
chosen subset has an associated cost. This presents the learner with the novel chal-
lenge of balancing between choosing more informative subsets for more directed
learning versus leaving some variables to be randomly sampled to reduce incurred
costs. This paper presents a novel Gaussian process upper confidence bound-based
algorithm for solving the BOCVS problem that is provably no-regret. We analyze
how the availability of cheaper control sets helps in exploration and reduces overall
regret. We empirically show that our proposed algorithm can find significantly
better solutions than comparable baselines with the same budget.

1 Introduction

Bayesian optimization (BO) is a powerful framework for the sample-efficient optimization of costly-to-
evaluate black-box objective functions [11] and has been successfully applied to many experimental
design problems of significance such as hyperparameter optimization [6, 39], chemical synthesis [30],
and particle accelerator control [29], among others. Conventional BO assumes that the learner has
full control over all query variables (i.e., all variables in the input to the objective function). However,
in many real-world optimization problems, some of the query variables may be subject to randomness
affecting their values. In some cases, the randomness affecting a specific variable can be eliminated
(by allowing the learner to select its value), but at a cost. We illustrate with a few concrete scenarios:
In precision agriculture, consider a farm aiming to find the optimal conditions for largest crop yield
where the query variables are a set of soil nutrient concentrations (e.g., Ca, B, NH3, K) and pH. The
farm may rely on the naturally-occurring quantities of these nutrients in the available soil, but these
quantities will be randomly sampled. Alternatively, they may control some subset of these quantities
(via manufactured soil and fertilizers) at a higher cost. In advanced manufacturing where random
variation occurs in every operation [34], certain specifications of a product may be left unspecified
by the manufacturer and randomly determined, or specified but at a higher cost. In ad revenue
maximization or crowdsourcing where information is gathered from a large number of individuals via
ad platforms or crowdsourcing platforms such as Amazon Mechanical Turk, suppose that the query
variables describe the demographics of the individual, such as country of origin or income level. The
learner may allow the platform to randomly assign the task to any individuals, or the learner may
demand a specific subgroup of individuals at a higher cost. In all these practical scenarios, the goal is
to find the maximizer with as little incurred cost as possible. At each query iteration, the learner is
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faced with the non-trivial problem of deciding which variables to specify (for more directed learning)
vs. which variables to allow to be randomly sampled (to reduce incurred costs), in addition to the
usual BO problem of deciding the specified variables’ values.

To the best of our knowledge, there are no existing works that tackle this problem precisely. The
work of Hayashi et al. [13] introduced the problem of BO with partially specified queries (BOPSQ) in
which the subset of deterministically selected variables (control set) and randomly sampled variables
(random set) can also be chosen by the learner, but it does not consider the costs incurred by such
choices. This is a non-trivial limitation as the presence of costs can significantly alter the learner’s
decisions. Under such a formulation, if a control set is a strict subset of another, then the former
will never be chosen as there is no benefit to having variable values be randomly sampled instead
of chosen by the learner. Consequently, if there exists a control set that includes all the variables
in a query, then all other control sets will not be used and the problem reduces to conventional
BO. In practice, however, the availability of other control sets confers an advantage if these other
control sets are cheaper. Having access to cheaper but more random control sets allows the learner to
explore the query space cheaply and then use costlier but more deterministic control sets to exploit
high-value regions. BOPSQ in its current formulation excludes the analysis of such strategies and is
akin to multi-fidelity BO [15] but without modeling the costs of the different information sources: In
this case, the learner would simply choose the highest-fidelity information source all the time, thus
making the problem setting trivial.

This paper introduces the problem of BO with cost-varying variable subsets (BOCVS) that explicitly
models the cost of each control set and is more useful in practical scenarios. Our work generalizes
BOPSQ and argues that BOCVS problems are much richer when analyzed from a similar perspective
as multi-fidelity BO, and the various control sets are treated as information sources with different
levels of usefulness and costs. By using cheap control sets for exploration and expensive control
sets for exploitation, we show that with an appropriately designed algorithm, a learner can find
significantly better solutions with a lower cost expenditure. To achieve this, we leverage the Gaussian
process upper confidence bound (GP-UCB) acquisition function [7, 32] to design a novel no-regret
algorithm, i.e., its incurred simple regret tends to 0 as the number of iterations tends to infinity,
and the algorithm’s best chosen query converges to the optimal solution. We additionally analyze
the impact of the availability of cheaper control sets on the regret incurred by the most expensive
control set. We observe that our algorithm generally outperforms the non-cost-aware baselines, while
simple extensions based on Thompson sampling, maximizing UCB or expected improvement-based
acquisition scores per unit cost [31, Sec. 3.2] either fail to converge or fail to utilize cheap control
sets effectively. Concretely, the contributions of our work in this paper include the following:

• We introduce the BOCVS problem (Sec. 4) and solve it by designing a novel UCB-based algorithm
(Sec. 4.1) with a theoretical analysis of its properties, including the conditions under which it is
provably no-regret and the impact of the availability of cheaper control sets on the regret incurred
by the most expensive control set, and discuss the practical considerations (Sec. 4.2);

• We empirically evaluate the performance of our proposed algorithm against the baselines under
several experimental settings with synthetic and real-world datasets (Sec. 5), including a plant
growth dataset and an airfoil self-noise dataset corresponding, respectively, to the precision
agriculture and advanced manufacturing use cases motivated earlier in this section.

2 Related Work

The work of Hayashi et al. [13] introduced BO with partially specified queries (BOPSQ) and tackled
the problem with Thompson sampling. However, it fails to consider the relative costs of control
sets, which hinders the learner’s ability to take advantage of all control sets even in the presence
of more deterministic control sets. The work of Oliveira et al. [25] proposed BO with uncertain
inputs in which the executed query is sampled from a probability distribution depending on the
proposed query. Though related, its problem setting is motivated more by uncertainty in the input
query even post-observation and does not involve variable subset selection. These two works are part
of a line of research investigating BO in situations where the learner may not have full control over
all variables in a query, which includes BO for expected values [38], risk-averse BO [5, 21, 22], and
distributionally robust BO [17, 24, 37]. These works also do not consider variable subset selection.
Our treatment of the BOCVS problem is inspired by multi-fidelity BO in which the learner has access
to cheap, low-fidelity surrogates of the true objective function [15, 27, 35, 36]. In such works (and in
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ours), modeling costs is crucial as the learner would simply choose the highest-fidelity information
source (in ours, the maximally deterministic control set) otherwise. While the general idea of paying
less for potentially less informative queries is similar, our problem setting is fundamentally different:
The lack of informativeness comes from the uncertainty of the executed query as opposed to a bias in
the observed function values.

The BOCVS setting may be viewed as a special case of causal BO as formulated by Aglietti et al.
[1] and continued in several works [2, 4]. Specifically, our setting is a case in which there are no
’non-manipulative’ variables and the causal DAG is such that all input variables have no parents and
are parents of the output variable. Nevertheless, we believe our focus on this special case has value as
it allows us to derive useful theoretical results such as algorithm regret bounds that, to the best of our
knowledge, do not exist for the completely general causal BO setting at the time of writing. The work
of Sussex et al. [33] includes a regret bound, but is also a special case of [1], and has little overlap
with our work as it does not consider costs of control sets or explicit probability distributions over
input variables. We believe that our work is sufficiently general to be useful for practical scenarios
(where the full causal BO apparatus may be unnecessary), and is also a stepping stone towards theory
for the general case.

