Theoretically Guaranteed Bidirectional Data Rectification for Robust Sequential Recommendation

Yatong Sun^{1,2}, Xiaochun Yang^{1*}, Zhu Sun^{3*}, Bin Wang¹, Yan Wang²

¹School of Computer Science and Engineering, Northeastern University, China ²School of Computing, Macquarie University, Australia

³Center for Frontier AI Research, Institute of High Performance Computing, A*STAR, Singapore yatong@stumail.neu.edu.cn, yangxc@mail.neu.edu.cn, sunzhuntu@gmail.com,

binwang@mail.neu.edu.cn, yan.wang@mq.edu.au

Abstract

Sequential recommender systems (SRSs) are typically trained to predict the next item as the *target* given its preceding (and succeeding) items as the *input*. Such a paradigm assumes that every input-target pair is reliable for training. However, users can be induced to click on items that are inconsistent with their true preferences, resulting in unreliable instances, i.e., mismatched input-target pairs. Current studies on mitigating this issue suffer from two limitations: (i) they discriminate instance reliability according to models trained with unreliable data, yet without theoretical guarantees that such a seemingly contradictory solution can be effective; and (ii) most methods can only tackle either unreliable input or targets but fail to handle both simultaneously. To fill the gap, we theoretically unveil the relationship between SRS predictions and instance reliability, whereby two error-bounded strategies are proposed to rectify unreliable targets and input, respectively. On this basis, we devise a model-agnostic **<u>Bi</u>directional <u>D</u>ata <u>Rec</u>tification (BirDRec)** framework, which can be flexibly implemented with most existing SRSs for robust training against unreliable data. Additionally, a rectification sampling strategy is devised and a self-ensemble mechanism is adopted to reduce the (time and space) complexity of BirDRec. Extensive experiments on four real-world datasets verify the generality, effectiveness, and efficiency of our proposed BirDRec.

1 Introduction

Recently, the study on sequential recommender systems (SRSs) [1, 2, 3, 4, 5] has garnered much attention as users' preferences are inherently dynamic and evolving in real-world scenarios. The goal of SRSs is learning to predict the next item a user interacts with given the preceding (and succeeding) items. Therefore, a training instance for SRSs is typically composed of an *input* item sequence and its next item as the *target*. However, distractions in daily lives (e.g. recommendations from friends, account sharing, and accidental clicks) can induce users to click on items that are inconsistent with their true preferences, resulting in unreliable training instances with mismatched input-target pairs. The mismatch can be categorized into *Complete Mismatch* and *Partial Mismatch* when the item caused by distractions acts as an unreliable target and unreliable input of an instance, respectively. To illustrate, the romantic film 'La La Land', in the first instance of Figure 1, serves as an unreliable target, which is recommended by friends and completely mismatched with the previous superhero movies. By contrast, in the second instance, 'La La Land' acts as an unreliable input item which renders the input sequence partially mismatched with the target superhero film. Both

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

^{*} denotes the corresponding authors

Figure 1: Examples of two types of mismatch caused by external distractions.

types of mismatch would cause unreliable training instances that mislead SRSs to learn sequential relationships between irrelevant items and eventually undermine the recommendation accuracy.

Although there are a number of studies aiming to combat such unreliable data for more robust SRSs, they suffer from two core limitations. (i) They discriminate instance reliability based on the intermediate or final output of a model (either the SRS itself [6, 7, 8, 9] or an additional corrector [10]) that is trained with unreliable data. However, there is no theoretical guarantee that such seemingly contradictory solutions can be trustworthy for detecting and correcting unreliable instances. (ii) Most prior studies only focus on tackling either unreliable input [6, 7, 11, 12, 13] or targets [8], but fail to handle both simultaneously. Only one recently proposed method [10] attempts to address this issue, but it relies on a corrector trained with unreliable data, yet without any theoretical guarantees.

As such, we, *for the first time*, theoretically unveil the relationship between the SRS predictions and instance reliability, proving that a target with consistently low prediction scores is unlikely to be reliable, assuming that the randomness of user behavior is limited. It then inspires us to devise two error-bounded rectification strategies to (1) detect consistently low-scored targets (i.e., unreliable targets) and replace them with steadily high-scored items and (2) detect and delete consistently low-scored items within the input (i.e., unreliable input), where the score is estimated by a backward SRS. Note that the unreliable input items, as the interruptions in the input, are not replaced but directly removed to bridge the preceding and succeeding items. Based on these strategies, we propose a model-agnostic **Bidir**ectional **Data Rec**tification (**BirDRec**) framework which contains two SRSs in opposite directions for tackling both unreliable targets and input. In addition, to reduce the time complexity, a rectification sampling strategy is devised to efficiently obtain consistently high-scored items; to reduce space complexity, a self-ensemble mechanism [14] is adopted to approximate the weighted average prediction scores across different training epochs.

Contributions. (1) We are the first to provide theoretically guaranteed data rectification strategies based on SRS predictions to tackle both unreliable input and targets for more robust SRSs. (2) We devise a model-agnostic bidirectional data rectification framework that can be flexibly implemented with most existing SRSs for robust training against unreliable data. (3) We devise a rectification sampling strategy and adopt a self-ensemble mechanism to ensure better scalability of BirDRec. (4) Extensive experiments with SRSs based on representative backbones and datasets across various domains validate the generality, effectiveness, and efficiency of BirDRec.

2 Related Works

Early SRSs [15, 16] adopt Markov Chains to encode users' interaction sequences, assuming users' latest interactions affect the future behavior linearly and independently. Later, powerful deep learning backbones such as recurrent neural networks (RNNs) [17, 18, 19], convolution neural networks (CNNs) [20, 21, 22], graph neural networks (GNNs) [23, 24, 25, 26, 27], and Transformers [28, 29] are employed to extract complex non-linear patterns within users' sequences [30]. They posit each training instance is a definitely matched input-target pair and thus cannot handle unreliable data.

To resist unreliable data, existing robust SRSs can be categorized into three types. The *first type* focuses on handling the complete mismatch by identifying and eliminating instances with unreliable targets. For example, BERD [8] empirically finds that instances with high training loss and low uncertainty tend to have unreliable targets. This idea is relevant to studies on clean label selection [31, 32, 33, 34, 35] and label correction [36, 37, 38]. The *second type* concentrates on addressing partial mismatch by reducing the importance of unreliable input when formulating users' dynamic preference representations. Accordingly, various advanced mechanisms are integrated into SRSs, such as memory networks [7], gating networks [39, 40, 41], autoencoders [12], reinforcement learning [6],

uncertainty modelling [11, 42], and Fast Fourier Transform [9]. To the best of our knowledge, there is only one recently proposed method STEAM [10] falling into the *third type* which attempts to tackle both unreliable targets and input with an additional corrector producing reliable data. Nonetheless, existing robust SRSs all rely on models (either SRSs or additional correctors) trained with unreliable data, yet without theoretical proof that such seemingly contradictory solutions can be effective.

3 Theoretical Guarantees for Rectifying Unreliable Data

This section presents theoretical guarantees for rectifying unreliable data via SRS predictions for more robust SRSs. In particular, Section 3.1 introduces important preliminaries. Subsequently, Section 3.2 unveils the relationship between the prediction score of SRSs and the reliability of a target, inspiring us to propose an error-bounded strategy for handling unreliable targets; and Section 3.3 provides the error-bounded strategy for dealing with unreliable input.

3.1 Preliminaries

Problem Statement of SRSs. Let \mathcal{U} and \mathcal{V} be the sets of users and items, respectively. Each user $u \in \mathcal{U}$ chronologically interacts with a sequence of items $\mathbf{s}^u = [\tilde{v}_1^u, \tilde{v}_2^u, ..., \tilde{v}_{|\mathbf{s}^u|}^u]$, where $\tilde{v}_t^u \in \mathcal{V}$ is the *t*-th item user *u* interacts with and $|\mathbf{s}^u|$ is the length of sequence \mathbf{s}^u . The goal of SRSs is to predict the target item \tilde{v}_t^u given the input $\tilde{\mathbf{x}}_t^u = \{u, [\tilde{v}_{t-L}^u, ..., \tilde{v}_{t-2}^u, \tilde{v}_{t-1}^u]\}$, where *L* is the length of $\tilde{\mathbf{x}}_t^u$. Thus, the training instance of SRSs can be represented as an input-target pair $\langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$. Note that we use '~' to denote the observed data that may be unreliable due to external distractions.

Core Assumptions. Ideally, each user-item interaction should be drawn from users' true preference distribution η without any distractions, where $\eta_{v_i}(\mathbf{x}_t^u) = \mathbb{P}(v_t^u = v_i | \mathbf{x}_t^u)$. We define p_1 to be the true item for recommendation, i.e, the top-1 item according to η ,

$$\sum_{v_i \in \mathcal{V}} \mathbb{I}\big[\eta_{p_1}(\mathbf{x}_t^u) \ge \eta_{v_i}(\mathbf{x}_t^u)\big] = |\mathcal{V}|,\tag{1}$$

where $\mathbb{I}[\cdot]$ is an indicator function that equals 1 if the condition is true; otherwise 0. Meanwhile, we define p_2 to be the middle-ranked item (ranked $||\mathcal{V}|/2|$ -th) according to η , namely,

$$\sum_{v_i \in \mathcal{V}} \mathbb{I}\big[\eta_{p_2}(\mathbf{x}_t^u) \ge \eta_{v_i}(\mathbf{x}_t^u)\big] = \lfloor |\mathcal{V}|/2 \rfloor.$$
⁽²⁾

In general, SRSs are built upon the hypothesis that users usually select items with a tendency rather than randomly. In other words, the randomness of users' true preferences is restricted, i.e., the probability gap between the top-1 and middle-ranked items regarding η is unlikely to be small. This assumption can be formally defined as follows.

Assumption 1. The users' true preference distribution η fulfills the relaxed Multiclass Tsybakov Condition [43] with constants C > 0, $\lambda > 0$, and $\alpha_0 \in (0, 1]$, such that for all $\alpha \in (0, \alpha_0]$,

$$\mathbb{P}\left[\eta_{p_1}(\mathbf{x}_t^u) - \eta_{p_2}(\mathbf{x}_t^u) \le \alpha\right] \le C\alpha^{\lambda}.$$
(3)

The feasibility of Assumption 1 relies on small C and large λ , which are satisfied on public (observed) datasets based on our empirical analysis in the Appendix with $C \in (0.55, 0.70)$ and $\lambda \in (1.37, 4.01)$.

Connecting η with SRS Predictions. Obviously, η is the ideal corrector to rectify unreliable data, however, due to its unavailability, many existing methods [8, 10] leverage SRS predictions as the substitution with no theoretical guarantees. This urges us to explore the connection between η and SRS predictions. To achieve this goal, we first investigate the relationship between η and users' observed preference distribution $\tilde{\eta}$, since SRSs are trained with the observed data that may be distorted by external distractions. Formally, $\tilde{\eta}_{v_i}(\tilde{\mathbf{x}}_t^u) = \mathbb{P}(\tilde{v}_t^u = v_i | \tilde{\mathbf{x}}_t^u)$, where \tilde{v}_t^u is the observed target that may be unreliable. We then define a transition probability $\tau_{v_j v_i}(\tilde{\mathbf{x}}_t^u) = \mathbb{P}(\tilde{v}_t^u = v_i | v_t^u = v_j, \tilde{\mathbf{x}}_t^u)$ as the chance that a true target v_t^u is flipped from item v_j to item v_i owing to external distractions. Thus, for any pair $(v_i, v_j) \in \mathcal{V}$, there is a linear relationship between η and $\tilde{\eta}$:

$$\tilde{\eta}_{v_i}(\tilde{\mathbf{x}}_t^u) = \sum_{v_j \in \mathcal{V}} \mathbb{P}(\tilde{v}_t^u = v_i | v_t^u = v_j, \tilde{\mathbf{x}}_t^u) \mathbb{P}(v_t^u = v_j | \tilde{\mathbf{x}}_t^u) = \sum_{v_j \in \mathcal{V}} \tau_{v_j v_i}(\tilde{\mathbf{x}}_t^u) \eta_{v_j}(\tilde{\mathbf{x}}_t^u).$$
(4)

To bridge η and SRS predictions via $\tilde{\eta}$, we then study the relationship between $\tilde{\eta}$ and SRS predictions. Let f^h be an SRS at the *h*-th training epoch, and the prediction of f^h be ϵ -close to $\tilde{\eta}$,

$$\epsilon = \max_{\tilde{\mathbf{x}}_{t}^{u}, v_{i}} \left| \tilde{\eta}_{v_{i}}(\tilde{\mathbf{x}}_{t}^{u}) - f_{v_{i}}^{h}(\tilde{\mathbf{x}}_{t}^{u}) \right|,$$
(5)

where $f_{v_i}^h(\tilde{\mathbf{x}}_t^u)$ is the predicted probability (score) of the target being v_i given the input $\tilde{\mathbf{x}}_t^u$ at the *h*-th training epoch. Eqs. (4-5) indicate that there is indeed a connection between η and SRS predictions, laying the foundation for the proposed strategies to rectify unreliable data as what follows.

3.2 Theorems for Rectifying Unreliable Targets

We now explore how to properly use SRS predictions for rectifying unreliable targets. Prior works empirically find that unreliable targets tend to possess consistently low prediction scores at different epochs [8, 44]. Yet, there is no guarantee that such prediction scores given by an SRS trained with unreliable data can be trustworthy for detecting unreliable targets. This prompts us to theoretically unveil the relationship between target reliability and SRS predictions at different epochs. Specifically, Theorem 1 proves that a reliable target is unlikely to keep low prediction scores during training.

Theorem 1. Given Assumption I, let $\{w_h \mid 1 \le h \le H, 0 \le w_h \le 1, \sum_{h=1}^H w_h = 1\}$ be the weights¹ for averaging prediction scores of different epochs. $\forall \langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$, assume $\epsilon \le \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u)$. Let $\gamma = \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) \eta_{p_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) \eta_{v_j} (\tilde{\mathbf{x}}_t^u)$. We have: $\mathbb{P}\Big[p_1 = \tilde{v}_t^u, \sum_{h=1}^H \big[w_h f_{\tilde{v}_t^u}^h (\tilde{\mathbf{x}}_t^u)\big] \le \gamma \Big] \le C(\mathcal{O}(\epsilon))^{\lambda}$. Proof.

$$\mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u},\sum_{h=1}^{H}\left[w_{h}f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] \leq \gamma\right] \\
\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u},\sum_{h=1}^{H}w_{h}\left[\tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})-\epsilon\right] \leq \gamma\right] \\
= \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u},\eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{h=1}^{H}w_{h}\left[\sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}\tilde{v}_{t}^{u}}\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})-\epsilon\right] \leq \gamma\right] \\
\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u},\eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}),\tau_{\tilde{v}_{t}^{u}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})+\sum_{v_{j}\neq\tilde{v}_{t}^{u}}\tau_{v_{j}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \gamma+\epsilon\right] \\
= \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u},\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\gamma+\epsilon-\sum_{v_{j}\neq\tilde{v}_{t}^{u}}\tau_{v_{j}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})}{\tau_{\tilde{v}_{t}^{u}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{u}^{u})}\right].$$
(6)

By replacing γ with $\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u) \eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u) \eta_{v_j}(\tilde{\mathbf{x}}_t^u)$, we obtain:

$$\mathbb{P}\left[p_1 = \tilde{v}_t^u, \sum_{h=1}^H \left[w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u)\right] \le \gamma\right] \le \mathbb{P}\left[\eta_{p_2}(\tilde{\mathbf{x}}_t^u) \le \eta_{p_1}(\tilde{\mathbf{x}}_t^u) \le \eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \frac{\epsilon}{\tau_{\tilde{v}_t^u}\tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)\right].$$
(7)

Recall that $\epsilon \leq \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)$, which indicates $\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the relaxed Multiclass Tsybakov Condition holds and the probability is bounded by $C(\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)})^{\lambda}$, namely, $C(\mathcal{O}(\epsilon))^{\lambda}$.

Note that a small ϵ relies on large observed data and a powerful f, so that (i) the observed data can accurately approximate $\tilde{\eta}$, and (ii) f can closely fit the observed data. Both requirements can be satisfied thanks to the large-scale datasets and deep learning advancements in recommendation.

