
Diffusion-Based Adversarial Sample Generation for
Improved Stealthiness and Controllability

Haotian Xue ∗1 Alexandre Araujo 2 Bin Hu 3 Yongxin Chen 1

1 Georgia Institute of Technology
2 New York University

3 University of Illinois Urbana-Champaign

Abstract

Neural networks are known to be susceptible to adversarial samples: small varia-
tions of natural examples crafted to deliberately mislead the models. While they
can be easily generated using gradient-based techniques in digital and physical
scenarios, they often differ greatly from the actual data distribution of natural
images, resulting in a trade-off between strength and stealthiness. In this paper, we
propose a novel framework dubbed Diffusion-Based Projected Gradient Descent
(Diff-PGD) for generating realistic adversarial samples. By exploiting a gradient
guided by a diffusion model, Diff-PGD ensures that adversarial samples remain
close to the original data distribution while maintaining their effectiveness. More-
over, our framework can be easily customized for specific tasks such as digital
attacks, physical-world attacks, and style-based attacks. Compared with existing
methods for generating natural-style adversarial samples, our framework enables
the separation of optimizing adversarial loss from other surrogate losses (e.g.,
content/smoothness/style loss), making it more stable and controllable. Finally, we
demonstrate that the samples generated using Diff-PGD have better transferabil-
ity and anti-purification power than traditional gradient-based methods. Code is
available at https://github.com/xavihart/Diff-PGD

1 Introduction

Neural networks have demonstrated remarkable capabilities in learning features and achieving
outstanding performance in various downstream tasks. However, these networks are known to be
vulnerable to subtle perturbations, called adversarial samples (adv-samples), leading to important
security concerns for critical-decision systems [16]. Numerous threat models have been designed to
generate adversarial samples for both digital space attacks [31, 5], physical world attacks [26, 14],
and also for generating more customized adv-samples given prompts like attack region and style
reference [12, 17]. However, most of these models have not been designed to maintain the realism
of output samples, resulting in adversarial samples that deviate significantly from the distribution
of natural images [22]. Indeed, in the setting of digital world attacks, such as those involving
RGB images, higher success rates, and transferability are associated with larger changes in the
generated samples, leading to a stealthiness-effectiveness trade-off. Additionally, perturbations for
physical-world attacks are substantial, non-realistic, and easily noticeable by humans [47].

Recent works, for both digital and physical settings, have proposed methods to generate more
realistic adversarial samples. For example, [29, 24] introduced a method to optimize the perturbations
added to clean images in semantic space, [23, 26] proposed a GAN-based approach or other prior
knowledge [33] to increase the realism of generated samples. Although the GAN-based approach

∗ Correspondence to: htxue.ai@gatech.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/xavihart/Diff-PGD

Table 1: Properties of Diff-PGD vs Other Attacks: We summarize six metrics for adv-sample
generation. “Stealthiness” measures whether the adversarial perturbations can be detected by human
observers. “Scenarios” describes the setting in which the method can be applied: D corresponds to
digital attacks and P for physical attacks. “Controllability” measures whether the method can support
customized prompts e.g., mask/style reference. “Anti-Purify” measures the ability of the samples to
avoid being purified. “Transferability” measures the generalization of the attack to different models.
Finally, “Stability” describes the stability of the optimization. (-) stands for non-consideration.

Methods Stealthiness Scenarios Controllability Anti-Purify Transferability Stability
PGD [31] ** D * * * **
AdvPatch [4] * P ** (-) (-) **
NatPatch [23] ** P * (-) (-) **
AdvArt [17] * P ** (-) (-) **
AdvCam [12] ** D/P ** (-) (-) *
Diff-PGD (Ours) ** D/P ** ** ** **

can generate realistic images, the adversarial examples are sampled from noise and therefore lack
controllability. A subsequent line of research on realistic adversarial samples [22] has introduced
the concept of semantic adversarial samples. These are unbounded perturbations that deceive the
model, while ensuring the modified image has the same semantic information as the original image.
While transformations in semantic space can reduce the high-frequency patterns in pixel space, this
approach still suffers from color jittering or image distortion which results in lower stealthiness
[12]. Further, this approach needs careful tuning of the hyperparameters making the training process
unstable.

In this paper, we propose a novel framework, which uses an off-the-shelf diffusion model to guide
the optimization of perturbations, thus enabling the generation of adversarial samples with higher
stealthiness. The core design of our framework is Diffusion-Based Projected Gradient Descent (Diff-
PGD), which shares a similar structure with PGD but changes the input of the target classifier fθ to
be purified version x0 of the original input x. To the best of our knowledge, we are the first to use the
Diffusion Model to power the generation of adv-samples. Our framework can also be easily adapted
to some customized attacks given masks or style references, thereby enhancing its controllability. Our
framework (Figure 1(c)) separates the customized process with prompt p (region mask, style, etc.)
with adversarial sample generation, overcoming the drawbacks of previous pipelines: the traditional
gradient-based methods (Figure 1(a)) cannot guarantee to generate naturalistic samples when the
perturbation level is large; the joint optimization with multiple losses like adv-loss ladv , style loss lz
and realism loss lr (see Figure 1(b)) is unstable to train and still tend to generate perceptible artifacts.
Through extensive experiments in scenarios like digital attacks, masked region attacks, style-guided
attacks, and physical world attacks, we show that our proposed framework can effectively generate
realistic adv-samples with higher stealthiness and controllability. We further show that the Diff-PGD
can help generate adversarial samples with higher transferability than traditional methods without
gradient restriction. Our contribution can be summarized as follows:

1. We propose a novel framework Diff-PGD, combing the strong prior knowledge of the diffusion
model into adv-sample generation, which helps generate adv-samples with high stealthiness and
controllability. Adv-samples generated by Diff-PGD have good properties as described in Table 1.

2. We show that Diff-PGD can be effectively applied to many tasks including digital attacks, cus-
tomized attacks, and physical-world attacks, outperforming baseline methods such as PGD,
AdvPatch, and AdvCam.

3. We explore the transferability and anti-purification properties of Diff-PGD samples and show
through an experimental evaluation that adversarial samples generated by Diff-PGD outperform
the original PGD approach.

2 Related Work

Adversarial attacks aim at maximizing the classification error of a target model without changing the
semantics of the images. In this section, we review the types of attacks and existing works.

2

Norm bounded attacks. In the digital space, one can easily generate adversarial samples by using
gradient-based methods such as Fast Gradient Sign Method (FGSM) [16] or Projected Gradient
Decent (PGD) [31]. These methods aim at maximizing the loss of the target model with respect
to the input and then projecting the perturbation to a specific ℓp ball. It has been observed that
these adversarial samples tend to diverge from the distribution of natural images [50]. Based on this
observation, [34] have shown that these attacks can be “purified” using pre-trained diffusion models.

Semantic attacks. Some recent works operate semantic transformation to an image: [22] generate
adv-samples in the HSV color space, [48, 13] generate adv-samples by rotating the 2D image or
changing its brightness, and [52, 29, 10] try to generate semantic space transformations with an
additional differentiable renderer. All these methods are far from effective; they either need additional
modules or have color jitters and distortion [12].

Customized Attacks with Natural-Style. Significant efforts have been made toward generating cus-
tomized adversarial samples (given region and/or style reference) with natural-style: AdvCAM [12]
optimize adversarial loss together with other surrogate losses such as content loss, style loss, and
smoothness loss to make the output adversarial sample to be realistic, [23, 26, 55] sample from
latent space and then use a Generative Adversarial Network (GAN) to guarantee the natural style
of the output sample to fool an object detector, and AdvArt [17] customized the generation of the
adversarial patch with a given art style. However, all these methods share some common issues:
optimizing adversarial loss and other surrogate losses (for content-preserving or customized style)
needs careful balance and still results in unnatural artifacts in the output samples. Our methods use
the diffusion model as a strong prior to better ensure the realism of generated samples.