3 BO and Gaussian Processes

We will first give a brief review of conventional BO [11]. Given a query set X and an objective
function f : X → R, a learner wishes to find the maximizing query x∗ := argmaxx∈X f(x).
However, f is black-box (i.e., not available in closed form) and can only be learned by submitting
a query xt ∈ X in each iteration t for function evaluation and receiving a noisy observation
yt := f(xt) + ξt where each ξt is i.i.d. σ-sub-Gaussian noise with zero mean. Each function
evaluation is assumed to be expensive in some way, such as in terms of money or time spent. So, the
learner must be sample-efficient and find x∗ in as few iterations as possible. BO achieves sample
efficiency by leveraging a Bayesian model to represent a probabilistic belief of the function values at
unobserved regions of X in a principled manner. While any Bayesian model may be used for BO,
Gaussian processes (GPs) [42] are a common choice as they enable exact posterior inference: The
GP posterior belief of f at any query x ∈ X after t iterations is a Gaussian with posterior mean and
variance given by

µt(x) := kt(x)
⊤(Kt + λI)−1yt , σ2

t (x) := k(x,x)− kt(x)
⊤(Kt + λI)−1kt(x) (1)

where yt := (yj)
t
j=1 ∈ Rt, k is a positive semidefinite kernel (covariance function), kt(x) :=

(k(x,xj))
t
j=1 ∈ Rt, Kt := (k(xj ,xj′))

t
j,j′=1 ∈ Rt×t, and λ is an algorithm parameter; if the noise

is a Gaussian with variance σ2, then the true posterior is recovered with λ = σ2. The kernel k is an
important modeling choice as the GP posterior mean will reside in the reproducing kernel Hilbert
space (RKHS) associated with k. For simplicity, we assume w.l.o.g. that k(x,x′) ≤ 1 for any pair of
queries x,x′ ∈ X . Kernel k affects the maximum information gain (MIG) defined as

γT (X ) := max
{xt}T

t=1⊆X
0.5 log

∣∣I+ λ−1KT

∣∣ .
The MIG characterizes the statistical complexity of a problem and plays an integral role in the
theoretical analysis. For the commonly used squared exponential kernel, γT (X ) = O((log T )d+1),
while for the Matérn kernel with ν > 1, γT (X ) = O(T d(d+1)/(2v+d(d+1))(log T )) [32]. Importantly,
γT (X ) is increasing in the volume of X [32, Theorem 8].

4 BO with Cost-varying Variable Subsets (BOCVS)

The BOCVS problem consists of a compact query set X ⊂ Rd and an objective function f : X → R
in the RKHS of k with the RKHS norm upper bounded by B. For simplicity, assume w.l.o.g. that
X = [0, 1]d. Let [d] := {1, 2, ..., d}. The learner is given a collection I ⊆ 2[d] of control sets
indexed by 1, 2, . . . ,m := |I|. Each control set i ∈ [m], denoted by Ii ⊆ [d], indicates the variables
in a query with values that can be chosen by the learner. The complement Ii := [d] \ Ii of Ii is
the corresponding random set indicating the variables in a query with values that will be randomly
sampled from some distribution. A query x ∈ X can be represented by a combination of partial
queries [xi,x−i] comprising the control partial query xi := (xℓ)ℓ∈Ii

(i.e., xi collects the variables
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Figure 1: Two iterations in a BOCVS problem setting. The grey boxes are isometric views of a query
set X ⊂ R3. The blue regions depict the probability densities of random vectors [xit ,X−it ] and
[xit+1 ,X−it+1 ]. In iteration t, the learner chooses the control set it = 1 and specifies the value (of
the first variable xt,1) in control partial query xit , while the last two variables Xt,2, Xt,3 in random
partial query X−it will be randomly sampled. In iteration t+ 1, the learner chooses the control set
it+1 = 2 and specifies the values (of the first two variables xt,1, xt,2) in control partial query xit+1 ,
while the last variable Xt,3 in random partial query X−it+1 will be randomly sampled.

indexed by Ii) and the random partial query x−i := (xℓ)ℓ∈Ii
where xℓ denotes the ℓ-th variable in

the query vector x. Note that [xi,x−i] is not a simple vector concatenation as the variables may need
to be reordered according to their indices. Furthermore, let X i := {xi | x ∈ X}.

In iteration t, the learner chooses control set it ∈ I and specifies the values in control partial query
xit . The random partial query x−it will then be randomly sampled from the environment. For
example, if d = 4 and Iit = {1, 3}, then Iit = {2, 4} and the learner will be able to choose the
values in xit (i.e., the 1st and 3rd variables) but not those in x−it (i.e., the 2nd and 4th variables).
The full query in iteration t is then xt = [xit ,x−it ] = (xt,ℓ)ℓ∈[d]. Each observed variable xt,ℓ for
ℓ ∈ Iit is a realization of a random variable Xt,ℓ ∼ Pℓ. The observed x−it is then a realization of
the random vector X−it := (Xt,ℓ)ℓ∈Iit

∼ P−it where P−it is the product measure×ℓ∈Iit
Pℓ. In

other words, each variable in a random partial query is independently sampled from a probability
distribution that governs that variable. All distributions are assumed to be known. The learner then
observes yt := f(xt) + ξt where each ξt is i.i.d. σ-sub-Gaussian noise with a zero mean. Fig. 1
illustrates two iterations in a BOCVS problem setting.

The learner wishes to find the optimal control set i∗ and specified values in control partial query xi∗

that maximize the expected value of f([xi,X−i]) where the expectation is w.r.t. X−i ∼ P−i:

(i∗,xi∗) := argmax
(i,xi)∈[m]×X i

E
[
f([xi,X−i])

]
.

The learner has an initial budget C ∈ R+ and every control set Ii has an associated cost ci > 0 for
all i ∈ [m]. Let the control set indices be defined such that c1 ≤ c2 ≤ . . . ≤ cm.1

In every iteration t, the learner pays cit . The learning procedure ends after T iterations when
C −

∑T
t=1 cit < ciT+1

, i.e., the learner has not enough budget left to pay for the chosen control
set. T will now be a random variable depending on the algorithm and the random outcomes of the
learning procedure. The cost-varying cumulative regret is defined as

RT :=
∑T

t=1 cit
(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])
.

The regret incurred by choosing a sub-optimal control set and specifying sub-optimal values in the
control partial query is weighted by the cost of that control set. This naturally incorporates the notion
that the penalty for sub-optimal plays is lower if the play was cheap, while also penalizing using
the entire budget on sub-optimal plays, regardless of whether those plays are cheap or expensive.
Intuitively, to minimize the cost-varying regret, a learner would attempt to use the cheap control sets
(i.e., low ci, low E

[
f([xi,X−i])

]
) to explore the query space, and use the expensive control sets (i.e.,

high ci, high E
[
f([xi,X−i])

]
) to exploit control partial queries with high expected function values.1

When all ci = 1, we recover the BOPSQ problem [13], and C is simply the number of iterations

1While our problem definition does not require that ci ≤ cj ⇔ maxxi∈X i E
[
f([xi,X−i])

]
≤

maxxj∈Xj E
[
f([xj ,X−j ])

]
, one might reasonably expect this to be the case in real-world problems, i.e.,

"better" control sets cost more to specify. This also implies that Ii ⊆ Ij ⇒ ci ≤ cj .
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Algorithm 1 UCB-CVS
1: Input: GP with kernel k, budget C, control sets I, costs (ci)mi=1, ϵ-schedule (ϵt)

∞
t=1

2: for iteration t = 1 to ∞ do
3: gt := max(i,xi)∈[m]×X i E

[
ut−1([x

i,X−i])
]

4: S1 := {i ∈ [m] | maxxi∈X i E
[
ut−1([x

i,X−i])
]
+ ϵt ≥ gt}

5: S2 := {i ∈ S1 | ci = minj∈S1
cj}

6: (it,x
it) := argmax(i,xi)∈S2×X i E

[
ut−1([x

i,X−i])
]

7: break if C −
∑t−1

τ=1 ciτ < cit
8: Observe x−it drawn from P−it

9: Observe yt := f(xt) + ξt
10: Dt := {(xτ , yτ )}tτ=1
11: end for
12: return Dt

in the learning trajectory. In fact, BOPSQ reduces to a simpler problem if there exists a full query
control set that allows the learner to choose the values of all d variables. If [d] ∈ I, then Ii∗ = [d]
and E

[
f([xi∗ ,X−i∗ ])

]
= maxx∈X f(x) since expectations of a function are never greater than the

maximum value of the function. In other words, the full query control set is guaranteed to be the
optimal control set and the BOPSQ problem reduces to one of conventional BO. In general, under
BOPSQ, any control set that is a strict subset of another will never be chosen.

4.1 UCB-CVS

Alg. 1 describes our UCB-CVS algorithm for solving the BOCVS problem. In iteration t, it uses the
GP posterior belief of f to construct an upper confidence bound (UCB) ut−1 of f :

ut−1(x) = µt−1(x) + βtσt−1(x)

where the sequence (βt)t≥1 is an algorithm parameter that controls the tradeoff between exploration
and exploitation. UCB-based algorithm design is a classic strategy in the stochastic bandits [19,
Ch. 7] and BO literature [7, 32] and makes use of the “optimism in the face of uncertainty” (OFU)
principle [18]: Queries with a large posterior standard deviation (i.e., high uncertainty) are given high
acquisition scores as the function values at those queries may be potentially high. UCB-CVS adapts
this strategy by taking the expectation of the UCB as part of the acquisition process. Due to the
monotonicity of expectation, if ut−1 is an upper bound of f (i.e., ut−1(x) ≥ f(x) for any x ∈ X ),
then E

[
ut−1([x

i,X−i])
]

is also an upper bound of E
[
f([xi,X−i])

]
for any i ∈ [m],xi ∈ X i.

