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Abstract

Sequential recommender systems (SRSs) are typically trained to predict the next
item as the target given its preceding (and succeeding) items as the input. Such
a paradigm assumes that every input-target pair is reliable for training. However,
users can be induced to click on items that are inconsistent with their true prefer-
ences, resulting in unreliable instances, i.e., mismatched input-target pairs. Current
studies on mitigating this issue suffer from two limitations: (i) they discriminate
instance reliability according to models trained with unreliable data, yet without
theoretical guarantees that such a seemingly contradictory solution can be effective;
and (ii) most methods can only tackle either unreliable input or targets but fail to
handle both simultaneously. To fill the gap, we theoretically unveil the relation-
ship between SRS predictions and instance reliability, whereby two error-bounded
strategies are proposed to rectify unreliable targets and input, respectively. On
this basis, we devise a model-agnostic Bidirectional Data Rectification (BirDRec)
framework, which can be flexibly implemented with most existing SRSs for robust
training against unreliable data. Additionally, a rectification sampling strategy is
devised and a self-ensemble mechanism is adopted to reduce the (time and space)
complexity of BirDRec. Extensive experiments on four real-world datasets verify
the generality, effectiveness, and efficiency of our proposed BirDRec.

1 Introduction

Recently, the study on sequential recommender systems (SRSs) [1, 2, 3, 4, 5] has garnered much
attention as users’ preferences are inherently dynamic and evolving in real-world scenarios. The
goal of SRSs is learning to predict the next item a user interacts with given the preceding (and
succeeding) items. Therefore, a training instance for SRSs is typically composed of an input item
sequence and its next item as the target. However, distractions in daily lives (e.g. recommendations
from friends, account sharing, and accidental clicks) can induce users to click on items that are
inconsistent with their true preferences, resulting in unreliable training instances with mismatched
input-target pairs. The mismatch can be categorized into Complete Mismatch and Partial Mismatch
when the item caused by distractions acts as an unreliable target and unreliable input of an instance,
respectively. To illustrate, the romantic film ‘La La Land’, in the first instance of Figure 1, serves as
an unreliable target, which is recommended by friends and completely mismatched with the previous
superhero movies. By contrast, in the second instance, ‘La La Land’ acts as an unreliable input
item which renders the input sequence partially mismatched with the target superhero film. Both
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Figure 1: Examples of two types of mismatch caused by external distractions.

types of mismatch would cause unreliable training instances that mislead SRSs to learn sequential
relationships between irrelevant items and eventually undermine the recommendation accuracy.

Although there are a number of studies aiming to combat such unreliable data for more robust
SRSs, they suffer from two core limitations. (i) They discriminate instance reliability based on the
intermediate or final output of a model (either the SRS itself [6, 7, 8, 9] or an additional corrector [10])
that is trained with unreliable data. However, there is no theoretical guarantee that such seemingly
contradictory solutions can be trustworthy for detecting and correcting unreliable instances. (ii) Most
prior studies only focus on tackling either unreliable input [6, 7, 11, 12, 13] or targets [8], but fail to
handle both simultaneously. Only one recently proposed method [10] attempts to address this issue,
but it relies on a corrector trained with unreliable data, yet without any theoretical guarantees.

As such, we, for the first time, theoretically unveil the relationship between the SRS predictions and
instance reliability, proving that a target with consistently low prediction scores is unlikely to be
reliable, assuming that the randomness of user behavior is limited. It then inspires us to devise two
error-bounded rectification strategies to (1) detect consistently low-scored targets (i.e., unreliable
targets) and replace them with steadily high-scored items and (2) detect and delete consistently
low-scored items within the input (i.e., unreliable input), where the score is estimated by a backward
SRS. Note that the unreliable input items, as the interruptions in the input, are not replaced but
directly removed to bridge the preceding and succeeding items. Based on these strategies, we propose
a model-agnostic Bidirectional Data Rectification (BirDRec) framework which contains two SRSs
in opposite directions for tackling both unreliable targets and input. In addition, to reduce the time
complexity, a rectification sampling strategy is devised to efficiently obtain consistently high-scored
items; to reduce space complexity, a self-ensemble mechanism [14] is adopted to approximate the
weighted average prediction scores across different training epochs.

Contributions. (1) We are the first to provide theoretically guaranteed data rectification strategies
based on SRS predictions to tackle both unreliable input and targets for more robust SRSs. (2) We
devise a model-agnostic bidirectional data rectification framework that can be flexibly implemented
with most existing SRSs for robust training against unreliable data. (3) We devise a rectification
sampling strategy and adopt a self-ensemble mechanism to ensure better scalability of BirDRec. (4)
Extensive experiments with SRSs based on representative backbones and datasets across various
domains validate the generality, effectiveness, and efficiency of BirDRec.

2 Related Works

Early SRSs [15, 16] adopt Markov Chains to encode users’ interaction sequences, assuming users’
latest interactions affect the future behavior linearly and independently. Later, powerful deep learning
backbones such as recurrent neural networks (RNNs) [17, 18, 19], convolution neural networks
(CNNs) [20, 21, 22], graph neural networks (GNNs) [23, 24, 25, 26, 27], and Transformers [28, 29]
are employed to extract complex non-linear patterns within users’ sequences [30]. They posit each
training instance is a definitely matched input-target pair and thus cannot handle unreliable data.

To resist unreliable data, existing robust SRSs can be categorized into three types. The first type
focuses on handling the complete mismatch by identifying and eliminating instances with unreliable
targets. For example, BERD [8] empirically finds that instances with high training loss and low
uncertainty tend to have unreliable targets. This idea is relevant to studies on clean label selection [31,
32, 33, 34, 35] and label correction [36, 37, 38]. The second type concentrates on addressing
partial mismatch by reducing the importance of unreliable input when formulating users’ dynamic
preference representations. Accordingly, various advanced mechanisms are integrated into SRSs, such
as memory networks [7], gating networks [39, 40, 41], autoencoders [12], reinforcement learning [6],
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uncertainty modelling [11, 42], and Fast Fourier Transform [9]. To the best of our knowledge, there is
only one recently proposed method STEAM [10] falling into the third type which attempts to tackle
both unreliable targets and input with an additional corrector producing reliable data. Nonetheless,
existing robust SRSs all rely on models (either SRSs or additional correctors) trained with unreliable
data, yet without theoretical proof that such seemingly contradictory solutions can be effective.

3 Theoretical Guarantees for Rectifying Unreliable Data

This section presents theoretical guarantees for rectifying unreliable data via SRS predictions for more
robust SRSs. In particular, Section 3.1 introduces important preliminaries. Subsequently, Section 3.2
unveils the relationship between the prediction score of SRSs and the reliability of a target, inspiring
us to propose an error-bounded strategy for handling unreliable targets; and Section 3.3 provides the
error-bounded strategy for dealing with unreliable input.

3.1 Preliminaries

Problem Statement of SRSs. Let U and V be the sets of users and items, respectively. Each user
u ∈ U chronologically interacts with a sequence of items su = [ṽu1 , ṽ

u
2 , ..., ṽ

u
|su|], where ṽut ∈ V

is the t-th item user u interacts with and |su| is the length of sequence su. The goal of SRSs is to
predict the target item ṽut given the input x̃u

t =
{
u, [ṽut−L, ..., ṽ

u
t−2, ṽ

u
t−1]

}
, where L is the length of

x̃u
t . Thus, the training instance of SRSs can be represented as an input-target pair ⟨x̃u

t , ṽ
u
t ⟩. Note that

we use ‘~’ to denote the observed data that may be unreliable due to external distractions.

