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Abstract

While ensuring stability for linear systems is well understood, it remains a major
challenge for nonlinear systems. A general approach in such cases is to compute a
combination of a Lyapunov function and an associated control policy. However,
finding Lyapunov functions for general nonlinear systems is a challenging task.
To address this challenge, several methods have been proposed that represent
Lyapunov functions using neural networks. However, such approaches either focus
on continuous-time systems, or highly restricted classes of nonlinear dynamics. We
propose the first approach for learning neural Lyapunov control in a broad class of
discrete-time systems. Three key ingredients enable us to effectively learn provably
stable control policies. The first is a novel mixed-integer linear programming
approach for verifying the discrete-time Lyapunov stability conditions, leveraging
the particular structure of these conditions. The second is a novel approach for
computing verified sublevel sets. The third is a heuristic gradient-based method
for quickly finding counterexamples to significantly speed up Lyapunov function
learning. Our experiments on four standard benchmarks demonstrate that our
approach significantly outperforms state-of-the-art baselines. For example, on the
path tracking benchmark, we outperform recent neural Lyapunov control baselines
by an order of magnitude in both running time and the size of the region of
attraction, and on two of the four benchmarks (cartpole and PVTOL), ours is
the first automated approach to return a provably stable controller. Our code is
available at: https://github.com/jlwu002/nlc_discrete.

1 Introduction

Stability analysis for dynamical systems aims to show that the system state will return to an equi-
librium under small perturbations. Designing stable control in nonlinear systems commonly relies
on constructing Lyapunov functions that can certify the stability of equilibrium points and estimate
their region of attraction. However, finding Lyapunov functions for arbitrary nonlinear systems is
a challenging task that requires substantial expertise and manual effort [Khalil, 2015, Lavaei and
Bridgeman, 2023]. To address this challenge, recent progress has been made in learning Lyapunov
functions in continuous-time nonlinear dynamics [Abate et al., 2020, Chang et al., 2019, Zhou et al.,
2022]. However, few approaches exist for doing so in discrete-time systems [Dai et al., 2021], and
none for general Lipschitz-continuous dynamics. Since modern learning-based controllers often
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take non-negligible time for computation, the granularity of control is effectively discrete-time, and
developing approaches for stabilizing such controllers is a major open challenge.

We propose a novel method to learn Lyapunov functions and stabilizing controllers, represented as
neural networks (NNs) with ReLU activation functions, for discrete-time nonlinear systems. The
proposed framework broadly consists of a learner, which uses a gradient-based method for updating
the parameters of the Lyapunov function and policy, and a verifier, which produces counterexamples
(if any exist) to the stability conditions that are added as training data for the learner. The use of a
verifier in the learning loop is critical to enable the proposed approach to return a provably stable
policy. However, no prior approaches enable sound verification of neural Lyapunov stability for
general discrete-time dynamical systems. The closest is Dai et al. [2021], who assume that dynamics
are represented by a neural network, an assumption that rarely holds in real systems. On the other
hand, approaches for continuous-time systems [Chang et al., 2019, Zhou et al., 2022] have limited
efficacy in discrete-time environments, as our experiments demonstrate. To address this gap, we
develop a novel verification tool that checks if the candidate NN Lyapunov function satisfies the
Lyapunov conditions by solving Mixed Interger Linear Programs (MILPs). This approach, which
takes advantage of the structure of discrete-time Lyapunov stability conditions, can soundly verify a
broad class of dynamical system models.

However, using a sound verification tool in the learning loop makes it a significant bottleneck, severely
limiting scalability. We address this problem by also developing a highly effective gradient-based
technique for identifying counterexamples, resorting to the full MILP-based verifier only as a last
resort. The full learning process thereby iterates between learning and verification steps, and returns
only when the sound verifier is able to prove that the Lyapunov function and policy satisfy the stability
conditions.

The final technical challenge stems from the difficulty of verifying stability near the origin [Chang
et al., 2019], typically addressed heuristically by either adding a fixed tolerance to a stability condi-
tion [Dai et al., 2021], or excluding a small area around the origin from verification [Chang et al.,
2019, Zhou et al., 2022]. We address it by adapting Lyapunov stability theory to ensure convergence
to a small region near the origin, thereby achieving the first (to our knowledge) sound approach for
computing a stable neural controller that explicitly accounts for such approximations near the origin.

We evaluate the proposed approach in comparison to state-of-the-art baselines on four standard
nonlinear control benchmarks. On the two simpler domains (inverted pendulum and path following),
our approach outperforms the state-of-the-art continuous-time neural Lyapunov control approaches
by at least several factors and up to an order of magnitude in both running time and the size of the
region of attraction. On the two more complex domains—cartpole and PVTOL—ours is the first
automated approach that returns a provably stable controller. Moreover, our ablation experiments
demonstrate that both the MILP-based verifier and heuristic counterexample generation technique we
propose are critical to the success of our approach.

In summary, we make the following contributions:

• A novel MILP-based approach for verifying a broad class of discrete-time controlled nonlinear
systems.

• A novel approach for learning provably verified stabilizing controllers for a broad class of discrete-
time nonlinear systems which combines our MILP-based verifier with a heuristic gradient-based
approximate counterexample generation technique.

• A novel formalization of approximate stability in which the controller provably converges to a
small ball near the origin in finite time.

• Extensive experiments on four standard benchmarks demonstrate that by leveraging the special
structure of Lyapunov stability conditions for discrete-time system, our approach significantly
outperforms prior art.

Related Work Much prior work on learning Lyapunov functions focused on continuous-time
systems [Abate et al., 2020, Ravanbakhsh and Sankaranarayanan, 2019, Chang et al., 2019, Zhou
et al., 2022]. Common approaches have assumed that dynamics are linear [Donti et al., 2021, Tedrake,
2009] or polynomial [Ravanbakhsh and Sankaranarayanan, 2019]. Recently, Chang et al. [2019],
Rego and de Araújo [2022], and Zhou et al. [2022] proposed learning Lyapunov functions represented
as neural networks while restricting policies to be linear. These were designed for continuous-time
dynamics, and are not effective in discrete-time settings, as we show in the experiments. Chen et al.
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[2021a] learns convex Lyapunov functions for discrete-time hybrid systems. Their approach requires
hybrid systems to admit a mixed-integer linear programming formulation, essentially restricting it to
piecewise-affine systems, and does not learn stabilizing controllers for these. Our approach considers a
much broader class of dynamical system models, and learns provably stable controllers and Lyapunov
functions, allowing both to be represented as neural networks. Kolter and Manek [2019] learn stable
nonlinear dynamics represented as neural networks, but do not provide stability guarantees with
respect to the true underlying system. In addition, several approaches have been proposed that either
provide only probabilistic stability guarantees [Berkenkamp et al., 2017, Richards et al., 2018], or
do not guarantee stability [Choi et al., 2020, Han et al., 2020]. Several recent approaches propose
methods for verifying stability in dynamical discrete-time systems. Chen et al. [2021b] compute an
approximate region of attraction of dynamical systems with neural network dynamics, but assume
that Lyapunov functions are quadratic. Dai et al. [2021] consider the problem of verifying Lyapunov
conditions in discrete-time systems, as well as learning provably stable policies. However, they
assume that dynamics are represented by neural networks with (leaky) ReLU activation functions.
Our verification approach, in contrast, is for arbitrary Lipschitz continuous dynamics.