Attacks in physical-world. For physical-world attacks, minor disturbances in digital space often
prove ineffective due to physical transformations such as rotation, lighting, and viewing distance. In
this context, adding adversarial patches to the scene is a common technique to get the target model to
misclassify [4, 14, 1, 25]. Physical-world attacks do not impose any constraints either on the amount
of perturbation or on the output style, thus, they tend to produce highly unnatural images that can be
easily detected by human observers (i.e., lack stealthiness).

3 Background

Diffusion Model. Diffusion Models (DMs) [19, 41] have demonstrated superior performance in
many tasks such as text-to-image generation [37, 2, 38], video/story generation [21, 20, 35], 3D
generation [28, 36] and neural science [44, 42]. Pre-trained DMs provide valuable prior knowledge
that can be exploited for adversarial robustness. In this context, several works have proposed
defense mechanisms such as adversarial purification [34, 53, 43, 34, 27] or DM-enhanced certified
robustness [6, 46, 45].

The Denoised Diffusion Probabilistic Model (DDPM) [19] is a discretized version of DMs and works
as follows. Suppose x0 ∼ p(x0) is a sample from the distribution of natural images. The forward diffu-
sion process gradually adds Gaussian noise to x0, generating noisy samples [x1, x2, · · · , xt, · · · , xT]
in T steps, following a Markov process defined as qM (xt | xt−1) = N (xt;

√
1− βt xt−1, βtI)

where N denotes Gaussian distribution βt are fixed values growing from 0 to 1. By accumulating
single step qM we have q(xt | x0) as

q(xt | x0) = N (xt;
√
ᾱt xt−1, (1− ᾱt)I) (1)

where αt = 1− βt and ᾱt = Πt
s=1αs. When ᾱt ≈ 0, the distribution of xT becomes an isotropic

Gaussian.

The reverse process aims at generating samples from the target data distribution from Gaussian
noise xT ∼ N (0, I) using the reversed diffusion process. The reverse model pϕ(xt−1 | xt) can be
trained by optimizing the usual variational bound on negative log likelihood. Using the re-sampling
strategy proposed in [19], we can simplify the optimization of ϕ into a denoising process, by training
a modified U-Net as a denoiser. Then we can generate x0 with high fidelity by sampling on the
reversed diffusion:

p(x0:T) = p(xT)

T∏
t=1

pϕ(xt−1 | xt). (2)

For the reverse process, we define Rϕ parameterized by ϕ as the function to denoise xt and then get
next sampled value as xt−1 = Rϕ(xt, t).

3

𝑥 𝑝 𝑥+ → 𝑥!→→

𝑅!𝑞(𝑥"|𝑥)→ →

𝑆𝐷𝐸𝑑𝑖𝑡

𝑅! 𝑅!…

∇"𝑙#$%

𝑙&𝑥 𝑥→ 𝑙'() 𝑙*→

𝑝

→

+ +

𝑥 𝑥

→ →

∇#(𝑙$ + 𝑙%&' + 𝑙()

𝑥 𝑥→ 𝑙'()

∇# 𝑙%&'

𝑙%&'→

(a) (b) (c)

Figure 1: Comparison of Different Pipelines: (a) Traditional gradient-based adversarial sample
generation, x is the sample to be optimized, ladv is adversarial loss. (b) Customized adversarial
sample generation with natural style (determined by prompt p): joint optimization of adversarial
loss with other surrogate losses like prompt loss lp (e.g. style loss) and realistic loss lr (e.g. content
loss, smooth loss). (c) Our proposed diffusion-based framework, q is forward diffusion and Rϕ is
backward denoising, x0 is the denoised sample.

SDEdit. The key idea of Stochastic Differential Editing (SDEdit) [32] is to diffuse the original
distribution with xK ∼ q(xK | x) and then run the reverse denoising process Rϕ parametrized by ϕ
in a Diffusion Model to get an edited sample:

SDEdit(x,K) = Rϕ(. . . Rϕ(Rϕ(xK ,K),K − 1) . . . , 0). (3)

Given a raw input, SDEdit first runs K steps forward and then runs K steps backward. This process
works as a bridge between the input distribution (which always deviates from p(x0)) and the realistic
data distribution p(x0), which can then be used in tasks such as stroke-based image synthesis and
editing. It can also be used in adversarial samples purification [34, 53].

4 Diffusion-based Projected Gradient Descent

We present Diffusion-based Projected Gradient Descent (Diff-PGD), a novel method to generate
adversarial samples that looks realistic, using a pre-trained diffusion model. First, we present basic
Diff-PGD that works on global image inputs, which shares the same bound settings with ℓ∞-PGD
in Section 4.1. Then, in Section 4.2 we generalize Diff-PGD to scenarios where only regional
attacks defined by a customized mask are possible, using re-painting skills in the diffusion model [30].
Finally, we present extensions of Diff-PGD to customized attacks guided by image style in Section 4.3
and physical world attack in Section 4.4.

In the rest of the paper, we use superscript i or t to denote iteration of optimization, and subscript i to
denote the timestep of diffusion model.

4.1 Diffusion-based Projected Gradient Descent

Given a clean image x with label y and a target classifier fθ parameterized by θ to be attacked, our
goal is to generate an adversarial sample xadv , which fools the model. The traditional gradient-based
methods use the gradient of adversarial loss g = ∇xl(fθ(x), y), where fθ(x) return the logits. We
also denote the loss as ladv for simplicity to optimize x by iterations. The t-step update in the PGD
with stepsize η and n iterations reads

xt+1 = PB∞(x,ϵ)

[
xt + η sign∇xt l(fθ(x

t), y)
]

(4)

where PB∞(x,ϵ)(·) is the projection operator on the ℓ∞ ball. Intuitively, the gradient will “guide”
the sample xt away from the decision boundary and deviate from the real distribution p(x0) [29].
This out-of-distribution property makes them easier to be purified using some distribution-based
purification methods [34], which considerably restricts the strength of the attacks.

Instead of using l(fθ(x), y) as the optimization cost, we turn to use logits of purified image fθ(x0)
as our optimization target. Here x0 can be obtained using SDEdit with K reverse steps. The update
step becomes

xt
0 = SDEdit(xt,K) and xt+1 = PB∞(x,ϵ)

[
xt + η sign∇xt l(fθ(x

t
0), y)

]
. (5)

The parameter K can be used to control the edition-content preference [32]: a large K value
brings more editions and a small K value preserves more original content, and empirically,

4

Algorithm 1 Diff-rPGD

Require: Target classifier fθ, original image x, mask M , denoiser Dϕ, # of reverse SDEdit steps K,
iterations n, stepsize η, clip value ϵ (when M = 1 it reduces to Diff-PGD)
x0 = x0

0 = x, xc = x
for t = 0, 1, 2, . . . , n− 1 do
xt
K ∼ q(xt

K |xt) ▷ Sample xt
K from q(xt

K |xt) in each PGD iteration
for i = K − 1, . . . , 0 do
xt
i = Rϕ(x

t
i+1) ▷ Apply denoiser Rϕ to xt

i+1 in each SDEdit iteration
xt
i ∼ M ◦ xt

i + (1−M) ◦ q(xt
i|xt) ▷ Sample from masked combination of xt

i and q(xt
i|xt)

end for
g = ∇xt l[fθ(M ◦ xt

0 + (1−M) ◦ xc)] ▷ Compute the gradient
xt+1 = Πx,ϵ[x

t + ηM ◦ sign(g)] ▷ PGD update
end for
xn
0 = rSDEdit(xn) ▷ Apply reverse SDEdit to the final xn

return xn, xn
0 ▷ Return the final adversarial example and the denoised version

K = 0.1 ∼ 0.3T works well. Since we need to compute a new adversarial gradient gdiff =
∇xRϕ(. . . Rϕ(Rϕ(xt,K),K − 1) . . . , 0) through back-propagation, K cannot be too large due
to GPU memory constraint. Thus we turn to adopt some speed-up strategies like DDIM [40]
to first sub-sample original T into Ts, and then use scaled Ks ≪ K to do SDEdit (e.g.,
T = 1000,K = 100, Ts = 40,Ks = 4). Other fast sampling schemes [54] for DMs may ac-
celerate our algorithms further.