Core Assumptions. Ideally, each user-item interaction should be drawn from users’ true preference
distribution η without any distractions, where ηvi(x

u
t ) = P(vut = vi|xu

t ). We define p1 to be the true
item for recommendation, i.e, the top-1 item according to η,∑

vi∈V
I
[
ηp1(x

u
t ) ≥ ηvi(x

u
t )
]
= |V|, (1)

where I[·] is an indicator function that equals 1 if the condition is true; otherwise 0. Meanwhile, we
define p2 to be the middle-ranked item (ranked ⌊|V|/2⌋-th) according to η, namely,∑

vi∈V
I
[
ηp2(x

u
t ) ≥ ηvi(x

u
t )
]
= ⌊|V|/2⌋. (2)

In general, SRSs are built upon the hypothesis that users usually select items with a tendency rather
than randomly. In other words, the randomness of users’ true preferences is restricted, i.e., the
probability gap between the top-1 and middle-ranked items regarding η is unlikely to be small. This
assumption can be formally defined as follows.
Assumption 1. The users’ true preference distribution η fulfills the relaxed Multiclass Tsybakov
Condition [43] with constants C > 0, λ > 0, and α0 ∈ (0, 1], such that for all α ∈ (0, α0],

P
[
ηp1(x

u
t )− ηp2(x

u
t ) ≤ α

]
≤ Cαλ. (3)

The feasibility of Assumption 1 relies on small C and large λ, which are satisfied on public (observed)
datasets based on our empirical analysis in the Appendix with C ∈ (0.55, 0.70) and λ ∈ (1.37, 4.01).

Connecting η with SRS Predictions. Obviously, η is the ideal corrector to rectify unreliable data,
however, due to its unavailability, many existing methods [8, 10] leverage SRS predictions as the
substitution with no theoretical guarantees. This urges us to explore the connection between η and
SRS predictions. To achieve this goal, we first investigate the relationship between η and users’
observed preference distribution η̃, since SRSs are trained with the observed data that may be distorted
by external distractions. Formally, η̃vi(x̃

u
t ) = P(ṽut = vi|x̃u

t ), where ṽut is the observed target that
may be unreliable. We then define a transition probability τvjvi(x̃

u
t ) = P(ṽut = vi|vut = vj , x̃

u
t ) as

the chance that a true target vut is flipped from item vj to item vi owing to external distractions. Thus,
for any pair (vi, vj) ∈ V , there is a linear relationship between η and η̃:

η̃vi(x̃
u
t ) =

∑
vj∈V

P(ṽut = vi|vut = vj , x̃
u
t )P(vut = vj |x̃u

t ) =
∑

vj∈V
τvjvi(x̃

u
t )ηvj (x̃

u
t ). (4)

To bridge η and SRS predictions via η̃, we then study the relationship between η̃ and SRS predictions.
Let fh be an SRS at the h-th training epoch, and the prediction of fh be ϵ-close to η̃,

ϵ = max
x̃u
t ,vi

∣∣η̃vi(x̃u
t )− fh

vi(x̃
u
t )
∣∣, (5)
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where fh
vi(x̃

u
t ) is the predicted probability (score) of the target being vi given the input x̃u

t at the h-th
training epoch. Eqs. (4-5) indicate that there is indeed a connection between η and SRS predictions,
laying the foundation for the proposed strategies to rectify unreliable data as what follows.

3.2 Theorems for Rectifying Unreliable Targets

We now explore how to properly use SRS predictions for rectifying unreliable targets. Prior works
empirically find that unreliable targets tend to possess consistently low prediction scores at different
epochs [8, 44]. Yet, there is no guarantee that such prediction scores given by an SRS trained with
unreliable data can be trustworthy for detecting unreliable targets. This prompts us to theoretically
unveil the relationship between target reliability and SRS predictions at different epochs. Specifically,
Theorem 1 proves that a reliable target is unlikely to keep low prediction scores during training.

Theorem 1. Given Assumption 1, let
{
wh

∣∣ 1 ≤ h ≤ H, 0 ≤ wh ≤ 1,
∑H

h=1 wh = 1
}

be the weights1

for averaging prediction scores of different epochs. ∀ ⟨x̃u
t , ṽ

u
t ⟩, assume ϵ ≤ α0τṽu

t ṽu
t
(x̃u

t ). Let γ =

τṽu
t ṽu

t
(x̃u

t )ηp2 (x̃
u
t )+

∑
vj ̸=ṽu

t
τvj ṽu

t
(x̃u

t )ηvj (x̃
u
t ). We have: P

[
p1 = ṽut ,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]
≤ γ

]
≤ C(O(ϵ))λ.

Proof.

P
[
p1 = ṽ

u
t ,

H∑
h=1

[
whf

h
ṽu
t
(x̃

u
t )

]
≤ γ

]

≤P
[
p1 = ṽ

u
t ,

H∑
h=1

wh

[
η̃ṽu

t
(x̃

u
t ) − ϵ

]
≤ γ

]

=P
[
p1 = ṽ

u
t , ηṽu

t
(x̃

u
t ) ≥ ηp2

(x̃
u
t ),

H∑
h=1

wh

[ ∑
vj∈V

τvj ṽu
t
ηvj

(x̃
u
t ) − ϵ

]
≤ γ

]

≤P
[
p1 = ṽ

u
t , ηṽu

t
(x̃

u
t ) ≥ ηp2 (x̃

u
t ), τṽu

t ṽu
t
(x̃

u
t )ηṽu

t
(x̃

u
t ) +

∑
vj ̸=ṽu

t

τvj ṽu
t
(x̃

u
t )ηvj

(x̃
u
t ) ≤ γ + ϵ

]

=P
[
p1 = ṽ

u
t , ηp2 (x̃

u
t ) ≤ ηṽu

t
(x̃

u
t ) ≤

γ + ϵ −
∑

vj ̸=ṽu
t
τvj ṽu

t
(x̃u

t )ηvj
(x̃u

t )

τṽu
t ṽu

t
(x̃u

t )

]
.

(6)

By replacing γ with τṽu
t ṽ

u
t
(x̃u

t )ηp2(x̃
u
t ) +

∑
vj ̸=ṽu

t
τvj ṽu

t
(x̃u

t )ηvj (x̃
u
t ), we obtain:

P
[
p1 = ṽ

u
t ,

H∑
h=1

[
whf

h
ṽu
t
(x̃

u
t )

]
≤ γ

]
≤ P

[
ηp2

(x̃
u
t ) ≤ ηp1

(x̃
u
t ) ≤ ηp2

(x̃
u
t ) +

ϵ

τṽu
t ṽu

t
(x̃u

t )

]
. (7)

Recall that ϵ ≤ α0τṽu
t ṽ

u
t
(x̃u

t ), which indicates ϵ
τṽu

t ṽu
t
(x̃u

t )
≤ α0. Hence, the relaxed Multiclass

Tsybakov Condition holds and the probability is bounded by C
(

ϵ
τṽu

t ṽu
t
(x̃u

t )

)λ
, namely, C

(
O(ϵ)

)λ
.

Note that a small ϵ relies on large observed data and a powerful f , so that (i) the observed data can
accurately approximate η̃, and (ii) f can closely fit the observed data. Both requirements can be
satisfied thanks to the large-scale datasets and deep learning advancements in recommendation.

Theorem 1 indicates that the probability of a reliable target (p1 = ṽut ) keeping low prediction scores
across different epochs (

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]
≤ γ) is bounded to be low, i.e., no more than C

(
O(ϵ)

)λ
.

This inspires us to rectify unreliable targets by replacing consistently low-scored targets with steadily
high-scored items as the following strategy.

DRUT: Detecting and Replacing Unreliable Targets. Given an SRS f that is ϵ-close to η̃, an
instance ⟨x̃u

t , ṽ
u
t ⟩, the consistently high-scored item vm = argmaxvi ̸=ṽu

t

∑H
h=1

[
whf

h
vi(x̃

u
t )
]
, and

β ∈ (0, 1], we stipulate that if
∑H

h=1

[
whf

h
ṽu
t
(x̃u

t )
]
/
∑H

h=1

[
whf

h
vm

(x̃u
t )
]
< β, i.e., the target ṽut is

consistently lower-scored than vm to some extent, then ṽut should be replaced by vm in the H-th
epoch. We denote the output instance of DRUT as ⟨x̃u

t , v̂
u
t ⟩.