2 Model

We consider a discrete-time nonlinear dynamical system
xt+1 = f(xt, ut), (1)

where xt ∈ X is state in a domain X and ut the control input at time t. We assume that f is
Lipschitz continuous with Lipschitz constant Lf . This class of dynamical systems includes the vast
majority of (non-hybrid) dynamical system models in prior literature. We assume that x = 0 is
an equilibrium point for the system, that is, f(0, u0) = 0 for some u0. Let π(x) denote a control
policy, with ut = π(xt). For example, in autonomous vehicle path tracking, x can measure path
tracking error and u the steering angle. In the conventional setup, the goal is to learn a control policy
π such that the dynamical system in Equation (1) converges to the equilibrium x = 0, a condition
referred to as stability. To this end, we can leverage the Lyapunov stability framework [Tedrake,
2009]. Specifically, the goal is to identify a Lyapunov function V (x) and controller π that satisfies the
following conditions over a subset of the domainR ⊆ X : 1)V (0) = 0; 2)V (x) > 0,∀x ∈ R \ {0};
and 3)V (f(x, π(x))) − V (x) < 0,∀x ∈ R. These conditions imply that the system is (locally)
stable in the Lyapunov sense [Bof et al., 2018, Tedrake, 2009].

In practice, due to numerical challenges in verifying stability conditions near the origin, it is common
to verify slight relaxations of the Lyapunov conditions. These typically fall into two categories: 1)
Lyapunov conditions are only checked for ∥x∥p ≥ ϵ [Chang et al., 2019, Zhou et al., 2022] (our main
baselines, and the only other methods for learning neural Lyapunov control for general nonlinear
dynamics), and/or 2) a small tolerance δ > 0 is added in verification, allowing small violations of
Lyapunov conditions near the origin [Dai et al., 2021].

Our goal now is to formally investigate the implications of numerical approximations of this kind. We
next define a form of stability which entails finite-time convergence to B(0, ϵ) = {x | ∥x∥∞ < ϵ}.
Definition 2.1 (ϵ-stability). We call pair of (V, π) ϵ-stable within a region R when the following
conditions are satisfied: (a) V (0) = 0; (b) there exists ζ > 0 such that V (f(x, π(x)))− V (x) < −ζ
for all x ∈ R \ B(0, ϵ); and (c) V (x) > 0 for all x ∈ R \ B(0, ϵ).

A key ingredient to achieving stability is to identify a region of attraction (ROA), within which we are
guaranteed to converge to the origin from any starting point. In the context of ϵ-stability, our goal is
to converge to a small ball near the origin, rather than the origin; let ϵ-ROA be the set of initial inputs
that has this property. In order to enable us to identify an ϵ-ROA, we introduce a notion of an invariant
sublevel set. Specifically, we refer to a set D(R, ρ) = {x ∈ R|V (x) ≤ ρ} with the property that
x ∈ D(R, ρ)⇒ f(x, π(x)) ∈ R as aR-invariant sublevel set. In other words, D(R, ρ) is a sublevel
set which is additionally forward invariant with respect toR. We assume that B(0, ϵ) ⊂ D(R, ρ).
Next, we formally prove that ϵ-stability combined with a sublevel set D(R, ρ) entails convergence in
three senses: 1) that we reach an ϵ-ball around the origin in finite time, 2) that we reach it infinitely
often, and 3) we converge to an arbitrarily small ball around the origin. We refer to the first of these
senses as reachability. What we show is that for ϵ sufficiently small, reachability implies convergence
in all three senses. For this, a key additional assumption is that V and π are Lipschitz continuous,
with Lipschitz constants Lv and Lπ , respectively (e.g., in ReLU neural networks).
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Theorem 2.2. Suppose V and π are ϵ-stable on a compactR, D(R, ρ) is anR-invariant set, and
∃c1 such that ∥π(0)− u0∥∞ ≤ c1ϵ. Then if x0 ∈ D(R, ρ) \ B(0, ϵ):

(i) there exists a finite K such that xK ∈ B(0, ϵ),
(ii) ∃c2 such that if c2ϵ < ρ and B(0, c2ϵ) ⊂ R, then there exists a finite K such that ∀k ≥ K,

xk ∈ D(R, c2ϵ) and the sequence {xk}k≥0 reaches B(0, ϵ) infinitely often, and furthermore
(iii) for any η > 0 such that B(0, η) ⊂ R, ∃ϵ and finite K such that ∥π(0) − u0∥∞ ≤ c1ϵ ⇒
∥xk∥∞ ≤ η ∀k ≥ K.

Proof. We prove (i) by contradiction. Suppose that ∥xk∥∞ > ϵ ∀k ∈ {0, . . . , ⌈V (x0)/ζ⌉}. Then,
when k = ⌈V (x0)/ζ⌉, condition (b) of ϵ-stability and R-invariance of D(R, ρ) implies that
V (xk) < V (x0)− ζk < 0, contradicting condition (c) of ϵ-stability.

To prove (ii), fix the finite K from (i), and let k ≥ K be such that xk ∈ B(0, ϵ). By Lipschitz
continuity of V and the fact that V (0) = 0 and V (x) ≥ 0 (conditions (a) and (c) of ϵ-stability),
V (xk+1) ≤ Lv∥xk+1∥, where ∥ · ∥ is the ℓ∞ norm here and below. Moreover, since xk+1 =
f(xk, π(xk)), f(0, u0) = 0 (stability of the origin), and by Lipschitz continuity of f and π,

∥xk+1∥ ≤ Lf∥(xk, π(xk)− u0)∥ ≤ Lf max{∥xk∥, ∥π(xk)− u0∥}.
By Lipschitz continuity of π, triangle inequality, and the condition that ∥π(0) − u0∥ ≤ c1ϵ, we
have ∥π(xk) − u0∥ ≤ Lπ∥xk∥ + c1ϵ ≤ (Lπ + c1)ϵ. Let c2 = max{Lv, 1}Lf max{1, Lπ + c1}.
Then ∥xk+1∥ ≤ c2ϵ and V (xk+1) ≤ c2ϵ. Thus, if c2ϵ < ρ and B(0, c2ϵ) ⊂ R, and D(R, ρ) is
R-invariant, then xk+1 ∈ D(R, c2ϵ) which is R-invariant. Additionally, either xk+1 ∈ B(0, ϵ),
and by the argument above xk+2 ∈ D(R, c2ϵ), or xk+1 ∈ D(R, c2ϵ) \ B(0, ϵ), and by ϵ-stability
xk+2 ∈ D(R, c2ϵ). Thus, by induction, we have that for all k ≥ K, xk ∈ D(R, c2ϵ). Finally,
since for all k ≥ K, xk ∈ D(R, c2ϵ), if xk /∈ B(0, ϵ), by (i) it must reach B(0, ϵ) in finite time.
Consequently, there is an infinite subsequence {xk′} of {xk}k≥0 such that all xk′ ∈ B(0, ϵ), that is,
the sequence {xk}k≥0 reaches B(0, ϵ) infinitely often.