After n iterations, Diff-PGD generates two outputs (xn
0 and xn) that are slightly different from each

other: 1) xn
0 , according to the definition of the loss function, is realistic and adversarial. 2) xn is an

optimized perturbed image to which the adversarial gradient is directly applied. It follows the PGD
ℓ∞ bound, and according to the loss function Equation (5), hard to be purified by SDEdit.

4.2 Extended Diff-PGD into Region Attack

In some scenarios, we need to maintain parts of the image unchanged and only generate adversarial
perturbations in defined regions. This is used in customized attacks, e.g., attack the masked region
with a given natural style. Here we consider the sub-problem to attack the masked region (determined
by mask M) of a given image with PGD, noted as region-PGD (rPGD). Specifically, the output
adv-samples should satisfy: (1−M) ◦ xadv = (1−M) ◦ x. Obviously, when M is valued all ones,
the rPGD reduces to the original PGD.

For the previous gradient-based method, it is easy to modify ∇xfθ(x) into ∇xfθ(M◦x+(1−M)◦xc),
where xc = x is a copy of the original image with no gradient flowing by. It is not surprising the
perturbed regions will show a large distribution shift from other regions, making the figure unnatural.

For Diff-PGD, instead of using the original SDEdit, we modify the reverse process using a replacement
strategy [30, 41] to get a more generalized method: Diff-rPGD. Similarly, when M has valued all ones,
it reduces to Diff-PGD. The pseudo-code for Diff-rPGD is shown in Alg. 1, where the replacement
strategy can give a better estimation of intermediate samples during the reverse diffusion. This
strategy can make the patches in the given region better align with the remaining part of the image in
the reversed diffusion process.

4.3 Customized Adversarial Sample Generation

As previously mentioned, Diff-PGD allows for the optimization of the adversarial loss while simulta-
neously preserving reality. This property helps us avoid optimizing multiple losses related to realism
at the same time, as is used in previous methods [12, 17, 26]. Naturally, this property benefits the
generation of highly customized adv-samples with prompts (e.g., mask, style reference, text), since
we can separate the generation into two steps: 1) generate samples close to given prompts (from x
to x̂s) and 2) perturb the samples to be adversarial and at the same time preserving the authenticity
(from x̂s to xn

0). Here we follow the task settings in natural-style adv-sample generation with style
reference in [12]: given the original image x, mask M , and style reference xs, we seek to generate
adv-samples xadv which shows the similar style with xs and is adversarial to the target classifier fθ.

5

The style distance, as defined in [15], is composed of the differences between the Gram matrix of
multiple features along the deep neural network, where Hs are layers for feature extraction (e.g.
Conv-layers), and G is used to calculate the Gram matrix of the intermediate features. The style loss
between x and xs as ls(x, xs) is

ls(x, xs) =
∑
h∈Hs

∥G(fh(x))−G(fh(xs))∥22 (6)

AdvCAM [12] uses l = λ1ls + λ2ladv + λ3lr as the optimization loss where lr includes losses like
smooth loss and content loss, all designed to make the outputs more realistic. It is tricky to balance
all these losses, especially the adversarial loss and the style loss. We emphasize that it is actually not
necessary to train the adversarial loss ladv together with ls. This is due to the fact that Diff-PGD can
guarantee the natural style of the output adversarial samples. Thus, the optimization process can be
streamlined by first optimizing the style loss, and subsequently running Diff-PGD/Diff-rPGD. The
high-level pipeline can be formulated as follows:

x+ p → x̂s and (xn, xn
0) = Diff-rPGD(x̂s,K, fθ) (7)

The first equation serves as a first stage of optimization to acquire region styled x̂s given prompts
p = (M,xs). This stage can be implemented with other methods (e.g. generative-model-based image
editing) and we do not need to worry about fθ at this stage. Then we use Diff-rPGD to generate the
adversarial sample xadv given x̂s and other necessary inputs. Through experiments, we find that there
are two major advantages of this pipeline: 1) the generation is much more stable 2) for some cases
where the style loss is weak to guide the style transfer (generate samples that do not make sense), we
can adjust K so that the diffusion model can help to generate more reasonable samples.

4.4 Physical World Attack with Diff-PGD

We can also apply Diff-PGD to physical world attacks. First, for physical-world attacks, we need to
introduce a Physical Adapter in order to make the attack more robust in physical scenarios. Second,
instead of using ℓ∞-PGD as a bounded attack (e.g. ϵ = 128/255, which is proved to be ineffective in
[12]), we turn to utilize the same idea of Diff-PGD, but apply it as Diff-Phys, a patch generator with
guidance from a diffusion model. We define our new loss as:

lDiff-Phys(x) = ladv(Eτ∼T [τ(SDEdit(x,K))]) (8)

Here, the physics adapter is included by adopting a transformation set T , which is utilized to account
for variations in image backgrounds, random translations, changes in lighting conditions, and random
scaling. We can apply Diff-PGD to patch attacks

x∗ = argmin
x

lDiff-Phys(x) and x∗
0 = SDEdit(x∗,K). (9)

The pipeline works as follows. We first gather background data and define the scope of translations
and lighting conditions, to get T . Then we optimize our patch in simulation to get x∗

0. Finally, we
print x∗

0 out, stick it to the target object, take photos of the object, and test it on the target classifier.

5 Experiments

The experiment section aims to answer the following questions: (Q1) Is Diff-PGD/Diff-rPGD effective
to generate adv-samples with higher realism? (Q2) Can Diff-PGD be easily applied to generate
better style-customized adv-samples? (Q3) Can Diff-PGD be applied to physical world attacks?
(Q4) Do adversarial samples generated by Diff-PGD show better properties like transferability and
anti-purification ability?

Datasets, Models, and Baselines. We use the validation dataset of ImageNet [8] as our dataset to
get some statistical results for global attacks and regional attacks. For the style-guided adv-sample
generation, we use some cases from [12] but also collect more images and masks by ourselves. We
use VGG-19 as the backbone network to compute the style distance. The main target classifier
to be attacked across this paper is ResNet-50 [18], and we also use ResNet-101, ResNet18, and
WideResNet(WRN) [51] for the transferability test. Besides convolutional-based networks, we also
try our Diff-PGD on Vision Transformers like ViT-b [11] and BEiT-l [3], and the results are put
in Appendix E. The diffusion model we adopt is the unconditional diffusion model pre-trained on

6

𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$% 𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$%

Figure 2: Visualization of Adversarial Samples generated by Diff-PGD: adv-samples generated
using PGD (xPGD) tend to be unnatural, while Diff-PGD (xn

0) can preserve the authenticity of adv-
samples. Here x is the original image, δPGD = x − xPGD and δn0 = x − xn

0 , and we scale up the δ
value by five times for better observation. Zoom in on a computer screen for better visualization.

𝑥 + 𝑥!"#$ + 𝑥%& 𝑥 + 𝑥!"#$ + 𝑥%&

Figure 3: Visualization of Adversarial Samples generated by Diff-rPGD: Diff-rPGD can generate
better regional attacks than PGD: the attacked region can better blend into the background. The
attacked regions are defined using red bounding boxes, and (+) means zoom-in.

ImageNet [9] though we use DDIM [40] to respace the original timesteps for faster inference. More
details about the experimental settings are included in the appendix.

We compare Diff-PGD with threat models such as PGD [31] (for digital attacks), AdvPatch [4] (for
physical-world attacks), and AdvCam [12] (for customized attacks and physical-world attacks). All
threat models generate attacks within the context of image classification tasks. More details are
included in the supplementary materials.