UCB-CVS also takes as input an ϵ-schedule (ϵt)
∞
t=1 where ϵt ≥ 0 for all t. To choose the control

set in iteration t, it first computes gt which is the expected UCB of the best control set and specified
values in the control partial query (Step 3). It then collects every control set i that fulfills the condition
maxxi∈X i E

[
ut−1([x

i,X−i])
]
+ ϵt ≥ gt into a set S1 (Step 4). It further reduces this set S1 to S2

by retaining only the control sets with the lowest cost (Step 5). Finally, it chooses the control set from
S2 with the largest expected UCB value (Step 6). Each ϵt thus serves as a relaxation that enables
exploration with cheaper control sets. Choosing many ϵt to be large results in many iterations of
choosing cheaper control sets; conversely, choosing ϵt = 0 for all t ignores all costs.

Our first result upper bounds the cost-varying cumulative regret incurred by UCB-CVS. Define
the feasible set X̃i :=×d

ℓ=1
[aiℓ, b

i
ℓ] for each control set i such that aiℓ = 0, biℓ = 1 if ℓ ∈ Ii, and

aiℓ = sup{a ∈ [0, 1] | Fℓ(a) = 0}, biℓ = inf{b ∈ [0, 1] | Fℓ(b) = 1} otherwise, where Fℓ is the CDF
of Xℓ ∼ Pℓ. X̃i is a subset of X in which any query chosen with control set i must reside. Define Ti

as the total number of iterations in which control set i is chosen.
Theorem 4.1. With probability at least 1− δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative
regret bounded by

RT ≤ O

((
B +

√
γT (X ) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi

(X̃i) + log
m+ 1

δ

)))
+ cm

T∑
t=1

ϵt

by setting βt = B + σ
√
2 (γt−1(X ) + 1 + log((m+ 1)/δ)).
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For any appropriately chosen kernel such that γT (X ) < O(
√
T ) (e.g., commonly used squared

exponential kernel, see Sec. 3) and ϵ-schedule such that
∑T

t=1 ϵt is sublinear in T , the cumulative
regret incurred will be sublinear in T : limT→∞ RT /T = 0. Since the mean of a sequence is
no less than the minimum, and all ci > 0, this further implies the desired no-regret property:
limT→∞ min1≤t≤T (E

[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

]
) = 0, i.e., the best control set and

specified values in control partial query in the algorithm’s choices eventually converge to the optimal
solution. The proof of Theorem 4.1 relies on choosing an appropriate sequence of βt such that
ut−1(x) ≥ f(x) for any x ∈ X , t ≥ 1 with high probability [7, Theorem 2]. The cumulative regret
is bounded by a sum of expectations of posterior standard deviations, which can then be bounded by
a sum of posterior standard deviations plus some additional terms [16, Lemma 3] and in turn bounded
in terms of the MIG [7, Lemma 4]. The proofs of all results in this paper are provided in Appendix A.

Since each γTi(X̃i) is increasing in the volume of X̃i, Theorem 4.1 states that control sets with
smaller feasible sets will incur less regret. If the size of a feasible set is taken to be a reasonable
surrogate for the diffuseness of the probability distributions involved, Theorem 4.1 then suggests
that control sets with corresponding random sets whose probability distributions are less diffuse will
incur less regret.2 Theorem 4.1 also informs us that one sufficient condition on the ϵ-schedule for
the cost-varying regret to be sublinear in T is that

∑T
t=1 ϵt is sublinear in T . Our next proposition

provides an alternative condition (neither is more general than the other):

Proposition 4.2. If there exists a ϵ̃ > 0 s.t. for all i ̸= i∗, ϵt ≤ E
[
f([xi∗ ,X−i∗ ])

]
−

maxxi∈X i E
[
f([xi,X−i])

]
− ϵ̃ eventually (i.e., the inequality holds for all t ≥ q for some

q ≥ 1), and γT (X ) < O(
√
T ), then, with probability at least 1 − δ, limT→∞ Ti/T = 0 for

all i ̸= i∗ and UCB-CVS incurs a cost-varying cumulative regret that is sublinear in T by setting
βt = B + σ

√
2 (γt−1(X ) + 1 + log((m+ 1)/δ)).

The above results have shown that with an appropriately chosen ϵ-schedule, UCB-CVS satisfies the
no-regret property. However, ignoring all costs by setting ϵt = 0 for all t also achieves no-regret.
This begs the question: In what way does a good ϵ-schedule improve UCB-CVS? Supposing the
most expensive control set is the full query control set, the presence of queries chosen with cheaper
control sets should reduce the cost-varying regret incurred by the full query control set by ruling
out low function value regions and directing the full queries towards high function value regions.
Additionally, it is reasonable to conjecture that the more diffuse each variable’s (indexed by ℓ)
probability distribution Pℓ is, the more the cheaper control sets would explore the query space and
thus, the lower the cost-varying regret incurred by the full query control set. To derive such a result,
the plan of attack is to relate the variances (i.e., notion of diffuseness) of the probability distributions
to the distances between queries chosen with the cheaper control sets, followed by analyzing the
effect of these distances and the number of times cheaper control sets were played on the MIG term
of the most expensive control set. Our next result relates the distance between pairs of queries chosen
with control set i to the variance V[Xℓ] of every probability distribution Pℓ for ℓ ∈ Ii:

Lemma 4.3. Suppose that for each control set i, the random variable Yi :=
∥∥[0,X−i

1 ]− [0,X−i
2 ]
∥∥2

has a median Mi s.t. E[Yi|Yi > Mi] ≤ hiMi for some hi > 0 where X−i
1 ,X−i

2 ∼ P−i. With
probability at least 1− δ, there will be at least Ni non-overlapping pairs of queries x and x′ chosen
by UCB-CVS (Alg. 1) with control set i s.t. ∥x− x′∥2 ≥ Mi where

Ni =
⌊
(Ti − 1)/4−

√
(Ti/4) log(1/δ)

⌋
and Mi ≥ (4/(hi + 1))

∑
ℓ∈Ii

V[Xℓ] . (2)

From (2), the higher the variances of the distributions that govern the variables in the random set,
the larger the lower bound Mi on the squared distance between at least Ni pairs of queries chosen
with control set i. As expected, the number Ni of pairs increases with Ti (i.e., the total number of
iterations in which control set i is chosen). The assumption on Yi is mild: As long as Yi has at least
1 non-zero median, it will hold. The assumption excludes the case in which Pℓ for all ℓ ∈ Ii are
degenerate with all probability mass on a single point. With Lemma 4.3, we now derive an alternative
regret bound that depends on the variances of the distributions and the number of plays of cheaper
control sets:

2The feasible set of control set i is defined in a worst-case manner, which may be too conservative to be
a good surrogate for diffuseness, especially for concentrated probability distributions with non-zero density
everywhere. Nevertheless, it facilitates the worst-case analysis of the regret bounds.

6



Theorem 4.4. Suppose that the following hold:

• Assumption of Lemma 4.3 holds;
• k(x,x′) is an isotropic kernel which only depends on distance between x & x′ and can be written

as k(∥x− x′∥);
• There exists an iteration r s.t. for all t ≤ r, it ≤ m− 1, and for all t > r, it = m .

Then, with probability at least 1 − δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative regret
bounded by

RT ≤ O

((
B +

√
γT (X ) + log

2m

δ

)(
cm

(√
TγT (X )− L+ log

2m

δ

)

+

m−1∑
i=1

ci

(√
TiγTi

(X̃i) + log
2m

δ

)))
+ cm

T∑
t=1

ϵt

L := λ

(
m−1∑
i=1

Ni log
(
Vi − 2k

(√
Mi

)
− k
(√

Mi

)2)
+W

)

by setting βt = B + σ
√
2 (γt−1(X ) + 1 + log((2m)/δ)) where Ni and Mi are previously defined

in Lemma 4.3, and Vi and W are residual terms defined in Appendix A.5.