We prove part (iii) by contradiction. Fix η > 0 and define S = {x ∈ R : ∥x∥ > η}. Suppose
that ∀ϵ > 0 there exists x ∈ S such that V (x) ≤ c2ϵ where c2 is as in (ii). Then for any (infinite)
sequence of {ϵt} we have {xt} such that V (xt) ≤ c2ϵt, where xt ∈ S. Now, consider a set
S̄ = {x ∈ R : ∥x∥ ≥ η}. Since S̄ is compact and {xt} is an infinite sequence, there is an infinite
subsequence {xtk} of {xt} such that limk−→∞ xtk = x∗ and x∗ ∈ S̄. Since V is continuous, we
have limk−→∞ V (xtk) = V (x∗). Now, we choose {ϵt} such that limt−→∞ ϵt = 0. This means that
limk−→∞ V (xtk) = V (x∗) ≤ 0, and since x∗ ∈ S̄, this contradicts condition (c) of ϵ-stability. Since
by (ii), there exists a finite K, V (xk) ≤ c2ϵ, ∀k ≥ K, we have ∀k ≥ K, ∥xk∥ ≤ η.

The crucial implication of Theorem 2.2 is that as long as we choose ϵ > 0 sufficiently small, verifying
that V and π are ϵ-stable together with identifying anR-invariant setD(R, ρ) suffices for convergence
arbitrarily close to the origin. One caveat is that we need to ensure that π(0) is sufficiently close to u0

for any ϵ we choose. In most domains, this can be easily achieved: for example, if u0 = 0 (as is the
case in many settings, including three of our four experimental domains), we can use a representation
for π with no bias terms, so that π(0) = 0 = u0 by construction. In other cases, we can simply check
this condition after learning.

Another caveat is that we need to defineR to enable us to practically achieve these properties. To this
end, we defineR parametrically asR(γ) = {x ∈ X | ∥x∥∞ ≤ γ}. Additionally, we introduce the
following useful notation. Define R(ϵ, γ) = {x ∈ X | ϵ ≤ ∥x∥∞ ≤ γ}. Note that R(0,∞) = X ,
R(ϵ,∞) = {x ∈ X | ∥x∥∞ ≥ ϵ} and R(0, γ) = R(γ). Thus, for γ sufficiently large compared
to ϵ, conditions such as B(0, ϵ) ⊂ D(R, ρ), B(0, η) ⊂ R, and B(0, c2ϵ) ⊂ R will be easy to
satisfy. Following conventional naming, we denote R(ϵ, γ) as ϵ-valid region, i.e., the region that
satisfies conditions (a)− (c) of ϵ-stability, and refer to a function V satisfying these conditions as an
ϵ-Lyapunov function.

We assume that the ϵ-Lyapunov function as well as the policy can be represented in a parametric
function class, such as by a deep neural network. Formally, we denote the parametric ϵ-Lyapunov
function by Vθ(x) and the policy by πβ(x), where θ and β are their respective parameters. Let
D(γ, ρ) ≡ D(R(γ), ρ). Our goal is to learn Vθ and πβ such we maximize the size of the R(γ)-
invariant sublevel set D(γ, ρ) such that Vθ and πβ are provably ϵ-stable on R(γ). Armed with
Theorem 2.2, we refer to this set simply as ROA below for simplicity and for consistency with prior
work, e.g., [Chang et al., 2019, Zhou et al., 2022], noting all the caveats discussed above.
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Define P(γ) as the set (θ, β) for which the conditions (a)-(c) of ϵ-stability are satisfied over the
domainR(γ). Our main challenge below is to find (θ, β) ∈ P(γ) for a given γ. That, in turn, entails
solving the key subproblem of verifying these conditions for given Vθ and πβ .

Next, in Section 3 we address the verification problem, and in Section 4 we describe our approach for
jointly learning Vθ and πβ that can be verified to satisfy the ϵ-stability conditions for a givenR(γ).

3 Verifying Stability Conditions

Prior work on learning ϵ-Lyapunov functions for continuous-time nonlinear control problems has
leveraged off-the-shelf SMT solvers, such as dReal [Gao et al., 2013]. However, these solvers scale
poorly in our setting (see Supplement C for details). In this section, we propose a novel approach for
verifying the ϵ-Lyapunov conditions for arbitrary Lipschitz continuous dynamics using mixed-integer
linear programming, through obtaining piecewise-linear bounds on the dynamics. We assume Vθ and
πβ are K- and N -layer neural networks, respectively, with ReLU activations.

We begin with the problem of verifying condition (c) of ϵ-stability, which we represent as a feasibility
problem: to find if there is any point x̃ ∈ R(ϵ, γ) such that V (x̃) ≤ 0. We can formulate it as the
following MILP:

zK ≤ 0 (2a)
zl+1 = gθl(zl), 0 ≤ l ≤ K − 1 (2b)
ϵ ≤ ∥x∥∞ ≤ γ, z0 = x, (2c)

where l refers to a layer in the neural network Vθ, zK = Vθ(x), and the associated functions gθl(zl)
are either Wlzl + bl for a linear layer (with θl = (Wl, bl)) or max{zl, 0} for a ReLU activation.
Any feasible solution x∗ is then a counterexample, and if the problem is infeasible, the condition is
satisfied. ReLU activations g(z) can be linearized by introducing an integer variable a ∈ {0, 1}, and
replacing the z′ = g(z) terms with constraints z′ ≤ Ua and z′ ≤ −L(1 − a), where L and U are
specified so that L ≤ z ≤ U (we deal with identifying L and U below).

Next, we cast verification of condition (b) of ϵ-stability, which involves the nonlinear control dynamics
f , as the following feasibility problem:

z̄K − zK ≥ −ζ (3a)
yi+1 = hβi(yi), 0 ≤ i ≤ N − 1 (3b)
z̄l+1 = gθl(z̄l), 0 ≤ l ≤ K − 1 (3c)
z̄0 = f(x, yN ) (3d)
y0 = x, constraints (2b)− (2c), (3e)

where hβi
() are functions computed at layers i of πβ , zK = Vθ(x), and z̄K = Vθ(f(x, πβ(x))).

At this point, all of the constraints can be linearized as before with the exception of Constraint (3d),
which involves the nonlinear dynamics f . To deal with this, we relax the verification problem by
replacing f with linear lower and upper bounds. To obtain tight bounds, we divide R(γ) into a
collection of subdomains {Rk}. For each Rk, we obtain a linear lower bound flb(x) and upper
bound fub(x) on f , and relax the problematic Constraint (3d) into flb(x) ≤ z̄0 ≤ fub(x), which is
now a pair of linear constraints. We can then solve Problem (3) for eachRk.

Computing Linear Bounds on System Dynamics Recall that f : Rn 7→ Rn is the Lipschitz-
continuous system dynamic xt+1 = f(xt, ut). For simplicity we omit ut = πβ(x) below. Let λ be
the ℓ∞ Lipschitz constant of f . Suppose that we are given a region of the domain Rk represented
as a hyperrectangle, i.e.,Rk = ×i[xi,l, xi,u], where [xi,l, xi,u] are the lower and upper bounds of x
along coordinate i. Our goal is to compute a linear upper and lower bound on f(x) over this region.
We bound fj(x) : Rn 7→ R along each j-th dimension separately. By λ-Lipschitz-continuity, we
can obtain fj(x) ≤ fj(x1,l, x2,l, . . . , xn,l)+λ

∑
i(xi−xi,l) and fj(x) ≥ fj(x1,l, x2,l, . . . , xn,l)−

λ
∑

i(xi − xi,l). The full derivation is provided in the Supplement Section B.