Diff-PGD For Digital Attacks (Q1). We begin with the basic global ℓ∞ digital attacks, where we
set ℓ∞ = 16/255 for PGD and Diff-PGD, and # of iterations n = 10 and step size η = 2/255. For
Diff-PGD, we use DDIM with timestep Ts = 50 (noted as DDIM50 for simplicity), and K = 3 for
the SDEdit module. Figure 2 shows that adv-samples generated by Diff-PGD (xn

0) are more stealthy,
while PGD-generated samples (xPGD) have some patterns that can be easily detected by humans.
This contrast is clearer on the perturbation map: δPGD contains more high-frequency noise that is
weakly related to local patterns of the instance x, and δn0 is smoother and highly locally dependent.
Similarly, for regional adversarial attacks, Diff-rPGD can generate adv-samples that can better blend
into the unchanged region, as demonstrated in Figure 3, showing higher stealthiness than rPGD.

We also conduct experiments to show the effectiveness of Diff-PGD regarding the Success Attack
Rate. We uniformly sampled 250 images from the ImageNet validation set. From Figure 6 (a), we can
see that although the gradient is restricted to generate realistic perturbations, Diff-PGD can still reach
a high success rate with more than 5 iterations. Detailed settings can be found in the supplementary
materials.

We also conduct experiments on different norms. We show additional results of the performance of
Diff-PGD on ℓ2-based attacks in Appendix F.

Diff-PGD For Style-Customized Attacks (Q2). For customized attacks, we focus on the task of
generating adversarial samples using a mask M and a style reference image xs provided by the
user. We compare our approach, described in Section 4.3, with the AdvCam method. As previously
mentioned, the main advantage of our pipeline is that we do not need to balance multiple losses, and
can instead divide the task into two stages: generate a style-transferred image x̂s without considering

7

𝑥 𝑀 𝑥! AdvCam Ours 𝑥 𝑀 𝑥! AdvCam Ours

Figure 4: Generating Adversarial Samples with Customized Style: Given the original image x, a
style mask M , and a style reference image xs, Diff-PGD can generate more realistic samples, even in
cases where only local styles are given (e.g. only the door of the red car is offered as a xs).

“Computer Mouse” “Cucumber” “Computer Mouse” “Neckless”

“Backpack” “Yorkshire terrier” “Norwich terrier” “Yorkshire terrier”

Figure 5: Results of Physical-World Attacks: We show two scenarios of physical world attacks: the
first row includes untargeted attacks on a small object: computer mouse, and the second row includes
targeted attacks on a larger object: backpack, where we set the target to be Yorkshire terrier. The
sticks-photo pairs include clean patch (green box), AdvPatch(blue box), AdvCam generated patch
(red box), and our Diff-Phys generated patch (black box).

adversarial properties, and then generate a realistic perturbation using Diff-PGD to make the image
adversarial to the classifier.

For Diff-PGD, we use DDIM10 with K = 2. Figure 4 demonstrates that our method consistently
generates customized adversarial samples with higher stealthiness, while the adversarial samples
generated by AdvCam exhibit digital artifacts that make them appear unnatural. Also, in some cases,
the style reference cannot be easily transferred (e.g. only local styles are given in xs, or x and xs are
collected with different resolution), resulting in an unsatisfactory x̂s, such as red/yellow car style in
Figure 4. Diff-PGD can refine the samples with more details, thanks to the strong generation capacity
of diffusion models.

Diff-PGD For Physical-World Attacks (Q3). In the physical-world attacks, we set the problem
as: given an image patch (start point of optimization), and a target object (e.g. attack a backpack),
we need to optimize the patch to fool the classifier when attached to the target object. We use an
iPhone 8-Plus to take images from the real world and use an HP DeskJet-2752 for color printing. In
AdvPatch, only adversarial loss is used to optimize the patch; in AdvCAM, content loss and smooth
loss are optimized together with adversarial loss; for Diff-Phys, we only use purified adversarial loss
defined in Equation (8), and the SDEdit is set to be DDIM10 with K = 2 for better purification.

The results are shown in Figure 5, for the untargeted attack, where we use a green apple as a patch to
attack a computer mouse. For targeted attack, we use an image of a cat to attack a backpack, with the
target-label as “Yorkshire terrier”. We can see that both AdvPatch and AdvCam generate patches with
large noise, while Diff-Phys can generate smoother and more realistic patches that can successfully
attack the given objects.

8

(a) (b) (c)

Iterations R50 R101 R18 WR50 WR101 AT-R50 AT*-R50 AT*-R18

100% Success Rate

Figure 6: This figure presents quantitative results on our approach, with all y-axis representing
the success rate of attacks: (a) Successful rate of Diff-PGD vs PGD; (b) Results of transferability
of Diff-PGD vs PGD, where ϵ = 16/255 and η = 2/255. The adv-samples are generated with
ResNet-50 (R50) and tested on ResNet-18 (R18), ResNet-101 (R101), WRN-50 (WR50), and WRN-
101 (WR101); (c) Success rate of Diff-PGD vs PGD on adversarially trained networks. AT uses
adversarial training strategy in [13] and AT* uses AT strategy in [39] on the ImageNet dataset.

Table 2: Anti-purification Results: Adv-samples generated by PGD and Diff-PGD against adver-
sarial purification: (+P) means the classifier is enhanced by an off-the-shelf adversarial purification
module. Here we set ϵ = 16/255, n = 10. The attacks are operated on ResNet-50.

Sample (+P)ResNet50 (+P)ResNet101 (+P)ResNet18 (+P)WRN50 (+P)WRN101
xPGD 0.35 0.18 0.26 0.20 0.17
xn (Ours) 0.88 0.38 0.36 0.32 0.28
x0
n (Ours) 0.72 0.36 0.37 0.36 0.36

Exploring Other Properties of xn
0 and xn (Q4). Finally, we investigate additional properties of

adversarial samples generated using Diff-PGD. Among the two samples xn
0 and xn, the former

exhibits both adversarial characteristics and a sense of realism, while the latter is noisier but contains
adversarial patterns that are more difficult for SDEdit to eliminate. Although our approach does not
specifically target enhancing Transferability and Purification power, we demonstrate that Diff-PGD
surpasses the original PGD in these two aspects.

Transferability. We test the adv-samples targeting ResNet-50 on four other classifiers: ResNet-101,
ResNet-18, WRN-50 and WRN-101. From Figure 6(b) we can see that both xn and xn

0 generated by
Diff-PGD can be better transferred to attack other classifiers than PGD. This can be explained by the
intuition that adv-attacks in semantic space can be better transferred. We also test the success rate
attacking adversarially trained ResNet-50 in Figure 6(c) and we can see xn is much better than other
adversarial samples.

Anti-Purification. Following the purification pipeline in [34], we attach an off-the-shelf sample
purifier to the original ResNet-50 and test the success rate of different adv-samples. In Table 2 we can
see that the adv-samples xPGD generated by PGD are easily purified using the enhanced ResNet-50.
In contrast, our adv-samples, xn and xn

0 , show better results than xPGD by a large margin. It can
be explained by the type of perturbations: out-of-distribution perturbations used in PGD can be
removed using diffusion-based purification, while in-distribution attacks in Diff-PGD are more robust
to purification.

6 Accelerated Diff-PGD with Gradient Approximation

From Algorithm 1, we can see that we need to calculate the derivative of the model’s output over
the input, where the model is composed of chained U-Nets Rϕ in the diffusion model followed by a
target classifier fθ. Here we focus on the computational bottleneck, which is the derivative of K-step
SDEdit outputs x0 over SDEdit input x:

∂x0

∂x
=

∂xK

∂x
(
∂xK−1

∂xK

∂xK−2

∂xK−1
...
∂x1

∂x0
) ≈ c (10)

9

We approximate the gradient with a constant c. We notice that the approximation of this Jacobian has
been used in many recent works [36, 49, 7]. We also tried this strategy in Diff-PGD, and we got the
accelerated version:

∂L(f(xi
0))

∂x
≈ c

∂L(f(xi
0))

∂xn
0

. (11)

From this we can see that, we only need to calculate the gradient over xn
0 ! We only run the inference

of SDEdit to get xn
0 without saving the gradient (lower GPU memory, faster), making it much cheaper.