Different from existing methods, DRUT is theoretically error-bounded. Specifically, the error of
DRUT, denoted as EDRUT, comes from three cases: (Case-1) the true target p1 is ṽut but is replaced

1The detailed setting of the weights is related to the self-ensemble mechanism introduced in Section 4.2
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by vm. (Case-2) the true target p1 is vm but ṽut is kept. (Case-3) the true target is neither ṽut nor vm.
Correspondingly, EDRUT can be formulated as below:

EDRUT=P
[
p1=ṽ

u
t , p1 ̸=vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm
(x̃u

t )
]<β

]
︸ ︷︷ ︸

Case-1

+P
[
p1 ̸= ṽ

u
t , p1=vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm
(x̃u

t )
] ≥β

]
︸ ︷︷ ︸

Case-2

+P
[
p1 ̸=ṽ

u
t , p1 ̸=vm

]
︸ ︷︷ ︸

Case-3

.

Subsequently, Lemma 1 first provides the thresholds β1 and β2 that can respectively guarantee
bounded probabilities for Case-1 and Case-2 of EDRUT. Then in Theorem 2, we prove that even if
the chosen β deviates from β1 and β2, DRUT is still error-bounded2.

Lemma 1. Given Assumption 1 and the set of weights
{
wh

∣∣ 1 ≤ h ≤ H, 0 ≤
wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀ ⟨x̃u

t , ṽ
u
t ⟩, assume ϵ ≤ min

[
α0τṽu

t ṽu
t
(x̃u

t ), α0τvmvm (x̃u
t )
]
. Let β1 =[ τṽu

t ṽu
t
(x̃u

t )ηp2 (x̃u
t )+

∑
vj ̸=ṽu

t
τvj ṽ

u
t
ηvj (x̃

u
t )∑H

h=1
[whfh

vm
(x̃u

t )]

]
and β2 =

[ ∑H
h=1[whfh

ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2 (x̃u

t )+
∑

vj ̸=vm
τvjvm (x̃u

t )ηvj (x̃
u
t )

]
. We

have: β ≤ β1 guarantees the probability of Case-1 in EDRUT is bounded by C
(
O(ϵ)

)λ, and β ≥ β2

guarantees the probability of Case-2 in EDRUT is bounded by C
(
O(ϵ)

)λ.

Theorem 2 (The Upper Bound of EDRUT). Given Assumption 1 and the set of weights
{
wh

∣∣ 1≤
h ≤ H, 0 ≤ wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀ ⟨x̃u

t , ṽ
u
t ⟩, let β1 =

[ τṽu
t ṽu

t
(x̃u

t )ηp2 (x̃u
t )+

∑
vj ̸=ṽu

t
τvj ṽ

u
t
ηvj (x̃

u
t )∑H

h=1
[whfh

vm
(x̃u

t )]

]
,

β2 =
[ ∑H

h=1[whfh
ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2 (x̃u

t )+
∑

vj ̸=vm
τvjvm (x̃u

t )ηvj (x̃
u
t )

]
, ξ1 = |β − β1|, and ξ2 = |β − β2|. Assume

ξ2 < β2, ϵ ≤ min
[
α0τṽu

t ṽu
t
(x̃u

t )− ξ1,
α0τvmvm (x̃u

t )β2(β2−ξ2)−ξ2
β2(β2−ξ2)

, 1
2

[
[τp1p1 (x̃

u
t )−τp1vm (x̃u

t )][α0+ηp2 (x̃
u
t )]−∑

vj ̸=p1
[τvjvm (x̃u

t )−τvjp1 (x̃
u
t )]ηvj (x̃

u
t )

]]
. We have: EDRUT ≤ C

(
O(ϵ+ξ1)

)λ
+C

(
O(ϵ+ξ2)

)λ
+C

(
O(ϵ)

)λ
.

3.3 Theorems for Rectifying Unreliable Input

Unreliable items within the input act as mosaics to bewilder SRSs when learning users’ true prefer-
ences, thus impeding SRSs from predicting the true target. Recall that Theorem 1 suggests consistently
low-scored targets are unlikely to be reliable. This inspires us to exploit the prediction scores given
by a backward SRS for rectifying unreliable input, that is, deleting consistently low-scored (predicted
by a backward SRS) items within the input. To avoid deleting all input items with an unreliable
target, we rectify the input of instances that are already processed by DRUT. Formally, given ⟨x̃u

t , v̂
u
t ⟩,

we define a backward SRS ⃗f that aims to predict every input item in x̃u
t based on ⃗xu

t =
{
u, v̂ut

}
.

Hence, the backward instance for predicting ṽut−l, (l ∈ [1, L]) can be formulated as
〈

⃗xu
t , ṽ

u
t−l

〉
. With

Assumption 1 being held, and η′, η̃′, p′1, p′2, τ ′, ϵ′ respectively being the counterparts of η, η̃, p1, p2,
τ , ϵ, for backward sequences, we propose the following strategy.

DDUI: Detecting and Deleting Unreliable Input. Given ⃗f that is ϵ′-close to η̃′,
〈

⃗xu
t , ṽ

u
t−l

〉
,

the consistently high-scored item ⃗vm = argmaxvi ̸=ṽu
t−l

∑H
h=1

[
wh

⃗fh
vi( ⃗xu

t )
]
, and β′ ∈ (0, 1], we

stipulate that if the ratio
∑H

h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]
/
∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
]
< β′, i.e., ṽut−l is consistently

lower-scored than ⃗vm to some extent, then item ṽut−l should be deleted from x̃u
t in the H-th epoch.

After rectifying the L items in x̃u
t , we denote the output instance of DDUI as ⟨x̂u

t , v̂
u
t ⟩.

DDUI differs from DRUT slightly, i.e., we remove unreliable input items to bridge the succeeding
and preceding items, instead of replacing them. Since unreliable input items caused by distractions
are essentially interruptions in the input sequence, replacing them may introduce new interruptions.

Superior to prior works, DDUI is theoretically guaranteed to work well with bounded error, which
comes from two cases: (1) ṽut−l is a reliable input item (p′1 = ṽut−l) but is deleted; and (2) ṽut−l is an
unreliable input item (p′1 ̸= ṽut−l) but is kept. Hence, the error of DDUI, denoted as EDDUI, can be
correspondingly formulated as the following Eq. 8, and its bound is analyzed in Theorem 3:

EDDUI =P
[
p
′
1 = ṽ

u
t−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )

]
∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] < β

′

]
+ P

[
p
′
1 ̸= ṽ

u
t−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )

]
∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β

′

]
. (8)

2The proofs of Lemma 1 and following theorems can be found in the Appendix.
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Figure 2: The overall architecture of the proposed BirDRec framework.

Theorem 3 (The Upper Bound of EDDUI). Given Assumption 1 and the set of weights
{
wh

∣∣ 1≤
h≤H, 0≤wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀

〈
⃗xu
t , ṽ

u
t−l

〉
, let β′

1 =

[
τ ′
ṽu
t−l

ṽu
t−l

( ⃗xu
t )η′

p′2
( ⃗xu

t )+
∑

vj ̸=ṽu
t−l

τ ′
vj ṽ

u
t−l

η′
vj

( ⃗xu
t )∑H

h=1
[wh

⃗fh
⃗vm
( ⃗xu

t )]

]
,

β′
2 =

[ ∑H
h=1[wh

⃗fh
ṽu
t−l

( ⃗xu
t )]

τ ′
⃗vm ⃗vm

( ⃗xu
t )η′

p′2
( ⃗xu

t )+
∑

vj ̸= ⃗vm
τ ′
vj ⃗vm

( ⃗xu
t )η′

vj
( ⃗xu

t )

]
, ξ′1 = |β′ − β′

1|, ξ′2 = |β′ − β′
2|. Assume ξ′2 < β′

2,

ϵ′ ≤ min
[
α0τ ′ṽu

t−l
ṽu
t−l

( ⃗xu
t ) − ξ′1,

α0τ
′
⃗vm ⃗vm

( ⃗xu
t )β′

2(β
′
2−ξ′2)−ξ′2

β′
2(β

′
2−ξ′2)

, 1
2

[
[τ ′

p′1p
′
1
( ⃗xu

t ) − τ ′
p′1 ⃗vm

( ⃗xu
t )][α0 + η′

p′2
( ⃗xu

t )] −∑
vj ̸=p′1

[τ ′vj ⃗vm
( ⃗xu

t )−τ ′vjp′1
( ⃗xu

t )]η
′
vj
( ⃗xu

t )
]]

. We have: EDDUI ≤ C
(
O(ϵ′+ξ′1)

)λ
+C

(
O(ϵ′+ξ′2)

)λ
+C

(
O(ϵ′)

)λ
.