Theorem 4.4 shows that the MIG term pertaining to the most expensive control set m is reduced by
L which increases as Ni increases, which in turn increases as Ti increases. This suggests that an
ϵ-schedule that increases the number of times cheaper control sets are played can reduce the MIG
term. L also increases as k(

√
Mi) decreases. For common kernels such as the squared exponential

or Matérn kernel with ν > 1 (which satisfy the second assumption on isotropic kernel), k(
√
Mi)

decreases as Mi increases, from which we may conclude that higher variance probability distributions
governing each Xℓ lead to a larger L due to (2) and hence a larger decrease on the MIG term. In
cases where cm ≫ ci for all i ̸= m, a carefully chosen ϵ-schedule can thus lead to a large decrease in
the regret bound via L. The third assumption is (informally) approximately true in practice due to the
design of UCB-CVS: If a decreasing ϵ-schedule is used, the algorithm will choose the cheaper but
sub-optimal control sets at the start. After ϵt has decreased past a certain value, the algorithm will
only choose the optimal (and likely most expensive) control set. The proof sketch upper bounds the
sum of posterior standard deviations of queries chosen with control set m with the MIG term minus
the sum of posterior standard deviations of queries chosen with all other control sets. This latter sum
is then lower bounded by a log determinant of the prior covariance matrix which is then decomposed
into a sum of log determinants of pairs of queries. The dependence on the distances between the pairs
can be made explicit in this form. Neither Theorems 4.1 nor 4.4 is more general than the other.

4.2 Practical Considerations

UCB-CVS is presented with the ϵ-schedule formulation for generality and ease of theoretical analysis.
In practice, however, the ϵ-schedule is a hyperparameter that is difficult to interpret and choose.
We propose a simple explore-then-commit (ETC) variant with which the learner only chooses the
number of plays of each cost group (i.e., defined as a collection of control sets with the same cost
that is not the maximum cost). In each iteration, the algorithm will choose the cost group with the
lowest cost and non-zero remaining plays, and then choose the control set within that cost group with
the largest expected UCB (similar to Step 6 in Alg. 1). Once all cost groups have zero remaining
plays, the algorithm chooses the control set with the largest expected UCB among all control sets.
This algorithm is highly interpretable and is equivalent to UCB-CVS with a specific sublinear ϵ-
schedule (that cannot be known a priori). Furthermore, the learner should choose the number of plays
adaptively depending on the cost of each cost group. On computational considerations, UCB-CVS
may be computationally expensive if the number m of control sets is large (e.g., if every subset of
variables is available as a control set and m = 2d) as each control set requires a maximization of the
expected UCB (which can be approximated with Monte Carlo sampling). In such cases, the learner
has the option to simply ignore any number of control sets to reduce m, as long as i∗ is not ignored.
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Figure 2: Mean and standard error (over 10 RNG seeds) of the simple regret (lower is better) incurred
against cost spent (budget) C by TS-PSQ, UCB-PSQ, ETC-50, ETC-100, and ETC-Ada with
varying objective functions, cost sets, and variances of distributions. A diamond indicates the average
budget after which an algorithm only chooses the optimal control set.
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5 Experiments and Discussion

This section empirically evaluates the performance of the tested algorithms with 4 objective functions:
(a) function samples from a GP prior (3-D), (b) the Hartmann synthetic function (3-D), (c) a plant
growth simulator built from real-world data where the variables are nutrients such as NH3 and pH (5-
D), and (d) a simulator built from the airfoil self-noise dataset (5-D) from the UCI Machine Learning
Repository [9]. For the first 2 objective functions, the control sets are all possible subsets of the 3
variables except the empty set, which leads to 7 control sets. For the plant growth objective function,
we pick 7 control sets including the full query control set. For the airfoil self-noise objective function,
similar to that of [13], we pick 7 control sets of 2 variables each that are not subsets of each other.
We use 3 different sets of costs for the 7 control sets: cheap ({0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 1}),
moderate ({0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 1}), and expensive ({0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 1}). Using
these sets of costs, the control sets are ordered such that ci < cj ⇒ maxxi∈X i E

[
f([xi,X−i])

]
≤

maxxj∈X j E
[
f([xj ,X−j ])

]
. These cost sets have fixed the optimal (i.e., last) control set to have

a cost of 1. While these cost sets may (at first glance) seem arbitrary, it is the algorithms’ relative
performance across these cost sets rather than the absolute performance on a single cost set that
allows us to understand the conditions under which particular algorithms perform better or worse.
Real-world applications (unlike the experiments conducted here) will come with their own cost sets
defined by real-world constraints. If the real costs can also be categorized in a similar relative way
like the above cheap, moderate, and expensive cost sets, then the results are expected to be similar.
Every probability distribution Pℓ is a truncated normal distribution with mean 0.5 and the same
variance which is one of 0.02, 0.04, and 0.08 (the uniform distribution on [0, 1] has variance 1/12).

We compare the performance of our algorithm against that of the baseline Thompson sampling
(TS-PSQ) algorithm developed in [13]. We test UCB-PSQ (ϵ-schedule with ϵt = 0 for all t) along
with the ETC variant of UCB-CVS (Sec. 4.2) with 3 sets of hyperparameters: 50 plays per cost group
(ETC-50), 100 plays per cost group (ETC-100), and a cost-adaptive version with 4/cj plays per cost
group where cj is the cost of the control sets in that cost group (ETC-Ada). We also investigated
simple extensions of TS-PSQ, UCB-PSQ, and expected improvement (adapted for BOPSQ) for the
BOCVS problem by dividing the acquisition score of a control set by its cost in a manner similar to
that in [31, Sec. 3.2]. We observed that these naive methods generally do not work well; we defer the
results and discussion of these methods to Appendix B. Refer to Appendix C for full descriptions of
all experimental settings and algorithm hyperparameters. The code for the experiments may be found
at https://github.com/sebtsh/bocvs.

Fig. 2 shows the mean and standard error (over 10 RNG seeds) of the simple regret
min1≤t≤T (C) E

[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

]
(lower is better) incurred against cost spent

(budget) C by each algorithm with varying objective functions, cost sets, and variances of distributions
where T (C) denotes the maximum iteration reached after spending C. The simple regret encodes
the value of the best solution an algorithm has chosen within a certain budget and is a measure of
cost efficiency. We report the salient observations below:

(1) UCB-CVS variants outperform TS-PSQ and UCB-PSQ under cheap/moderate costs when
the full query control set is available. With the GP sample, Hartmann, and plant growth objective
functions, the full query control set is available. TS-PSQ and UCB-PSQ only choose the full query
control set in every iteration and are very cost inefficient under cheap and moderate costs, while
UCB-CVS variants are able to use the cheaper control sets for exploration, followed by using the full
query control set for exploitation, and find much better solutions with the same budget. As expected,
their performance advantage reduces as the costs increase and cm gets closer to ci for all i ̸= m.

(2) Cost-adaptive UCB-CVS (ETC-Ada) can maintain competitive performance under expensive
costs. The non-cost-adaptive variants, ETC-50 and ETC-100, perform worse than TS-PSQ and UCB-
PSQ under expensive costs. In contrast, it can be observed that ETC-Ada generally performs well
under all costs by tuning the number of plays of suboptimal cost groups according to their costs. We
recommend practitioners to use adaptive algorithms to achieve good performance under any cost
set. In particular, the results suggest that an O(c−1

i ) threshold is likely to work well across different
sets of costs and is a robust choice for practitioners that keeps the number of hyperparameters to a
minimum.

(3) TS-PSQ and UCB-PSQ perform relatively well when the control sets are not subsets of each
other. With the airfoil self-noise objective function, TS-PSQ and UCB-PSQ perform better as the
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control sets with this objective function are not subsets of each other and thus, they can also use the
cheaper control sets during learning, while the UCB-CVS variants suffer worse performance here
due to artificially selecting suboptimal control sets and queries with the ϵ-relaxations. This worse
performance is encoded in Theorems 4.1 and 4.4 as the sum of ϵt terms.

(4) Increasing the variance of the probability distributions has competing effects on the simple
regret. Of the 42 experimental settings (combinations of objective function, cost set, and algorithm)
in which the variance makes a difference (excluding TS-PSQ and UCB-PSQ for all objective functions
except airfoil), the settings with variance 0.02, 0.04, and 0.08 achieved the lowest mean simple regret
by the end 11, 6, and 25 times, respectively. This generally supports Theorem 4.4’s prediction that
higher variances decrease the upper bound on regret. However, due to the looseness of the bound,
this effect is not guaranteed and there are still cases where lower variances lead to a lower regret,
as suggested by the argument about feasible sets when discussing Theorem 4.1; note that the same
MIGs of the feasible sets for control sets 1 to m− 1 appear in Theorem 4.4. We observe competing
effects and conclude that the effect of increasing variance is problem- and algorithm-dependent.
While higher variances may lead to more exploration, they may also result in too much smoothing of
function values which may hinder the learner’s ability to focus on high-value query regions.