Theorem 1 indicates that the probability of a reliable target $(p_1 = \tilde{v}_t^u)$ keeping low prediction scores across different epochs $(\sum_{h=1}^{H} [w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u)] \leq \gamma)$ is bounded to be low, i.e., no more than $C(\mathcal{O}(\epsilon))^{\lambda}$. This inspires us to rectify unreliable targets by replacing consistently low-scored targets with steadily high-scored items as the following strategy.

DRUT: Detecting and Replacing Unreliable Targets. Given an SRS f that is ϵ -close to $\tilde{\eta}$, an instance $\langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$, the consistently high-scored item $v_m = \arg \max_{v_i \neq \tilde{v}_t^u} \sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]$, and $\beta \in (0, 1]$, we stipulate that if $\sum_{h=1}^H [w_h f_{\tilde{v}_t}^h(\tilde{\mathbf{x}}_t^u)] / \sum_{h=1}^H [w_h f_{v_m}^h(\tilde{\mathbf{x}}_t^u)] < \beta$, i.e., the target \tilde{v}_t^u is consistently lower-scored than v_m to some extent, then \tilde{v}_t^u should be replaced by v_m in the *H*-th epoch. We denote the output instance of DRUT as $\langle \tilde{\mathbf{x}}_t^u, \hat{v}_t^u \rangle$.

Different from existing methods, DRUT is theoretically error-bounded. Specifically, the error of DRUT, denoted as E_{DRUT} , comes from three cases: (Case-1) the true target p_1 is \tilde{v}_t^u but is replaced

¹The detailed setting of the weights is related to the self-ensemble mechanism introduced in Section 4.2

by v_m . (Case-2) the true target p_1 is v_m but \tilde{v}_t^u is kept. (Case-3) the true target is neither \tilde{v}_t^u nor v_m . Correspondingly, E_{DRUT} can be formulated as below:

$$E_{\text{DRUT}} = \underbrace{\mathbb{E}\left[p_1 = \tilde{v}_t^u, p_1 \neq v_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^n}^h(\tilde{\mathbf{x}}_t^u) \right]} < \beta \right]}_{\text{Case-1}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 = v_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^n}^h(\tilde{\mathbf{x}}_t^u) \right]} \geq \beta \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 = v_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\tilde{v}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]} \geq \beta \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq \tilde{v}_t^u, p_1 \neq v_m \right]}_{\text{Case-3}} + \underbrace{\mathbb{E}\left[p_1 \neq$$

Subsequently, Lemma 1 first provides the thresholds β_1 and β_2 that can respectively guarantee bounded probabilities for Case-1 and Case-2 of E_{DRUT} . Then in Theorem 2, we prove that even if the chosen β deviates from β_1 and β_2 , DRUT is still error-bounded².

Lemma 1. Given Assumption 1 and the set of weights $\{w_h \mid 1 \leq h \leq H, 0 \leq w_h \leq 1, \sum_{h=1}^{H} w_h = 1\}, \forall \langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle, assume \epsilon \leq \min \left[\alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u), \alpha_0 \tau_{v_m v_m} (\tilde{\mathbf{x}}_t^u)\right].$ Let $\beta_1 = \left[\frac{\tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) \eta_{P_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j} (\tilde{\mathbf{x}}_t^u)}{\sum_{h=1}^{H} [w_h f_{v_m}^h (\tilde{\mathbf{x}}_t^u)]}\right]$ and $\beta_2 = \left[\frac{\sum_{h=1}^{H} [w_h f_{\tilde{v}_t}^h (\tilde{\mathbf{x}}_t^u)]}{\tau_{v_m v_m} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq v_m} \tau_{v_j v_m} (\tilde{\mathbf{x}}_t^u)}\right]$. We have: $\beta \leq \beta_1$ guarantees the probability of Case-1 in \mathbf{E}_{DRUT} is bounded by $C(\mathcal{O}(\epsilon))^{\lambda}$, and $\beta \geq \beta_2$ guarantees the probability of Case-2 in \mathbf{E}_{DRUT} is bounded by $C(\mathcal{O}(\epsilon))^{\lambda}$.

 $\begin{aligned} &h \leq H, 0 \leq w_{h} \leq 1, \sum_{h=1}^{H} w_{h} = 1 \}, \ \forall \langle \tilde{\mathbf{x}}_{t}^{u}, \tilde{v}_{t}^{u} \rangle, \ let \ \beta_{1} = \left[\frac{\tau_{\tilde{v}_{t}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) \eta_{p_{2}} (\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq \tilde{v}_{t}^{u}} \tau_{v_{j}} \tilde{v}_{t}^{u} \eta_{v_{j}} (\tilde{\mathbf{x}}_{t}^{u})}{\sum_{h=1}^{H} [w_{h} f_{\tilde{v}_{t}}^{h} (\tilde{\mathbf{x}}_{t}^{u})]} \right], \\ &\beta_{2} = \left[\frac{\sum_{h=1}^{H} [w_{h} f_{\tilde{v}_{t}}^{h} (\tilde{\mathbf{x}}_{t}^{u})]}{\tau_{v_{m}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \eta_{p_{2}} (\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq v_{m}} \tau_{v_{j}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \eta_{v_{j}} (\tilde{\mathbf{x}}_{t}^{u})}{\beta_{2} (\beta_{2} - \xi_{2}) - \xi_{2}} \right], \ \xi_{1} = |\beta - \beta_{1}|, \ and \ \xi_{2} = |\beta - \beta_{2}|. \ Assume \\ &\xi_{2} < \beta_{2}, \ \epsilon \leq \min \left[\alpha_{0} \tau_{\tilde{v}_{t}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) - \xi_{1}, \frac{\alpha_{0} \tau_{v_{m}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \beta_{2} (\beta_{2} - \xi_{2}) - \xi_{2}}{\beta_{2} (\beta_{2} - \xi_{2})} \right], \ \xi_{1} = |\beta - \beta_{1}|, \ and \ \xi_{2} = |\beta - \beta_{2}|. \ Assume \\ &\xi_{2} < \beta_{2}, \ \epsilon \leq \min \left[\alpha_{0} \tau_{\tilde{v}_{t}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) - \xi_{1}, \frac{\alpha_{0} \tau_{v_{m}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \beta_{2} (\beta_{2} - \xi_{2}) - \xi_{2}}{\beta_{2} (\beta_{2} - \xi_{2})} \right], \ g_{1} = |\beta - \beta_{1}|, \ and \ \xi_{2} = |\beta - \beta_{2}|. \ Assume \\ &\xi_{2} < \beta_{2}, \ \epsilon \leq \min \left[\alpha_{0} \tau_{\tilde{v}_{t}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) - \xi_{1}, \frac{\alpha_{0} \tau_{v_{m}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \beta_{2} (\beta_{2} - \xi_{2}) - \xi_{2}}{\beta_{2} (\beta_{2} - \xi_{2})} \right], \ g_{2} = |\beta - \beta_{1}|, \ g_{2} = |\beta - \beta_{2}|. \ Assume \\ &\xi_{2} < \beta_{2}, \ \epsilon \leq \min \left[\alpha_{0} \tau_{\tilde{v}_{t}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) - \xi_{1}, \frac{\alpha_{0} \tau_{v_{m}v_{m}} (\tilde{\mathbf{x}}_{t}^{u}) \beta_{2} (\beta_{2} - \xi_{2}) - \xi_{2}}{\beta_{2} (\beta_{2} - \xi_{2})} \right], \ g_{2} = |\beta - \beta_{1}|, \ g_{2} = |\beta - \beta_{2}|. \ Assume \\ &\xi_{2} < \beta_{2}, \ \epsilon \leq \min \left[\alpha_{0} \tau_{\tilde{v}^{u}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}_{t}^{u}) - \xi_{1}, \frac{\alpha_{0} \tau_{v}} \tilde{v}_{t}^{u} (\tilde{\mathbf{x}}_{t}^{u}) - \xi_{1} (\tilde{\mathbf{x}}_{t}^{u}) \right] \right].$

3.3 Theorems for Rectifying Unreliable Input

Unreliable items within the input act as mosaics to bewilder SRSs when learning users' true preferences, thus impeding SRSs from predicting the true target. Recall that Theorem 1 suggests consistently low-scored targets are unlikely to be reliable. This inspires us to exploit the prediction scores given by a backward SRS for rectifying unreliable input, that is, deleting consistently low-scored (predicted by a backward SRS) items within the input. To avoid deleting all input items with an unreliable target, we rectify the input of instances that are already processed by DRUT. Formally, given $\langle \tilde{\mathbf{x}}_t^u, \hat{v}_t^u \rangle$, we define a backward SRS \tilde{f} that aims to predict every input item in $\tilde{\mathbf{x}}_t^u$ based on $\tilde{\mathbf{x}}_t^u = \{u, \hat{v}_t^u\}$. Hence, the backward instance for predicting \tilde{v}_{t-l}^u , $(l \in [1, L])$ can be formulated as $\langle \tilde{\mathbf{x}}_t^u, \tilde{v}_{t-l}^u \rangle$. With Assumption 1 being held, and $\eta', \tilde{\eta}', p_1', p_2', \tau', \epsilon'$ respectively being the counterparts of $\eta, \tilde{\eta}, p_1, p_2, \tau, \epsilon$, for backward sequences, we propose the following strategy.

DDUI: Detecting and Deleting Unreliable Input. Given f that is ϵ' -close to $\tilde{\eta}'$, $\langle \tilde{\mathbf{x}}_t^u, \tilde{v}_{t-l}^u \rangle$, the consistently high-scored item $\tilde{v}_m = \arg \max_{v_i \neq \tilde{v}_{t-l}^u} \sum_{h=1}^{H} [w_h \tilde{f}_{v_i}^h(\tilde{\mathbf{x}}_t^u)]$, and $\beta' \in (0, 1]$, we stipulate that if the ratio $\sum_{h=1}^{H} [w_h \tilde{f}_{\tilde{v}_{t-l}}^u(\tilde{\mathbf{x}}_t^u)] / \sum_{h=1}^{H} [w_h \tilde{f}_{\tilde{v}_m}^h(\tilde{\mathbf{x}}_t^u)] < \beta'$, i.e., \tilde{v}_{t-l}^u is consistently lower-scored than \tilde{v}_m to some extent, then item \tilde{v}_{t-l}^u should be deleted from $\tilde{\mathbf{x}}_t^u$ in the *H*-th epoch. After rectifying the *L* items in $\tilde{\mathbf{x}}_t^u$, we denote the output instance of DDUI as $\langle \hat{\mathbf{x}}_t^u, \hat{v}_t^u \rangle$.

DDUI differs from DRUT slightly, i.e., we remove unreliable input items to bridge the succeeding and preceding items, instead of replacing them. Since unreliable input items caused by distractions are essentially interruptions in the input sequence, replacing them may introduce new interruptions.

Superior to prior works, DDUI is theoretically guaranteed to work well with bounded error, which comes from two cases: (1) \tilde{v}_{t-l}^u is a reliable input item $(p'_1 = \tilde{v}_{t-l}^u)$ but is deleted; and (2) \tilde{v}_{t-l}^u is an unreliable input item $(p'_1 \neq \tilde{v}_{t-l}^u)$ but is kept. Hence, the error of DDUI, denoted as E_{DDUI} , can be correspondingly formulated as the following Eq. 8, and its bound is analyzed in Theorem 3:

$$\boldsymbol{E}_{\text{DDUI}} = \mathbb{P}\left[\boldsymbol{p}_{1}^{\prime} = \tilde{\boldsymbol{v}}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[\boldsymbol{w}_{h} \tilde{\boldsymbol{f}}_{\tilde{\boldsymbol{v}}_{t-l}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[\boldsymbol{w}_{h} \tilde{\boldsymbol{f}}_{\tilde{\boldsymbol{v}}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta^{\prime}\right] + \mathbb{P}\left[\boldsymbol{p}_{1}^{\prime} \neq \tilde{\boldsymbol{v}}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[\boldsymbol{w}_{h} \tilde{\boldsymbol{f}}_{\tilde{\boldsymbol{v}}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[\boldsymbol{w}_{h} \tilde{\boldsymbol{f}}_{\tilde{\boldsymbol{v}}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta^{\prime}\right]. \tag{8}$$

²The proofs of Lemma 1 and following theorems can be found in the Appendix.

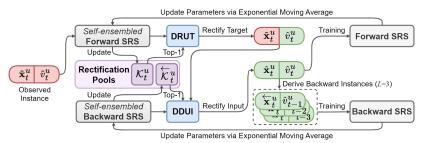


Figure 2: The overall architecture of the proposed BirDRec framework.

$$\begin{aligned} \text{Theorem 3} \text{ (The Upper Bound of } \boldsymbol{E}_{\text{DDUI}} \text{). Given Assumption 1 and the set of weights } \{w_h \mid 1 \leq h \leq H, 0 \leq w_h \leq 1, \sum_{h=1}^{H} w_h = 1\}, \forall \langle \bar{\mathbf{x}}_t^u, \tilde{v}_{t-l}^u \rangle, \text{ let } \beta_1' = \left[\frac{\tau_{\bar{v}_{t-l}}' \bar{v}_{t-l}' \bar{v}_{t-l}' \bar{v}_{t-l}' \bar{v}_{t-l}' \bar{v}_{v_j}' \bar{v}_{t-l}' \tau_{v_j}' \bar{v}_{t-l}' \eta_{v_j}' (\bar{\mathbf{x}}_t^u)}{\sum_{h=1}^{H} |w_h \bar{f}_{\bar{v}_{t-l}}^h (\bar{\mathbf{x}}_t^u)|} \right], \\ \beta_2' = \left[\frac{\sum_{h=1}^{H} |w_h \bar{f}_{\bar{v}_{t-l}}^h (\bar{\mathbf{x}}_t^u)|}{\tau_{\bar{v}_m}' \bar{v}_m' (\bar{\mathbf{x}}_t^u) + \sum_{v_j \neq \bar{v}_m} \tau_{v_j}' \bar{v}_m (\bar{\mathbf{x}}_t^u) \eta_{v_j}' (\bar{\mathbf{x}}_t^u)}}{\beta_2' (\bar{\mathbf{x}}_{t-l}' + \sum_{v_j \neq \bar{v}_m} \tau_{v_j}' \bar{v}_m (\bar{\mathbf{x}}_t^u) \eta_{v_j}' (\bar{\mathbf{x}}_t^u)}}\right], \\ \xi_1' = |\beta' - \beta_1'|, \\ \xi_2' = |\beta' - \beta_2'|. \text{ Assume } \xi_2' < \beta_2', \\ \epsilon' \leq \min \left[\alpha_0 \tau_{\bar{v}_{t-l}}' \bar{v}_{t-l}} (\bar{\mathbf{x}}_t^u) - \xi_1', \frac{\alpha_0 \tau_{\bar{v}_m}' (\bar{\mathbf{x}}_t^u) \beta_2' (\beta_2' - \xi_2') - \xi_2'}{\beta_2' (\beta_2' - \xi_2')}, \\ \frac{1}{2} \left[[\tau_{p_1' p_1'}' (\bar{\mathbf{x}}_t^u) - \tau_{p_1' \bar{v}_m}' (\bar{\mathbf{x}}_t^u)] (\alpha_0 + \eta_{p_2'}' (\bar{\mathbf{x}}_t^u)] - \\ \sum_{v_j \neq p_1'} [\tau_{v_j \bar{v}_m}' (\bar{\mathbf{x}}_t^u) - \tau_{v_j p_1'}' (\bar{\mathbf{x}}_t^u)] \eta_{v_j}' (\bar{\mathbf{x}}_t^u) \right] \right]. We have: \\ E_{\text{DDUI}} \leq C \left(\mathcal{O}(\epsilon' + \xi_1') \right)^{\lambda} + C \left(\mathcal{O}(\epsilon' + \xi_2') \right)^{\lambda} + C \left(\mathcal{O}(\epsilon') \right)^{\lambda}. \end{aligned}$$

4 The Proposed BirDRec Framework

By integrating DRUT and DDUI into existing SRSs, we introduce BirDRec, a model-agnostic bidirectional data rectification framework, which can rectify both unreliable targets and input with theoretical guarantees for more robust SRSs. Yet, the complexity of BirDRec is prohibitively high due to the calculation and storage of prediction scores for each instance across different epochs in DRUT and DDUI. To ease this issue, we devise a rectification sampling strategy that avoids prediction on the full item set to replace unreliable targets or delete unreliable input, thereby reducing the time complexity of BirDRec. Meanwhile, we adopt the self-ensemble mechanism [14] to approximate the weighted average prediction scores of different epochs, thus avoiding preserving scores of all epochs and reducing the space complexity.