4 The Proposed BirDRec Framework

By integrating DRUT and DDUI into existing SRSs, we introduce BirDRec, a model-agnostic
bidirectional data rectification framework, which can rectify both unreliable targets and input with
theoretical guarantees for more robust SRSs. Yet, the complexity of BirDRec is prohibitively high
due to the calculation and storage of prediction scores for each instance across different epochs in
DRUT and DDUI. To ease this issue, we devise a rectification sampling strategy that avoids prediction
on the full item set to replace unreliable targets or delete unreliable input, thereby reducing the time
complexity of BirDRec. Meanwhile, we adopt the self-ensemble mechanism [14] to approximate the
weighted average prediction scores of different epochs, thus avoiding preserving scores of all epochs
and reducing the space complexity.

Framework Overview. Accordingly, the efficiency-improved BirDRec is depicted in Fig. 2. Specifi-
cally, BirDRec first leverages the self-ensembled forward SRS to rectify the target of an instance via
DRUT, and then the input is rectified by the self-ensembled backward SRS via DDUI. Thereafter,
the rectified instance and its L backward instances are respectively used to train the forward and
backward SRSs, which are finally employed to update the corresponding self-ensembled SRSs.

4.1 Reducing Time Complexity via Rectification Sampling

The time complexity of BirDRec is primarily attributed to the search for consistently high-scored
items (vm and ⃗vm), which requires the calculation of prediction scores between every instance and all
items. Concretely, the per-epoch time complexity of BirDRec is O

(
N ·(|V|+ L)

)
, where N denotes

the number of instances. To mitigate this substantial computational burden, we propose a rectification
sampling strategy that circumvents the need to search the entire item set.

Rectification Sampling. Each instance ⟨x̃u
t , ṽ

u
t ⟩ is assigned two rectification pools Ku

t and ⃗Ku
t to

rectify the target and input, respectively. At first, Ku
t is initialized by the K succeeding items of ṽut ,

i.e., [ṽut+1, ..., ṽ
u
t+K ], which are potentially better substitutions for ṽut . Similarly, ⃗Ku

t is initialized
with the K preceding items of ṽut−1. Next, in each epoch, the items in Ku

t , together with K additional
items that are randomly sampled from V , are ranked in descending order w.r.t. their weighted average
prediction scores over different epochs (i.e.,

∑H
h=1[whf

h
vi(x̃

u
t )]). Then the top-1 item, denoted as v̂m,

is adopted as the approximation of vm in DRUT, while the top-K items are retained to update Ku
t for

the next epoch. The rationale behind approximating vm with v̂m is supported by Theorem 4, which
indicates that the relative rank of an item over a list of randomly sampled items can approximate this
item’s relative rank over the full item set. That is, the top-1 item v̂m tends to be ranked highly over
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Table 1: Statistics of the datasets.
Dataset # Users # Items # Interactions Avg. Length Sparsity

ML-1M (ML) 6,040 3,417 999,611 165.5 95.16%
Beauty (Be) 22,362 12,102 198,502 8.9 99.93%
Yelp (Ye) 22,844 16,552 236,999 10.4 99.94%
QK-Vedio (QK) 30,704 41,534 2,268,935 73.9 99.82%

V . The updating rules of ⃗Ku
t for DDUI is defined similarly as Ku

t . As a result, the per-epoch time
complexity of BirDRec is reduced from O

(
N ·(|V|+ L)

)
to O

(
N ·(K + L)

)
.

Theorem 4. Let R be a list of K items randomly sampled from V with replacement, ζ ∈ (0, 1),
rH(xu

t , vi) =
∑

vj∈V I
[∑H

h=1[whf
h
vj
(x̃u

t )] >
∑H

h=1[whf
h
vi
(x̃u

t )]
]

be the rank of item vi over the entire
item set at the H-th epoch, and r̂H(xu

t , vi) =
∑

vj∈R I
[∑H

h=1[whf
h
vj
(x̃u

t )] >
∑H

h=1[whf
h
vi
(x̃u

t )]
]

be the

rank of vi over R at the H-th epoch. We have: P
[∣∣ r̂H (xu

t ,vi)

K
− rH (xu

t ,vi)

|V|
∣∣ ≥ ζ

]
≤ exp(−2Kζ2).

4.2 Reducing Space Complexity via Self-ensemble Mechanism

The huge space cost of BirDRec is caused by the storage of prediction scores between each instance
and all items in every epoch, for the sake of calculating the weighted average prediction scores.

Specifically, at the H-th epoch, the space complexity of preserving all prediction scores is O(N ·
|V| ·H). To save space, we thus approximate the weighted average scores with the self-ensemble
mechanism [14], thereby avoiding storing prediction scores of different epochs. Formally, let
fH be an SRS parameterized by θH , and fH be a self-ensembled SRS parameterized by θH =∑H

h=1 whθh. It has proven that [14] the difference between the weighted average prediction scores
(
∑H

h=1 whf
h
vi(x

u
t )) and the prediction of the self-ensembled SRS (fH

vi
(xu

t )) is of the second order
of smallness, if and only if wh = ρH−h(1− ρ)1−δ(h−1), where ρ ∈ (0, 1) denotes the exponential
decay rate for ensembling; and δ(·) is the unit impulse function, i.e., δ(0) = 1, otherwise 0. With
such self-ensemble, there is no need to store SRSs of each epoch, as θH can be efficiently derived
from θH−1 and θH with the exponential moving average as follows:

θH =
∑H

h=1
ρH−h(1− ρ)1−δ(h−1)θh = ρθH−1 + (1− ρ)θH . (9)

By doing so, the burden of retaining prediction scores of different epochs is reduced to maintaining
an extra self-ensembled SRS. As the parameters of an SRS mainly consist of the user and item
embeddings, the per-epoch space complexity of BirDRec is reduced from O

(
(|U| + |V|) · d +

(L + |V| ·H) · N
)

to O
(
(|U| + |V|) · d + (L +K) · N

)
, where d represents the embedding size.

Furthermore, to reduce the number of parameters and mitigate overfitting, the (self-ensembled)
forward and backward SRSs in BirDRec share the same user and item embeddings.

5 Experiments and Results

5.1 Experimental Settings

Datasets. We adopt four real-world datasets with varying domains, sizes, sparsity, and average se-
quence lengths shown in Table 1. Specifically, ML-1M (ML)[45] is a popular movie recommendation
benchmark. Beauty (Be) [46] is the product review dataset collected from Amazon.com. Yelp
(Ye) [10] is a business recommendation dataset released by Yelp.com. QK-Video (QK) [47] is a
video recommendation dataset crawled from Tencent.com. Following [3, 8, 9], we preprocess all
datasets by removing users and items whose interactions are less than 5.

Baselines. To verify the generality of BirDRec, we implement it with vanilla SRSs based on repre-
sentative backbones. In particular, FPMC [15] is based on Markov Chain. GRU4Rec[17], Caser [20],
and MAGNN [27] are built on RNN, CNN, and GNN, respectively. SASRec [28] and BERT4Rec [29] are
based on Transformer. Meanwhile, to validate its effectiveness and efficiency, we compare BirDRec
with state-of-the-art robust SRSs including BERD [8], FMLP-Rec [9], and STEAM [10], which aim to
tackle unreliable targets, unreliable input, and both, respectively.

Evaluation Protocol. Following [9, 48, 49], three widely-used metrics are adopted to evaluate the
ranking quality, namely, HR, NDCG, and MRR. For all these metrics, higher metric values suggest
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Table 2: Performance comparison with vanilla SRSs trained with the original ‘Plain’ setting and our
BirDRec framework. Improv. means the relative improvement of BirDRec over the ‘Plain’ setting.
The significance of the improvement is determined by a paired t-test with p ≤ 0.001.