We found that, for the global attack tasks, the approximated gradient still shows a high success rate
but saves 50% of time and 75% of VRAM. More detailed results about the visualization and sucess
rate can be found in Appendix C.

7 Conclusions

In this paper, we propose a novel method to power the generation of adversarial samples with
diffusion models. The proposed Diff-PGD method can improve the stealthiness of adv-samples.
We further show that Diff-PGD can be easily plugged into global digital attacks, regional digital
attacks, customized attacks, and physical-world attacks. We demonstrate through experiments that our
methods outperformed the baselines and are effective and stable. The major limitation of our method
is that the back-propagation is more expensive than traditional gradient-based methods; however, we
believe that the strong prior knowledge of the diffusion model can push forward adversarial attacks
& defenses. Finally, while the proposed adversarial attack method could be potentially used by
malicious users, it can also enhance future efforts to develop robust defense mechanisms, thereby
safeguarding the security of AI systems.

10

Acknowledgment

The authors would like to thank the anonymous reviewers for useful comments. HX and YC
are supported by grants NSF 2008513 and NSF 2206576. AA is supported in part by the Army
Research Office under grant number W911NF-21-1-0155 and by the New York University Abu Dhabi
(NYUAD) Center for Artificial Intelligence and Robotics, funded by Tamkeen under the NYUAD
Research Institute Award CG010. BH is supported by the NSF award CAREER-2048168 and the
AFOSR award FA9550-23-1-0732.

References
[1] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial examples. In International

conference on machine learning, pages 284–293. PMLR, 2018.

[2] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, K. Kreis, M. Aittala, T. Aila, S. Laine, B. Catanzaro,
et al. ediffi: Text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint
arXiv:2211.01324, 2022.

[3] H. Bao, L. Dong, S. Piao, and F. Wei. BEit: BERT pre-training of image transformers. In International
Conference on Learning Representations, 2022.

[4] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017.

[5] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee symposium
on security and privacy (sp), pages 39–57. Ieee, 2017.

[6] N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter. (certified!!) adversarial
robustness for free! In The Eleventh International Conference on Learning Representations, 2023.

[7] Z. Chen, B. Li, S. Wu, K. Jiang, S. Ding, and W. Zhang. Content-based unrestricted adversarial attack.
arXiv preprint arXiv:2305.10665, 2023.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[9] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

[10] Y. Dong, S. Ruan, H. Su, C. Kang, X. Wei, and J. Zhu. Viewfool: Evaluating the robustness of visual
recognition to adversarial viewpoints. arXiv preprint arXiv:2210.03895, 2022.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[12] R. Duan, X. Ma, Y. Wang, J. Bailey, A. K. Qin, and Y. Yang. Adversarial camouflage: Hiding physical-
world attacks with natural styles. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1000–1008, 2020.

[13] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. A rotation and a translation suffice: Fooling
cnns with simple transformations. https://openreview.net/forum?id=BJfvknCqFQ, 2017.

[14] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song.
Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1625–1634, 2018.

[15] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2414–2423, 2016.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[17] A. Guesmi, I. M. Bilasco, M. Shafique, and I. Alouani. Advart: Adversarial art for camouflaged object
detection attacks. arXiv preprint arXiv:2303.01734, 2023.

11

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[19] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020.

[20] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,
D. J. Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv preprint
arXiv:2210.02303, 2022.

[21] J. Ho, T. Salimans, A. A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. In
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[22] H. Hosseini and R. Poovendran. Semantic adversarial examples. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 1614–1619, 2018.

[23] Y.-C.-T. Hu, B.-H. Kung, D. S. Tan, J.-C. Chen, K.-L. Hua, and W.-H. Cheng. Naturalistic physical
adversarial patch for object detectors. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7848–7857, 2021.

[24] Z. Hu, S. Huang, X. Zhu, F. Sun, B. Zhang, and X. Hu. Adversarial texture for fooling person detectors
in the physical world. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13307–13316, 2022.

[25] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in the physical world. In Artificial
intelligence safety and security, pages 99–112. Chapman and Hall/CRC, 2018.

[26] R. Lapid and M. Sipper. Patch of invisibility: Naturalistic black-box adversarial attacks on object detectors.
arXiv preprint arXiv:2303.04238, 2023.

[27] M. Lee and D. Kim. Robust evaluation of diffusion-based adversarial purification. arXiv preprint
arXiv:2303.09051, 2023.

[28] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and T.-Y. Lin.
Magic3d: High-resolution text-to-3d content creation. arXiv preprint arXiv:2211.10440, 2022.

[29] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and A. Jacobson. Beyond pixel norm-balls: Para-
metric adversaries using an analytically differentiable renderer. In International Conference on Learning
Representations, 2019.

[30] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting using
denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11461–11471, 2022.

[31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learning Representations, 2018.

[32] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit: Guided image synthesis and
editing with stochastic differential equations. In International Conference on Learning Representations,
2021.

[33] Y. Miao, Y. Dong, J. Zhu, and X.-S. Gao. Isometric 3d adversarial examples in the physical world. In A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing Systems,
2022.

[34] W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar. Diffusion models for adversarial
purification. In Proceedings of the 39th International Conference on Machine Learning, pages 16805–
16827, 2022.

[35] X. Pan, P. Qin, Y. Li, H. Xue, and W. Chen. Synthesizing coherent story with auto-regressive latent
diffusion models. arXiv preprint arXiv:2211.10950, 2022.

[36] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. In The
Eleventh International Conference on Learning Representations, 2023.

[37] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

12

[38] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing Systems, 35:36479–36494, 2022.

[39] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry. Do adversarially robust imagenet models
transfer better? Advances in Neural Information Processing Systems, 33:3533–3545, 2020.

[40] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International Conference on
Learning Representations, 2021.

[41] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

[42] Y. Takagi and S. Nishimoto. High-resolution image reconstruction with latent diffusion models from
human brain activity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14453–14463, 2023.

[43] J. Wang, Z. Lyu, D. Lin, B. Dai, and H. Fu. Guided diffusion model for adversarial purification. arXiv
preprint arXiv:2205.14969, 2022.

[44] Y. Wang, Z. Wu, C. Li, and A. Wu. Extraction and recovery of spatio-temporal structure in latent dynamics
alignment with diffusion model. arXiv preprint arXiv:2306.06138, 2023.

[45] Q. Wu, H. Ye, and Y. Gu. Guided diffusion model for adversarial purification from random noise. arXiv
preprint arXiv:2206.10875, 2022.

[46] C. Xiao, Z. Chen, K. Jin, J. Wang, W. Nie, M. Liu, A. Anandkumar, B. Li, and D. Song. Densepure:
Understanding diffusion models for adversarial robustness. In The Eleventh International Conference on
Learning Representations, 2023.

[47] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang, and X. Lin. Adversarial t-shirt!
evading person detectors in a physical world. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pages 665–681. Springer, 2020.

[48] X. Xu, X. Chen, C. Liu, A. Rohrbach, T. Darell, and D. Song. Can you fool ai with adversarial examples
on a visual turing test. arXiv preprint arXiv:1709.08693, 3, 2017.

[49] H. Xue, C. Liang, X. Wu, and Y. Chen. Toward effective protection against diffusion based mimicry
through score distillation. arXiv preprint arXiv:2311.12832, 2023.

[50] J. Yoon, S. J. Hwang, and J. Lee. Adversarial purification with score-based generative models. In
International Conference on Machine Learning, pages 12062–12072. PMLR, 2021.

[51] S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference 2016.
British Machine Vision Association, 2016.

[52] X. Zeng, C. Liu, Y.-S. Wang, W. Qiu, L. Xie, Y.-W. Tai, C.-K. Tang, and A. L. Yuille. Adversarial attacks
beyond the image space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4302–4311, 2019.