Framework Overview. Accordingly, the efficiency-improved BirDRec is depicted in Fig. 2. Specifically, BirDRec first leverages the self-ensembled forward SRS to rectify the target of an instance via DRUT, and then the input is rectified by the self-ensembled backward SRS via DDUI. Thereafter, the rectified instance and its L backward instances are respectively used to train the forward and backward SRSs, which are finally employed to update the corresponding self-ensembled SRSs.

4.1 Reducing Time Complexity via Rectification Sampling

The time complexity of BirDRec is primarily attributed to the search for consistently high-scored items $(v_m \text{ and } \bar{v}_m)$, which requires the calculation of prediction scores between every instance and all items. Concretely, the per-epoch time complexity of BirDRec is $\mathcal{O}(N \cdot (|\mathcal{V}| + L))$, where N denotes the number of instances. To mitigate this substantial computational burden, we propose a rectification sampling strategy that circumvents the need to search the entire item set.

Rectification Sampling. Each instance $\langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$ is assigned two rectification pools \mathcal{K}_t^u and $\bar{\mathcal{K}}_t^u$ to rectify the target and input, respectively. At first, \mathcal{K}_t^u is initialized by the K succeeding items of \tilde{v}_t^u , i.e., $[\tilde{v}_{t+1}^u, ..., \tilde{v}_{t+K}^u]$, which are potentially better substitutions for \tilde{v}_t^u . Similarly, $\bar{\mathcal{K}}_t^u$ is initialized with the K preceding items of \tilde{v}_{t-1}^u . Next, in each epoch, the items in \mathcal{K}_t^u , together with K additional items that are randomly sampled from \mathcal{V} , are ranked in descending order w.r.t. their weighted average prediction scores over different epochs (i.e., $\sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]$). Then the top-1 item, denoted as \hat{v}_m , is adopted as the approximation of v_m in DRUT, while the top-K items are retained to update \mathcal{K}_t^u for the next epoch. The rationale behind approximating v_m with \hat{v}_m is supported by Theorem 4, which indicates that the relative rank of an item over a list of randomly sampled items can approximate this item's relative rank over the full item set. That is, the top-1 item \hat{v}_m tends to be ranked highly over

Table 1: Statistics of the datasets.

Dataset	# Users	# Items	# Interactions	Avg. Length	Sparsity
ML-1M (ML)	6,040	3,417	999,611	165.5	95.16%
Beauty (Be)	22,362	12,102	198,502	8.9	99.93%
Yelp (Ye)	22,844	16,552	236,999	10.4	99.94%
QK-Vedio (QK)	30,704	41,534	2,268,935	73.9	99.82%

 \mathcal{V} . The updating rules of $\tilde{\mathcal{K}}_t^u$ for DDUI is defined similarly as \mathcal{K}_t^u . As a result, the per-epoch time complexity of BirDRec is reduced from $\mathcal{O}(N \cdot (|\mathcal{V}| + L))$ to $\mathcal{O}(N \cdot (K + L))$.

Theorem 4. Let \mathcal{R} be a list of K items randomly sampled from \mathcal{V} with replacement, $\zeta \in (0, 1)$, $r_H(\mathbf{x}_t^u, v_i) = \sum_{v_j \in \mathcal{V}} \mathbb{I}\left[\sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)] > \sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]\right]$ be the rank of item v_i over the entire item set at the H-th epoch, and $\hat{r}_H(\mathbf{x}_t^u, v_i) = \sum_{v_j \in \mathcal{R}} \mathbb{I}\left[\sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)] > \sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)]\right] > \sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)] > \sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]$ be the rank of v_i over \mathcal{R} at the H-th epoch. We have: $\mathbb{P}\left[\left|\frac{\hat{r}_H(\mathbf{x}_t^u, v_i)}{K} - \frac{r_H(\mathbf{x}_t^u, v_i)}{|\mathcal{V}|}\right| \ge \zeta\right] \le \exp(-2K\zeta^2)$.

4.2 Reducing Space Complexity via Self-ensemble Mechanism

The huge space cost of BirDRec is caused by the storage of prediction scores between each instance and all items in every epoch, for the sake of calculating the weighted average prediction scores.

Specifically, at the *H*-th epoch, the space complexity of preserving all prediction scores is $\mathcal{O}(N \cdot |\mathcal{V}| \cdot H)$. To save space, we thus approximate the weighted average scores with the self-ensemble mechanism [14], thereby avoiding storing prediction scores of different epochs. Formally, let f^H be an SRS parameterized by θ_H , and \overline{f}^H be a self-ensembled SRS parameterized by $\overline{\theta}_H = \sum_{h=1}^{H} w_h \theta_h$. It has proven that [14] the difference between the weighted average prediction scores $(\sum_{h=1}^{H} w_h f_{v_i}^h(\mathbf{x}_t^u))$ and the prediction of the self-ensembled SRS $(\overline{f}_{v_i}^H(\mathbf{x}_t^u))$ is of the second order of smallness, if and only if $w_h = \rho^{H-h}(1-\rho)^{1-\delta(h-1)}$, where $\rho \in (0,1)$ denotes the exponential decay rate for ensembling; and $\delta(\cdot)$ is the unit impulse function, i.e., $\delta(0) = 1$, otherwise 0. With such self-ensemble, there is no need to store SRSs of each epoch, as $\overline{\theta}_H$ can be efficiently derived from $\overline{\theta}_{H-1}$ and θ_H with the exponential moving average as follows:

$$\overline{\boldsymbol{\theta}}_{H} = \sum_{h=1}^{H} \rho^{H-h} (1-\rho)^{1-\delta(h-1)} \boldsymbol{\theta}_{h} = \rho \overline{\boldsymbol{\theta}}_{H-1} + (1-\rho) \boldsymbol{\theta}_{H}.$$
(9)

By doing so, the burden of retaining prediction scores of different epochs is reduced to maintaining an extra self-ensembled SRS. As the parameters of an SRS mainly consist of the user and item embeddings, the per-epoch space complexity of BirDRec is reduced from $\mathcal{O}((|\mathcal{U}| + |\mathcal{V}|) \cdot d + (L + |\mathcal{V}| \cdot H) \cdot N)$ to $\mathcal{O}((|\mathcal{U}| + |\mathcal{V}|) \cdot d + (L + K) \cdot N)$, where *d* represents the embedding size. Furthermore, to reduce the number of parameters and mitigate overfitting, the (self-ensembled) forward and backward SRSs in BirDRec share the same user and item embeddings.

5 Experiments and Results

5.1 Experimental Settings

Datasets. We adopt four real-world datasets with varying domains, sizes, sparsity, and average sequence lengths shown in Table 1. Specifically, ML-1M (ML)[45] is a popular movie recommendation benchmark. Beauty (Be) [46] is the product review dataset collected from Amazon.com. Yelp (Ye) [10] is a business recommendation dataset released by Yelp.com. QK-Video (QK) [47] is a video recommendation dataset crawled from Tencent.com. Following [3, 8, 9], we preprocess all datasets by removing users and items whose interactions are less than 5.

Baselines. To verify the generality of BirDRec, we implement it with *vanilla SRSs* based on representative backbones. In particular, FPMC [15] is based on Markov Chain. GRU4Rec[17], Caser [20], and MAGNN [27] are built on RNN, CNN, and GNN, respectively. SASRec [28] and BERT4Rec [29] are based on Transformer. Meanwhile, to validate its effectiveness and efficiency, we compare BirDRec with state-of-the-art *robust SRSs* including BERD [8], FMLP-Rec [9], and STEAM [10], which aim to tackle unreliable targets, unreliable input, and both, respectively.

Evaluation Protocol. Following [9, 48, 49], three widely-used metrics are adopted to evaluate the ranking quality, namely, HR, NDCG, and MRR. For all these metrics, higher metric values suggest

Settings Plain BirDRec Improv.	HR@5 0.1317	HR@10	NDCG@5	NDCG@10						
BirDRec				NDCO@10	MRR	HR@5	HR@10	NDCG@5	NDCG@10	MRR
	0.1534 16.48%	0.2087 0.2407 15.33%	0.0821 0.0972 18.39%	0.1069 0.1251 17.03%	0.0929 0.1059 13.99%	0.0315 0.0513 62.86%	0.0527 0.0750 42.31%	0.0201 0.0348 73.13%	0.0259 0.0423 63.32%	0.0244 0.0379 55.33%
Plain	0.1592	0.2450	0.1023	0.1272	0.1099	0.0377	0.0574	0.0245	0.0308	0.0279
BirDRec	0.2091	0.2872	0.1426	0.1666	0.1443	0.0445	0.0638	0.0307	0.0369	0.033 4
Improv.	31.34%	17.22%	39.39%	30.97%	31.30%	18.04%	11.15%	25.31%	19.81%	19.719
Plain	0.1597	0.2427	0.1044	0.1304	0.1126	0.0293	0.0470	0.0186	0.0243	0.022
BirDRec	0.2167	0.2973	0.1495	0.1751	0.1511	0.0526	0.0761	0.0357	0.0434	0.038
Improv.	35.69%	22.50%	43.20%	34.28%	34.19%	79.52%	61.91%	91.94%	78.60%	69.309
Plain	0.1769	0.2662	0.1168	0.1451	0.1252	0.0475	0.0691	0.0313	0.0385	0.0343
BirDRec	0.2352	0.3259	0.1631	0.1915	0.1647	0.0653	0.0903	0.0459	0.0537	0.0482
Improv.	32.96%	22.43%	39.64%	31.98%	31.55%	37.47%	30.68%	46.65%	39.48%	40.529
Plain	0.1736	0.2655	0.1142	0.1429	0.1219	0.0356	0.0563	0.0231	0.0293	0.027
BirDRec	0.2319	0.3152	0.1613	0.1871	0.1622	0.0649	0.0896	0.0466	0.0544	0.0489
Improv.	33.58%	18.72%	41.24%	30.93%	33.06%	82.30%	59.15%	101.73%	85.67%	80.449
Plain	0.1802	0.2692	0.1196	0.1479	0.1265	0.0566	0.0798	0.0380	0.0455	0.040
BirDRec	0.2341	0.3211	0.1628	0.1903	0.1649	0.0634	0.0890	0.0435	0.0518	0.045
Improv.	29.91%	19.28%	36.12%	28.67%	30.36%	12.01%	11.53%	14.47%	13.85%	13.159
ets			Yelp					QK-Vedio)	
Plain	0.0502	0.0754	0.0398	0.0431	0.0425	0.0483	0.0803	0.0303	0.0405	0.0384
BirDRec	0.0743	0.0914	0.063	0.0686	0.0673	0.0756	0.1193	0.0483	0.0624	0.056 9
Improv.	48.01%	21.22%	58.29%	59.16%	58.35%	56.52%	48.57%	59.41%	54.07%	48.189
Plain	0.0337	0.0519	0.0228	0.0286	0.0277	0.0498	0.0831	0.0314	0.0421	0.039
BirDRec	0.0651	0.0818	0.0519	0.0571	0.0548	0.0746	0.1221	0.0479	0.0632	0.057
Improv.	93.18%	57.61%	127.63%	99.65%	97.83%	49.80%	46.93%	52.55%	50.12%	44.709
Plain	0.0320	0.0530	0.0198	0.0265	0.0257	0.0485	0.0816	0.0305	0.0410	0.038
BirDRec	0.0741	0.0921	0.0602	0.0659	0.0638	0.0776	0.1253	0.0497	0.0651	0.059
Improv.	131.56%	73.77%	204.04%	148.68%	148.25%	60.00%	53.55%	62.95%	58.78%	52.329
Plain	0.0404	0.0574	0.0295	0.0349	0.0341	0.0511	0.0858	0.0326	0.0435	0.040
BirDRec	0.0771	0.0965	0.0626	0.0687	0.0663	0.0815	0.1306	0.0523	0.0682	0.061
Improv.	90.84%	68.12%	112.20%	96.85%	94.43%	59.49%	52.21%	60.43%	56.78%	50.989
Plain	0.0421	0.0597	0.0318	0.0375	0.0368	0.0558	0.0925	0.0354	0.0473	0.044
BirDRec	0.0734	0.0918	0.0597	0.0657	0.0635	0.0817	0.1297	0.0524	0.0677	0.061
Improv.	74.35%	53.77%	87.74%	75.20%	72.55%	46.42%	40.22%	48.02%	43.13%	38.69
Plain	0.0436	0.0602	0.0337	0.0388	0.0383	0.0529	0.0880	0.0344	0.0452	0.042
BirDRec	0.0560	0.0792	0.0413	0.0488	0.0465	0.0742	0.1184	0.0479	0.0619	0.056
Improv.	28.44%	31.56%	22.55%	25.77%	21.41%	40.26%	34.55%	39.24%	36.95%	32.639
29 5 <mark>26 8 6 39</mark>	7			ij ₂			e gig 2			SASRe STEAM BirDRe
	-			-					-	
2	Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv. Plain BirDRec Improv.	Plain BirDRec Improv. 0.1597 9.2167 BirDRec Improv. 0.2167 9.2167 35.69% Plain BirDRec BirDRec 0.1736 BirDRec BirDRec 0.2352 9.2067 33.58% Plain BirDRec 0.1736 BirDRec 0.2319 Improv. 33.58% Plain Improv. 0.0301 BirDRec 0.0321 BirDRec 0.0502 BirDRec 0.00743 Improv. 93.18% Plain BirDRec 0.0320 BirDRec 0.0320 BirDRec 0.0741 Improv. 90.84% Plain BirDRec 0.0421 BirDRec 0.0734 Plain BirDRec 0.0421 BirDRec 0.0350 BirDRec 0.0436 BirDRec 0.0436 BirDRec 0.0436 BirDRec 0.0436 BirDRec 0.0436 BirDRec 0.0436 BirDRec 0.0436	Plain BirDRec Improv. 0.1597 35.69% 0.2427 0.2973 22.50% Plain BirDRec DirDREC DirDREC DirDREC DirDREC DirDREC DIrDREC DIrDREC DIrDREC DIRDR DIRDR DIRDR DIRDR DIRDR DIRDR DIRDR DIRDR D	Plain BirDRec Improv. 0.1597 35.69% 0.2427 0.2973 22.50% 0.1044 0.1495 43.20% Plain BirDRec BirDRec BirDRec BirDRec DRec 0.1769 0.2352 0.2352 0.2352 0.1631 33.58% 0.2662 0.3152 0.1613 39.64% 0.1142 0.1168 0.3152 0.1613 39.64% Plain BirDRec DBirDRec DBirDRec 0.1736 0.2319 0.2319 0.2427 0.2352 0.2427 0.2552 0.1142 0.1613 41.24% Plain BirDRec DBirDRec 0.0331 Improv. 0.2655 0.2692 0.2692 0.1196 0.3211 0.1628 36.12% 0.1142 0.1613 41.24% Plain BirDRec 0.0337 Improv. 0.0502 0.0754 0.0651 0.0651 0.0651 0.0651 0.0651 0.0818 0.0519 0.0228 0.0602 1mprov. 0.0196 0.0530 0.0198 0.0602 204.04% Plain BirDRec 0.0741 0.0404 0.0577 0.0318 BirDRec 0.0741 0.04042 10.0597 0.0337 0.0413 22.55% 0.0198 0.0602 0.0337 0.0413 22.55% Plain BirDRec 0.0741 0.0597 0.0318 0.0597 0.0337 0.0413 22.55% 0.0404 0.0572 0.0413 22.55% Plain BirDRec 0.0754 0.0560 0.0626 112.20% 0.0597 0.0337 0.0413 22.55% Plain BirDRec 0.0560 0.0560 0.0597 0.0413 22.55% 0.0413 22.55%	Plain BirDRec Improv. 0.1597 35.69% 0.2427 0.2973 22.50% 0.1044 0.1495 43.20% 0.1304 0.1751 34.28% Plain BirDRec DirDRec 0.2352 0.1769 0.2662 0.2352 0.2662 0.1168 0.1451 0.1915 31.98% 0.1495 0.1495 0.1495 31.98% Plain BirDRec 0.2352 0.1736 0.2352 0.2655 0.1142 0.1429 0.1429 BirDRec 0.2319 0.352 0.359 0.1613 0.1812 0.1429 0.1871 BirDRec BirDRec 0.2319 0.2655 0.3259 0.1142 0.1613 0.1429 0.1871 Plain BirDRec 0.2341 0.2692 0.3249 0.1163 0.1196 0.1479 0.1479 BirDRec Improv. 0.0302 0.0754 0.0314 0.0398 0.0633 0.0431 0.0431 Plain BirDRec Improv. 0.0502 93.18% 0.0519 0.0228 0.0228 0.0286 0.0431 0.0571 Plain BirDRec Improv. 0.0320 93.18% 0.0519 73.77% 0.0286 0.0662 0.0659 0.0659 Plain BirDRec Improv. 0.0421 90.84% 0.0577 0.0318 0.0375 0.06657 Plain BirDRec Improv. 0.0421 90.84% 0.0597 0.0597 0.0318 0.0337 0.0338 0.0349 BirDRec Improv. 0.0421 90.84% 0.0597 0.0657 0.0337 0.0388 0.0375 0.06657 Plain BirDRec Improv. 0.0436 0.0560 0.0602 0.00597<	Plain BirDRec Improv. 0.1597 35.69% 0.2427 0.2973 22.50% 0.1044 0.1495 43.20% 0.1304 0.1751 34.28% 0.1126 0.1511 34.19% Plain BirDRec Improv. 0.1769 32.96% 0.2662 0.3259 22.43% 0.1168 0.1613 0.1495 0.1451 0.1951 0.1252 0.1631 Plain Improv. 0.1736 33.98% 0.2655 0.3259 0.1142 0.1429 0.1219 0.1627 BirDRec BirDRec 0.2319 0.3152 0.352 0.1613 0.1613 0.1871 0.1871 0.1627 0.1629 Plain BirDRec 0.2319 0.3152 0.3259 0.1613 0.1613 0.1479 0.1479 0.1649 0.1649 Plain Improv. 0.0502 0.0337 0.0519 0.0519 0.0228 0.0228 0.0431 0.0666 0.0473 0.0277 Plain BirDRec 0.0651 0.0337 0.0519 0.0228 0.0228 0.0286 0.0657 0.0286 0.0657 0.0257 0.0654 Plain BirDRec 0.0771 0.0502 0.0320 0.0530 0.0198 0.0265 0.0265 0.0257 0.0653 Plain BirDRec 0.0771 0.0404 0.0574 0.0318 0.0597 0.0318 0.06687 0.06637 0.06637 BirDRec Improv. 0.0421 0.0597 0.0318 0.0597 0.0318 0.0337 0.0388 0.0344 0.0343 BirDRec Improv. 0.0436 0.0560 0.0697 0.0057 0.0388 0.0383 0.0383 0.04685	Plain BirDRec Improv. 0.1597 35.69% 0.2427 0.2973 22.50% 0.1044 0.1495 43.20% 0.1304 0.1751 34.28% 0.1126 0.1511 0.1511 0.1511 0.0293 0.0526 0.1511 Plain BirDRec Drov. 0.1769 0.2352 32.96% 0.2662 0.3259 22.43% 0.1142 0.1613 0.1451 0.1451 0.1252 0.1631 0.0447 0.0653 Plain BirDRec Drov. 0.1736 0.2319 0.2655 0.3152 0.1142 0.1613 0.1429 0.1429 0.1219 0.1622 0.0356 0.0649 Plain BirDRec Data 0.1802 0.2319 0.2655 0.3152 0.1142 0.1613 0.1479 0.1613 0.1649 0.0653 0.0649 0.0654 Plain BirDRec Data 0.1802 0.0351 0.2692 0.219 0.1196 0.1196 0.1479 0.1469 0.0654 0.0653 Plain BirDRec 0.0743 0.0519 0.0519 0.0228 0.0228 0.0431 0.0486 0.0425 0.0277 0.0483 0.0488 Plain BirDRec 0.0651 0.0337 0.0519 0.0228 0.0602 0.0286 0.0657 0.0257 0.0488 0.0498 0.0776 Plain BirDRec 0.0771 0.0404 0.0571 0.0265 0.0657 0.0638 0.0658 0.0341 0.0511 BirDRec Improv. 0.0404 0.0597 0.0318 0.0597 0.0348 0.06657 0.03638 0.0663 0.0383 0.0588 BirDRec Improv. 0.0404 <	Plain BirDRec Improv. 0.1597 0.2167 0.2427 0.2973 0.1044 0.1495 0.1304 0.1751 0.1126 0.1511 0.0293 0.0526 0.0470 0.0761 Plain BirDRec Improv. 0.1769 0.2662 0.1188 0.1451 0.1522 0.0470 Plain Improv. 0.7769 0.2662 0.11631 0.1451 0.1522 0.0473 Plain Improv. 0.1736 0.2529 0.3152 0.1631 0.1126 0.0653 0.0693 BirDRec Improv. 0.1736 0.2655 0.1142 0.1429 0.1219 0.0356 0.0563 Plain Improv. 0.1802 0.2692 0.1196 0.1479 0.1265 0.0566 0.0798 BirDRec Improv. 0.3824 0.0321 0.1628 0.1903 0.1649 0.0634 0.0890 BirDRec Improv. 0.0502 0.0754 0.0398 0.0431 0.0425 0.0434 0.0803 BirDRec Improv. 0.0337 0.0519 0.0228 0.0286 0.0277 0.0498 0.0831 BirDRec Improv. 0.0337 0.0519 0.0228 0.0286 0.0277 0.0498 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 2: Performance comparison with vanilla SRSs trained with the original 'Plain' setting and our BirDRec framework. *Improv.* means the relative improvement of BirDRec over the 'Plain' setting. The significance of the improvement is determined by a paired t-test with p < 0.001.