Datasets ML-1M Beauty

Backbones Settings HR@5 HR@10 NDCG@5 NDCG@10 MRR HR@5 HR@10 NDCG@5 NDCG@10 MRR

FPMC
Plain 0.1317 0.2087 0.0821 0.1069 0.0929 0.0315 0.0527 0.0201 0.0259 0.0244

BirDRec 0.1534 0.2407 0.0972 0.1251 0.1059 0.0513 0.0750 0.0348 0.0423 0.0379
Improv. 16.48% 15.33% 18.39% 17.03% 13.99% 62.86% 42.31% 73.13% 63.32% 55.33%

Caser
Plain 0.1592 0.2450 0.1023 0.1272 0.1099 0.0377 0.0574 0.0245 0.0308 0.0279

BirDRec 0.2091 0.2872 0.1426 0.1666 0.1443 0.0445 0.0638 0.0307 0.0369 0.0334
Improv. 31.34% 17.22% 39.39% 30.97% 31.30% 18.04% 11.15% 25.31% 19.81% 19.71%

GRU4Rec
Plain 0.1597 0.2427 0.1044 0.1304 0.1126 0.0293 0.0470 0.0186 0.0243 0.0228

BirDRec 0.2167 0.2973 0.1495 0.1751 0.1511 0.0526 0.0761 0.0357 0.0434 0.0386
Improv. 35.69% 22.50% 43.20% 34.28% 34.19% 79.52% 61.91% 91.94% 78.60% 69.30%

SASRec
Plain 0.1769 0.2662 0.1168 0.1451 0.1252 0.0475 0.0691 0.0313 0.0385 0.0343

BirDRec 0.2352 0.3259 0.1631 0.1915 0.1647 0.0653 0.0903 0.0459 0.0537 0.0482
Improv. 32.96% 22.43% 39.64% 31.98% 31.55% 37.47% 30.68% 46.65% 39.48% 40.52%

BERT4Rec
Plain 0.1736 0.2655 0.1142 0.1429 0.1219 0.0356 0.0563 0.0231 0.0293 0.0271

BirDRec 0.2319 0.3152 0.1613 0.1871 0.1622 0.0649 0.0896 0.0466 0.0544 0.0489
Improv. 33.58% 18.72% 41.24% 30.93% 33.06% 82.30% 59.15% 101.73% 85.67% 80.44%

MAGNN
Plain 0.1802 0.2692 0.1196 0.1479 0.1265 0.0566 0.0798 0.0380 0.0455 0.0403

BirDRec 0.2341 0.3211 0.1628 0.1903 0.1649 0.0634 0.0890 0.0435 0.0518 0.0456
Improv. 29.91% 19.28% 36.12% 28.67% 30.36% 12.01% 11.53% 14.47% 13.85% 13.15%

Datasets Yelp QK-Vedio

FPMC
Plain 0.0502 0.0754 0.0398 0.0431 0.0425 0.0483 0.0803 0.0303 0.0405 0.0384

BirDRec 0.0743 0.0914 0.063 0.0686 0.0673 0.0756 0.1193 0.0483 0.0624 0.0569
Improv. 48.01% 21.22% 58.29% 59.16% 58.35% 56.52% 48.57% 59.41% 54.07% 48.18%

Caser
Plain 0.0337 0.0519 0.0228 0.0286 0.0277 0.0498 0.0831 0.0314 0.0421 0.0396

BirDRec 0.0651 0.0818 0.0519 0.0571 0.0548 0.0746 0.1221 0.0479 0.0632 0.0573
Improv. 93.18% 57.61% 127.63% 99.65% 97.83% 49.80% 46.93% 52.55% 50.12% 44.70%

GRU4Rec
Plain 0.0320 0.0530 0.0198 0.0265 0.0257 0.0485 0.0816 0.0305 0.0410 0.0388

BirDRec 0.0741 0.0921 0.0602 0.0659 0.0638 0.0776 0.1253 0.0497 0.0651 0.0591
Improv. 131.56% 73.77% 204.04% 148.68% 148.25% 60.00% 53.55% 62.95% 58.78% 52.32%

SASRec
Plain 0.0404 0.0574 0.0295 0.0349 0.0341 0.0511 0.0858 0.0326 0.0435 0.0408

BirDRec 0.0771 0.0965 0.0626 0.0687 0.0663 0.0815 0.1306 0.0523 0.0682 0.0616
Improv. 90.84% 68.12% 112.20% 96.85% 94.43% 59.49% 52.21% 60.43% 56.78% 50.98%

BERT4Rec
Plain 0.0421 0.0597 0.0318 0.0375 0.0368 0.0558 0.0925 0.0354 0.0473 0.0442

BirDRec 0.0734 0.0918 0.0597 0.0657 0.0635 0.0817 0.1297 0.0524 0.0677 0.0613
Improv. 74.35% 53.77% 87.74% 75.20% 72.55% 46.42% 40.22% 48.02% 43.13% 38.69%

MAGNN
Plain 0.0436 0.0602 0.0337 0.0388 0.0383 0.0529 0.0880 0.0344 0.0452 0.0426

BirDRec 0.0560 0.0792 0.0413 0.0488 0.0465 0.0742 0.1184 0.0479 0.0619 0.0565
Improv. 28.44% 31.56% 22.55% 25.77% 21.41% 40.26% 34.55% 39.24% 36.95% 32.63%
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Figure 3: The comparison regarding time and storage costs.

better recommendation accuracy. For each user, we preserve the last two interactions for validation
and testing, while the rest are used for training. The training of each model is carried out five times to
report the average results. During testing, we follow [3, 9, 27] and evaluate the ranking results over
the whole item set for fair comparison [50].

Implementation Details. For all methods, Xavier initializer [51] and Adam optimizer [52] are
adopted; and the best hyper-parameter settings are empirically found based on the performance on
the validation set. For BirDRec, it is implemented by PyTorch with batch_size = 1024, d = 64,
learning_rate = 0.01 for Yelp and 0.001 for other datasets, L = 5, β = 0.1, β′ = 0.1, K = 10, and
ρ = 0.9. To ensure accurate rectification with reduced ϵ, BirDRec is trained without rectification in
the first 10 epochs. All the experiments are conducted on an NVIDIA Quadro RTX 8000 GPU3.

5.2 Experimental Results and Analysis

Overall Comparison. Table 2 presents the performance of vanilla SRSs built on various representa-
tive backbones. Each SRS is trained under two different settings: the original Plain setting and our

3Our source code and experiment details (e.g., parameter settings for baselines) are in the Appendix.
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Table 3: Performance comparison with existing robust SRSs, where the best performance is boldfaced
and the runner up is marked by ‘∗’. Improv. means the relative improvement of BirDRec over the
runner up. The significance of the improvement is determined by a paired t-test with p ≤ 0.001.

Datasets ML-1M Beauty

Metrics HR@5 HR@10 NDCG@5 NDCG@10 MRR HR@5 HR@10 NDCG@5 NDCG@10 MRR

BERD 0.1922∗ 0.2814∗ 0.1267∗ 0.1554∗ 0.1335∗ 0.0507∗ 0.0745 0.0332 0.0406 0.0364
FMLP-Rec 0.1789 0.2685 0.1207 0.1492 0.1299 0.0501 0.0743 0.0384∗ 0.0448∗ 0.0404∗

STEAM 0.1198 0.1950 0.0765 0.1006 0.0874 0.0495 0.0765∗ 0.0324 0.0414 0.0371
BirDRec 0.2352 0.3259 0.1631 0.1915 0.1647 0.0653 0.0903 0.0459 0.0537 0.0482
Improv. 22.37% 15.81% 28.73% 23.23% 23.37% 30.34% 18.04% 19.53% 19.87% 19.31%

Datasets Yelp QK-Vedio

BERD 0.0423 0.0636 0.0304 0.0360 0.0351 0.0548 0.0958 0.0352 0.0496 0.0461
FMLP-Rec 0.0499 0.0702 0.0374 0.0433 0.0422 0.0604∗ 0.0991 0.0391∗ 0.0514∗ 0.0480∗

STEAM 0.0556∗ 0.0822∗ 0.0387∗ 0.0473∗ 0.0448∗ 0.0597 0.1021∗ 0.0371 0.0507 0.0465
BirDRec 0.0771 0.0965 0.0626 0.0687 0.0663 0.0815 0.1306 0.0523 0.0682 0.0616
Improv. 38.67% 17.40% 61.76% 45.24% 47.99% 34.93% 27.91% 33.76% 32.68% 28.33%
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Figure 4: Ablation study on different variants of BirDRec.