[53] K. Zhang, H. Zhou, J. Zhang, Q. Huang, W. Zhang, and N. Yu. Ada3diff: Defending against 3d adversarial
point clouds via adaptive diffusion. arXiv preprint arXiv:2211.16247, 2022.

[54] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

[55] Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. In International Conference on
Learning Representations, 2018.

13

Contents

1 Introduction 1

2 Related Work 2

3 Background 3

4 Diffusion-based Projected Gradient Descent 4

4.1 Diffusion-based Projected Gradient Descent . 4

4.2 Extended Diff-PGD into Region Attack . 5

4.3 Customized Adversarial Sample Generation . 5

4.4 Physical World Attack with Diff-PGD . 6

5 Experiments 6

6 Accelerated Diff-PGD with Gradient Approximation 9

7 Conclusions 10

A Notations 15

B Details about Methods 15

B.1 Details about Style Diff-PGD . 15

B.2 Details about Physical World Diff-PGD . 15

C Accelerated Diff-rPGD 16

D Implementation Details 17

E Results on Vision Transformers 18

F Results on ℓ2-based Attacks 18

G More Complementary Results 20

H Human Evaluation 23

I Potential Social Impacts 23

14

Appendix
The appendix is organized as follows: in Section A, we provide a summary table of notations to
assist readers in better understanding the content. Then we delve into the details of our algorithms
in Section B, including how to apply Diff-PGD to style-based attacks and physical world attacks
step by step. Then, we show the experimental settings in Section D, including our experimental
environments, training settings, and inference speed. Then, we show more complementary results
of our experiments in Section G, where we also present the results of a human-evaluation survey.
Finally, we discuss the potential social impacts of our work in Section I.

A Notations

Notation Description
p(x0) real data distribution

q(xt|x0) forward diffusion in diffusion model
pϕ(xt−1|xt) backward diffusion parameterized by ϕ

α, β diffusion coefficients in a diffusion model
Rϕ backward diffusion sampling
T original diffusion time step
K SDEdit reverse timesteps
n iterations of PGD attack
ϵ maximum ℓ∞ norm of adversarial attacks
η steps of adversarial attacks

B∞,ϵ ℓ∞ ball sized ϵ
xn Diff-PGD generated adv-samples (before purification)
xn
0 Diff-PGD generated adv-samples (after purification)

xPGD PGD-generated adv-samples
xrPGD regional PGD-generated adv-samples
xs style reference image in style-based attacks
x̂s style-transferred image
xc copy of the original image, no gradient
Hs style feature extractor
Hc content feature extractor
M mask to define the regional attacks
Ts DDIM timestep
Ks SDEdit reverse timesteps with accelerator
◦ element-wise multiplication
U uniform distribution

B Details about Methods

B.1 Details about Style Diff-PGD

Departing from existing methods where adversarial loss and style loss are optimized together, Diff-
PGD makes it possible to separate the optimization of these two losses, as Diff-PGD can guarantee
the realism of output samples during the adversarial optimization stage. The detailed implementation
is demonstrated in Algorithm 2, where we add a stage for style-based editing to Diff-PGD.

Even though here we only present one direction of customized editing (e.g. text-guided editing), this
framework can deal with almost any customized adv-sample generation problem, by adopting any
proper method for the first stage.

B.2 Details about Physical World Diff-PGD

15

Algorithm 2 Diff-PGD for Style-based Attacks

Require: Target classifier fθ, original image x, mask M , style reference xs, style network fh, style
extract layers Hs, content extract layers Hc, denoised sampler Rϕ, style transfer learning rate ηs,
of reverse SDEdit steps K, iterations for PGD n, iteration for style transfer ns, stepsize η, clip
value ϵ, style weight λs and content weight λc

x0
s = x

for t = 0, 1, 2, . . . , ns − 1 do
Ls =

∑
h∈Hs

∥G(fh(x
t
s))−G(fh(xs))∥22

Lc =
∑

h∈Hc
∥fh(xt

s)− fh(xs)∥22
xt+1
s = xt

s − ηs∇xt
s
(λsLs + λcLc) ▷ Style transfer only, without adversarial loss

end for
x0 = x0

0 = xns
s

xc = xns
s ▷ Used for unchanged part

for t = 0, 1, 2, . . . , n− 1 do
xt
K ∼ q(xt

K |xt) ▷ Sample xt
K from q(xt

K |xt) in each PGD iteration
for i = K − 1, . . . , 0 do
xt
i = Rϕ(x

t
i+1) ▷ Apply denoiser Rϕ to xt

i+1 in each SDEdit iteration
xt
i ∼ M ◦ xt

i + (1−M) ◦ q(xt
i|xt) ▷ Sample from masked combination of xt

i and q(xt
i|xt)

end for
g = ∇xt l(fθ(M ◦ xt

0 + (1−M) ◦ xc)] ▷ Compute the gradient
xt+1 = Πx,ϵ[x

t + ηM ◦ sign(g)] ▷ PGD update
end for
xn
0 = rSDEdit(xn) ▷ Apply reverse SDEdit to the final xn

return xn
0 ▷ Return style-based adversarial sample

Algorithm 3 Diff-PGD for Physical World Attacks

Require: Target classifier fθ, original patch image x, mask M , denoised sampler Rϕ, # of reverse
SDEdit steps K, iterations n, stepsize η, physics transformation set T , learning rate η
x0 = x0

0 = x, xc = x
for t = 0, 1, 2, . . . , n− 1 do
xt
K ∼ q(xt

K |xt) ▷ Sample xt
K from q(xt

K |xt) in each PGD iteration
for i = K − 1, . . . , 0 do
xt
i = Rϕ(x

t
i+1) ▷ Apply denoiser Rϕ to xt

i+1 in each SDEdit iteration
xt
i ∼ M ◦ xt

i + (1−M) ◦ q(xt
i|xt) ▷ Sample from masked combination of xt

i and q(xt
i|xt)

end for
τ ∼ U(T) ▷ Sample physics transformation
g = ∇xt l(fθ(τ(M ◦ xt

0 + (1−M) ◦ xc))] ▷ Compute the gradient
xt+1 = xt + ηM ◦ sign(g) ▷ update

end for
xn
0 = rSDEdit(xn) ▷ Apply reverse SDEdit to the final xn

return xn
0 ▷ Return Diff-Phys patch

To adapt Diff-PGD to the physical world settings, larger modifications are needed. In Algorithm 3,
we present Diff-PGD in physical world environments. The biggest difference is that we no longer
restrict the ℓ∞ norm of perturbations. Also, we use gradient descent instead of projected gradient
descent. For the generation of the physical adaptor T , we consider the scale of the patch image x, the
position of the patch image, the background images, and the brightness of the environment.

C Accelerated Diff-rPGD

Changing only one line can help us get the accelerated version of generalized Diff-PGD with an
approximated gradient (Algorithm 4).

16

Algorithm 4 Accelerated Diff-rPGD

Require: Target classifier fθ, original image x, mask M , denoiser Dϕ, # of reverse SDEdit steps K,
iterations n, stepsize η, clip value ϵ (when M = 1 it reduces to Diff-PGD)
x0 = x0

0 = x, xc = x
for t = 0, 1, 2, . . . , n− 1 do
xt
K ∼ q(xt

K |xt) ▷ Sample xt
K from q(xt

K |xt) in each PGD iteration
for i = K − 1, . . . , 0 do
xt
i = Rϕ(x

t
i+1) ▷ Apply denoiser Rϕ to xt

i+1 in each SDEdit iteration
xt
i ∼ M ◦ xt

i + (1−M) ◦ q(xt
i|xt) ▷ Sample from masked combination of xt

i and q(xt
i|xt)

end for
g = ∇xt

0
l[fθ(M ◦ xt

0 + (1−M) ◦ xc)] ▷ Compute the approximated gradient
xt+1 = Πx,ϵ[x

t + ηM ◦ sign(g)] ▷ PGD update
end for
xn
0 = rSDEdit(xn) ▷ Apply reverse SDEdit to the final xn

return xn, xn
0 ▷ Return the final adversarial example and the denoised version

Method K n VRAM(G) Speed(sec/sample)

Diff-PGD 2 10 ∼18 8
v2 2 10 ∼4 4

Diff-PGD 3 10 ∼20 10
v2 3 10 ∼4 5

Table 3: The Speed and VRAM of Diff-PGD and accelerated Diff-PGD with approximal gradient
(v2). From this we can see that the v2 is much cheaper to run than the original Diff-PGD. K and n
follows the definition in Algorithm 1.