Alternatively, if fj is differentiable, convex over xi, and monotone over other dimensions, we
can restrict it to calculating one-dimensional bounds by finding coordinates x−i,u and x−i,l such
that fj(xi, x−i,l) ≤ fj(xi, x−i) ≤ fj(xi, x−i,u) for any given x. Then fj(x) ≤ fj,i,ub(x) ≡
fj(xi,l, x−i,u) +

fj(xi,u,x−i,u)−fj(xi,l,x−i,u)
xi,u−xi,l

(xi − xi,l) and fj(x) ≥ fi,lb(x) ≡ fj(x
∗
i , x−i,l) +
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f ′
j(x

∗
i , x−i,l)(xi − x∗

i ), where we let x∗
i = minxs∈[xi,l,xi,u]

∫ xi,u

xi,l
[fj(xi, x−i,l) − fj(xs, x−i,l) +

f ′
j(xs, x−i,l)(xi − xs)]dxs to minimize the error area between fj(x) and fi,lb(x). Note that the

solution for x∗
i can be approximated when conducting experiments, and this approximation has

no impact on the correctness of the bound. A similar result obtains for where fj(x) is concave
over xi. Furthermore, we can use these single-dimensional bounds to obtain tighter lower and
upper bounds on fj(x) as follows: note that for any cl, cu with

∑
i c

l
i = 1 and

∑
i c

u
i = 1,∑

i c
l
ifj,i,lb(x) ≤ fj(x) ≤

∑
i c

u
i fj,i,ub(x), which means we can optimize cl and cu to minimize the

bounding error. In practice, we can typically partitionR(γ) so that the stronger monotonicity and
convexity or concavity assumptions hold for eachRk.

Note that our linear bounds flb(x) and fub(x) introduce errors compared to the original nonlinear
dynamics f . However, we can obtain tighter bounds by splitting Rk further into subregions, and
computing tighter bounds in each of the resulting subregions, but at the cost of increased computation.
To balance these considerations, we start with a relatively small collection of subdomains {Rk}, and
only split a regionRk if we obtain a counterexample inRk that is not an actual counterexample for
the true dynamics f .

Computing Bounds on ReLU Linearization Constants In linearizing the ReLU activations, we
supposed an existence of lower and upper bounds L and U . However, we cannot simply set them to
some large negative and positive number, respectively, because Vθ(x) has no a priori fixed bounds
(in particular, note that for any ϵ-Lyapunov function V and constant a > 1, aV is also a ϵ-Lyapunov
function). Thus, arbitrarily setting L and U makes verification unsound. To address this issue, we use
interval bound propogation (IBP) [Gowal et al., 2018] to obtain M = max1≤i≤n{|Ui|, |Li|}, where
Ui is the upper bound, and Li is the lower bound returned by IBP for the i-th layer, with inputs for
the first layer the upper and lower bounds of f(R(γ)). Setting each L = −M and U = M then
yields sound verification.

Computing Sublevel Sets The approaches above verify the conditions (a)-(c) of ϵ-stability on
R(γ). The final piece is to find the R(γ)-invariant sublevel set D(γ, ρ), that is, to find ρ. Let
B(γ) ≥ max

(
maxx∈R(γ) ∥f(x, πβ(x))∥∞, γ

)
. We find ρ by solving

min
x:γ≤∥x∥∞≤B(γ)

V (x). (4)

We can transform both Problem (4) and computation of B(γ) into MILP as for other problems above.
Theorem 3.1. Suppose that V and π are ϵ-stable on R(γ), ∥π(0) − u0∥∞ ≤ ϵ, and γ ≥
Lf max{1, Lπ + 1}ϵ. Let V ∗ be the optimal value of the objective in Problem (4), and ρ = V ∗ − µ
for any µ > 0. Then the set D(γ, ρ) = {x : x ∈ R(γ), V (x) ≤ ρ} is anR(γ)-invariant sublevel set.

Proof. If ∥x∥∞ > ϵ, V (f(x, π(x))) < V (x) ≤ ρ < V ∗ by ϵ-stability of V and π. Suppose
that x̄ = f(x, π(x)) /∈ R(γ). Since V (x̄) < V ∗, V ∗ must not be an optimal solution to (4), a
contradiction. If ∥x∥∞ ≤ ϵ, the argument is similar to Theorem 2.2 (ii).

4 Learning ϵ-Lyapunov Function and Policy

We cast learning the ϵ-Lyapunov function and policy as the following problem:

min
θ,β

∑
i∈S

L(xi;Vθ, πβ), (5)

where L(·) is a loss function that promotes Lyapunov learning and the set S ⊆ R(γ) is a finite subset
of points in the valid region. We assume that the loss function is differentiable, and consequently
training follows a sequence of gradient update steps (θ′, β′) = (θ, β)− µ

∑
i∈S ∇θ,βL(xi;Vθ, πβ).

Clearly, the choice of the set S is pivotal to successfully learning Vθ and πβ with provable stability
properties. Prior approaches for learning Lyapunov functions represented by neural networks use
one of two ways to generate S. The first is to generate a fixed set S comprised of uniformly random
samples from the domain [Chang and Gao, 2021, Richards et al., 2018]. However, this fails to learn
verifiable Lyapunov functions. In the second, S is not fixed, but changes in each learning iteration,
starting with randomly generated samples in the domain, and then using the verification tool, such
as dReal, in each step of the learning process to update S [Chang et al., 2019, Zhou et al., 2022].
However, verification is often slow, and becomes a significant bottleneck in the learning process.

6



Our key idea is to combine the benefits of these two ideas with a fast gradient-based heuristic approach
for generating counterexamples. In particular, our proposed approach for training Lyapunov control
functions and associated control policies (Algorithm 1; DITL) involves five parts:

1. heuristic counterexample generation (lines 10-12),
2. choosing a collection S of inputs to update θ and β in each training (gradient update)

iteration (lines 9-13),
3. the design of the loss function L,
4. initialization of policy πβ (line 3), and
5. warm starting the training (line 4).

We describe each of these next.

Algorithm 1 DITL Lyapunov learning algorithm.
1: Input: Dynamical system model f(x, u) and target valid regionR(γ)
2: Output: Lyapunov function Vθ and control policy πβ

3: πβ = Initialize()
4: Vθ = PreTrainLyapunov(N0, πβ)
5: B = InitializeBuffer()
6: W ←− ∅
7: while True do
8: for N iterations do
9: Ŝ =Sample(r,B) //sample r points from B

10: T =Sample(q,R(γ)) //sample q points fromR(γ)
11: T ′ =PGD(T )
12: T ′′ =FilterCounterExamples(T ′)

13: S = Ŝ ∪ T ′′ ∪W
14: B = B ∪ T ′′

15: (θ, β)← (θ, β)− µ
∑

i∈S ∇θ,βL(xi;Vθ, πβ)
16: end for
17: (success, Ŵ ) =Verify(Vθ, πβ)
18: if success then
19: return Vθ, πβ

20: else
21: W ←W ∪ Ŵ
22: end if
23: end while
24: return FAILED // Timeout

Heuristic Counterexample Generation As discussed in Section 3, verification in general involves
two optimization problems: minx∈R(γ) Vθ(x)−Vθ(f(x, πβ(x))) and minx∈R(γ) Vθ(x). We propose
a projected gradient descent (PGD) approach for approximating solutions to either of these problems.
PGD proceeds as follows, using the second minimization problem as an illustration; the process is
identical in the first case. Beginning with a starting point x0 ∈ R(γ), we iteratively update xk+1:

xk+1 = Π{xk + αksgn(∇Vθ(xk))},
where Π{} projects the gradient update step onto the domainR(γ) by clipping each dimension of
xk, and αk is the PGD learning rate. Note that as f is typically differentiable, we can take gradients
directly through it when we apply PGD for the first verification problem above.