BirDRec framework. We can note that all the baselines are boosted significantly on all datasets with
the aid of BirDRec, which demonstrates the generality of BirDRec.

Table 3 compares BirDRec with state-of-the-art robust SRSs. Considering BERD and STEAM
are both built upon Transformer, we also adopt a transformer-based SRS, SASRec, as the default
backbone of BirDRec in the following experiments to ensure fair comparisons. The results show that
BirDRec dramatically outperforms existing robust SRSs, confirming the effectiveness of our error-
bounded rectification strategies in comparison to existing methods that lack theoretical guarantees.

Fig. 3 compares the time and storage cost of BirDRec and STEAM, both of which aim to handle
unreliable input and targets simultaneously. In particular, Figs. 3(a) and (b) show that BirDRec
executes 4.28 times faster than STEAM in each epoch and converges with fewer epochs. Meanwhile,
Figs. 3(c) and (d) show that BirDRec incurs only half the storage cost of STEAM on most datasets.
These results highlight the efficiency of our sampling strategy and the self-ensemble mechanism.
The storage cost of BirDRec is marginally higher than STEAM’s on ML-1M. This is because the
advantage of our rectification sampling strategy is less obvious on datasets with small item sets (see
Table 1), indicating the superior scalability of our BirDRec on large-scale item sets.

Ablation Study. To check the efficacy of essential strategies of BirDRec (DRUT, DDUI, and the
self-ensemble), we add these strategies incrementally to a plain representative SRS – SASRec. Note
that without self-ensemble, DRUT and DDUI only consider the prediction scores at the latest epoch
for data rectification. The results are presented in Fig. 4 and similar trends can be noted with the
rest SRSs on the other metrics. First, adding either DRUT or DDUI to SASRec brings dramatic
improvements, implying the effectiveness of DRUT and DDUI in rectifying unreliable targets and
input, respectively. Second, using DRUT and DDUI together is better than leveraging each of them
solely, indicating the necessity of rectifying both unreliable targets and input for more robust SRSs.
Moreover, adding the self-ensemble mechanism can further boost the accuracy, which confirms
the efficacy of considering prediction scores of different epochs for data rectification. Overall, the
performance gain of separately adding DRUT, DDUI, and self-ensemble is 45.7%, 43.3%, and 3.1%,
respectively. That is, DRUT and DDUI contribute more than the self-ensemble to our BirDRec.

Hyper-parameter Analysis. We analyze the impact of key hyper-parameters, i.e., the rectification
thresholds β, β′, the size K of the rectification pool, and the exponential decay rate ρ. The results are
presented in Fig. 5 with several major findings (similar trends can be noted with the other metrics
on the rest datasets). (i) The best choice for β and β′ is 0.1, showing that small thresholds tend to
maintain unreliable instances while large ones may mistakenly rectify reliable data. (ii) K ≥ 10 is
sufficient to gain better accuracy. (iii) ρ ≥ 0.5 yields better performance, that is, it is beneficial to
consider predictions in earlier epochs. (iv) Even if the hyper-parameters of BirDRec are not optimally
set, BirDRec still dramatically outperforms the best baseline (BERD) on ML-1M.
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Figure 5: Effect of key hyper-parameters β, β′, K, and ρ of BirDRec on ML-1M dataset.

Case Study. Fig. 6 presents a real instance that is rectified by BirDRec on ML-1M. Specifically, in
the DRUT module, the target movie ‘Schindler’s List’ consistently gets lower scores than the movie
‘Terminator 2’ in the rectification pool, and is then replaced by ‘Terminator 2’. This is reasonable,
given that ‘Terminator 2’ aligns more closely with the input Sci-fi movies than ‘Schindler’s List’.
Subsequently, in the DDUI module, the input movie ‘American Beauty’ is consistently lower-scored
than the movie ‘Star Wars IV’ in the rectification pool and is thus deleted. This decision is justifiable,
considering that the rectified target, ‘Terminator 2’, generally lacks relevance to the input ‘American
Beauty’ across various aspects, including genres, actors, directors, tags, etc.

Figure 6: The overall architecture of the proposed BirDRec framework.

Limitations of BirDRec. Although BirDRec exhibits its superiority through our extensive experi-
ments, its limitations are two-fold. Firstly, the improvement of BirDRec on storage cost is limited for
smaller item sets. This is primarily because the rectification sampling strategy with self-ensemble has
less apparent advantages on datasets with smaller item sets. To be specific, the storage cost reduction
for calculating weighted average prediction scores is from O(|V | ∗H) to O(K) for each instance.
Thus if |V | is small, the benefit of this reduction will be less obvious. Secondly, although BirDRec
is significantly faster than the latest robust SRS (STEAM), it is worth noting that BirDRec is 1.6
times on average slower than its backbone model (as depicted in Fig. 3) in each training epoch. This
increased training time could be a practical concern in systems with extremely large-scale datasets
and real-time recommendation demands.

6 Conclusion

This work, for the first time, provides theoretically guaranteed data rectification strategies to tackle
both unreliable input and targets for more robust SRSs. The proposed strategies are further integrated
into a model-agnostic bidirectional data rectification framework, BirDRec, that can be flexibly
implemented with most existing SRSs, for robust training against unreliable data. Additionally, we
devise a rectification sampling strategy to reduce the computational cost of BirDRec; meanwhile, a
self-ensemble mechanism is adopted to reduce the space complexity. Extensive experiments verify
the generality, effectiveness, and efficiency of the proposed BirDRec.
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Theoretically Guaranteed Bidirectional Data
Rectification for Robust Sequential Recommendation

– Appendix –

This Appendix is divided into three sections. First, Section A empirically validates the feasibility of
Assumption 1. Next, in Section B, complete proofs of all the lemmas and theorems are presented.
Finally, in Section C, we provide detailed settings of baselines and additional experimental results,
including the hyper-parameter analysis and the percentage of rectified data. Our code is available at:
https://github.com/AlchemistYT/BirDRec.

A The Feasibility of Assumption 1

Assumption 1. The users’ true preference distribution η fulfills the relaxed Multiclass Tsybakov
Condition [1] with constants C > 0, λ > 0, and α0 ∈ (0, 1], such that for all α ∈ (0, α0],

P
[
ηp1(x

u
t )− ηp2(x

u
t ) ≤ α

]
≤ Cαλ. (1)

The feasibility of Assumption 1 relies on large C and small λ. In order to estimate the values of C and
λ, the initial step is to approximate the true preference distribution η. To achieve this, we first obtain
a reliable dataset D via the heuristic method proposed by [2]. The heuristic method measures the
matching degree between the input and target of each instance from two aspects: item co-occurrence
and item properties, then those instances with matching degrees lower than a threshold are filtered
as unreliable data. We use a large threshold (0.9) to filter the dataset rigorously, ensuring the vast
majority of the maintained instances in D are reliable. Subsequently, as suggested by [3], we train a
classic SRS, SASRec [4], on the filtered reliable dataset D and then use the prediction of SASRec to
approximate η. Formally, for each reliable instance ⟨xu

t , v
u
t ⟩ from the reliable dataset D, the SRS

prediction score fvu
t
(xu

t ) is employed as the approximation of ηvu
t
(xu

t ).

Next, we densely sample α from 0.05 to 0.9 with step size 0.005 and calculate the corresponding
left-hand-side probability of Eq. 1 with the following relative frequency Fα, and collect a series of(
log(α), log(Fα)

)
data points:

Fα =
1

|D|
∑

⟨xu
t ,vu

t ⟩∈D

I
[
fp̂1(x

u
t )− fp̂2(x

u
t ) ≤ α

]
, (2)

where p̂1 and p̂2 are respectively the top- and middle-ranked items according to f , namely,∑
vi∈V I

[
fp̂1(x

u
t ) ≥ fvi(x

u
t )
]

= |V|,
∑

vi∈V I
[
fp̂2(x

u
t ) ≥ fvi(x

u
t )
]

= ⌊|V|/2⌋. We then
use log(Fα) to approximate log(Cαλ). As shown by the blue dots in Fig. 6, the collected(
log(α), log(Fα)

)
data points are generally linearly distributed, which allows us to estimate C

and λ with linear regression according to log(Cαλ) = log(C) + λ log(α). As a result, Fig. 6 shows
that the estimated C and λ are respectively restricted in (0.55, 0.70) and (1.37, 4.01) on real-world
datasets from various domains, which validates the feasibility of Assumption 1.
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Figure 1: The estimated constants C and λ on various datasets.