Here, we compared the speed and success rate of accelerated Diff-PGD with the original version;
we refer to the accelerated version as v2. The qualitative results of v2 are put in Figure 10, and the
quantitative results about speed, VRAM, and success rate are put in Table 3 and Table 4.

D Implementation Details

Experimental Environments and Inference Speed The methods described in this study are
implemented using the PyTorch framework. All the experiments conducted in this research were
carried out on a single RTX-A6000 GPU, housed within a Ubuntu 20.04 server.

Since we need to do back-propagation on the U-Net used in the diffusion model, it will cost more
GPU memory and GPU time. Running on one single GPU, it takes ∼ 7 seconds to run Diff-PGD
with n = 10,Ks = 2 for one sample on one A6000 GPU. Parallel computing with more GPUs can
be used to accelerate the speed.

Method Model n ϵ SR

v2 ResNet-50 10 16/255 99.6
v2 ResNet-50 10 8/255 98.8
v2 ResNet-50 15 16/255 100.0
v2 ResNet-50 15 8/255 100.0

Table 4: The success rate of accelerated Diff-PGD, from which we can see the success rate (SR) is
still really nearly 100%, showing that v2 is a cheaper but still effective attack. ϵ and n follows the
definition in Algorithm 1.

17

Global Attacks Here we use ϵ = 16/255, η = 2/255, n = 10 as our major settings (except for the
ablation study settings) for both PGD and Diff-PGD. For Diff-PGD, we use DDIM50 with Ks = 3 as
our SDEdit setting; we will also show more results with different DDIM time-steps and different Ks.

Regional Attacks For the experiments of the regional attacks, we randomly select a squared
mask sized 0.4H × 0.4W , where the size of the original image is H × W . For the same image
in the ImageNet dataset, we use the same mask for both rPGD and Diff-rPGD. Also, we use
ϵ = 16/255, η = 2/255, n = 10 for bounded attack with projected gradient descent. And for Diff-
rPGD, we use DDIM50 with Ks = 2; similarly, we try more settings in the ablation study section.
The repainting strategy of our Diff-rPGD is based on replacement, but more effective strategies are
encouraged to be used here.

Style-based Attacks As mentioned in Section B, the implementation of Diff-PGD for style-based
attacks can be divided into two parts. For the first stage, we use style weight λs = 4000 and adopt
Adam optimizer with learning rate η = 0.01 for style transfer. For the feature extractor, we adopt
VGG-19 as our backbone with the first five convolutional layers as the style extractor Hs and the
fourth convolutional layer as the content extractor Hc. For the target image x, we use SAM to collect
the segmentation mask to define the attack region.

In the second stage, we utilize DDIM10 with a parameter setting of Ks = 2 to achieve better
purification. It is beneficial to use a smaller Ks, as the style-transferred images often contain
unwanted noise and art-styled patterns that can be mitigated through this approach.

Phyiscal World Attacks The background images in the physical world attacks are collected by
taking photos of the target object with different camera poses. For the physical adaptor, we set the
scale factor to be around [0.8, 1.2] of the original patch size; then we set the random brightness to be
[0.5, 1.5] of the original brightness. We also set a margin for the random positions of the image patch
so that the patch will not be too far away from the target object. We use an iPhone 8-Plus to take
images from the real world and use an HP DeskJet-2752 for color printing. For Diff-PGD we use
DDIM10 and Ks = 2 to allow larger purification.

Transferability and Anti-Purification Power We show results of two additional good properties
of xn and xn

0 generated by Diff-PGD: transferability and anti-purification power. For transferability,
we use ϵ = 16/255, η = 2/255, n = 10 in the main paper, with DDIM50 with Ks = 2 for Diff-PGD.
Targeting our network on ResNet-50, we test the adv-samples among ResNet-101, ResNet18, and
WRN-50 and WRN-101.

For the test of anti-purification power, we use an SDEdit with DDIM50 with a larger Ks = 5 and test
for both PGD and Diff-PGD with ϵ = 16/255, η = 2/255, n = 10 and DDIM50 with Ks = 2 for
Diff-PGD so that our method is not biased.

E Results on Vision Transformers

Compared with the Convolutional-based network such as ResNet we used before, Vision
Transformers are another branch of strong classifiers that are worth taking into considera-
tion. Here we try a global attack on two famous models on ImageNet, ViT-b (https://
huggingface.co/google/vit-base-patch16-224) and BEiT (https://huggingface.co/
microsoft/beit-large-patch16-224-pt22k-ft22k).

Figure 9 demonstrates that Diff-PGD can still work well to generate adversarial samples with higher
stealthiness. Table 5 shows that Diff-PGD is still effective for vision transformers.

F Results on ℓ2-based Attacks

We also conduct experiments for ℓ2-based attacks, we set n = 10 and ϵ(ℓ2) = 16/255, and we can
still get a high success rate as 100% and the generated adversarial samples are shown in Figure 8,
which turns out to be also realistic.

18

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/microsoft/beit-large-patch16-224-pt22k-ft22k
https://huggingface.co/microsoft/beit-large-patch16-224-pt22k-ft22k

A
dv

-s
am

pl
e

Pu
rif

ie
d

Sa
m

pl
e

C
ha

ng
e

PGD Diff-PGD PGD Diff-PGD PGD Diff-PGD PGD Diff-PGD

ℓ! ≈ 16 ℓ! ≈ 9 ℓ! ≈ 20 ℓ! ≈ 13 ℓ! ≈ 16 ℓ! ≈ 9 ℓ! ≈ 20 ℓ! ≈ 10

Figure 7: Purification on Adv-samples Generated by PGD vs Diff-PGD: PGD attack can be easily
purified using recently proposed purification strategies using diffusion model, while Diff-PGD can
generate adv-samples in the realistic domain, making it harder to be purified. The changes in PGD
contain a lot of noise while the changes of Diff-PGD contain more meaningful features, which means
that the adversarial noise can be easily removed for traditional PGD. Also, we show the ℓ2 norm of
the changes, from which we can see that changes of Diff-PGD are always smaller.

Model n ϵ SR

ViT-base 10 8/255 100
ViT-base 10 16/255 100

BEiT-large 10 8/255 99.6
BEiT-large 10 16/255 99.6

Table 5: Success rate of Diff-PGD on vision transformers.

𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$% 𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$%

Figure 8: Performance of Diff-PGD on ℓ2 perturbations : all the figures attack ResNet-50 with
ϵ = 16/255 under l2 norm. (Zoom-in for better observation)

𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$% 𝑥 𝑥!"# 𝛿!"# 𝑥$% 𝛿$%

Figure 9: Qualitative Results of Diff-PGD on Vision Transformers: the left-half attack ViT-b and
the right-half attack BEiT-l. (Zoom-in for better observation)

19

Figure 10: Qualitative Results of Diff-PGD with Gradient Approximation : here we show six
samples, each contains x, xn, xn

0 from left to right. (Zoom-in for better observation)

Figure 11: More Results of Style-based Attacks: we show nine samples from the constructed
dataset, each sample contains x,M, xs, x

n
0 from left to right.

G More Complementary Results

Global Attacks Here we present more results randomly sampled from the ImageNet validation set
to show that Diff-PGD can steadily generate adv-samples with high stealthiness. In Figure 12, we
show some complementary results of ϵ = 16/255, η = 2/255, n = 10 in main part of the paper. Also
in Figure 13, we show results when the perturbation bound is larger: ϵ = 32/255, η = 4/255, n = 10,
where we use DDIM10 with Ks = 2; from the figure we can see that Diff-PGD can still generate
realistic adv-samples.