Figure 3: The comparison regarding time and storage costs.

better recommendation accuracy. For each user, we preserve the last two interactions for validation and testing, while the rest are used for training. The training of each model is carried out five times to report the average results. During testing, we follow [3, 9, 27] and evaluate the ranking results over the whole item set for fair comparison [50].

Implementation Details. For all methods, Xavier initializer [51] and Adam optimizer [52] are adopted; and the best hyper-parameter settings are empirically found based on the performance on the validation set. For BirDRec, it is implemented by PyTorch with batch_size = 1024, d = 64, learning_rate = 0.01 for Yelp and 0.001 for other datasets, L = 5, $\beta = 0.1$, $\beta' = 0.1$, K = 10, and $\rho = 0.9$. To ensure accurate rectification with reduced ϵ , BirDRec is trained without rectification in the first 10 epochs. All the experiments are conducted on an NVIDIA Quadro RTX 8000 GPU³.

5.2 Experimental Results and Analysis

Overall Comparison. Table 2 presents the performance of vanilla SRSs built on various representative backbones. Each SRS is trained under two different settings: the original Plain setting and our

³Our source code and experiment details (e.g., parameter settings for baselines) are in the Appendix.

runner up. The significance of the improvement is determined by a paired t-test with $p \le 0.001$.											
Datasets ML-1M					Beauty						
Metrics	HR@5	HR@10	NDCG@5	NDCG@10	MRR	HR@5	HR@10	NDCG@5	NDCG@10	MRR	
BERD FMLP-Rec STEAM BirDRec Improv.	0.1922* 0.1789 0.1198 0.2352 22.37%	0.2814* 0.2685 0.1950 0.3259 15.81%	0.1267* 0.1207 0.0765 0.1631 28.73%	0.1554* 0.1492 0.1006 0.1915 23.23%	0.1335* 0.1299 0.0874 0.1647 23.37%	0.0507* 0.0501 0.0495 0.0653 30.34%	0.0745 0.0743 0.0765* 0.0903 18.04%	0.0332 0.0384* 0.0324 0.0459 19.53%	0.0406 0.0448* 0.0414 0.0537 19.87%	0.0364 0.0404* 0.0371 0.0482 19.31%	
Datasets			Yelp					QK-Vedi	D		
BERD FMLP-Rec STEAM BirDRec Improv.	0.0423 0.0499 0.0556* 0.0771 38.67%	0.0636 0.0702 0.0822* 0.0965 17.40%	0.0304 0.0374 0.0387* 0.0626 61.76%	0.0360 0.0433 0.0473* 0.0687 45.24%	0.0351 0.0422 0.0448* 0.0663 47.99%	0.0548 0.0604* 0.0597 0.0815 34.93%	0.0958 0.0991 0.1021* 0.1306 27.91%	0.0352 0.0391* 0.0371 0.0523 33.76%	0.0496 0.0514* 0.0507 0.0682 32.68%	0.0461 0.0480* 0.0465 0.0616 28.33%	
🛛 🗆 Plain	Image: Plain (SASRec) Image: DRUT Image:							irDRec)			
0.19 0.17 0.17 0.15 0.15 0.13 0.13 0.13		 	00000 00000000000000000000000000000000		0	$\begin{array}{c c} 0.07 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ \end{array}$		NDCG @ 10	0.07 0.06 0.05 0.04		
	ML-1M Beauty								-Vedio		
	Figure 4: Ablation study on different variants of BirDRec										

Table 3: Performance comparison with existing robust SRSs, where the best performance is boldfaced and the runner up is marked by '*'. *Improv.* means the relative improvement of BirDRec over the runner up. The significance of the improvement is determined by a paired t-test with p < 0.001.

Figure 4: Ablation study on different variants of BirDRec.

BirDRec framework. We can note that all the baselines are boosted significantly on all datasets with the aid of BirDRec, which demonstrates the *generality* of BirDRec.

Table 3 compares BirDRec with state-of-the-art robust SRSs. Considering BERD and STEAM are both built upon Transformer, we also adopt a transformer-based SRS, SASRec, as the default backbone of BirDRec in the following experiments to ensure fair comparisons. The results show that BirDRec dramatically outperforms existing robust SRSs, confirming the *effectiveness* of our error-bounded rectification strategies in comparison to existing methods that lack theoretical guarantees.

Fig. 3 compares the time and storage cost of BirDRec and STEAM, both of which aim to handle unreliable input and targets simultaneously. In particular, Figs. 3(a) and (b) show that BirDRec executes 4.28 times faster than STEAM in each epoch and converges with fewer epochs. Meanwhile, Figs. 3(c) and (d) show that BirDRec incurs only half the storage cost of STEAM on most datasets. These results highlight the *efficiency* of our sampling strategy and the self-ensemble mechanism. The storage cost of BirDRec is marginally higher than STEAM's on ML-1M. This is because the advantage of our rectification sampling strategy is less obvious on datasets with small item sets (see Table 1), indicating the superior scalability of our BirDRec on large-scale item sets.

Ablation Study. To check the efficacy of essential strategies of BirDRec (DRUT, DDUI, and the self-ensemble), we add these strategies incrementally to a plain representative SRS – SASRec. Note that without self-ensemble, DRUT and DDUI only consider the prediction scores at the latest epoch for data rectification. The results are presented in Fig. 4 and similar trends can be noted with the rest SRSs on the other metrics. First, adding either DRUT or DDUI to SASRec brings dramatic improvements, implying the effectiveness of DRUT and DDUI in rectifying unreliable targets and input, respectively. Second, using DRUT and DDUI together is better than leveraging each of them solely, indicating the necessity of rectifying both unreliable targets and input for more robust SRSs. Moreover, adding the self-ensemble mechanism can further boost the accuracy, which confirms the efficacy of considering prediction scores of different epochs for data rectification. Overall, the performance gain of separately adding DRUT, DDUI, and self-ensemble is 45.7%, 43.3%, and 3.1%, respectively. That is, DRUT and DDUI contribute more than the self-ensemble to our BirDRec.

Hyper-parameter Analysis. We analyze the impact of key hyper-parameters, i.e., the rectification thresholds β , β' , the size K of the rectification pool, and the exponential decay rate ρ . The results are presented in Fig. 5 with several major findings (similar trends can be noted with the other metrics on the rest datasets). (i) The best choice for β and β' is 0.1, showing that small thresholds tend to maintain unreliable instances while large ones may mistakenly rectify reliable data. (ii) $K \ge 10$ is sufficient to gain better accuracy. (iii) $\rho \ge 0.5$ yields better performance, that is, it is beneficial to consider predictions in earlier epochs. (iv) Even if the hyper-parameters of BirDRec are not optimally set, BirDRec still dramatically outperforms the best baseline (BERD) on ML-1M.

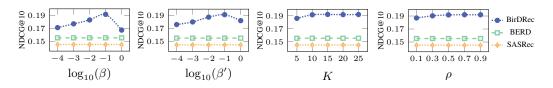


Figure 5: Effect of key hyper-parameters β , β' , K, and ρ of BirDRec on ML-1M dataset.

Case Study. Fig. 6 presents a real instance that is rectified by BirDRec on ML-1M. Specifically, in the DRUT module, the target movie 'Schindler's List' consistently gets lower scores than the movie 'Terminator 2' in the rectification pool, and is then replaced by 'Terminator 2'. This is reasonable, given that 'Terminator 2' aligns more closely with the input Sci-fi movies than 'Schindler's List'. Subsequently, in the DDUI module, the input movie 'American Beauty' is consistently lower-scored than the movie 'Star Wars IV' in the rectification pool and is thus deleted. This decision is justifiable, considering that the rectified target, 'Terminator 2', generally lacks relevance to the input 'American Beauty' across various aspects, including genres, actors, directors, tags, etc.

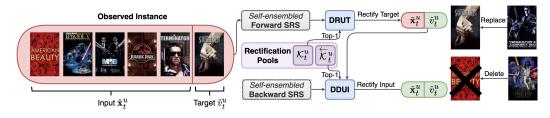


Figure 6: The overall architecture of the proposed BirDRec framework.

Limitations of BirDRec. Although BirDRec exhibits its superiority through our extensive experiments, its limitations are two-fold. Firstly, the improvement of BirDRec on storage cost is limited for smaller item sets. This is primarily because the rectification sampling strategy with self-ensemble has less apparent advantages on datasets with smaller item sets. To be specific, the storage cost reduction for calculating weighted average prediction scores is from O(|V| * H) to O(K) for each instance. Thus if |V| is small, the benefit of this reduction will be less obvious. Secondly, although BirDRec is significantly faster than the latest robust SRS (STEAM), it is worth noting that BirDRec is 1.6 times on average slower than its backbone model (as depicted in Fig. 3) in each training epoch. This increased training time could be a practical concern in systems with extremely large-scale datasets and real-time recommendation demands.

6 Conclusion

This work, *for the first time*, provides theoretically guaranteed data rectification strategies to tackle both unreliable input and targets for more robust SRSs. The proposed strategies are further integrated into a model-agnostic bidirectional data rectification framework, BirDRec, that can be flexibly implemented with most existing SRSs, for robust training against unreliable data. Additionally, we devise a rectification sampling strategy to reduce the computational cost of BirDRec; meanwhile, a self-ensemble mechanism is adopted to reduce the space complexity. Extensive experiments verify the generality, effectiveness, and efficiency of the proposed BirDRec.

Acknowledgments

The work is partially supported by the National Key Research and Development Program of China (2020YFB1707900), the National Natural Science Foundation of China (Nos. U22A2025, 62072088, 62232007), Liaoning Provincial Science and Technology Plan Project - Key R&D Department of Science and Technology (No. 2023JH2/101300182), and ARC Discovery Projects DP200101441 and DP230100676.

References

- Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet Orgun. Sequential recommender systems: challenges, progress and prospects. In *IJCAI*, pages 6332– 6338, 2019.
- [2] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. *ACM TOIS*, 39(1):1–42, 2020.
- [3] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. Contrastive learning for representation degeneration problem in sequential recommendation. In *WSDM*, pages 813–823, 2022.
- [4] Yu Zheng, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. Disentangling long and short-term interests for recommendation. In *TheWebConf*, pages 2256–2267, 2022.
- [5] Yongjun Chen, Zhiwei Liu, Jia Li, Julian J. McAuley, and Caiming Xiong. Intent contrastive learning for sequential recommendation. In *TheWebConf*, pages 2172–2182, 2022.
- [6] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. Hierarchical reinforcement learning for course recommendation in moocs. In AAAI, pages 435–442, 2019.
- [7] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha. Sequential recommendation with user memory networks. In *WSDM*, pages 108–116, 2018.
- [8] Yatong Sun, Bin Wang, Zhu Sun, and Xiaochun Yang. Does every data instance matter? enhancing sequential recommendation by eliminating unreliable data. In *IJCAI*, pages 1579– 1585, 2021.
- [9] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for sequential recommendation. In *TheWebConf*, pages 2388–2399, 2022.
- [10] Yujie Lin, Chenyang Wang, Zhumin Chen, Zhaochun Ren, Xin Xin, Qiang Yan, Maarten de Rijke, Xiuzhen Cheng, and Pengjie Ren. A self-correcting sequential recommender. In *TheWebConf*, pages 1283–1293, 2023.
- [11] Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and Philip S Yu. Sequential recommendation via stochastic self-attention. In *TheWebConf*, pages 2036–2047, 2022.
- [12] Chi Zhang, Yantong Du, Xiangyu Zhao, Qilong Han, Rui Chen, and Li Li. Hierarchical item inconsistency signal learning for sequence denoising in sequential recommendation. In *CIKM*, pages 2508–2518, 2022.
- [13] Yuqi Qin, Pengfei Wang, and Chenliang Li. The world is binary: Contrastive learning for denoising next basket recommendation. In *SIGIR*, pages 859–868, 2021.
- [14] Hongjun Wang and Yisen Wang. Self-ensemble adversarial training for improved robustness. In *ICLR*, 2022.
- [15] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In *TheWebConf*, pages 811–820, 2010.
- [16] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. Where you like to go next: successive point-of-interest recommendation. In *IJCAI*, pages 2605–2611, 2013.
- [17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. In *ICLR*, 2016.
- [18] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. A dynamic recurrent model for next basket recommendation. In *SIGIR*, pages 729–732, 2016.
- [19] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. Recurrent recommender networks. In *WSDM*, pages 495–503, 2017.