B Proofs of Lemmas and Theorems

B.1 The Proof of Theorem 1

Theorem 1. Given Assumption 1, let
{
wh

∣∣ 1 ≤ h ≤ H, 0 ≤ wh ≤ 1,
∑H

h=1 wh = 1
}

be the weights
for averaging prediction scores of different epochs. ∀ ⟨x̃u

t , ṽ
u
t ⟩, assume ϵ ≤ α0τṽu

t ṽu
t
(x̃u

t ). Let γ =

τṽu
t ṽu

t
(x̃u

t )ηp2 (x̃
u
t )+
∑

vj ̸=ṽu
t
τvj ṽu

t
(x̃u

t )ηvj (x̃
u
t ). We have: P

[
p1 = ṽut ,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]
≤ γ

]
≤ C(O(ϵ))λ.

Proof.

P

[
p1 = ṽut ,

H∑
h=1

[
whf

h
ṽu
t
(x̃u

t )
]
≤ γ

]

≤P

[
p1 = ṽut ,

H∑
h=1

wh

[
η̃ṽu

t
(x̃u

t )− ϵ
]
≤ γ

]

=P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2
(x̃u

t ),

H∑
h=1

wh

[ ∑
vj∈V

τvj ṽu
t
ηvj (x̃

u
t )− ϵ

]
≤ γ

]

≤P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2(x̃
u
t ), τṽu

t ṽ
u
t
(x̃u

t )ηṽu
t
(x̃u

t ) +
∑

vj ̸=ṽu
t

τvj ṽu
t
(x̃u

t )ηvj (x̃
u
t ) ≤ γ + ϵ

]

=P

[
p1 = ṽut , ηp2

(x̃u
t ) ≤ ηṽu

t
(x̃u

t ) ≤
γ + ϵ−

∑
vj ̸=ṽu

t
τvj ṽu

t
(x̃u

t )ηvj (x̃
u
t )

τṽu
t ṽ

u
t
(x̃u

t )

]

(3)

By replacing γ with τṽu
t ṽ

u
t
(x̃u

t )ηp2(x̃
u
t ) +

∑
vj ̸=ṽu

t
τvj ṽu

t
(x̃u

t )ηvj (x̃
u
t ) , we obtain:
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P

[
p1 = ṽut ,

H∑
h=1

[
whf

h
ṽu
t
(x̃u

t )
]
≤ γ

]
≤ P

[
ηp2(x̃

u
t ) ≤ ηp1(x̃

u
t ) ≤ ηp2(x̃

u
t ) +

ϵ

τṽu
t ṽ

u
t
(x̃u

t )

]
(4)

Recall that ϵ ≤ α0τṽu
t ṽ

u
t
(x̃u

t ), which implies ϵ
τṽu

t ṽu
t
(x̃u

t )
≤ α0. Hence, the relaxed Multiclass

Tsybakov Condition holds and the probability is bounded by C
(

ϵ
τṽu

t ṽu
t
(x̃u

t )

)λ
, namely, C

(
O(ϵ)

)λ
.

B.2 The Proof of Lemma 1

EDRUT=P
[
p1=ṽ

u
t , p1 ̸=vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm
(x̃u

t )
]<β

]
︸ ︷︷ ︸

Case-1

+P
[
p1 ̸= ṽ

u
t , p1=vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm
(x̃u

t )
] ≥β

]
︸ ︷︷ ︸

Case-2

+P
[
p1 ̸=ṽ

u
t , p1 ̸=vm

]
︸ ︷︷ ︸

Case-3

.

Lemma 1. Given Assumption 1 and the set of weights
{
wh

∣∣ 1 ≤ h ≤ H, 0 ≤
wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀ ⟨x̃u

t , ṽ
u
t ⟩, assume ϵ ≤ min

[
α0τṽu

t ṽu
t
(x̃u

t ), α0τvmvm (x̃u
t )
]
. Let β1 =[ τṽu

t ṽu
t
(x̃u

t )ηp2 (x̃u
t )+

∑
vj ̸=ṽu

t
τvj ṽ

u
t
ηvj (x̃

u
t )∑H

h=1
[whfh

vm
(x̃u

t )]

]
and β2 =

[ ∑H
h=1[whfh

ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2 (x̃u

t )+
∑

vj ̸=vm
τvjvm (x̃u

t )ηvj (x̃
u
t )

]
. We

have: β ≤ β1 guarantees the probability of Case-1 in EDRUT is bounded by C
(
O(ϵ)

)λ, and β ≥ β2

guarantees the probability of Case-2 in EDRUT is bounded by C
(
O(ϵ)

)λ.

Proof. For Case-1 of EDRUT, we have:

P

[
p1 = ṽut , p1 ̸= vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β1

]

≤P

[
p1 = ṽut ,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β1

]

≤P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2
(x̃u

t ),

H∑
h=1

wh

[
η̃ṽu

t
(x̃u

t )− ϵ
]
< β1

H∑
h=1

[
whf

h
vm(x̃u

t )
]]

=P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2(x̃
u
t ), η̃ṽu

t
(x̃u

t ) < β1

H∑
h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ

]

=P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2
(x̃u

t ),
∑
vj∈V

τvj ṽu
t
ηvj (x̃

u
t ) < β1

H∑
h=1

[
whf

h
vm

(x̃u
t )
]
+ ϵ

]

=P

[
p1 = ṽut , ηp2

(x̃u
t ) ≤ ηṽu

t
(x̃u

t ) <
β1

∑H
h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ−

∑
vj ̸=ṽu

t

[
τvj ṽu

t
ηvj (x̃

u
t )
]

τṽu
t ṽ

u
t
(x̃u

t )

]
.

(5)

By substituting β1 with
τṽu

t ṽu
t
(x̃u

t )ηp2
(x̃u

t )+
∑

vj ̸=ṽu
t
τvj ṽu

t
ηvj

(x̃u
t )∑H

h=1[whfh
vm

(x̃u
t )]

in Eq. 7, we obtain:

P

[
p1 = ṽut , p1 ̸= vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β1

]

≤P
[
ηp2

(x̃u
t ) ≤ ηp1

(x̃u
t ) < ηp2

(x̃u
t ) +

ϵ

τṽu
t ṽ

u
t
(x̃u

t )

]
.

(6)

Recall that ϵ ≤ α0τṽu
t ṽ

u
t
(x̃u

t ), which implies ϵ
τṽu

t ṽu
t
(x̃u

t )
≤ α0. Hence, the Multiclass Tsybakov

Condition holds and the probability of Case-1 is bounded by C
(

ϵ
τṽu

t ṽu
t
(x̃u

t )

)λ
, namely, C

(
O(ϵ)

)λ
.
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Thereafter, for Case-2 of EDRUT, we have:

P

[
p1 ̸= ṽut , p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] ≥ β2

]

≤P

[
p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] ≥ β2

]

≤P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2
(x̃u

t ),

H∑
h=1

wh

[
η̃m(x̃u

t )− ϵ
]
≤

∑H
h=1

[
whf

h
vm(x̃u

t )
]

β2

]

=P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2(x̃
u
t ), η̃m(x̃u

t ) ≤
∑H

h=1

[
whf

h
vm(x̃u

t )
]

β2
+ ϵ

]

=P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2
(x̃u

t ),
∑
vj∈V

τvjvm(x̃u
t )ηvj (x̃

u
t ) ≤

∑H
h=1

[
whf

h
vm(x̃u

t )
]

β2
+ ϵ

]

=P

[
p1 = vm, ηp2(x̃

u
t ) ≤ ηm(x̃u

t ) ≤

∑H
h=1[whf

h
vm

(x̃u
t )]

β2
−

∑
vj ̸=vm

[
τvjvm(x̃u

t )ηvj (x̃
u
t )
]

τvmvm(x̃u
t )

+
ϵ

τvmvm(x̃u
t )

]
.