Also, we demonstrate that Diff-PGD remains effective in generating adversarial samples with a high
success rate even when the attack bound is smaller. Figure 14 illustrates this point, where we set
ϵ = 8/255 and evaluate two Diff-PGD strategies: DDIM50 and DDIM100, all with Ts = 2. Both
strategies exhibit a notable success rate and can produce realistic adversarial samples.

Regional Attacks Diff-rPGD can be adopted in customized settings where only masked regions
can be attacked. Here, we show more results of regional attacks in Figure 20, where ϵ = 16/255, η =
2/255, n = 10. We compare Diff-rPGD with rPGD, and the results show that our Diff-rPGD can
deal with the regional adversarial attack better: the masked region can be better merged into the
background.

Style-based Attacks In the main paper, we show that Diff-PGD can help generate style-based
adv-samples effectively. In Figure 15, we further present that the second stage in our two-stage
strategy is necessary and can highly preserve the realism of the output images.

Phyiscal World Attacks We present the result of physical world attacks using adversarial patches
generated using Diff-PGD in the main paper. In order to show that the adversarial patches are robust
to camera views, we show more images taken from different camera views in Figure 16. For the
two cases: computer mouse (untargeted) and back bag (targeted to Yorkshire Terrier), we randomly
sample ten other camera views. The results show that the adversarial patches are robust both for
targeted settings and untargeted settings. For targteted settings, our adversarial patch can fool the
network to predict back bag as terriers, and for untargeted settings, the adversarial patch misleads the
network to predict computer mouse as artichoke.

Transferability and Anti-Purification We presented the results when ϵ = 16/255 and found that:
though designed for improved stealthiness and controllability, it is surprising that Diff-PGD transfers
better than the original PGD to five different networks, here we show more results on different ℓ∞

20

Figure 12: More Results of Diff-PGD with ϵ = 16/255: five columns of each image block follows
x, xPGD, δPGD, xn

0 and δn0 as is defined in the main paper. We can see that Diff-PGD can steadily
generate adv-samples with higher stealthiness. Zoom in on a computer screen for better visualization.

21

Figure 13: More Results of Diff-PGD with ϵ = 32/255: five columns of each image block represent
x, xPGD, δPGD, xn

0 and δn0 respectively. We can see that Diff-PGD can steadily generate adv-samples
with higher stealthiness. Zoom in on a computer screen for better visualization.

bound. We take the other two settings: ϵ = 8/255 and ϵ = 32/255 to better investigate our methods,
for ϵ = 8/255 we still use η = 2/255 while for ϵ = 32/255, we use η = 4/255 for better attacks,
both of them use n = 10. For Diff-PGD, we use DDIM50 with Ks = 2 for ϵ = 8/255 case and
DDIM30 with Ks = 2 for ϵ = 32/255 case.

Results shown in Figure 17 reveal that both xn
0 and xn exhibit superior transferability compared to

the original PGD attack. This observation aligns with our intuition that attacks operating within the
realistic domain are more likely to successfully transfer across different networks.

For anti-purification, we show some qualitative results that how the noises can be removed by running
SDEdit on PGD and Diff-PGD. In Figure 17, we show visualizations of the adv-samples, purified
adv-samples, and the changes during the purification. From the figure, we can find that the adversarial
patterns generated by PGD can be easily removed by diffusion-based purification and Diff-PGD.

22

(a) (b)

Figure 14: Effective of Diff-PGD with Smaller Bound: we show that when the attack ℓ∞ bound is
smaller: ϵ = 8/255, Diff-PGD is still effective to generate adv-samples with high success rate. (a)
we use DDIM100 and Ks = 2, (b) we use we use DDIM50 and Ks = 2.

Figure 15: Results of Style-based Adv-sample Generation in Two Stages: here we should three
cases in style-based adversarial attacks, for each case, we should the difference between x̂s(the left
image in each case) and xn

0 (the right image in each case), which demonstrate that by employing
Diff-PGD, we are able to generate adversarial samples while simultaneously mitigating the artifacts
that arise during the style transfer stage.

H Human Evaluation

To better evaluate the stealthiness of Diff-PGD compared with the original PGD attack, we conduct
a survey among humans with the assistance of Google Form. The user interface of the survey is
shown in Figure 21, where the participants are allowed to choose multiple candidate images that they
think are realistic. We randomly choose ten images from the ImageNet validation set and the choices
for each question include one clean image, one adv-sample generated by PGD, and one adv-sample
generated by Diff-PGD. For Diff-PGD we use DDIM50 with Ks = 3, and for both Diff-PGD and
PGD we use ϵ = 16/255, η = 2/255, n = 10.

We collect surveys from 87 participants up to the completion of the writing and most of them are not
familiar with adversarial attacks. Figure 18 illustrates the results, indicating that Diff-PGD approach
achieves higher stealthiness among human participants compared with PGD.

I Potential Social Impacts

Adversarial attacks pose a serious threat to the security of AI systems. Diff-PGD introduces a novel
attack technique that effectively preserves the realism of adversarial samples through the utilization
of the diffusion model. This holds true for both digital and real-world settings. The emergence of

23

“artichoke” “artichoke” “artichoke” “artichoke” “artichoke”

“artichoke” “neckless” “artichoke” “artichoke” “neckless”

“Silk terrier” “Yorkshire” “Yorkshire” “Silk terrier” “Yorkshire”

“Yorkshire” “Yorkshire” “Yorkshire” “Yorkshire” “Yorkshire”
Figure 16: Physical World Attack with Diff-PGD: to show the effectiveness of adversarial patches
generated by Diff-PGD, we show the images captured from different camera viewpoints for the two
cases: computer mouse (untargeted) and back bag (targeted). For each case, we randomly sample
other ten poses. We present the prediction of the target network under each image, where Yorkshire
is short for Yorkshire terrier.

24

Figure 17: More Results on Transferability Test: in the main paper we show results of transferability
of ϵ = 16/255 settings; here we test transferability of Diff-PGD under different ℓ∞ bounds, (Left):
ϵ = 32/255, η = 4/255, n = 10, for Diff-PGD we use DDIM50 with Ks = 2, (Right): ϵ =
8/255, η = 2/255, n = 10 and for Diff-PGD we use DDIM30 with Ks = 2. From the plots we can
see that Diff-PGD has better transferability power than PGD.

Figure 18: Human Evaluation: Collecting 87 samples using Google Form, we calculate the average
choose rate of each kind of sample (real images, PGD-attacked images, and Diff-PGD-attacked
images). The results show that Diff-PGD method exhibits greater stealthiness than PGD when
evaluated by human participants.

such realistic domain attacks demands our attention and necessitates the development of new defense
methods.

25

Figure 19: More Results of Diff-PGD with ϵ = 16/255: five columns of each image block follows
x, xPGD, δPGD, xn

0 and δn0 as is defined in the main paper.

26

Figure 20: More Regional Attack Results: we present more results for regional attacks, the three
columns are clean image, xrPGD and xn

0 respectively.

27

Figure 21: The Interface of our Survey for Human-Evaluations: one sample of our questions is
presented, and we randomized the order of the three images for all questions. The options consisted of
a clean image, a PGD-attacked image, and a Diff-PGD-attacked image, with the participants unaware
of the composition of the choices.

28

	Introduction
	Related Work
	Background
	Diffusion-based Projected Gradient Descent
	Diffusion-based Projected Gradient Descent
	Extended Diff-PGD into Region Attack
	Customized Adversarial Sample Generation
	Physical World Attack with Diff-PGD

	Experiments
	Accelerated Diff-PGD with Gradient Approximation
	Conclusions
	Notations
	Details about Methods
	Details about Style Diff-PGD
	Details about Physical World Diff-PGD

	Accelerated Diff-rPGD
	Implementation Details
	Results on Vision Transformers
	Results on 2-based Attacks
	More Complementary Results
	Human Evaluation
	Potential Social Impacts