- [20] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence embedding. In WSDM, pages 565–573, 2018.
- [21] Trinh Xuan Tuan and Minh Phuong Tu. 3d convolutional networks for session-based recommendation with content features. In *RecSys*, pages 138–146, 2017.
- [22] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. A simple convolutional generative network for next item recommendation. In WSDM, pages 582–590, 2019.
- [23] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic graph neural networks for sequential recommendation. *IEEE TKDE*, 35(5):4741–4753, 2023.
- [24] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. Sequential recommendation with graph neural networks. In SIGIR, pages 378–387, 2021.
- [25] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, and Xiaofang Zhou. Graph contextualized self-attention network for session-based recommendation. In *IJCAI*, pages 3940–3946, 2019.
- [26] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recommendation with graph neural networks. In AAAI, pages 346–353, 2019.
- [27] Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates. Memory augmented graph neural networks for sequential recommendation. In AAAI, pages 5045–5052, 2020.
- [28] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *ICDM*, pages 197–206, 2018.
- [29] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In *CIKM*, pages 1441–1450, 2019.
- [30] Zhu Sun, Qing Guo, Jie Yang, Hui Fang, Guibing Guo, Jie Zhang, and Robin Burke. Research commentary on recommendations with side information: a survey and research directions. *Electronic Commerce Research and Applications (ECRA)*, 37, 2019.
- [31] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with deep neural networks: A survey. *IEEE TNNLS*, 2022.
- [32] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In *NeurIPS*, pages 8536–8546, 2018.
- [33] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does disagreement help generalization against label corruption? In *ICML*, pages 7164–7173, 2019.
- [34] Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint training method with co-regularization. In CVPR, pages 13723–13732, 2020.
- [35] Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, and Masashi Sugiyama. Sample selection with uncertainty of losses for learning with noisy labels. In *ICLR*, 2022.
- [36] Yangdi Lu, Yang Bo, and Wenbo He. Noise attention learning: Enhancing noise robustness by gradient scaling. In *NeurIPS*, pages 23164–23177, 2022.
- [37] Yangdi Lu and Wenbo He. SELC: self-ensemble label correction improves learning with noisy labels. In *IJCAI*, pages 3278–3284, 2022.
- [38] Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris Metaxas, and Chao Chen. Error-bounded correction of noisy labels. In *ICML*, pages 11447–11457, 2020.

- [39] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive session-based recommendation. In *CIKM*, pages 747–755, 2017.
- [40] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and Ed H. Chi. Towards neural mixture recommender for long range dependent user sequences. In *TheWebConf*, pages 1782–1793, 2019.
- [41] Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In KDD, pages 825–833, 2019.
- [42] Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, and Philip S Yu. Modeling sequences as distributions with uncertainty for sequential recommendation. In *CIKM*, pages 3019–3023, 2021.
- [43] Di-Rong Chen and Tao Sun. Consistency of multiclass empirical risk minimization methods based on convex loss. JMLR, 7:2435–2447, 2006.
- [44] Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin. Simplify and robustify negative sampling for implicit collaborative filtering. In *NeurIPS*, pages 1094–1105, 2020.
- [45] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM THS, 5(4):1–19, 2015.
- [46] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In *RecSys*, pages 165–172, 2013.
- [47] Guanghu Yuan, Fajie Yuan, Yudong Li, Beibei Kong, Shujie Li, Lei Chen, Min Yang, Chenyun YU, Bo Hu, Zang Li, Yu Xu, and Xiaohu Qie. Tenrec: A large-scale multipurpose benchmark dataset for recommender systems. In *NeurIPS*, pages 11480–11493, 2022.
- [48] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng. Are we evaluating rigorously? benchmarking recommendation for reproducible evaluation and fair comparison. In *RecSys*, pages 23–32, 2020.
- [49] Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong, and Jie Zhang. Daisyrec 2.0: Benchmarking recommendation for rigorous evaluation. *IEEE TPAMI*, 45(7):8206–8226, 2023.
- [50] Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. In KDD, pages 1748–1757, 2020.
- [51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *AISTATS*, pages 249–256, 2010.
- [52] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Theoretically Guaranteed Bidirectional Data Rectification for Robust Sequential Recommendation – Appendix –

This Appendix is divided into three sections. First, Section A empirically validates the feasibility of Assumption 1. Next, in Section B, complete proofs of all the lemmas and theorems are presented. Finally, in Section C, we provide detailed settings of baselines and additional experimental results, including the hyper-parameter analysis and the percentage of rectified data. Our code is available at: https://github.com/AlchemistYT/BirDRec.

A The Feasibility of Assumption 1

Assumption 1. The users' true preference distribution η fulfills the relaxed Multiclass Tsybakov Condition [1] with constants C > 0, $\lambda > 0$, and $\alpha_0 \in (0, 1]$, such that for all $\alpha \in (0, \alpha_0]$,

$$\mathbb{P}\big[\eta_{p_1}(\mathbf{x}_t^u) - \eta_{p_2}(\mathbf{x}_t^u) \le \alpha\big] \le C\alpha^{\lambda}.$$
(1)

The feasibility of Assumption 1 relies on large C and small λ . In order to estimate the values of C and λ , the initial step is to approximate the true preference distribution η . To achieve this, we first obtain a reliable dataset \mathcal{D} via the heuristic method proposed by [2]. The heuristic method measures the matching degree between the input and target of each instance from two aspects: item co-occurrence and item properties, then those instances with matching degrees lower than a threshold are filtered as unreliable data. We use a large threshold (0.9) to filter the dataset rigorously, ensuring the vast majority of the maintained instances in \mathcal{D} are reliable. Subsequently, as suggested by [3], we train a classic SRS, SASRec [4], on the filtered reliable dataset \mathcal{D} and then use the prediction of SASRec to approximate η . Formally, for each reliable instance $\langle \mathbf{x}_t^u, v_t^u \rangle$ from the reliable dataset \mathcal{D} , the SRS prediction score $f_{v_t^u}(\mathbf{x}_t^u)$ is employed as the approximation of $\eta_{v_t^u}(\mathbf{x}_t^u)$.

Next, we densely sample α from 0.05 to 0.9 with step size 0.005 and calculate the corresponding left-hand-side probability of Eq. 1 with the following relative frequency F_{α} , and collect a series of $(\log(\alpha), \log(F_{\alpha}))$ data points:

$$F_{\alpha} = \frac{1}{|\mathcal{D}|} \sum_{\langle \mathbf{x}_t^u, v_t^u \rangle \in \mathcal{D}} \mathbb{I} \Big[f_{\hat{p}_1}(\mathbf{x}_t^u) - f_{\hat{p}_2}(\mathbf{x}_t^u) \le \alpha \Big],$$
(2)

where \hat{p}_1 and \hat{p}_2 are respectively the top- and middle-ranked items according to f, namely, $\sum_{v_i \in \mathcal{V}} \mathbb{I}[f_{\hat{p}_1}(\mathbf{x}_t^u) \geq f_{v_i}(\mathbf{x}_t^u)] = |\mathcal{V}|, \sum_{v_i \in \mathcal{V}} \mathbb{I}[f_{\hat{p}_2}(\mathbf{x}_t^u) \geq f_{v_i}(\mathbf{x}_t^u)] = \lfloor |\mathcal{V}|/2 \rfloor$. We then use $\log(F_\alpha)$ to approximate $\log(C\alpha^\lambda)$. As shown by the blue dots in Fig. 6, the collected $(\log(\alpha), \log(F_\alpha))$ data points are generally linearly distributed, which allows us to estimate Cand λ with linear regression according to $\log(C\alpha^\lambda) = \log(C) + \lambda \log(\alpha)$. As a result, Fig. 6 shows that the estimated C and λ are respectively restricted in (0.55, 0.70) and (1.37, 4.01) on real-world datasets from various domains, which validates the feasibility of Assumption 1.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

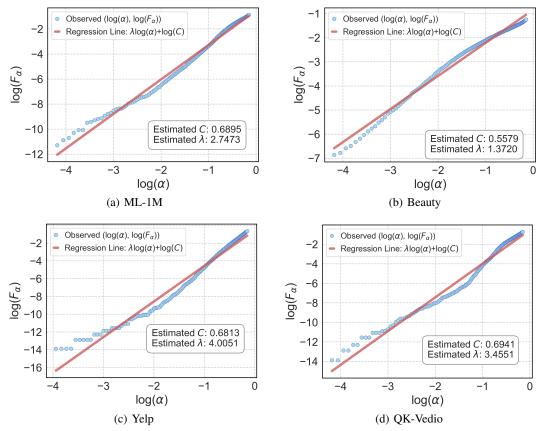


Figure 1: The estimated constants C and λ on various datasets.

B Proofs of Lemmas and Theorems

B.1 The Proof of Theorem 1

Theorem 1. Given Assumption 1, let $\{w_h \mid 1 \le h \le H, 0 \le w_h \le 1, \sum_{h=1}^H w_h = 1\}$ be the weights for averaging prediction scores of different epochs. $\forall \langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$, assume $\epsilon \le \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u)$. Let $\gamma = \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) \eta_{p_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \ne \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) \eta_{v_j} (\tilde{\mathbf{x}}_t^u)$. We have: $\mathbb{P}\Big[p_1 = \tilde{v}_t^u, \sum_{h=1}^H \big[w_h f_{\tilde{v}_t^u}^h (\tilde{\mathbf{x}}_t^u)\big] \le \gamma \Big] \le C(\mathcal{O}(\epsilon))^{\lambda}$.

Proof.

$$\mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \sum_{h=1}^{H} \left[w_{h} f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] \leq \gamma\right] \\
\leq \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \sum_{h=1}^{H} w_{h} \left[\tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon\right] \leq \gamma\right] \\
= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H} w_{h} \left[\sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}\tilde{v}_{t}^{u}} \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon\right] \leq \gamma\right]$$

$$\leq \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \tau_{\tilde{v}_{t}^{u}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq \tilde{v}_{t}^{u}} \tau_{v_{j}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \gamma + \epsilon\right]$$

$$= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\gamma + \epsilon - \sum_{v_{j} \neq \tilde{v}_{t}^{u}} \tau_{v_{j}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})}{\tau_{\tilde{v}_{t}^{u}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})}\right]$$

$$(3)$$

By replacing γ with $\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)\eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)\eta_{v_j}(\tilde{\mathbf{x}}_t^u)$, we obtain:

$$\mathbb{P}\left[p_1 = \tilde{v}_t^u, \sum_{h=1}^H \left[w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u)\right] \le \gamma\right] \le \mathbb{P}\left[\eta_{p_2}(\tilde{\mathbf{x}}_t^u) \le \eta_{p_1}(\tilde{\mathbf{x}}_t^u) \le \eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \frac{\epsilon}{\tau_{\tilde{v}_t^u}\tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)\right]$$
(4)

Recall that $\epsilon \leq \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)$, which implies $\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the relaxed Multiclass Tsybakov Condition holds and the probability is bounded by $C(\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)})^{\lambda}$, namely, $C(\mathcal{O}(\epsilon))^{\lambda}$. \Box

B.2 The Proof of Lemma 1

$$\underbrace{\boldsymbol{E}_{\text{DRUT}}}_{\text{Case-1}} = \underbrace{ \underbrace{\mathbb{P} \left[p_1 = \tilde{\boldsymbol{v}}_t^u, p_1 \neq \boldsymbol{v}_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{\boldsymbol{v}}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\boldsymbol{v}_m}^h(\tilde{\mathbf{x}}_t^u) \right]} \boldsymbol{<} \beta \right]}_{\text{Case-1}} + \underbrace{\mathbb{P} \left[p_1 \neq \tilde{\boldsymbol{v}}_t^u, p_1 = \boldsymbol{v}_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{\boldsymbol{v}}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\boldsymbol{v}_m}^h(\tilde{\mathbf{x}}_t^u) \right]} \boldsymbol{\geq} \beta \right]}_{\text{Case-3}} + \underbrace{\mathbb{P} \left[p_1 \neq \tilde{\boldsymbol{v}}_t^u, p_1 = \boldsymbol{v}_m, \frac{\sum_{h=1}^H \left[w_h f_{\tilde{\boldsymbol{v}}_t^h}^h(\tilde{\mathbf{x}}_t^u) \right]}{\sum_{h=1}^H \left[w_h f_{\boldsymbol{v}_m}^h(\tilde{\mathbf{x}}_t^u) \right]} \boldsymbol{\geq} \beta \right]}_{\text{Case-3}} + \underbrace{\mathbb{P} \left[p_1 \neq \tilde{\boldsymbol{v}}_t^u, p_1 \neq \boldsymbol{v}_m \right]}_{\text{Case-3}}$$

Lemma 1. Given Assumption 1 and the set of weights $\{w_h \mid 1 \leq h \leq H, 0 \leq w_h \leq 1, \sum_{h=1}^{H} w_h = 1\}$, $\forall \langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$, assume $\epsilon \leq \min \left[\alpha_0 \tau_{\tilde{v}_t^u} \tilde{v}_t^u (\tilde{\mathbf{x}}_t^u), \alpha_0 \tau_{vmvm} (\tilde{\mathbf{x}}_t^u)\right]$. Let $\beta_1 = \left[\frac{\tau_{\tilde{v}_t^u} \tilde{v}_t^u (\tilde{\mathbf{x}}_t^u) \eta_{P_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j} \tilde{v}_t^u \eta_{v_j} (\tilde{\mathbf{x}}_t^u)}{\sum_{h=1}^{H} [w_h f_{v_m}^h (\tilde{\mathbf{x}}_t^u)]}\right]$ and $\beta_2 = \left[\frac{\sum_{h=1}^{H} [w_h f_{\tilde{v}_u}^h (\tilde{\mathbf{x}}_t^u)]}{\tau_{vmvm} (\tilde{\mathbf{x}}_t^u) \eta_{P_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq v_m} \tau_{v_j vm} (\tilde{\mathbf{x}}_t^u) \eta_{v_j} (\tilde{\mathbf{x}}_t^u)}\right]$. We have: $\beta \leq \beta_1$ guarantees the probability of Case-1 in \mathbf{E}_{DRUT} is bounded by $C(\mathcal{O}(\epsilon))^{\lambda}$, and $\beta \geq \beta_2$ guarantees the probability of Case-2 in \mathbf{E}_{DRUT} is bounded by $C(\mathcal{O}(\epsilon))^{\lambda}$.