6 Conclusion

This paper introduces the BOCVS problem and describes the UCB-CVS algorithm that is provably
no-regret in solving this problem. We show that our algorithm performs well across several different
experimental settings and achieves the desired goal of finding significantly better solutions within the
same budget. This work opens up avenues of future research: In particular, an entropy search-based
algorithm [14, 23, 41] that chooses control sets and queries based on expected information gain per
unit cost is a non-trivial and promising direction for alternative methods of solving BOCVS.
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A Proofs

A.1 Proof of Theorem 4.1

Theorem 4.1. With probability at least 1− δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative
regret bounded by

RT ≤ O

((
B +

√
γT (X ) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi

(X̃i) + log
m+ 1

δ

)))
+ cm

T∑
t=1

ϵt.

by setting βt = B + σ
√
2 (γt−1(X ) + 1 + log((m+ 1)/δ)).

Proof.

RT :=

T∑
t=1

cit

(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])
≤

T∑
t=1

cit

(
E
[
ut−1([x

i∗ ,X−i∗ ])
]
− E

[
f([xit ,X−it ])

])
(i)

≤
T∑

t=1

cit
(
E
[
ut−1([x

it ,X−it ])
]
− E

[
f([xit ,X−it ])

]
+ ϵt

)
≤

T∑
t=1

cit
(
E
[
ut−1([x

it ,X−it ])
]
− E

[
f([xit ,X−it ])

])
+ cm

T∑
t=1

ϵt (3)

=

T∑
t=1

cit
(
E
[
ut−1([x

it ,X−it ])− f([xit ,X−it ])
])

+ cm

T∑
t=1

ϵt

=

 m∑
i=1

ci
∑
t∈T̃i

E
[
ut−1([x

it ,X−it ])− f([xit ,X−it ])
]+ cm

T∑
t=1

ϵt

(ii)

≤

 m∑
i=1

ci(2βT )
∑
t∈T̃i

E
[
σt−1([x

it ,X−it ])
]+ cm

T∑
t=1

ϵt

(iii)

≤

 m∑
i=1

ci(2βT )

2
∑
t∈T̃i

σt−1(xt) + 4 log
m+ 1

δ
+ 8 log(4) + 1

+ cm

T∑
t=1

ϵt (4)

(iv)

≤

(
m∑
i=1

ci(2βT )

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
m+ 1

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

= O

(
m∑
i=1

ciβT

(√
TiγTi

(X̃i) + log
m+ 1

δ

))
+ cm

T∑
t=1

ϵt (5)

= O

((
B +

√
γT (X ) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi

(X̃i) + log
m+ 1

δ

)))
+ cm

T∑
t=1

ϵt

where T̃i is the ordered sequence of iterations at which control set i is chosen, (i) follows from the
algorithm’s choice of xit , (ii) follows from Lemma A.4 with probability δ/(m+ 1), (iii) follows
from Lemma A.1 with probability δ/(m+ 1) applied once for each control set i, and (iv) follows
from Lemma A.3 and the definition of X̃i as the feasible set for control set i. A union bound over the
m+ 1 events comprising the m applications of Lemma A.1 and single application of Lemma A.4
yields the desired 1− δ probability bound.
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A.2 Proof of Lemma A.1

Lemma A.1. Let k(x,x) = 1 and let T̃i be the ordered sequence of iterations at which control set i
is chosen by UCB-CVS. For any i ∈ [m], with probability at least 1− δ,∑

t∈T̃i

E
[
σt−1([x

it ,X−it ])
]
≤ 2

∑
t∈T̃i

σt−1(xt) + 4 log
1

δ
+ 8 log 4 + 1.

Proof. For this proof, define a probability space (Ω,F ,P) and a filtration F = {Ft}∞t=1, where
Ft := σ(i1,x

i1 ,x−i1 , y1, i2,x
i2 ,x−i2 , y2, ..., it,x

it ,x−it , yt), the sigma-algebra generated by all
the random variables in the BO procedure known by the end of iteration t.

In advance of proving this result, it should be clarified that, in the main paper and all proofs excluding
that of this lemma, E

[
σt−1([x

it ,X−it ])
]

denotes the quantity obtained by treating σt−1 and xit

as deterministic and treating X−it as a random vector distributed according to the probability
distribution P−it . This is for ease of exposition. In the following proof, however, when using the
formalism of random processes, what was previously referred to as E

[
σt−1([x

it ,X−it ])
]

is actually
E[σt−1(xt) | Ft−1]. The meaning is equivalent since σt−1, it, and xit are F-predictable, and the only
uncertainty about σt−1(xt) arises from the lack of knowledge about x−it .

Now we begin the proof proper. Define m stochastic processes {X(1)
t }∞t=1, {X(2)

t }∞t=1, ...,
{X(m)

t }∞t=1, where, using 1[A] to denote the indicator function that is equal to 1 when the event A is
true and 0 otherwise,

X
(i)
t := σt−1(xt) · 1[it = i] .

Since each X
(i)
t is Ft-measurable, each stochastic process is adapted to F. Next, define

m
(i)
t := E

[
X

(i)
t | Ft−1

]
= E[σt−1(xt) · 1[it = i] | Ft−1]

= 1[it = i]E[σt−1(xt) | Ft−1]

where the last equality uses the pull-through property since it is Ft−1 measurable. Using Lemma A.5
with bt = 1 since k(x,x) = 1, with probability at least 1− δ, for any T ≥ 1,

T∑
t=1

m
(i)
t ≤ 2

T∑
t=1

X
(i)
t + 4 log

1

δ
+ 8 log 4 + 1

T∑
t=1

1[it = i]E[σt−1(xt) | Ft−1] ≤ 2

T∑
t=1

σt−1(xt) · 1[it = i] + 4 log
1

δ
+ 8 log 4 + 1

∑
t∈T̃i

E[σt−1(xt) | Ft−1] ≤ 2
∑
t∈T̃i

σt−1(xt) + 4 log
1

δ
+ 8 log 4 + 1

which completes the proof.

A.3 Proof of Proposition 4.2

Proposition 4.2. If there exists a ϵ̃ > 0 s.t. for all i ̸= i∗,

ϵt ≤ E
[
f([xi∗ ,X−i∗ ])

]
− max

xi∈X i
E
[
f([xi,X−i])

]
− ϵ̃

eventually (i.e., the inequality holds for all t ≥ q for some q ≥ 1), and γT (X ) < O(
√
T ), then, with

probability at least 1 − δ, limT→∞ Ti/T = 0 for all i ̸= i∗ and UCB-CVS incurs a cost-varying
cumulative regret that is sublinear in T by setting βt = B+σ

√
2 (γt−1(X ) + 1 + log((m+ 1)/δ)).

Proof. Define xi
t := argmaxxi∈X i E

[
ut−1([x

i,X−i])
]
, and jt :=

argmaxi∈[m] maxxi∈X i E
[
ut−1([x

i,X−i])
]
. Using 1[A] to denote the indicator function
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that is equal to 1 when the event A is true and 0 otherwise,

Ti
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]
− ϵt

]
≤ q − 1 +

T∑
t=q

1

[
E
[
ut−1([x

i
t,X

−i])
]
≥ E

[
f([xi∗ ,X−i∗ ])

]
− ϵt

]

≤ q − 1 +

T∑
t=q

1

[
E
[
ut−1([x

i
t,X

−i])
]
≥ max

xi∈X i
E
[
f([xi,x−i])

]
+ ϵ̃

]

≤ q − 1 +

T∑
t=q

1
[
E
[
ut−1([x

i
t,X

−i])
]
≥ E

[
f([xi

t,X
−i])

]
+ ϵ̃
]

= q − 1 +

T∑
t=q

1
[
E
[
ut−1([x

i
t,X

−i])
]
− E

[
f([xi

t,X
−i])

]
≥ ϵ̃
]

≤ q − 1 +
1

ϵ̃

T∑
t=q

E
[
ut−1([x

i
t,X

−i])
]
− E

[
f([xi

t,X
−i])