We run this procedure for K iterations, and return the result (which may or may not be an actual
counterexample). Let T ′ =PGD(T ) denote running PGD for a set of T starting points for both of
the optimization problems above, resulting in a corresponding set T ′ of counterexamples.

Selecting Inputs for Gradient Updates A natural idea for selecting samples S is to simply add
counterexamples identified in each iteration of the Lyapunov learning process. However, as S then
grows without bound, this progressively slows down the learning process. In addition, it is important
for S to contain a relatively broad sample of the valid region to ensure that counterexamples we
generate along the way do not cause undesired distortion of Vθ and πβ in subregions not well
represented in S. Finally, we need to retain the memory of previously generated counterexamples, as
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these are often particularly challenging parts of the input domain for learning. We therefore construct
S as follows.

We create an input buffer B, and initialize it with a random sample of inputs from R(γ). Let W
denote a set of counterexamples that we wish to remember through the entire training process,
initialized to be empty. In our implementation, W consists of all counterexamples generated by the
sound verification tools described in Section 3.

At the beginning of each training update iteration, we randomly sample a fixed-size subset Ŝ of the
buffer B. Next, we take a collection T of random samples fromR to initialize PGD, and generate
T ′ = PGD(T ). We then filter out all the counterexamples from T ′, retaining only those with either
Vθ(x) ≤ 0 or Vθ(x)− Vθ(f(x, πβ(x))) ≤ ϵ, where ϵ is a non-negative hyperparameter; this yields a
set T ′′. We then use S = Ŝ ∪ T ′′ ∪W for the gradient update in the current iteration. Finally, we
update the buffer B by adding to it T ′′. This process is repeated for N iterations.

After N iterations, we check to see if we have successfully learned a stable policy and a Lyapunov
control function by using the tools from Section 3 to verify Vθ and πβ . If verification succeeds,
training is complete. Otherwise, we use the counterexamples Ŵ generated by the MILP solver to
update W = W ∪ Ŵ , and repeat the learning process above.

Loss Function Design Next, we design of the loss function L(x;Vθ, πβ) for a given input x. A key
ingrediant in this loss function is a term that incentivizes the learning process to satisfy condition (b)
of ϵ-stability: L1(x;Vθ, πβ) = ReLU(Vθ(f(x, πβ(x))) − Vθ(x) + η), where the parameter η ≥ 0
determines how aggressively we try to satisfy this condition during learning.

There are several options for learning Vθ satisfying conditions (a) and (c) of ϵ-stability. The simplest
is to set all bias terms in the neural network to zero, which immediately satisfies Vθ(0) = 0. An
effective way to deal with condition (c) is to maximize the lower bound on Vθ(x). To this end, we
propose to make use of the following loss term: L2(x;Vθ, πβ) = ReLU(−V LB

θ ), where V LB
θ is the

lower bound on the Lyapunov function over the target domainR(γ). We use use α, β-CROWN [Xu
et al., 2020] to obtain this lower bound.

The downside of setting bias terms to zero is that we lose many learnable parameters, reducing
flexibility of the neural network. If we consider a general neural network, on the other hand, it is
no longer the case that Vθ(x) = 0 by construction. However, it is straigthforward to ensure this
by defining the final Lyapunov function as Ṽθ(x) = Vθ(x)− Vθ(0). Now, satisfying condition (c)
amounts to satisfying the condition that Vθ(x) ≥ Vθ(0), which we accomplish via the following
pair of loss terms: L3(x;Vθ, πβ) = ReLU(Vθ(0) − Vθ(x) + µmin(∥x∥2, ν)), where µ and ν are
hyperparameters of the term µmin(∥x∥2, ν) which effectively penalizes Vθ(x) for being too large,
and L4(x;Vθ, πβ) = ∥Vθ(0)∥22.
The general loss function is then a weighted sum of these loss terms,

L(x;Vθ, πβ) = L1(x;Vθ, πβ) + c2L2(x;Vθ, πβ) + c3L3(x;Vθ, πβ) + c4L4(x;Vθ, πβ).

When we set bias terms to zero, we would set c3 = c4 = 0; otherwise, we set c2 = 0.

Initialization We consider two approaches for initializing the policy πβ . The first is to linearize
the dynamics f around the origin, and use a policy computing based on a linear quadratic regulator
(LQR) to obtain a simple linear policy πβ . The second approach is to use deep reinforcement, such
as PPO [Liu et al., 2019], where rewards correspond to stability (e.g., reward is the negative value of
the l2 distance of state to origin). To initialize Vθ, we fix πβ after its initialization, and follow our
learning procedure above using solely heuristic counterexample generation to pre-train Vθ.

The next result now follows by construction.
Theorem 4.1. If Algorithm 1 returns Vθ, πβ , they are guaranteed to satisfy ϵ-stability conditions.

5 Experiments

5.1 Experiment Setup

Benchmark Domains Our evaluation of the proposed DITL approach uses four benchmark control
domains: inverted pendulum, path tracking, cartpole, and drone planar vertical takeoff and landing
(PVTOL). Details about these domains are provided in the Supplement.
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Baselines We compare the proposed approach to four baselines: linear quadratic regulator (LQR),
sum-of-squares (SOS), neural Lyapunov control (NLC) [Chang et al., 2019], and neural Lyapunov
control for unknown systems (UNL) [Zhou et al., 2022]. The first two, LQR and SOS, are the
more traditional approaches for computing Lyapunov functions when the dynamics are either linear
(LQR) or polynomial (SOS) [Tedrake, 2009]. LQR solutions (when the system can be stabilized) are
obtained through matrix multiplication, while SOS entails solving a semidefinite program (we solve
it using YALMIP with MOSEK solver in MATLAB 2022b). The next two baselines, NLC and UNL,
are recent approaches for learning Lyapunov functions in continuous-time systems (no approach for
learning provably stable control using neural network representations exists for discrete time systems).
Both NLC and UNL yield provably stable control for general non-linear dynamical systems, and are
thus the most competitive baselines to date. In addition to these baselines, we consider an ablation
in which PGD-based counterexample generation for our approach is entirely replaced by the sound
MILP-based method during learning (we refer to it as DITL-MILP).

Efficacy Metrics We compare approaches in terms of three efficacy metrics. The first is (serial)
runtime (that is, if no parallelism is used), which we measure as wall clock time when only a single
task is running on a machine. For inverted pendulum and path tracking, all comparisons were
performed on a machine with AMD Ryzen 9 5900X 12-Core Processor and Linux Ubuntu 20.04.5
LTS OS. All cartpole and PVTOL experiments were run on a machine with a Xeon Gold 6150 CPU
(64-bit 18-core x86), Rocky Linux 8.6. UNL and RL training for Path Tracking are the only two cases
that make use of GPUs, and was run on NVIDIA GeForce RTX 3090. The second metric was the
size of the valid region, measured using ℓ2 norm for NLC and UNL, and ℓ∞ norm (which dominates
ℓ2) for LQR, SOS, and our approach. The third metric is the region of attraction (ROA). Whenever
verification fails, we set ROA to 0. Finally, we compare all methods whose results are stochastic
(NLC, UNL, and ours) in terms of success rate.