Proof. For Case-1 of E_{DRUT} , we have:

$$\mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, p_{1} \neq v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{t}^{h}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta_{1}\right] \\
\leq \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta_{1}\right] \\
\leq \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H} w_{h} \left[\tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon\right] < \beta_{1} \sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]\right] \\
= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta_{1} \sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon\right] \\
= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}\tilde{v}_{t}^{u}} \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta_{1} \sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon\right] \\
= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}\tilde{v}_{t}^{u}} \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta_{1} \sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon\right] \\
= \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{\beta_{1} \sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon - \sum_{v_{j} \neq \tilde{v}_{t}^{u}} \left[\tau_{v_{j}\tilde{v}_{t}^{u}} \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right]}\right]. \tag{5}$$

By substituting β_1 with $\frac{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)\eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u} \eta_{v_j}(\tilde{\mathbf{x}}_t^u)}{\sum_{h=1}^H [w_h f_{v_m}^h(\tilde{\mathbf{x}}_t^u)]}$ in Eq. 7, we obtain:

$$\mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, p_{1} \neq v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta_{1}\right] \\
\leq \mathbb{P}\left[\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{1}}(\tilde{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon}{\tau_{\tilde{v}_{t}^{u}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})}\right].$$
(6)

Recall that $\epsilon \leq \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)$, which implies $\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the Multiclass Tsybakov Condition holds and the probability of Case-1 is bounded by $C\left(\frac{\epsilon}{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\tilde{\mathbf{x}}_t^u)}\right)^{\lambda}$, namely, $C(\mathcal{O}(\epsilon))^{\lambda}$.

$$\mathbb{P}\left[p_{1}\neq\tilde{v}_{t}^{u},p_{1}=v_{m},\frac{\sum_{h=1}^{H}\left[w_{h}f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\geq\beta_{2}\right]$$

$$\leq\mathbb{P}\left[p_{1}=v_{m},\frac{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\geq\beta_{2}\right]$$

$$\leq\mathbb{P}\left[p_{1}=v_{m},\eta_{m}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{h=1}^{H}w_{h}[\tilde{\eta}_{m}(\tilde{\mathbf{x}}_{t}^{u})-\epsilon]\leq\frac{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta_{2}}\right]$$

$$=\mathbb{P}\left[p_{1}=v_{m},\eta_{m}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}),\tilde{\eta}_{m}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta_{2}}+\epsilon\right]$$

$$=\mathbb{P}\left[p_{1}=v_{m},\eta_{m}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta_{2}}+\epsilon\right]$$

$$=\mathbb{P}\left[p_{1}=v_{m},\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{m}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\gamma_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}+\sum_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})\right]+\epsilon$$

$$(7)$$

We replace β_2 with $\frac{\sum_{h=1}^{H} [w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u)]}{\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)\eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq v_m} \tau_{v_j v_m}(\tilde{\mathbf{x}}_t^u)\eta_{v_j}(\tilde{\mathbf{x}}_t^u)}$ in Eq. 5 and continue the calculation:

$$\mathbb{P}\left[p_{1} \neq \tilde{v}_{t}^{u}, p_{1} = v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta_{2}\right] \\
\leq \mathbb{P}\left[\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}\right].$$
(8)

Recall that $\epsilon \leq \alpha_0 \tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)$, which implies $\frac{\epsilon}{\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the Multiclass Tsybakov Condition holds and the probability of Case-2 is bounded by $C(\frac{\epsilon}{\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)})^{\lambda}$, namely, $C(\mathcal{O}(\epsilon))^{\lambda}$. \Box

B.3 The Proof of Theorem 2

Theorem 2 (The Upper Bound of \boldsymbol{E}_{DRUT}). Given Assumption 1 and the set of weights $\{w_h \mid 1 \leq h \leq H, 0 \leq w_h \leq 1, \sum_{h=1}^{H} w_h = 1\}$, $\forall \langle \tilde{\mathbf{x}}_t^u, \tilde{v}_t^u \rangle$, let $\beta_1 = \begin{bmatrix} \frac{\tau_{\tilde{v}_t^u} \tilde{v}_t^u (\tilde{\mathbf{x}}_t^u) \eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j} \tilde{v}_t^u \eta_{v_j}(\tilde{\mathbf{x}}_t^u)}{\sum_{h=1}^{H} [w_h f_{v_m}^h(\tilde{\mathbf{x}}_t^u)]} \end{bmatrix}$, $\beta_2 = \begin{bmatrix} \frac{\sum_{h=1}^{H} [w_h f_{\tilde{v}_t}^h (\tilde{\mathbf{x}}_t^u)]}{\tau_{v_m v_m} (\tilde{\mathbf{x}}_t^u) \eta_{p_2} (\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq v_m} \tau_{v_j v_m} (\tilde{\mathbf{x}}_t^u) \eta_{v_j} (\tilde{\mathbf{x}}_t^u)} \end{bmatrix}$, $\xi_1 = |\beta - \beta_1|$, and $\xi_2 = |\beta - \beta_2|$. Assume $\xi_2 < \beta_2$, $\epsilon \leq \min \left[\alpha_0 \tau_{\tilde{v}_t}^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) - \xi_1, \frac{\alpha_0 \tau_{v_m v_m} (\tilde{\mathbf{x}}_t^u) \beta_2 (\beta_2 - \xi_2) - \xi_2}{\beta_2 (\beta_2 - \xi_2) - \xi_2}, \frac{1}{2} [[\tau_{p_1 p_1} (\tilde{\mathbf{x}}_t^u) - \tau_{p_1 v_m} (\tilde{\mathbf{x}}_t^u)] (\alpha_0 + \eta_{p_2} (\tilde{\mathbf{x}}_t^u)] - \sum_{v_j \neq p_1} [\tau_{v_j v_m} (\tilde{\mathbf{x}}_t^u) - \tau_{v_j p_1} (\tilde{\mathbf{x}}_t^u)] \eta_{v_j} (\tilde{\mathbf{x}}_t^u) \right]$. We have: $\boldsymbol{E}_{DRUT} \leq C (\mathcal{O}(\epsilon + \xi_1))^{\lambda} + C (\mathcal{O}(\epsilon + \xi_2))^{\lambda} + C (\mathcal{O}(\epsilon))^{\lambda}$.

$$\mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, p_{1}\neq v_{m}, \frac{\sum_{h=1}^{H}\left[w_{h}f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}f_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta\right] \\
\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \frac{\sum_{h=1}^{H}\left[w_{h}f_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta\right] \\
\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H}w_{h}\left[\tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon\right] < \beta\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]\right] \\
= \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \tilde{\eta}_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon\right] \\
= \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}\tilde{v}_{t}^{u}}\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon\right] \\
\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{\beta\sum_{i=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon - \sum_{v_{j}\neq\tilde{v}_{t}^{u}}\left[\tau_{v_{j}\tilde{v}_{t}^{u}}\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right] \right] \\\leq \mathbb{P}\left[p_{1}=\tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{(\beta_{1}+\xi_{1})\sum_{h=1}^{H}\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon - \sum_{v_{j}\neq\tilde{v}_{t}^{u}}\left[\tau_{v_{j}\tilde{v}_{t}^{u}}\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right] \right]. \tag{9}\right].$$

We substitute
$$\beta_1$$
 with $\frac{\tau_{\tilde{v}_t^u \tilde{v}_t^u}(\mathbf{x}_t^u)\eta_{p_2}(\mathbf{x}_t^u) + \sum_{v_j \neq \tilde{v}_t^u} \tau_{v_j \tilde{v}_t^u}\eta_{v_j}(\mathbf{x}_t^u)}{\sum_{h=1}^H [w_h f_{v_m}^h(\tilde{\mathbf{x}}_t^u)]}$ and obtain:

$$\mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, p_{1} \neq v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta\right]$$

$$\leq \mathbb{P}\left[p_{1} = \tilde{v}_{t}^{u}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon}{\tau_{\tilde{v}_{t}^{u}}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})} + \frac{\xi_{1}\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\tau_{\tilde{v}_{t}^{u}}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})}\right] \qquad (10)$$

$$\leq \mathbb{P}\left[\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{1}}(\tilde{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon + \xi_{1}}{\tau_{\tilde{v}_{t}^{u}}\tilde{v}_{t}^{u}}(\tilde{\mathbf{x}}_{t}^{u})}\right].$$

Recall that $\epsilon \leq \alpha_0 \tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u) - \xi_1$, which implies $\frac{\epsilon + \xi_1}{\tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the Multiclass Tsybakov Condition holds and the probability of Case-2 is bounded by $C\left(\frac{\epsilon + \xi_1}{\tau_{\tilde{v}_t^u \tilde{v}_t^u} (\tilde{\mathbf{x}}_t^u)}\right)^{\lambda}$, namely, $C\left(\mathcal{O}(\epsilon + \xi_1)\right)^{\lambda}$.

$$\begin{aligned} & \mathbb{P}\left[p_{1} \neq \tilde{v}_{t}^{u}, p_{1} = v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta\right] \\ \leq & \mathbb{P}\left[p_{1} = v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta\right] \\ \leq & \mathbb{P}\left[p_{1} = v_{m}, \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H} w_{h}[\tilde{\eta}_{m}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon] \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta}\right] \\ = & \mathbb{P}\left[p_{1} = v_{m}, \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \tilde{\eta}_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta} + \epsilon\right] \\ = & \mathbb{P}\left[p_{1} = v_{m}, \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{t}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta} + \epsilon\right] \\ \leq & \mathbb{P}\left[p_{1} = v_{m}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta} - \sum_{v_{j} \neq v_{m}} \left[\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right]} + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u}}\right] \\ \leq & \mathbb{P}\left[p_{1} = v_{m}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\gamma_{v_{w}v_{w}}(\tilde{\mathbf{x}}_{t}^{u})} - \sum_{v_{j} \neq v_{m}} \left[\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})} + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}\right] \\ = & \mathbb{P}\left[p_{1} = v_{m}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \frac{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{2}(\beta^{2}-\xi^{2})\tau_{v_{m}}(\tilde{\mathbf{x}}_{t}^{u})} - \sum_{v_{j} \neq v_{m}} \left[\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}(\tilde{\mathbf{x}}_{t}^{u})\right]} + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}\right] \right] \end{aligned}$$

We replace β_2 with $\frac{\sum_{h=1}^{H} [w_h f_{\tilde{v}_t^u}^h(\tilde{\mathbf{x}}_t^u)]}{\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)\eta_{p_2}(\tilde{\mathbf{x}}_t^u) + \sum_{v_j \neq v_m} \tau_{v_j v_m}(\tilde{\mathbf{x}}_t^u)\eta_{v_j}(\tilde{\mathbf{x}}_t^u)}$ and continue the calculation:

$$\mathbb{P}\left[p_{1} \neq \tilde{v}_{t}^{u}, p_{1} = v_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} f_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta\right] \\
\leq \mathbb{P}\left[p_{1} = v_{m}, \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{m}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})} + \frac{\xi_{2}\sum_{h=1}^{H} \left[w_{h} f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta_{2}(\beta_{2} - \xi_{2})\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}\right] \quad (12) \\
\leq \mathbb{P}\left[\eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{1}}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{p_{2}}(\tilde{\mathbf{x}}_{t}^{u}) + \frac{\epsilon}{\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})} + \frac{\xi_{2}}{\beta_{2}(\beta_{2} - \xi_{2})\tau_{v_{m}v_{m}}(\tilde{\mathbf{x}}_{t}^{u})}\right].$$

Recall that $\epsilon \leq \frac{\alpha_0 \tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u) \beta_2(\beta_2 - \xi_2) - \xi_2}{\beta_2(\beta_2 - \xi_2)}$, which implies $\frac{\epsilon}{\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)} + \frac{\xi_2}{\beta_2(\beta_2 - \xi_2)\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the relaxed Multiclass Tsybakov Condition holds and the probability of Case-2 is bounded by $C\left(\frac{\epsilon\beta_2(\beta_2 - \xi_2) + \xi_2}{\beta_2(\beta_2 - \xi_2)\tau_{v_m v_m}(\tilde{\mathbf{x}}_t^u)}\right)^{\lambda}$, namely, $C\left(\mathcal{O}(\epsilon + \xi_2)\right)^{\lambda}$. Finally, for Case-3 of $\boldsymbol{E}_{\mathrm{DRUT}}$, we have:

$$\begin{split} & \mathbb{P}\left[p_{1} \neq \tilde{v}_{i}^{u}, p_{1} \neq v_{m}\right] \\ \leq \mathbb{P}\left[p_{1} \neq v_{m}\right] \\ = \mathbb{P}\left[p_{1} \neq v_{m}, \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \sum_{h=1}^{H} \left[w_{h}f_{p_{h}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h}f_{p_{h}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < 1\right] \\ \leq \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \sum_{h=1}^{H} \left[w_{h}f_{p_{1}}^{h}(\tilde{\mathbf{x}}_{i}^{u})\right]}{\left[w_{h}f_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\right] \\ \leq \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \sum_{h=1}^{H} w_{h}[\tilde{\eta}_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) - \epsilon] < \sum_{h=1}^{H} w_{h}[\tilde{\eta}_{m}(\tilde{\mathbf{x}}_{i}^{u}) + \epsilon]\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) - \epsilon < \tilde{\eta}_{m}(\tilde{\mathbf{x}}_{i}^{u}) + \epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + \epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \tau_{p_{1}p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + \sum_{v_{j} \neq p_{1}} \tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + 2\epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{p_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + 2\epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + 2\epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) = \tau_{p_{1}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{v_{1}p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \eta_{v_{j}}(\tilde{\mathbf{x}}_{i}^{u}) + 2\epsilon\right] \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \geq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) < \frac{\sum_{v_{j} \neq p_{1}} \left[\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{v_{j}p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{p_{1}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{p_{1}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) + 2\epsilon\right) \\ = \mathbb{P}\left[\eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) \leq \eta_{p_{2}}(\tilde{\mathbf{x}}_{i}^{u}), \eta_{p_{1}}(\tilde{\mathbf{x}}_{i}^{u}) < \frac{\sum_{v_{j} \neq p_{1}} \left[\tau_{v_{j}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{p_{1}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{p_{1}v_{m}}(\tilde{\mathbf{x}}_{i}^{u}) - \tau_{p_{1}v_{m}}(\tilde$$

 $\begin{array}{l} \text{Recall that } \epsilon \leq \frac{1}{2} \Big[\big[\tau_{p_1 p_1}(\tilde{\mathbf{x}}_t^u) - \tau_{p_1 v_m}(\tilde{\mathbf{x}}_t^u) \big] \big[\alpha_0 + \eta_{p_2}(\tilde{\mathbf{x}}_t^u) \big] - \sum_{v_j \neq p_1} \big[\tau_{v_j v_m}(\tilde{\mathbf{x}}_t^u) - \tau_{v_j p_1}(\tilde{\mathbf{x}}_t^u) \big] \eta_{v_j}(\tilde{\mathbf{x}}_t^u) \Big], \\ \text{which implies } \frac{\sum_{v_j \neq p_1} \big[\tau_{v_j v_m}(\tilde{\mathbf{x}}_t^u) - \tau_{v_j p_1}(\tilde{\mathbf{x}}_t^u) \big] \eta_{v_j}(\tilde{\mathbf{x}}_t^u) + 2\epsilon - \big[\tau_{p_1 p_1}(\tilde{\mathbf{x}}_t^u) - \tau_{p_1 v_m}(\tilde{\mathbf{x}}_t^u) \big] \eta_{p_2}(\tilde{\mathbf{x}}_t^u) \Big] \\ \text{the relaxed Multiclass Tsybakov Condition holds and the probability of Case-3 is bounded by } \\ C \bigg(\frac{\sum_{v_j \neq p_1} \big[\tau_{v_j v_m}(\tilde{\mathbf{x}}_t^u) - \tau_{v_j p_1}(\tilde{\mathbf{x}}_t^u) \big] \eta_{v_j}(\tilde{\mathbf{x}}_t^u) + 2\epsilon - \big[\tau_{p_1 p_1}(\tilde{\mathbf{x}}_t^u) - \tau_{p_1 v_m}(\tilde{\mathbf{x}}_t^u) \big] \eta_{p_2}(\tilde{\mathbf{x}}_t^u)}{\big[\tau_{p_1 p_1}(\tilde{\mathbf{x}}_t^u) - \tau_{p_1 v_m}(\tilde{\mathbf{x}}_t^u) \big]} \bigg)^{\lambda}, \text{ namely, } C \big(\mathcal{O}(\epsilon) \big)^{\lambda}. \\ \end{array} \right]$

B.4 The Proof of Theorem 3

$$\boldsymbol{E}_{\text{DDUI}} = \mathbb{P}\left[p_{1}' = \tilde{v}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta'\right] + \mathbb{P}\left[p_{1}' \neq \tilde{v}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \ge \beta'\right]. \quad (14)$$