]
(iii)

≤ q − 1 +O∗
(
1

ϵ̃

√
T − q + 1

(
B
√
γT−q+1(X ) + γT−q+1(X )

))
where (i) follows since control set i is only played when the condition on the RHS is true, (ii) follows
from the definitions of jt and xjt

t , and (iii) follows from the steps from (3) to (5) in the proof of
Theorem 4.1, and O∗ denotes suppressing logarithmic factors. Now dividing both sides by T and
taking the limit as T goes to infinity,

lim
T→∞

Ti

T
≤ lim

T→∞

1

T

(
q − 1 +O∗

(
1

ϵ̃

√
T − q + 1

(
B
√
γT−q+1(X ) + γT−q+1(X )

)))
= 0

which follows from γT (X ) < O(
√
T ) and completes the proof that, if the conditions in the proposi-

tion are fulfilled, suboptimal control sets will only be played a number of times that is sublinear in
T . The proof that RT will then also be sublinear in T is straightforward. Assuming without loss of
generality that i∗ = m,

RT :=

T∑
t=1

cit

(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])
=

m∑
i=1

∑
t∈T̃i

ci

(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])

≤
m−1∑
i=1

Tici

(
E
[
f([xi∗ ,X−i∗ ])

]
− min

xi∈X i
E
[
f([xi,X−i])

])
+ cm

∑
t∈T̃m

(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])
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=

m−1∑
i=1

TiCi + cm
∑
t∈T̃m

(
E
[
f([xi∗ ,X−i∗ ])

]
− E

[
f([xit ,X−it ])

])
(i)

≤
m−1∑
i=1

TiCi +O

(
cm

(
B +

√
γT (X ) + log

m+ 1

δ

)(√
TmγTm(X̃m) + log

m+ 1

δ

))
where T̃i is the ordered sequence of iterations at which control set i is chosen and Ci :=
ci
(
E
[
f([xi∗ ,X−i∗ ])

]
−minxi∈X i E

[
f([xi,X−i])

])
, and (i) follows from the steps in the proof of

Theorem 4.1 but only for control set m and without accounting for the ϵ-schedule. Since each Ti is
sublinear in T , dividing both sides by T , using the fact that γT (X ) < O(

√
T ), and taking the limit

as T → ∞ yields the desired result and completes the proof.

A.4 Proof of Lemma 4.3

Lemma 4.3. Assume that, for each control set i, the random variable Yi :=
∥∥[0,X−i

1 ]− [0,X−i
2 ]
∥∥2

has a median Mi such that E[Yi|Yi > Mi] ≤ hiMi for some hi > 0, where X−i
1 ,X−i

2 ∼ P−i. With
probability at least 1− δ, there will be at least Ni non-overlapping pairs of queries x and x′ chosen
by UCB-CVS (Alg. 1) with control set i such that ∥x− x′∥2 ≥ Mi, where

Ni =

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

⌋
,

Mi ≥
4

hi + 1

∑
ℓ∈Ii

V[Xℓ].

Proof. Consider two queries x = [xi,x−i] and x′ = [x′i,x′−i] chosen with control set i. The learner
only selects xi and x′i while x−i and x′−i are sampled from the environment. Before they are
sampled, the queries may be considered themselves random vectors composed of one deterministic
partial query and one random partial query. Denote these random vectors as X = [xi,X−i] and
X′ = [x′i,X′−i]. ∥X−X′∥2 is therefore a random variable as well. Observe that

∥X−X′∥2 =
∑
j∈Ii

(xj − x′
j)

2 +
∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2

≥
∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2

=
∥∥[0,X−i

1 ]− [0,X−i
2 ]
∥∥2

= Y ′
i .

where Y ′
i is a random variable that is i.i.d. with Yi. Therefore, any ∥X−X′∥2 can be treated as a

random variable equal to some Y ′
i that is i.i.d. with Yi plus some non-negative term. The rest of

this proof will use lower bounds on random variables i.i.d. with Yi, which will in turn imply lower
bounds on ∥X−X′∥2.

E[Yi] = E

∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2


=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ − (X ′

ℓ −Xℓ))
2
]

=
∑
ℓ∈Ii

E
[
((Xℓ −Xℓ)− (X ′

ℓ −X
′
ℓ))

2
]

=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2 − 2(Xℓ −Xℓ)(X
′
ℓ −X

′
ℓ) + (X ′

ℓ −X
′
ℓ)

2
]

16



=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2
]
− E

[
(Xℓ −Xℓ)(X

′
ℓ −X

′
ℓ)
]
+ E

[
(X ′

ℓ −X
′
ℓ)

2
]

=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2
]
+ E

[
(X ′

ℓ −X
′
ℓ)

2
]

=
∑
ℓ∈Ii

2V[Xℓ]. (6)

We will now construct a lower bound for a median of Yi denoted Mi.

E[Yi] = E[Yi|Yi < Mi] · P (Yi < Mi) + E[Yi|Yi = Mi] · P (Yi = Mi) + E[Yi|Yi > Mi] · P (Yi > Mi)

≤ Mi · P (Yi ≤ Mi) + E[Yi|Yi > Mi] · P (Yi > Mi)

(i)

≤ Mi · P (Yi ≤ Mi) + hiMi · P (Yi > Mi)

(ii)

≤ 1

2
Mi +

1

2
(hi ·Mi)

=
hi + 1

2
Mi

where (i) follows from our assumption on the median Mi and (ii) follows from the definition of a
median: P (Yi ≤ Mi) ≥ 1/2. Substituting in (6) completes our construction of the lower bound for
Mi:

Mi ≥
2

hi + 1
E[Yi]

≥ 4

hi + 1

∑
ℓ∈Ii

V[Xℓ].

Now consider the ⌊Ti/2⌋ non-overlapping pairs of queries chosen with control set i 3. Associate each
pair with a random variable Yij such that we have ⌊Ti/2⌋ i.i.d. random variables Yi1, Yi2, ..., Yi⌊Ti/2⌋.
From the definition of a median, P (Yi ≥ Mi) ≥ 1/2. Without loss of generality, assume the worst-
case such that P (Yi ≥ Mi) = 1/2. We can now construct ⌊Ti/2⌋ i.i.d. Bernoulli random variables
Z1, Z2, ..., Zn, n = ⌊Ti/2⌋, with p = 1/2 where a success (Zj = 1) corresponds to Yij ≥ Mi and a
failure (Zj = 0) corresponds to Yij < Mi. Further define the random variable Z :=

∑n
j=1 Zj .

Applying Hoeffding’s inequality,

P

 1

n

n∑
j=1

(Zj − p) ≤ −t

 ≤ exp (−2nt2)

P

(
1

n
Z − p ≤ −t

)
≤ exp (−2nt2)

P (Z ≤ n(p− t)) ≤ exp (−2nt2).

Choosing t = p− α/n for some constant α,

P (Z ≤ α) ≤ exp

(
−2n

(
p− α

n

)2)
.

For P (Z ≤ α) ≤ δ,

exp

(
−2n

(
p− α

n

)2)
= δ

3While we technically have
(
Ti
2

)
(overlapping) pairs, the squared distances between each such pair will be

identically distributed but not independent. For example, if Ti ≥ 3 and we knew that
(
Ti
2

)
− 1 of the squared

distances were equal to 0 (i.e., all the queries are exactly the same), the last squared distance must also be equal
to 0.
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α = np−
√

n

2
log

1

δ

α =
1

2

⌊
Ti

2

⌋
−

√
1

2

⌊
Ti

2

⌋
log

1

δ

α ≥ 1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

α ≥

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

⌋
.

Therefore, with probability more than 1−δ, Z > Ni :=
⌊
1
4 (Ti − 1)−

√
1
4Ti log

1
δ

⌋
, i.e., the number

of non-overlapping pairs with squared distance greater than Mi is at least Ni, which completes the
proof.

A.5 Proof of Theorem 4.4

Theorem 4.4. If the following assumptions hold:

1. The assumption of Lemma 4.3 holds;

2. The kernel k(x,x′) is an isotropic kernel (which only depends on distance and can be
written as k(∥x− x′∥));

3. There exists an iteration r such that for all t ≤ r, it ≤ m− 1 and for all t > r, it = m;

then with probability at least 1 − δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative regret
bounded by

RT ≤ cm

T∑
t=1

ϵt +O

((
B +

√
γT (X ) + log

2m

δ

)(
cm

(√
TγT (X )− L+ log

2m

δ

)
+

m−1∑
i=1

ci

(√
TiγTi

(X̃i) + log
2m

δ

)))

L := λ

(
m−1∑
i=1

Ni log
(
Vi − 2k

(√
Mi

)
− k

(√
Mi

)2 )
+W

)
by setting βt = B + σ

√
2 (γt−1(X ) + 1 + log((2m)/δ)), where Ni and Mi are defined as in

Lemma 4.3, and Vi and W are residual terms defined in (10).