Verification Details For LQR, SOS, NLC, and UNL, we used dReal as the verification tool, as done
by Chang et al. [2019] and Zhou et al. [2022]. For DITL verification we used CPLEX version 22.1.0.

5.2 Results

Figure 1: ROA plot of inverted pendulum (left) and path tracking (right). We select the best result for
each method.

Inverted Pendulum For the inverted pendulum domain, we initialize the control policy using
the LQR solution (see the Supplement for details). We train Vθ with non-zero bias terms. We set
ϵ = 0.1 (< 0.007% of the valid region), and approximate ROA using a grid of 2000 cells along
each coordinate using the level set certified with MILP (4). All runtime is capped at 600 seconds,
except the UNL baseline, which we cap at 16 minutes, as it tends to be considerably slower than
other methods. Our results are presented in Table 1. While LQR and SOS are fastest, our approach
(DITL) is the next fastest, taking on average ∼8 seconds, with NLC and UNL considerably slower.
However, DITL yields an ROA a factor >4 larger than the nearest baseline (LQR), and 100% success
rate. Finally, the DITL-MILP ablation is two orders of magnitude slower (runtime > 300 seconds)
and less effective (average ROA=42, 80% success rate) than DITL. We visualize maximum ROA
produced by all methods in Figure 1 (left).

Path Tracking In path tracking, we initialize our approach using both the RL and LQR solutions,
drawing a direct comparison between the two (see the Supplement for details). We set ϵ = 0.1. The
running time of RL is ∼ 155 seconds. The results are provided in Table 2. We can observe that
both RL- and LQR-initialized variants of our approach outperform all prior art, with RL exhibiting a
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Table 1: Inverted Pendulum

Valid Region Runtime (s) ROA Max ROA Success Rate

NLC (free) ||x||2 ≤ 6.0 28± 29 11± 4.6 22 100%
NLC (max torque 6.0) ||x||2 ≤ 6.0 519± 184 13± 27 66 20%
UNL (max torque 6.0) ||x||2 ≤ 4.0 821± 227 1± 2 7 30%
LQR ||x||∞ ≤ 5.8 < 1 14 14 success
SOS ||x||∞ ≤ 1.7 < 1 6 6 success

DITL ||x||∞ ≤ 12 8.1± 4.7 61± 31 123 100%

Table 2: Path Tracking

Valid Region Runtime (s) ROA Max ROA Success Rate

NLC ||x||2 ≤ 1.0 109± 81 0.5± 0.2 0.76 100%
NLC ||x||2 ≤ 1.5 151± 238 1.4± 0.9 2.8 80%
UNL ||x||2 ≤ 0.8 925± 110 0.1± 0.2 0.56 10%
LQR ||x||∞ ≤ 0.7 < 1 1.02 1.02 success
SOS ||x||∞ ≤ 0.8 < 1 1.8 1.8 success

DITL (LQR) ||x||∞ ≤ 3.0 9.8± 4 8± 3 12.5 100%
DITL (RL) ||x||∞ ≤ 3.0 14± 11 9± 3.5 16 100%

factor of 5 advantage over the next best (SOS, in this case) in terms of ROA, and nearly a factor of 6
advantage in terms of maximum achieved ROA (NLC is the next best in this case). Moreover, our
approach again has a 100% success rate. Our runtime is an order of magnitude lower than NLC or
UNL. Overall, the RL-initialized variant slightly outperforms LQR initialization. The DITL-MILP
ablation again performs far worse than DITL: running time is several orders of magnitude slower
(at > 550 seconds), with low efficacy (ROA is 1.1, success rate 10%). We visualize comparison of
maximum ROA produced by all methods in Figure 1 (right).

Cartpole For cartpole, we used LQR for initialization, and set bias terms of Vθ to zero. We set
ϵ = 0.1 (0.01% of the valid region area) and the running time limit to 2 hours for all approaches.
None of the baselines successfully attained a provably stable control policy and associated Lyapunov
function for this problem. Failure was either because we could find counterexamples within the
target valid region, or because verification exceeded the time limit. DITL found a valid region of
∥x∥∞ ≤ 1.0, in ≤ 1.6 hours with a 100% success rate, and average ROA of 0.021± 0.012.

PVTOL The PVTOL setup was similar to cartpole. We set ϵ = 0.1 (0.0001% of the valid region
area), and maximum running time to 24 hours. None of the baselines successfully identified a
provably stable control policy. In contrast, DITL found one within 13± 6 hours on average, yielding
a 100% success rate. We identified a valid region of ∥x∥∞ ≤ 1.0, and ROA of 0.011± 0.008.

6 Conclusion

We presented a novel algorithmic framework for learning Lyapunov control functions and policies
for discrete-time nonlinear dynamical systems. Our approach combines mixed-integer linear pro-
gramming verification tool with a training procedure that leverages gradient-based approximate
verification. This combination enables a significant improvement in effectiveness compared to prior
art: our experiments demonstrate that our approach yields several factors larger regions of attraction
in inverted pendulum and path tracking, and ours is the only approach that successfully finds stable
policies in cartpole and PVTOL.
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A Further Details about Experiments

A.1 Dynamics

Since these are described as continuous-time domains, we set the time between state updates to be
0.05s in all cases for our discretized versions of these systems.

Inverted Pendulum We use the following standard dynamics model for inverted pendulum [Chang
et al., 2019, Richards et al., 2018, Zhou et al., 2022]:

θ̈ =
mgℓ sin(θ) + u− bθ̇

mℓ2
,

with gravity constant g = 9.81, ball weight m = 0.15, friction b = 0.1, and pendulum length l = 0.5.
We set the maximum torque allowed to be 6Nm, meaning u ∈ [−6.0, 6.0], and it is applied to all
experiments except for the NLC (free) case.

Path Tracking Our path tracking dynamics follows Snider [2009] and Chang et al. [2019]:

ṡ =
v cos (θe)

1− ėraκ(s)
, ėra = v sin (θe) , θ̇e =

v tan(δ)

L
− vκ(s) cos (θe)

1− ėraκ(s)
,

where the control policy determines the steering angle δ. era is the distance error and θe is the angle
error. We can simplify the dynamics by defining u = tan(δ), so that non-linearity of dynamics is
only in terms of state variables. Since in practice |δ| ≤ 40◦, we set u ∈ [tan(−40◦), tan(40◦)]; this
is applied to all experiments. We set speed v = 2.0, while the track is a circle with radius 10.0 (and,
thus, κ = 0.1) and L = 1.0.

For RL in path tracking, the reward function is − 1
10 (e

2
ra + θ2e)

1/2, and we use PPO [Schulman et al.,
2017], training over 50K steps.

Cartpole For cartpole we use the dynamics from Tedrake [2009]. The original dynamics is

ẍ =
1

mc +mp sin
2 θ

[
fx +mp sin θ(lθ̇

2 + g cos θ)
]

(6)

θ̈ =
1

l(mc +mp sin
2 θ)

[
− fx cos θ −mplθ̇

2 cos θ sin θ − (mc +mp)g sin θ
]
. (7)

We change the variable and rename π − θ as θ, so that in our setting, θ represents the angle between
the pole and the upward horizontal direction, the pole angle is positive if it is to the right. The purpose
of this transformation is that the equilibrium point is the origin.