 $\begin{aligned} & \text{Theorem 3 (The Upper Bound of } \boldsymbol{E}_{\text{DDUI}} \text{). Given Assumption 1 and the set of weights } \{w_h \mid 1 \leq h \leq H, 0 \leq w_h \leq 1, \sum_{h=1}^{H} w_h = 1\}, \forall \langle \bar{\mathbf{x}}_t^u, \tilde{v}_{t-l}^u \rangle, \text{ let } \beta_1' = \left[\frac{\tau_{\bar{v}_{t-l}}^{\bar{v}_{\bar{v}_{t-l}}^u} (\bar{\mathbf{x}}_t^u) \eta_{p_2'}' (\bar{\mathbf{x}}_t^u) + \sum_{v_j \neq \bar{v}_{t-l}} \tau_{v_j \bar{v}_{t-l}}^u \eta_{v_j}' (\bar{\mathbf{x}}_t^u)}}{\sum_{h=1}^{H} [w_h \bar{f}_{\bar{v}_{t-l}}^h (\bar{\mathbf{x}}_t^u)]} \right], \\ & \beta_2' = \left[\frac{\sum_{h=1}^{H} [w_h \bar{f}_{\bar{v}_{t-l}}^u (\bar{\mathbf{x}}_t^u)]}{\tau_{\bar{v}_j}' (\bar{\mathbf{x}}_t^u) + \sum_{v_j \neq \bar{v}_m} \tau_{v_j \bar{v}_m}' (\bar{\mathbf{x}}_t^u)}]}{\beta_2' (\bar{\mathbf{x}}_t^u) + \sum_{v_j \neq \bar{v}_m} (\bar{\mathbf{x}}_t^u) \eta_{v_j}' (\bar{\mathbf{x}}_t^u)}} \right], \\ & \xi_1' = |\beta' - \beta_1'|, \\ & \xi_2' = |\beta' - \beta_2'|. \text{ Assume } \xi_2' < \beta_2', \\ & \epsilon' \leq \min \left[\alpha_0 \tau_{v_{t-l}}^{\prime} \bar{v}_{t-l}} (\bar{\mathbf{x}}_t^u) - \xi_1', \frac{\alpha_0 \tau_{v_m \bar{v}_m}' (\bar{\mathbf{x}}_t^u) \beta_2' (\beta_2' - \xi_2') - \xi_2'}{\beta_2' (\beta_2' - \xi_2')}, \\ & \frac{1}{2} \left[[\tau_{p_1' p_1'}' (\bar{\mathbf{x}}_t^u) - \tau_{p_1' \bar{v}_m}' (\bar{\mathbf{x}}_t^u)] (\alpha_0 + \eta_{p_2'}' (\bar{\mathbf{x}}_t^u)] - \\ & \sum_{v_j \neq p_1'} [\tau_{v_j \bar{v}_m}' (\bar{\mathbf{x}}_t^u) - \tau_{v_j p_1'}' (\bar{\mathbf{x}}_t^u)] \eta_{v_j}' (\bar{\mathbf{x}}_t^u) \right] \right]. We have: \\ & E_{\text{DDUI}} \leq C \left(\mathcal{O}(\epsilon' + \xi_1') \right)^{\lambda} + C \left(\mathcal{O}(\epsilon' + \xi_2') \right)^{\lambda} + C \left(\mathcal{O}(\epsilon') \right)^{\lambda}. \end{aligned}$

Proof. For the first term of $\boldsymbol{E}_{\mathrm{DDUI}}$, we have:

$$\begin{split} & \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{t-l}}^{u}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} < \beta^{\prime}\right] \\ & \leq \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{h=1}^{H}w_{h}\left[\eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})-\epsilon^{\prime}\right] < \beta^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]\right] \\ & = \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\tilde{\eta}_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) < \beta^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon^{\prime}\right] \\ & = \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}\tilde{v}_{t-l}}^{\prime}\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u}) < \beta^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon^{\prime}\right] \\ & \leq \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{\beta^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon^{\prime} - \sum_{v_{j}\neq\tilde{v}_{t-l}}^{\prime}\left[\tau_{v_{j}\tilde{v}_{t-l}}^{\prime}\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\tau_{\tilde{v}_{t-l}}^{\prime}\tilde{v}_{t-l}^{u}(\tilde{\mathbf{x}}_{t}^{u})} \right] \\ & \leq \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{\beta^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{v_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right] + \epsilon^{\prime} - \sum_{v_{j}\neq\tilde{v}_{t-l}}\left[\tau_{v_{j}\tilde{v}_{t-l}}^{\prime}\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\tau_{\tilde{v}_{t-l}}^{\prime}\tilde{v}_{t-l}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})} \right] \right] \\ & \leq \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{t-l}^{u},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) < \frac{\beta^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}{\tau_{\tilde{v}_{t-l}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})} + \epsilon^{\prime} - \sum_{v_{j}\neq\tilde{v}_{t-l}}^{\prime}\left[\tau_{v_{j}\tilde{v}_{t-l}}^{\prime}\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]}\right]. \end{split}$$

We substitute β'_1 with $\frac{\tau'_{\tilde{v}^u_{t-l}\tilde{v}^u_{t-l}}(\tilde{\mathbf{x}}^u_t)\eta'_{p'_2}(\tilde{\mathbf{x}}^u_t) + \sum_{v_j \neq \tilde{v}^u_{t-l}} \tau'_{v_j \tilde{v}^u_{t-l}} \eta'_{v_j}(\tilde{\mathbf{x}}^u_t)}{\sum_{h=1}^{H} [w_h \tilde{f}^h_{\tilde{v}_m}(\tilde{\mathbf{x}}^u_t)]}$ and obtain:

$$\mathbb{P}\left[p_{1}^{\prime} = \tilde{v}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{t-l}}^{h}(\bar{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\bar{\mathbf{x}}_{t}^{u})\right]} < \beta^{\prime}\right] \\
\leq \mathbb{P}\left[p_{1}^{\prime} = \tilde{v}_{t-l}^{u}, \eta_{p_{2}^{\prime}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t-l}^{u}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}^{\prime}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) + \frac{\epsilon^{\prime}}{\tau_{\tilde{v}_{t-l}^{\prime}\tilde{v}_{t-l}^{u}}^{\prime}(\bar{\mathbf{x}}_{t}^{u})} + \frac{\xi_{1}^{\prime} \sum_{h=1}^{H} \left[w_{h} \tilde{f}_{v_{m}}^{h}(\bar{\mathbf{x}}_{t}^{u})\right]}{\tau_{\tilde{v}_{t-l}^{u}\tilde{v}_{t-l}^{u}}^{\prime}(\bar{\mathbf{x}}_{t}^{u})}\right] \\
\leq \mathbb{P}\left[\eta_{p_{2}^{\prime}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) \leq \eta_{\tilde{v}_{t-l}^{u}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}^{\prime}}^{\prime}(\bar{\mathbf{x}}_{t}^{u}) + \frac{\epsilon^{\prime} + \xi_{1}^{\prime}}{\tau_{\tilde{v}_{t-l}^{u}\tilde{v}_{t-l}^{u}}^{\prime}(\bar{\mathbf{x}}_{t}^{u})}\right].$$
(16)

Recall that $\epsilon' \leq \alpha_0 \tau'_{\tilde{v}_{t-l}^u \tilde{v}_{t-l}^u}(\tilde{\mathbf{x}}_t^u) - \xi'_1$, which implies $\frac{\epsilon' + \xi'_1}{\tau'_{\tilde{v}_{t-l}^u \tilde{v}_{t-l}^u}(\tilde{\mathbf{x}}_t^u)} \leq \alpha_0$. Hence, the relaxed Multiclass Tsybakov Condition holds, and the probability of the first term of $\boldsymbol{E}_{\text{DDUI}}$ (Eq. 14) is bounded by $C\left(\frac{\epsilon' + \xi'_1}{\tau'_{\tilde{v}_{t-l}^u \tilde{v}_{t-l}^u}(\tilde{\mathbf{x}}_t^u)}\right)^{\lambda}$, namely, $C\left(\mathcal{O}(\epsilon' + \xi'_1)\right)^{\lambda}$.

For the second term of $\boldsymbol{E}_{\mathrm{DDUI}}$, we have:

$$\mathbb{P}\left[p_{1}' \neq \tilde{v}_{t-l}^{u}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{t-l}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta'\right] \\
= \mathbb{P}\left[p_{1}' \neq \tilde{v}_{t-l}^{u}, p_{1}' = \tilde{v}_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta'\right] \\
+ \mathbb{P}\left[p_{1}' \neq \tilde{v}_{t-l}^{u}, p_{1}' \neq \tilde{v}_{m}, \frac{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H} \left[w_{h} \tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]} \geq \beta'\right]$$
(17)

For the first term of Eq. 17, we have:

$$\begin{split} & \mathbb{P}\left[p_{1}^{\prime}\neq\tilde{v}_{t-l}^{u},p_{1}^{\prime}=\tilde{v}_{m},\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}-l}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\geq\beta^{\prime}\right]\\ \leq & \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\geq\beta^{\prime}\right]\\ \leq & \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{h=1}^{H}w_{h}\left[\tilde{\eta}_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})-\epsilon^{\prime}\right]\leq\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{\prime}}\right]\\ =& \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\tilde{\eta}_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{\prime}}+\epsilon^{\prime}\right]\\ =& \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}=\sum_{j=1}^{H}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\geq\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}),\sum_{v_{j}\in\mathcal{V}}\tau_{v_{j}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})=\sum_{j\neq v_{m}}\left[\tau_{v_{j}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]\\ \leq& \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{m}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{\prime}-\xi_{v}^{\prime}}-\sum_{v_{j}\neq v_{m}}\left[\tau_{v_{j}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\tau_{v_{m}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}+\frac{\epsilon^{\prime}}{\tau_{v_{m}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}\right]\\ =& \mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{m}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{\prime}_{2}-\xi_{v}^{\prime}}}-\sum_{v_{j}\neq v_{m}}\left[\tau_{v_{j}v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\eta_{v_{j}^{\prime}}(\tilde{\mathbf{x}}_{t}^{u})\right]}\right.\\ & +\frac{\xi_{2}^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{m}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta^{\prime}_{2}^{\prime}}\left]\right] \end{split}$$

We replace β'_2 with $\frac{\sum_{h=1}^{H} [w_h \tilde{f}^h_{\tilde{v}_t}(\tilde{\mathbf{x}}^u_t)]}{\tau'_{\tilde{v}_m \tilde{v}_m}(\tilde{\mathbf{x}}^u_t) \eta'_{p'_2}(\tilde{\mathbf{x}}^u_t) + \sum_{v_j \neq v_m} \tau'_{v_j v_m}(\tilde{\mathbf{x}}^u_t) \eta'_{v_j}(\tilde{\mathbf{x}}^u_t)}$ and continue the calculation:

$$\mathbb{P}\left[p_{1}^{\prime}\neq\tilde{v}_{t}^{u},p_{1}^{\prime}=v_{m},\frac{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{t}^{u}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}\geq\beta\right]$$

$$\leq\mathbb{P}\left[p_{1}^{\prime}=\tilde{v}_{m},\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})+\frac{\epsilon^{\prime}}{\tau_{\tilde{v}_{m}\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}+\frac{\xi_{2}^{\prime}\sum_{h=1}^{H}\left[w_{h}\tilde{f}_{\tilde{v}_{m}}^{h}(\tilde{\mathbf{x}}_{t}^{u})\right]}{\beta_{2}^{\prime}(\beta_{2}^{\prime}-\xi_{2}^{\prime})\tau_{\tilde{v}_{m}\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}\right] \quad (19)$$

$$\leq\mathbb{P}\left[\eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})\leq\eta_{\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})+\frac{\epsilon^{\prime}}{\tau_{\tilde{v}_{m}\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}+\frac{\xi_{2}^{\prime}(\beta_{2}^{\prime}-\xi_{2}^{\prime})\tau_{\tilde{v}_{m}\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}{\beta_{2}^{\prime}(\beta_{2}^{\prime}-\xi_{2}^{\prime})\tau_{\tilde{v}_{m}\tilde{v}_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u})}\right].$$

Recall that $\epsilon' \leq \frac{\alpha_0 \tau'_{\bar{v}_m \bar{v}_m}(\bar{\mathbf{x}}^u_t) \beta'_2(\beta'_2 - \xi'_2) - \xi'_2}{\beta'_2(\beta'_2 - \xi'_2)}$, which implies $\frac{\epsilon'}{\tau'_{\bar{v}_m \bar{v}_m}(\bar{\mathbf{x}}^u_t)} + \frac{\xi'_2}{\beta'_2(\beta'_2 - \xi'_2) \tau'_{\bar{v}_m \bar{v}_m}(\bar{\mathbf{x}}^u_t)} \leq \alpha_0$. Hence, the relaxed Multiclass Tsybakov Condition holds and the probability of the first term of Eq. 17 is bounded by $C\left(\frac{\epsilon' \beta'_2(\beta'_2 - \xi'_2) + \xi'_2}{\beta'_2(\beta'_2 - \xi'_2) + \xi'_2}\right)^{\lambda}$, namely, $C\left(\mathcal{O}(\epsilon' + \xi'_2)\right)^{\lambda}$. Finally, for the second term of Eq. 17, we have:

$$\begin{aligned} & \mathbb{P}\left[p_{1}^{\prime} \neq \tilde{v}_{t-l}^{u}, p_{1}^{\prime} \neq \tilde{v}_{m}, \frac{\sum_{h=1}^{H} [w_{h} \tilde{f}_{v}^{u}(\mathbf{\tilde{x}}_{t}^{u})]}{\sum_{h=1}^{H} [w_{h} \tilde{f}_{v}^{h}(\mathbf{\tilde{x}}_{t}^{u})]} \geq \beta^{\prime}\right] \\ &= \mathbb{P}\left[p_{1}^{\prime} \neq v_{m}, \eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \frac{\sum_{h=1}^{H} [w_{h} \tilde{f}_{v}^{h}(\mathbf{\tilde{x}}_{t}^{u})]}{\sum_{h=1}^{H} [w_{h} \tilde{f}_{v}^{h}(\mathbf{\tilde{x}}_{t}^{u})]} < 1\right] \\ &\leq \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H} [w_{h} \tilde{f}_{p_{1}^{\prime}}^{h}(\tilde{\mathbf{x}}_{t}^{u})] < \sum_{h=1}^{H} [w_{h} \tilde{f}_{v}^{m}(\tilde{\mathbf{x}}_{t}^{u})]\right] \\ &\leq \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{h=1}^{H} w_{h} [\tilde{\eta}_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) - \epsilon^{\prime}] < \sum_{h=1}^{H} w_{h} [\tilde{\eta}_{v_{m}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}]\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \sum_{v_{j} \in \mathcal{V}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq p_{1}^{\prime}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \tau_{p_{1}^{\prime}p_{1}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq p_{1}^{\prime}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq p_{1}^{\prime}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq p_{1}^{\prime}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \sum_{v_{j} \neq p_{1}^{\prime}} \tau_{v_{j}p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}), \eta_{p_{1}^{\prime}}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \epsilon^{\prime}\right] \\ &= \mathbb{P}\left[\eta_{p_{1}^{\prime}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) \geq \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) < \eta_{p_{2}^{\prime}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \eta_{p_{2}^{\prime}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}) + \eta_{p_{2}^{\prime}(\tilde{\mathbf{x}}_{t}^{u}$$

Recall that $\epsilon' \leq \frac{1}{2} \left[[\tau'_{p_1'p_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u)] [\alpha_0 + \eta'_{p_2'}(\mathbf{\tilde{x}}_t^u)] - \sum_{v_j \neq p_1'} [\tau'_{\bar{v}_m}(\mathbf{\tilde{x}}_t^u) - \tau'_{v_jp_1'}(\mathbf{\tilde{x}}_t^u)] \eta'_{v_j}(\mathbf{\tilde{x}}_t^u)] \right],$ which implies $\frac{\sum_{v_j \neq p_1'} \left[\tau'_{\bar{v}_m}(\mathbf{\tilde{x}}_t^u) - \tau'_{v_jp_1'}(\mathbf{\tilde{x}}_t^u) \right] \eta'_{v_j}(\mathbf{\tilde{x}}_t^u) + 2\epsilon' - \left[\tau'_{p_1'p_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u) \right] \eta'_{p_2'}(\mathbf{\tilde{x}}_t^u)}{\left[\tau'_{p_1'p_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u) \right]} \leq \alpha_0.$ Hence, the relaxed Multiclass Tsybakov Condition holds and the probability of Case-3 is bounded by $C\left(\frac{\sum_{v_j \neq p_1'} \left[\tau'_{\bar{v}_m}(\mathbf{\tilde{x}}_t^u) - \tau'_{v_jp_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u) \right] \eta'_{p_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u)}{\left[\tau'_{p_1'p_1'}(\mathbf{\tilde{x}}_t^u) - \tau'_{p_1'\bar{v}_m}(\mathbf{\tilde{x}}_t^u) \right]} \right)^{\lambda}, \text{ namely, } C\left(\mathcal{O}(\epsilon')\right)^{\lambda}.$

B.5 The Proof of Theorem 4

Theorem 4. Let \mathcal{R} be a list of K items randomly sampled from \mathcal{V} with replacement, $\zeta \in (0, 1)$, $r_H(\mathbf{x}_t^u, v_i) = \sum_{v_j \in \mathcal{V}} \mathbb{I}\left[\sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)] > \sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]\right]$ be the rank of item v_i over the entire item set at the H-th epoch, and $\hat{r}_H(\mathbf{x}_t^u, v_i) = \sum_{v_j \in \mathcal{R}} \mathbb{I}\left[\sum_{h=1}^H [w_h f_{v_j}^h(\tilde{\mathbf{x}}_t^u)] > \sum_{h=1}^H [w_h f_{v_i}^h(\tilde{\mathbf{x}}_t^u)]\right]$ be the rank of v_i over \mathcal{R} at the H-th epoch. We have: $\mathbb{P}\left[\left|\frac{\hat{r}_H(\mathbf{x}_t^u, v_i)}{K} - \frac{r_H(\mathbf{x}_t^u, v_i)}{|\mathcal{V}|}\right| \ge \zeta\right] \le \exp(-2K\zeta^2)$.