Proof. We first construct a lower bound on the sum of posterior standard deviations of the queries up
to iteration r, i.e., the queries that were chosen with any control set except the last.

r∑
t=1

σt−1(xt)
(i)

≥
r∑

t=1

σ2
t−1(xt)

= λ

r∑
t=1

λ−1σ2
t−1(xt)

(ii)

≥ λ

r∑
t=1

log(1 + λ−1σ2
t−1(xt))

(iii)
= λ log

∣∣I+ λ−1Kr

∣∣
= λ log

(
λ−r |λI+Kr|

)
= λ (−r log λ+ log |λI+Kr|)
(iv)

≥ λ(log |λI+Kr| − 2) (7)
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where (i) follows from the assumption that k(x, x) = 1 which implies σt−1(x) ≤ 1 for all x ∈ X
and all t ≥ 1, (ii) follows since log(1 + x) ≤ x for all x > −1, (iii) follows from Lemma A.2, and
(iv) follows from λ = 1 + 2

T (Lemma A.4), noting that T ≥ r, and taking limr→∞ −r log λ.

From Lemma 4.3 with probability δ/(2m), there will be at least Ni pairs of queries chosen with
control set i with squared distance at least Mi, where

Ni =

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

2m

δ

⌋

Mi =
4

hi + 1

∑
ℓ∈Ii

V[Xℓ]

Gather these 2
∑m−1

i=1 Ni queries in an ordered sequence S and keep paired queries adjacent to each
other. The sequence should be ordered such that, for any control sets i and j, if i < j, then queries
chosen with i should appear in the sequence before queries chosen with j. Denote as T̃ the ordered
sequence of iterations at which each of these queries were chosen by the learner where the order
corresponds to the order in S . Using row and column swaps on Kr, construct a new Gram matrix Ks

such that, for all j, ℓ ≤ 2
∑m−1

i=1 Ni,
[Ks]jℓ = [Kr]T̃j T̃ℓ

.

In other words, we have simply reordered the underlying queries that result in the Gram matrix Kr to
produce a new Gram matrix Ks such that the first 2

∑m−1
i=1 Ni rows (and columns) correspond to the

2Ni queries, and paired queries (that have at least Mi squared distance between them) are kept in
adjacent rows (and columns). Note that

[λI+Kr]T̃j T̃ℓ
= [λI+Ks]jℓ

i.e., the same row and column swap operations on λI+Kr result in λI+Ks. Note that swapping
the positions of two queries corresponds to a row swap and a column swap in the Gram matrix. We
can thus conclude that

|λI+Kr| = |λI+Ks| (8)
since determinants are invariant under an even number of row or column swaps.

Write |λI+Ks| as

|λI+Ks| =
[
A1 B1

C1 D1

]
where A1 is a 2× 2 matrix. Since A1 is invertible,

|λI+Ks| = |A1|
∣∣D1 −C1A

−1
1 B1

∣∣
where D1 −C1A

−1
1 B1 is the Schur complement of A1. Observe that

D1 −C1A
−1
1 B1 = λI+Ks−2 − k⊤

2,s−2(K2 + λI)−1k2,s−2

= λI+ K̂s−2

where K2 and Ks−2 are the prior covariance matrices of the first 2 queries and last r − 2 queries
respectively, k2,s−2 is the prior covariance between the first 2 queries and the last r − 2 queries, and
K̂s−2 is the posterior covariance matrix of the last r − 2 queries conditioned on observations at the
first 2 queries. We can repeat this decomposition:

λI+ K̂s−2 =

[
A2 B2

C2 D2

]
∣∣∣λI+ K̂s−2

∣∣∣ = |A2|
∣∣D2 −C2A

−1
2 B2

∣∣
D2 −C2A

−1
2 B2 = λI+ K̂s−4

where K̂s−4 is the posterior covariance matrix of the last r − 4 queries conditioned on observations
at the first 4 queries, by the quotient property of the Schur complement [8]. Define N :=

∑m−1
i=1 Ni.

Performing this decomposition N times yields

|λI+Ks| =
N∏
j=1

|Aj |
∣∣∣λI+ K̂s−2N

∣∣∣
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where each Aj is the 2× 2 posterior covariance matrix of a pair of queries chosen with some control
set i that have least Mi squared distance between them conditioned on observations at the first 2(j−1)
queries in the sequence, plus λI. From (7) and (8),

r∑
t=1

σt−1(xt) ≥ λ

 N∑
j=1

log |Aj |+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

 . (9)

Let x̂j and x̂′
j refer to the pair of queries associated with Aj , and k̃j to the posterior covariance

function conditioned on observations at the first 2(j − 1) queries in the sequence. Define kj and k′
j

as the R2(j−1) vectors of the prior covariance between the first 2(j − 1) queries in the sequence and
x̂j and x̂′

j respectively. Further define Mj := K2(j−1) + λI. Use ⟨u,v⟩M to denote u⊤Mv, and
∥u∥M to denote

√
⟨u,u⟩M. Each |Aj | can be lower bounded as

|Aj | = (k̃j(x̂j , x̂j) + λ)(k̃j(x̂
′
j , x̂

′
j) + λ)− k̃j(x̂j , x̂

′
j)

2

= k̃j(x̂j , x̂j)k̃j(x̂
′
j , x̂

′
j) + λk̃j(x̂j , x̂j) + λk̃j(x̂

′
j , x̂

′
j) + λ2 − k̃j(x̂j , x̂

′
j)

2

(i)
=
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

−
(
k(x̂j , x̂

′
j)−

〈
kj ,k

′
j

〉
M−1

j

)2

=
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 + 2k(x̂j , x̂
′
j)
〈
kj ,k

′
j

〉
M−1

j

−
〈
kj ,k

′
j

〉2
M−1

j

(ii)

≥
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j) ∥kj∥M−1

j

∥∥k′
j

∥∥
M−1

j

− ∥kj∥2M−1
j

∥∥k′
j

∥∥2
M−1

j

= 1− ∥kj∥2M−1
j

−
∥∥k′

j

∥∥2
M−1

j

+ λ
(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j) ∥kj∥M−1

j

∥∥k′
j

∥∥
M−1

j

(iii)

≥ 1− ∥kj∥2M−1
j

−
∥∥k′

j

∥∥2
M−1

j

+ λ
(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j)

= λ2 − 1 + (λ+ 1)
(
1− ∥kj∥2M−1

j

)
+ (λ+ 1)

(
1−

∥∥k′
j

∥∥2
M−1

j

)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2

= λ2 − 1 + (λ+ 1)
(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2

where (i) follows from our assumption that k(x,x) = 1, (ii) follows from the Cauchy-Schwarz
inequality, and (iii) follows since 1− ∥kj∥2M−1

j
≤ 1 and 1−

∥∥k′
j

∥∥2
M−1

j

≤ 1.

Define Si :=
∑i

ℓ=1 Ni and ṽi := minSi−1+1≤j≤Si

1
2 (k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)). Substituting this

result into (9),
r∑

t=1

σt−1(xt) ≥ λ

(
N∑
j=1

log
(
λ2 − 1 + (λ+ 1)

(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2
)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log
(
λ2 − 1 + (λ+ 1)

(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)
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− k(x̂j , x̂
′
j)

2
)
+ log

∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

≥ λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log
(
λ2 − 1 + 2(λ+ 1)ṽi − 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2
)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)
(i)

≥ λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log

(
λ2 − 1 + 2(λ+ 1)ṽi − 2k

(√
Mi

)
− k

(√
Mi

)2)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Ni log

(
λ2 − 1 + 2(λ+ 1)ṽi − 2k

(√
Mi

)
− k

(√
Mi

)2)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Ni log

(
Vi − 2k

(√
Mi

)
− k

(√
Mi

)2)
+W

)
(10)

=: L (11)

where Vi := λ2 − 1+2(λ+1)ṽi and W := log
∣∣∣λI+ K̂s−2N

∣∣∣− 2, (i) follows from our assumption
that the kernel k is stationary and can be written in a single argument form as k(∥x− x′∥) = k(x,x′)
and the fact that every pair of queries in S chosen with control set i has squared distance at least Mi.