Using the second order chain rule

d2y

dz2
=

d2y

du2

(
du

dz

)2

+
dy

du

d2u

dz2

let y = π − θ, z = t, u = θ, we have the new dynamics as

ẍ =
1

mc +mp sin
2 θ

[
fx +mp sin θ(lθ̇

2 − g cos θ)
]

(8)

θ̈ =
1

l(mc +mp sin
2 θ)

[
− fx cos θ −mplθ̇

2 cos θ sin θ + (mc +mp)g sin θ
]
. (9)

Here mc = 1.0 is the weight of the cart, mp = 0.1 is the weight of the pole, x is the horizontal
position of the cart, l = 1.0 is the length of the pole, g = 9.81 is the gravity constant and fx is the
controller (force applied to the cart). Furthermore, the maximum force allowed to the cart is set to be
30N , meaning fx ∈ [−30, 30]; this is applied to all experiments.
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PVTOL For PVTOL, our dynamics follows Singh et al. [2021]. Specifically, the system has the
following state representation: x =

(
px, pz, vx, vz, ϕ, ϕ̇

)
. (px, pz) and (vx, vz) are the 2D position

and velocity, respectively, and (ϕ, ϕ̇) are the roll and angular rate. Control u ∈ R2
>0 corresponds to

the controlled motor thrusts. The dynamics f(x, u) are described by

ẋ(t) =


vx cosϕ− vz sinϕ
vx sinϕ+ vz cosϕ

ϕ̇

vzϕ̇− g sinϕ

−vxϕ̇− g cosϕ
0

+


0 0
0 0
0 0
0 0

(1/m) (1/m)
l/J (−l/J)

u

where g = 9.8 is the acceleration due to gravity, m = 4.0 is the mass, l = 0.25 is the moment-arm
of the thrusters, and J = 0.0475 is the moment of inertia about the roll axis. The maximum force
allowed to both u1 and u2 is set to be 39.2N , which is mg, meaning u1, u2 ∈ [0, 39.2]; this is applied
to all experiments.

A.2 Computation of the LQR Solution

Given the system dx/dt = Ax+Bu, the objective function of the LQR is to compute the optimal
controller u = −Kx that minimizes the quadratic cost

∫∞
0

(x′Qx + u′Ru)dt, where R and Q are
identity matrices. The details of the system linearization as well as the LQR solution are described
below.

Inverted Pendulum We linearize the system as

A =

[
0 1
g
l − b

ml2

]
, B =

[
0
1

ml2

]
The final LQR solution is u = −1.97725234θ − 0.97624064θ̇.

Path Tracking We linearize the system as

A =

[
0 2
0 −0.04

]
, B =

[
0
1

]
.

The final LQR solution is u′ = 2u+ 0.1 = −era − 2.19642572θe.

Cartpole We linearize the system as

A =

0 1 0 0
0 0 −0.98 0
0 0 0 1
0 0 10.78 0

 , B =

 0
1
0
−1

 .

The final LQR solution is u = x+ 2.4109461ẋ+ 34.36203947θ + 10.70094483θ̇.

PVTOL We linearize the system as

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B =


0 0
0 0
0 0
0 0
1
m

1
m

r
J − r

J


The final LQR solution is u1 = 0.70710678x − 0.70710678y − 5.03954871θ + 1.10781077ẋ −
1.82439774ẏ − 1.20727555θ̇, and u2 = −0.70710678x − 0.70710678y + 5.03954871θ −
1.10781077ẋ− 1.82439774ẏ + 1.20727555θ̇.
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A.3 PPO Training for Path Tracking

We use the implementation in Stable-Baselines [Raffin, 2020] for PPO training. The hyperparameters
of are fine-tuned using their auto-tuning script with a budget of 1000 trials with a maximum of 50000
steps. The final hyperparameters are in Table 3.

Table 3: Hyperparameter for PPO (Path Tracking)

Parameter Value

policy MlpPolicy
n_timesteps !!float 100000
batch_size 32
n_steps 64
gamma 0.95
learning_rate 0.000208815
ent_coef 1.90E-06
clip_range 0.1
n_epochs 10
gae_lambda 0.99
max_grad_norm 0.8
vf_coef 0.550970466
activation_fn nn.ReLU
log_std_init -0.338380542
ortho_init False
net_arch [8, 8]
vf [8, 8]
sde_sample_freq 128

A.4 Benchmark Models

When relevant, benchmark models (as well as our approach) are run for 10 seeds (seed 0 to 9). Mean
± standard deviation are reported in Table 1 and Table 2. For SOS benchmark, we use polynomials
of degree ≤ 6 for all environments.

NLC and UNL For Cartpole and PVTOL, we train against diameter 1.0 under the l2 norm for NLC
and UNL. The main reason for the failure of training is that the dReal verifier becomes incredibly
show after some iterations. For example, for seed 0, NLC only finished 167 certifications within 2
hours limit for Cartpole, and 394 certifications within 24 hours limit for PVTOL.

LQR and SOS For Cartpole environment, we first certify against target region 0.1 ≤ ||x||∞ ≤ 0.16
for LQR benchmark where dReal returns the counterexample; we later attempt to certify against
0.1 ≤ ||x||∞ ≤ 0.15, dReal did not return any result within the 2-hour limit. For SOS benchmark,
dReal verifier did not return any result within the 2 hours limit against target region 0.1 ≤ ||x||∞ ≤
0.5. For PVTOL environment, LQR benchmark returns the counterexample against target region
0.1 ≤ ||x||∞ ≤ 0.5 after 10 hours, we then attempt to certify against 0.1 ≤ ||x||∞ ≤ 0.4 and fail to
return any result within the remaining 14 hours time limit. For SOS benchmark, dReal verifier did
not return any result within the 24 hours limit against target region 0.1 ≤ ||x||∞ ≤ 0.5.

A.5 Bounding the Functions

There are three types of bounding in our paper: 1) bound the dynamics f(x, u) with linear upper/lower
bound functions for verification; 2) bound the dynamics with constants for the calculation of M for
ReLU; 3) bound the dynamics with constants for the calculation of ROA. Note that the bounding for
2) and 3) are similar, except that for 2) it is calculated for each subgrid, and for 3) it is calculated for
the entire valid region.
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Inverted Pendulum Split the region: we split the region over the domain of θ, please refer to our
code for the details of the splitting.

(1) Bound for verification: since the only non-linear part of the function is sin(θ), we use the
upper/lower bounds in α, β-CROWN. (2) Bound for M : |θ̈| ≤ g

l + |u|max
ml2 + b|θ̇|max

ml2 , where |u|max

is calculated using IBP bound. (3) Bound for ROA: ||f(x, u)||∞ = γ +max(γ, mgl+|u|max+bγ
ml2 )dt,

where |u|max is the maximum force allowed.

Path Tracking Split the region: we split the region over the domain of θe, please refer to our code
for the details of the splitting.

(1) Bound for verification: for ėra since the only nonlinear function is sin(θ), we use the bound in
α, β-CROWN; for θ̇e we bound the term vκ(s) cos(θe)

1−ėraκ(s)
, which is concave in interval [−π/2, π/2], and

convex otherwise. (2) Bound for M : |ėra| ≤ v, |θ̇e| ≤ v|u|max
L + v

R−v , where |u|max is calculated

using IBP bound. (3) Bound for ROA: ||f(x, u)||∞ = γ +max(v, v|u|max
L + v

R−v )dt, where |u|max is
the maximum force allowed.