Proof. $\hat{r}_H(\mathbf{x}_t^u, v_i)$ can be deemed as a random variable that counts the number of items ranked higher than v_i in \mathcal{R} . Since the items in \mathcal{R} are randomly sampled from \mathcal{V} with replacement, $\hat{r}_H(\mathbf{x}_t^u, v_i)$ follows a Binomial distribution $\operatorname{Binomial}(K, \frac{r_H(\mathbf{x}_t^u, v_i)}{|\mathcal{V}|})$. Thus, we have:

$$\mathbb{E}[\hat{r}_H(\mathbf{x}_t^u, v_i)] = \frac{K \cdot r_H(\mathbf{x}_t^u, v_i)}{|\mathcal{V}|}.$$
(21)

Meanwhile, $\hat{r}_H(\mathbf{x}_t^u, v_i)$ can also be viewed as the sum of K i.i.d. Bernoulli random variables $b_1, b_2, ..., b_k$, where $b_k = 1(1 \le k \le K)$ indicates the k-th sampled item for \mathcal{R} is ranked higher than v_i , and $b_k = 0$ otherwise. Hence, by applying Hoeffding's inequality [5], we have:

$$\mathbb{P}\left[\left|\frac{1}{K}\sum_{k=1}^{K}b_{k}-\mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K}b_{k}\right]\right|\geq\zeta\right]\leq\exp(-2K\zeta^{2}).$$
(22)

Then by replacing $\sum_{k=1}^{K} b_k$ with $\hat{r}_H(\mathbf{x}_t^u, v_i)$, we obtain:

$$\mathbb{P}\left[\left|\frac{\hat{r}_{H}(\mathbf{x}_{t}^{u}, v_{i})}{K} - \frac{\mathbb{E}[\hat{r}_{H}(\mathbf{x}_{t}^{u}, v_{i})]}{K}\right| \geq \zeta\right] \leq \exp(-2K\zeta^{2}).$$
(23)

Next, we replace $\mathbb{E}[\hat{r}_H(\mathbf{x}_t^u, v_i)]$ with $\frac{K \cdot r_H(\mathbf{x}_t^u, v_i)}{|\mathcal{V}|}$ according to Eq. 21:

$$\mathbb{P}\left[\left|\frac{\hat{r}_{H}(\mathbf{x}_{t}^{u}, v_{i})}{K} - \frac{r_{H}(\mathbf{x}_{t}^{u}, v_{i})}{|\mathcal{V}|}\right| \geq \zeta\right] \leq \exp(-2K\zeta^{2}).$$
(24)

C Additional Experimental Results

C.1 Hyper-parameter Settings for Baselines

For fair comparisons, we implement FPMC with PyTorch. For other baselines, we use the original code provided by the corresponding authors. All the baselines adopt Xavier [6] initializer and Adam [7] optimizer. We empirically find the optimal hyper-parameter setting for each baseline based on the performance on the validation set. The detailed hyper-parameter setting for each baseline is summarized in Table 1.

C.2 More Results on Hyper-parameter Analysis

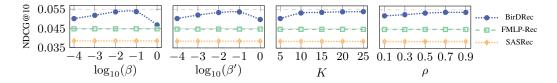
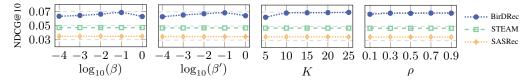
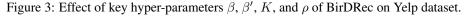




Figure 2: Effect of key hyper-parameters β , β' , K, and ρ of BirDRec on Beauty dataset.



Figure 4: Effect of key hyper-parameters β , β' , K, and ρ of BirDRec on QK-Vedio dataset.

C.3 More Results on the Percentage of Rectified Instances

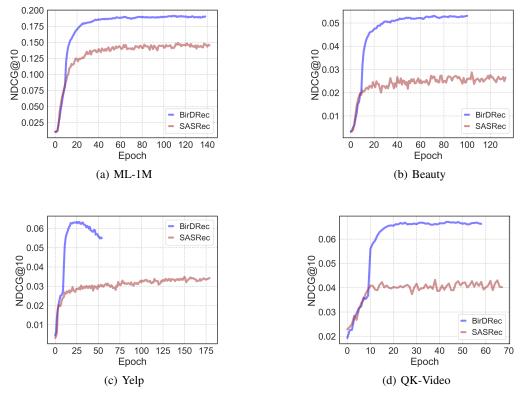


Figure 5: Testing accuracy (NDCG@10) of our BirDRec and SASRec with increasing epochs. The training stops if the best accuracy does not increase in 25 consecutive epochs.

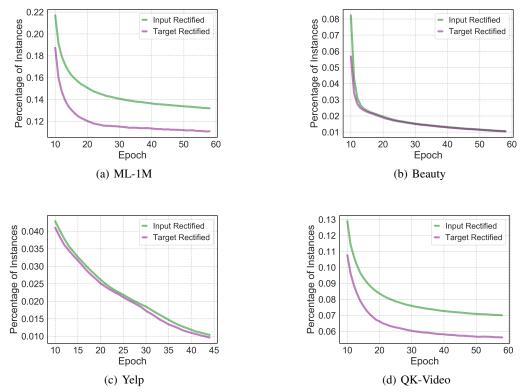


Figure 6: The percentage of instances that are rectified with increasing epochs.

	Parameter	ML	Be	Ye	QK	Search Space
T \	embedding_size	64	64	64	128	$\{16, 32, 64, 128\}$
FPMC	learning_rate	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	10^{-3} 10^{-3}	$ \begin{array}{c} 10^{-2} \\ 10^{-3} \end{array} $	10^{-3} 10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
ΕÐ	L2_regularization_coefficient input_length	10 - 10	$\frac{10}{5}$	$\frac{10}{5}$	10 - 10	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
	batch_size	1024	512	512	1024	$\{128, 256, 512, 1024\}$
	embedding_size	64	64	64	128	$\{16, 32, 64, 128\}$
Caser	learning_rate	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	10^{-3} 10^{-3}	$ \begin{array}{c} 10^{-2} \\ 10^{-3} \end{array} $	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
	L2_regularization_coefficient input_length	5	$\frac{10}{5}$	$\frac{10}{5}$	$\frac{10}{5}$	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
0	batch_size	512	256	256	512	$\{128, 256, 512, 1024\}$ $\{4, 8, 16, 32, 64\}$
	horizontal_filter_num vertical_filter_num				$\frac{32}{8}$	$\{4, 8, 10, 32, 64\}$ $\{1, 2, 4, 8, 16\}$
0	embedding_size	64	64	64	128	{16, 32, 64, 128}
GRU4Rec	learning_rate	10^{-2}	10^{-2}	10^{-2}	10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
U4	L2_regularization_coefficient input_length	10^{-2} 10			$ \begin{array}{c} 10^{-2} \\ 10 \end{array} $	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
GR	batch_size	1024	512	512	1024	$\{128, 256, 512, 1024\}$
	GRU_unit_number	256	256	256	512	$\{128, 256, 512, 1024\}$
	embedding_size	$ \begin{array}{c} 64 \\ 10^{-2} \end{array} $	$\begin{vmatrix} 64\\ 10^{-2} \end{vmatrix}$	$ \begin{array}{c} 64 \\ 10^{-2} \end{array} $	$ \begin{array}{c} 128 \\ 10^{-3} \end{array} $	$\{16, 32, 64, 128\}$
SASRec	learning_rate L2_regularization_coefficient	10^{10} 10^{-2}	10^{-2}	10^{-2}	10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
AS	input_length	50	20	20	40	$\{5, 10, 20, 30, 40, 50\}$
Š	batch_size self_attention_head_num	$ \begin{array}{c} 128 \\ 2 \end{array} $	$128 \\ 1$	$512 \\ 2$	$ \begin{array}{c} 1024 \\ 4 \end{array} $	$\{128, 256, 512, 1024\}$ $\{1, 2, 4, 8\}$
	self_attention_block_num	1	1	1	2	$\{1, 2, 3, 4\}$
J	embedding_size	64	64	64	128	$\{16, 32, 64, 128\}$
BERT4Rec	learning_rate	10^{-4} 10^{-2}	10^{-4} 10^{-2}	$ \begin{array}{c} 10^{-2} \\ 10^{-2} \end{array} $	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
RT4	L2_regularization_coefficient input_length	50^{-10}	$\frac{10}{20}$	$\frac{10}{20}$	$\frac{10}{40}$	$\{10^{-1}, 10^{-1}, 10^{-1}, 10^{-1}, 10^{-1}\}\$
3EF	batch_size	256	256	512	1024	$\{128, 256, 512, 1024\}$
-	self_attention_head_num self_attention_block_num	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$	$ 1 \\ 1 $	$\begin{array}{c} 2\\ 1 \end{array}$	$\frac{4}{2}$	$\{1, 2, 3, 4\}$ $\{1, 2, 3, 4\}$
	embedding_size	64	64	64	128	$\{16, 32, 64, 128\}$
Z	learning_rate	10^{-3}	10^{-3}	10^{-2}	10^{-3}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
Ð	L2_regularization_coefficient input_length					$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
MAGNN	batch_size	1024	512	512	1024	$\{128, 256, 512, 1024\}$
	GNN_layer_num	$\begin{vmatrix} 2 \\ 10 \end{vmatrix}$	$ \begin{array}{c} 2 \\ 10 \end{array} $	$ \begin{array}{c} 2 \\ 10 \end{array} $	$\begin{array}{c} 2\\ 20 \end{array}$	$ \begin{array}{c} \{1,2,3,4\} \\ \{5,10,15,20\} \end{array} $
	embedding_size	64	64	64	128	$\{16, 32, 64, 128\}$
	learning_rate	10^{-3}	10^{-3}	10^{-2}	10^{-3}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
Ð	L2_regularization_coefficient	10^{-2}	10^{-2}	10^{-2}	10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
BERD	input_length batch_size	$5 \\ 1024$	$5 \\ 512$	$5 \\ 512$	$5 \\ 1024$	1 128, 256, 512, 1024 }
щ	self_attention_head_num	2	2	2	2	$\{1, 2, 3, 4\}$
	self_attention_block_num UGCN_layer_num	$\begin{array}{c}1\\2\end{array}$	$\begin{array}{c}1\\2\end{array}$	$\begin{array}{c}1\\2\end{array}$	$\frac{2}{2}$	$ \{ \begin{array}{c} 1, 2, 3, 4 \\ \{ 1, 2, 3, 4 \} \\ \{ 1, 2, 3, 4 \} \end{array} $
	filter_ratio	0.05	0.05	0.05	0.10	$\{0.05, 0.10, 0.15, 0.20, 0.25\}$
	sample_size of \mathcal{L}_{sam} embedding size	4 64	4 64	4 64	4 128	$ \begin{array}{c} \{1, 2, 3, 4\} \\ \{16, 32, 64, 128\} \end{array} $
Sec	learning_rate	10^{-3}	10^{-3}	10^{-3}	$120 \\ 10^{-3}$	$\{10, 32, 04, 123\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
P-F	L2_regularization_coefficient	10^{-2}	10^{-3}	10^{-3}	10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
FMLP-Rec	input_length	$50 \\ 1024$	$ \begin{array}{c} 20 \\ 256 \end{array} $	$ \begin{array}{c} 20 \\ 256 \end{array} $	40	$\{5, 10, 20, 30, 40, 50\}$
Ц.	batch_size learnable_filter_block_num	1024 2	$\frac{250}{2}$	$\frac{250}{2}$	$ \begin{array}{c} 1024 \\ 2 \end{array} $	$\{128, 256, 512, 1024\}$ $\{1, 2, 3, 4\}$
	embedding_size	64	64	64	128	{16, 32, 64, 128}
	learning_rate	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	10^{-3} 10^{-3}	10^{-2} 10^{-3}	$ \begin{array}{c} 10^{-3} \\ 10^{-2} \end{array} $	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
M	L2_regularization_coefficient input length	10^{-2}	$10 \\ 20$	$10 \\ 20$		$\{10^{-}, 10^{-}, 10^{-}, 10^{-}, 10^{-}\}\$
STEAM	batch_size	1024	256	256	1024	$\{128, 256, 512, 1024\}$
S	self_attention_head_num self_attention_block_num	$\begin{vmatrix} 2\\1 \end{vmatrix}$	$ 1 \\ 1 $	$\begin{vmatrix} 1\\ 1 \end{vmatrix}$	$\frac{2}{2}$	$\{1, 2, 3, 4\}$ $\{1, 2, 3, 4\}$
	insertion_probability	0.2	0.4	0.4	0.2	$\{0, 1, 0.2, 0.3, 0.4, 0.5\}$
	deletion_probability mask_probability	$ \begin{array}{c c} 0.1 \\ 0.4 \end{array} $	$ \begin{array}{c} 0.1 \\ 0.5 \end{array} $	$ \begin{array}{c} 0.1 \\ 0.5 \end{array} $	$0.1 \\ 0.3$	$\{ \begin{matrix} 0.1, 0.2, 0.3, 0.4, 0.5 \\ 0.1, 0.2, 0.3, 0.4, 0.5 \\ \end{matrix} \}$
	embedding_size	64	64	64	64	{16, 32, 64, 128}
	learning_rate	10^{-3}	10^{-3}	10^{-2}	10^{-3}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$ $\{5, 10, 20, 30, 40, 50\}$
BirDRec	L2_regularization_coefficient	10^{-2}	10^{-2}	10^{-2}	10^{-2}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$
ſŊ	input_length batch_size	$5 \\ 1024$	$5 \\ 1024$	$5 \\ 1024$	$5 \\ 1024$	1 128 256 512 1024
Bi	threshold β in DRUT	10^{-1}	10^{-1}	10^{-1}	10^{-1}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}$
	threshold β' in DDUI	10^{-1}	10^{-1}	10^{-1}	10^{-1}	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}$ $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}$ $\{5, 10, 15, 20, 25\}$
	size K of rectification pools exponential decay rate ρ	$ \begin{array}{c} 10 \\ 0.9 \end{array} $	$ \begin{array}{c} 10 \\ 0.9 \end{array} $	$\begin{array}{c} 10 \\ 0.9 \end{array}$	$\begin{array}{c} 10 \\ 0.9 \end{array}$	$\{5, 10, 15, 20, 25\}$ $\{0.1, 0.3, 0.5, 0.7, 0.9\}$
	1		0.0	0.0	0.0	(,,,,)

Table 1: The search space of hyper-parameters and the optimal settings found by grid search for all baselines on the four real-world datasets.

References

- [1] Di-Rong Chen and Tao Sun. Consistency of multiclass empirical risk minimization methods based on convex loss. *The Journal of Machine Learning Research*, 7:2435–2447, 2006.
- [2] Yatong Sun, Bin Wang, Zhu Sun, and Xiaochun Yang. Does every data instance matter? enhancing sequential recommendation by eliminating unreliable data. In *IJCAI*, pages 1579– 1585, 2021.
- [3] Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris Metaxas, and Chao Chen. Error-bounded correction of noisy labels. In *ICML*, pages 11447–11457, 2020.
- [4] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *ICDM*, pages 197–206, 2018.
- [5] Wassily Hoeffding. *Probability Inequalities for sums of Bounded Random Variables*, pages 409–426. 1994.
- [6] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *AISTATS*, pages 249–256, 2010.
- [7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.