Starting from (4) in the proof of Theorem 4.1 except replacing the probabilities of all events with
2m/δ,

RT ≤

 m∑
i=1

ci(2βT )

2
∑
t∈T̃i

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

+ cm

T∑
t=1

ϵt

= 2βT

(
cm

(
2
∑
t∈T̃m

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2
∑
t∈T̃i

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(i)

≤ 2βT

(
cm

(
2
∑
t∈T̃m

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(ii)

≤ 2βT

(
cm

(
2
√
4(T + 2)γT (X )−

r∑
t=1

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(iii)

≤ 2βT

(
cm

(
2
√
4(T + 2)γT (X )− L+ 4 log

2m

δ
+ 8 log(4) + 1

)
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+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

= O

((
B +

√
γT (X ) + log

2m

δ

)(
cm

(√
TγT (X )− L+ log

2m

δ

)
+

m−1∑
i=1

ci

(√
TiγTi

(X̃i) + log
2m

δ

)))
+ cm

T∑
t=1

ϵt

where (i) follows from Lemma A.3, (ii) follows from Lemma A.3 again and the resulting inequality∑r
t=1 σt−1(xt) +

∑T
t=r+1 σt−1(xt) ≤

√
4(T + 2)γT (X ), and (iii) follows from substituting

in (11). A union bound over the events of the single application of Lemma A.4, m applications of
Lemma A.5, and m− 1 applications of Lemma 4.3 yields the desired 1− δ probability bound, which
completes the proof.

A.6 Other Lemmas

Lemma A.2 ([7] Lemma 3). Let (xt)
T
t=1 be a sequence of queries selected by some algorithm. Then,

the mutual information I(y1:T ; f1:T ) between the noisy observations y1:T and the function values
f1:T at the queries is given by

I(y1:T ; f1:T ) =
1

2
log
∣∣I+ λ−1Kt

∣∣ = 1

2

T∑
t=1

log(1 + λ−1σ2
t−1(xt)).

Lemma A.3 ([7] Lemma 4). Let (xt)
T
t=1 be a sequence of queries selected by some algorithm. Then

T∑
t=1

σt−1(xt) ≤
√
4(T + 2)γT (X ) .

Lemma A.4 ([7] Theorem 2). Let βt := B + σ
√

2 (γt−1(X ) + 1 + log(1/δ)) where B is the upper
bound of the RKHS norm of f . With probability at least 1− δ, for all x ∈ X and t ≥ 1,

|µt−1(x)− f(x)| ≤ βtσt−1(x)

where µt−1 and σt−1 are defined in (1) with λ = 1 + η and η := 2/T .

Lemma A.5 ([16] Lemma 3). Let Xt be any non-negative stochastic process adapted to a filtration
{Ft}, and define mt := E[Xt|Ft−1]. Further assume that Xt ≤ bt for a fixed, non-decreasing
sequence (bt)t≥1. If bT ≥ 1, with probability at least 1− δ, for any T ≥ 1,

T∑
t=1

mt ≤ 2

T∑
t=1

Xt + 4bT log
1

δ
+ 8bT log(4bT ) + 1

B Comparison to Naive Baselines

We investigated simple extensions of TS-PSQ, UCB-PSQ, and EI-PSQ (i.e., the classic expected
improvement algorithm [20] adapted for BOPSQ, see Appendix C for details) for the cost-varying
problem by dividing the acquisition score of a control set by its cost in a manner similar to Snoek
et al. [31, Sec. 3.2]. Fig. 3 shows the mean and standard error of the simple regret incurred over 10
RNG seeds for one set of experiments. We found that these naive methods generally do not work
well. For TS per unit cost and UCB-PSQ per unit cost, if a suboptimal control set is very cheap, its
acquisition score may remain artificially high throughout, and the algorithm fails to converge. EI per
unit cost was slightly more promising, but suffered from the inverse problem: the suboptimal control
sets had 0 expected improvement very quickly and dividing by the cost had no effect. This algorithm
thus fails to encourage exploration with cheaper control sets. Furthermore, the EI algorithm was
computationally expensive due to the double Monte Carlo expectation computation. In general, we
see that the UCB-CVS algorithm is able to use the cheaper control sets much more effectively for
exploration and hence find better solutions.
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Figure 3: Mean and standard error (over 10 RNG seeds) of the simple regret (lower is better) incurred
against cost spent (budget) C by all algorithms including TS-PSQ per unit cost, UCB-PSQ per unit
cost, and EI per unit cost, with samples from the GP prior as the objective function, moderate cost
set, and all variances. A diamond indicates the average budget after which an algorithm only chooses
the optimal control set.

C Experimental Details

All experiments use a squared exponential kernel with ARD lengthscales that depend on the objective
function, k(x,x′) = 1, Gaussian observation noise with σ = 0.01, and 5 initial query-observation
pairs with queries drawn uniformly at random. All expectations are approximated with Monte Carlo
sampling with 1024 samples. All acquisition maximizations are performed with L-BFGS-B with
random restarts. All query sets are [0, 1]d.

C.1 Objective functions

The control sets described here are given in an order corresponding to their costs given in Sec. 5.
For example, for the GP samples objective, under the cheap cost set, control set {1} has cost 0.01,
control set {1, 2} has cost 0.1, and control set {1, 2, 3} has cost 1.

Samples from GP prior (3-D): We use samples from the same kernel k used to model
the GP posteriors during learning. We use a kernel lengthscale of 0.1 and control sets
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Hartmann (3-D): We use a kernel lengthscale of 0.1 and control sets
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Plant growth simulator (5-D): The plant growth simulator is a GP built from private data collected
on the maximum leaf area achieved by Marchantia plants depending on input variables Ca, B, NH3, K,
and pH. We use min-max feature scaling to scale all input variables to [0, 1] and standardize the output
values. We use the posterior mean of the GP as the objective function. We use a kernel lengthscale of
0.2 and control sets {{1, 2}, {3, 4}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}}.

Airfoil self-noise (5-D): We use the airfoil self-noise dataset from the UCI Machine Learning
Repository [9]. To scale all input variables to [0, 1], we first take the natural logarithm of vari-
ables 1 and 5, then do min-max feature scaling on all input variables. We also standardize the
output values. We then feed the data into a default SingleTaskGP from BoTorch and use the
posterior mean as the objective function. We use a kernel lengthscale of 0.2 and control sets
{{4, 5}, {2, 5}, {1, 4}, {2, 3}, {3, 5}, {1, 2}, {3, 4}}.

C.2 Algorithms

UCB-PSQ and UCB-CVS: For the experiments, we set βt = 2 for all t.

TS-PSQ: Following [13], we use random Fourier features (RFF) [28] to approximately sample from
a GP posterior. We use RFF with 1024 features.
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EI-PSQ: We adapt the BoTorch acquisition NoisyExpectedImprovement to the BOPSQ problem
setting. To evaluate the acquisition score of a partial query, we first sample 32 fantasy models of f
from the GP posterior. For each fantasy model, we compute the expected value of the partial query
and take the best value as the value of the best observation so far (assuming the full query control set
is available). We then compute the improvement score as the expected value minus the best value,
and then average the improvement score over all fantasy models.

C.3 Implementation

The experiments were implemented in Python. The major libraries used were NumPy [12], SciPy [40],
PyTorch [26], GPyTorch [10] and BoTorch [3]. For more details, please refer to the code repository.

C.4 Compute

The following CPU times in seconds were collected on a server running Ubuntu 20.04.4 LTS with
2× Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz and 256 GB of RAM. We measure the CPU time
for 1 iteration of TS-PSQ and UCB-CVS with a dataset of 100 observations. In general, none of the
algorithms in the settings tested in this paper require a significant amount of compute.

GP sample Hartmann Plant Airfoil

TS-PSQ 6.27 4.14 8.96 232.27
UCB-CVS 37.92 52.34 61.96 87.09

D Limitations

A limitation of our work is that the theoretical guarantees of UCB-CVS rely on a few assumptions
that may not hold in practice. For example, the regularity assumption that assumes the objective
function f resides in some RKHS may not be true in some problems. The kernel corresponding
to this RKHS may not be known either. The work also assumes that the probability distributions
governing each variable are independent and fixed. In practice, these assumptions may be violated, if
the probability distributions have some dependence on one another, or may change over time.
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