Cartpole Split the region: we split the region over the domain of θ and θ̇ with interval 0.1 when
either θ or θ̇ is greater than 0.1. In case when both θ and θ̇ are smaller than 0.1, we split θ, θ̇ into
intervals of 0.05. Please refer to our code for the details of the splitting.

(1) Bound for verification: we split the dynamics into six functions and bound them separately for both
one variable and multiple variables: f1 = 1

mc+mp sin2 θ
, f2 = − cos θ

l(mc+mp sin2 θ)
, f3 =

−gmp sin θ cos θ
mc+mp sin2 θ

,

f4 =
(mc+mp)g sin θ
l(mc+mp sin2 θ)

, f5 =
mpl sin θθ̇2

mc+mp sin2 θ
, f6 =

−mplθ̇
2 cos θ sin θ

l(mc+mp sin2 θ)
. (2) Bound for M : |ẍ| ≤ |u|max +

mpl|θ̇|2max +
mpg
2 , |θ̈| ≤ 1

l (|u|max +
mpl|θ̇|2max

2 + (mc +mp)g) where |u|max is calculated using IBP

bound. (3) Bound for ROA: ||f(x, u)||∞ = γ +max(γ, |u|max +mplγ
2 +

mpg
2 , 1

l (|u|max +
mplγ

2

2 +
(mc +mp)g))dt, where |u|max is the maximum force allowed.

PVTOL Split the region: we split the region over the domain of θ with interval 0.25 and split the
region over the domain of ẋ, ẏ, θ̇ with interval 0.5. Furthermore, in the MILP we add a constraint to
ensure the l∞ norm of state value is no less than 0.1. Please refer to our code for the details of the
splitting.

(1) Bound for verification: we split the dynamics into three functions and bound them separately
for multi-variables: f1 = x cos y, f2 = x sin y, f3 = xy. (2) Bound for M : we bound each
term of the dynamics with the min/max values using the monotonic property. (3) Bound for ROA:
||f(x, u)||∞ = γ + max(γ, γ2 + g + 2|u|max

m , 2γ, 2l|u|max
J )dt, where |u|max is the maximum force

allowed.

A.6 Speeding up Verification

When there is a limit on parallel resources, so that verification must be done serially for the subgrids
k, we can reduce the number of grids to verify in each step as follows. The first time a verifier
is called, we perform it over all subgrids; generally, only a subset will return a counterexample.
Subsequently, we only verify these subgrids until none return a counterexample, and only then attempt
full verification.

A.7 ROA Calculation

For Inverted Pendulum and Path Tracking, we approximate ROA using a grid of 2000 cells along
each coordinate. For Cartpole, we use a grid of 150 cells along each coordinate, and for PVTOL, we
use a grid of 50 cells along each coordinate.

For our baselines where the systems are continuous, the set levels are {x ∈ R | V (x) < ρ} where
ρ = minx∈∂R V (x). Note that for discrete-time systems, having ρ = minx∈∂R V (x) is not sufficient.
For example, assumeR is the valid region, any point outside ofR satisfy V (f(x, u)) > V (x), and
∀x ∈ ∂R, V (x) = ρ. Assume we have x ∈ R \ ∂R and f(x, u) = y, y /∈ R (this is possible since
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the system is discrete). Since x is in the valid region, we have V (y) < V (x) < ρ. However, since y
is no longer within the valid region, assume V (f(y, u)) > ρ > V (y), the system will not converge
to equilibrium point starting from point y. This means {x ∈ R | V (x) < ρ} is not a subset of ROA.

B Computing Linear Bounds on Lipschitz-Continuous Dynamics

Theorem B.1. Given function g(x) : Rn 7→ R where the Lipschitz constant is λ, we have g(x) ≤
g(x1,l, x2,l, . . . , xn,l) + λ ·

∑
i(xi − xi,l) and g(x1,l, x2,l, . . . , xn,l) − λ ·

∑
i(xi − xi,l) ≤ g(x),

where xi ∈ [xi,l, xi,u],∀i ∈ [n].

Proof. For any i ∈ [n], given xi ∈ [xi,l, xi,u], for arbitrary fixed values along dimension [n] \ {j}
(we denote them as x−i), we have |g(xi, x−i)− g(xi,l, x−i)| ≤ λ|xi − xi,l|.

• we show that g(xi, x−i) ≤ g(xi,l, x−i) + λ(xi − xi,l)

– if g(xi, x−i) ≥ g(xi,l, x−i), then g(xi, x−i) − g(xi,l, x−i) ≤ λ(xi − xi,l), meaning
g(xi, x−i) ≤ g(xi,l, x−i) + λ(xi − xi,l).

– if g(xi, x−i) < g(xi,l, x−i), since λ(xi − xi,l) ≥ 0, we have g(xi, x−i) ≤
g(xi,l, x−i) + λ(xi − xi,l).

• we show that g(xi,l, x−i)− λ(xi − xi,l) ≤ g(xi, x−i)

– if g(xi, x−i) ≥ g(xi,l, x−i), then since −λ(xi − xi,l) ≤ 0, we have g(xi,l, x−i) −
λ(xi − xi,l) ≤ g(xi, x−i).

– if g(xi, x−i) < g(xi,l, x−i), then g(xi,l, x−i) − g(xi, x−i) ≤ λ(xi − xi,l), meaning
g(xi,l, x−i)− λ(xi − xi,l) ≤ g(xi, x−i).

By applying the above result along all n dimensions recursively, we have the upper bound as
g(x) ≤ g(x1,l, x2,l, . . . , xn,l) +

∑
i λ(xi − xi,l), and the lower bound as g(x1,l, x2,l, . . . , xn,l) −∑

i λ(xi − xi,l) ≤ g(x).

C Ablation Study

In this section, we conduct an ablation study on the MILP solver. Table 4 are the results for DITL-
dReal, in which we use our framework, but replace all the MILP components with dReal. As we can
see, using MILP is an essential ingredient in the success of the proposed approach:

Table 4: Ablation study on MILP solver.

Environment Runtime ROA Max ROA Success Rate

Inverted Pendulum (DITL-dReal) 6.0 ± 1.7 (s) 57 ± 24 75 100%
Inverted Pendulum (DITL, main paper) 8.1 ± 4.7(s) 61 ± 31 123 100%

Path Tracking (RL, DITL-dReal) 600 ± 0 (s) 0 ± 0 0 0%
Path Tracking (RL, DITL, main paper) 14 ± 11 (s) 9 ± 3.5 16 100%

Path Tracking (LQR, DITL-dReal) 420.9 ± 182 (s) 4 ± 4 11 60%
Path Tracking (LQR, DITL, main paper) 9.8 ± 4 (s) 8 ± 3 12.5 100%

Cartpole (DITL-dReal) >2 (hours) N/A N/A 0%
Cartpole (DITL, main paper) 0.9 ± 0.3 (hours) 0.021 ± 0.012 0.045 100%

PVTOL (DITL-dReal) >24 (hours) N/A N/A 0%
PVTOL (DITL, main paper) 13 ± 6 (hours) 0.011 ± 0.008 0.028 100%
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