(7)

We replace β2 with
∑H

h=1[whf
h
ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2 (x̃

u
t )+

∑
vj ̸=vm

τvjvm (x̃u
t )ηvj

(x̃u
t )

in Eq. 5 and continue the calculation:

P

[
p1 ̸= ṽut , p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] ≥ β2

]

≤P

[
ηp2

(x̃u
t ) ≤ ηm(x̃u

t ) ≤ ηp2
(x̃u

t ) +
ϵ

τvmvm
(x̃u

t )

]
.

(8)

Recall that ϵ ≤ α0τvmvm(x̃u
t ), which implies ϵ

τvmvm (x̃u
t )

≤ α0. Hence, the Multiclass Tsybakov

Condition holds and the probabiliy of Case-2 is bounded by C
(

ϵ
τvmvm (x̃u

t )

)λ , namely, C
(
O(ϵ)

)λ
.

B.3 The Proof of Theorem 2

Theorem 2 (The Upper Bound of EDRUT). Given Assumption 1 and the set of weights
{
wh

∣∣ 1≤
h ≤ H, 0 ≤ wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀ ⟨x̃u

t , ṽ
u
t ⟩, let β1 =

[ τṽu
t ṽu

t
(x̃u

t )ηp2 (x̃u
t )+

∑
vj ̸=ṽu

t
τvj ṽ

u
t
ηvj (x̃

u
t )∑H

h=1
[whfh

vm
(x̃u

t )]

]
,

β2 =
[ ∑H

h=1[whfh
ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2 (x̃u

t )+
∑

vj ̸=vm
τvjvm (x̃u

t )ηvj (x̃
u
t )

]
, ξ1 = |β − β1|, and ξ2 = |β − β2|. Assume

ξ2 < β2, ϵ ≤ min
[
α0τṽu

t ṽu
t
(x̃u

t )− ξ1,
α0τvmvm (x̃u

t )β2(β2−ξ2)−ξ2
β2(β2−ξ2)

, 1
2

[
[τp1p1 (x̃

u
t )−τp1vm (x̃u

t )][α0+ηp2 (x̃
u
t )]−∑

vj ̸=p1
[τvjvm (x̃u

t )−τvjp1 (x̃
u
t )]ηvj (x̃

u
t )

]]
. We have: EDRUT ≤ C

(
O(ϵ+ξ1)

)λ
+C

(
O(ϵ+ξ2)

)λ
+C

(
O(ϵ)

)λ
.
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Proof. For Case-1 of EDRUT, we have:

P

[
p1 = ṽut , p1 ̸= vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β

]

≤P

[
p1 = ṽut ,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β

]

≤P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2
(x̃u

t ),

H∑
h=1

wh

[
η̃ṽu

t
(x̃u

t )− ϵ
]
< β

H∑
h=1

[
whf

h
vm(x̃u

t )
]]

=P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2(x̃
u
t ), η̃ṽu

t
(x̃u

t ) < β

H∑
h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ

]

=P

[
p1 = ṽut , ηṽu

t
(x̃u

t ) ≥ ηp2
(x̃u

t ),
∑
vj∈V

τvj ṽu
t
ηvj (x̃

u
t ) < β

H∑
h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ

]

≤P

[
p1 = ṽut , ηp2

(x̃u
t ) ≤ ηṽu

t
(x̃u

t ) <
β
∑H

h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ−

∑
vj ̸=ṽu

t

[
τvj ṽu

t
ηvj (x̃

u
t )
]

τṽu
t ṽ

u
t
(x̃u

t )

]

≤P

[
p1 = ṽut , ηp2

(x̃u
t ) ≤ ηṽu

t
(x̃u

t ) <
(β1 + ξ1)

∑H
h=1

[
whf

h
vm(x̃u

t )
]
+ ϵ−

∑
vj ̸=ṽu

t

[
τvj ṽu

t
ηvj (x̃

u
t )
]

τṽu
t ṽ

u
t
(x̃u

t )

]
.

(9)

We substitute β1 with
τṽu

t ṽu
t
(x̃u

t )ηp2
(x̃u

t )+
∑

vj ̸=ṽu
t
τvj ṽu

t
ηvj

(x̃u
t )∑H

h=1[whfh
vm

(x̃u
t )]

and obtain:

P

[
p1 = ṽut , p1 ̸= vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < β

]

≤P

[
p1 = ṽut , ηp2(x̃

u
t ) ≤ ηṽu

t
(x̃u

t ) < ηp2(x̃
u
t ) +

ϵ

τṽu
t ṽ

u
t
(x̃u

t )
+

ξ1
∑H

h=1

[
whf

h
vm(x̃u

t )
]

τṽu
t ṽ

u
t
(x̃u

t )

]

≤P

[
ηp2

(x̃u
t ) ≤ ηp1

(x̃u
t ) < ηp2

(x̃u
t ) +

ϵ+ ξ1
τṽu

t ṽ
u
t
(x̃u

t )

]
.

(10)

Recall that ϵ ≤ α0τṽu
t ṽ

u
t
(x̃u

t )− ξ1, which implies ϵ+ξ1
τṽu

t ṽu
t
(x̃u

t )
≤ α0. Hence, the Multiclass Tsybakov

Condition holds and the probabiliy of Case-2 is bounded by C
(

ϵ+ξ1
τṽu

t ṽu
t
(x̃u

t )

)λ

, namely, C
(
O(ϵ+ξ1)

)λ
.

5



For Case-2 of EDRUT, we have:

P

[
p1 ̸= ṽut , p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] ≥ β

]

≤P

[
p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] ≥ β

]

≤P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2
(x̃u

t ),

H∑
h=1

wh

[
η̃m(x̃u

t )− ϵ
]
≤

∑H
h=1

[
whf

h
vm

(x̃u
t )
]

β

]

=P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2(x̃
u
t ), η̃m(x̃u

t ) ≤
∑H

h=1

[
whf

h
vm(x̃u

t )
]

β
+ ϵ

]

=P

[
p1 = vm, ηm(x̃u

t ) ≥ ηp2
(x̃u

t ),
∑
vj∈V

τvjvm(x̃u
t )ηvj (x̃

u
t ) ≤

∑H
h=1

[
whf

h
vm(x̃u

t )
]

β
+ ϵ

]

≤P

[
p1 = vm, ηp2(x̃

u
t ) ≤ ηm(x̃u

t ) ≤

∑H
h=1[whf

h
vm

(x̃u
t )]

β −
∑

vj ̸=vm

[
τvjvm(x̃u

t )ηvj (x̃
u
t )
]

τvmvm(x̃u
t )

+
ϵ

τvmvm(x̃u
t )

]

≤P

[
p1 = vm, ηp2

(x̃u
t ) ≤ ηm(x̃u

t ) ≤

∑H
h=1[whf

h
vm

(x̃u
t )]

β2−ξ2
−

∑
vj ̸=vm

[
τvjvm(x̃u

t )ηvj (x̃
u
t )
]

τvmvm(x̃u
t )

+
ϵ

τvmvm(x̃u
t )

]

=P

[
p1 = vm, ηp2(x̃

u
t ) ≤ ηm(x̃u

t ) ≤

∑H
h=1[whf

h
vm

(x̃u
t )]

β2
−

∑
vj ̸=vm

[
τvjvm(x̃u

t )ηvj (x̃
u
t )
]

τvmvm(x̃u
t )

+
ϵ

τvmvm(x̃u
t )

+
ξ2

∑H
h=1[whf

h
vm(x̃u

t )]

β2(β2 − ξ2)τvmvm(x̃u
t )

]
(11)

We replace β2 with
∑H

h=1[whf
h
ṽu
t
(x̃u

t )]

τvmvm (x̃u
t )ηp2

(x̃u
t )+

∑
vj ̸=vm

τvjvm (x̃u
t )ηvj

(x̃u
t )

and continue the calculation:

P

[
p1 ̸= ṽut , p1 = vm,

∑H
h=1

[
whf

h
ṽu
t
(x̃u

t )
]∑H

h=1

[
whfh

vm
(x̃u

t )
] ≥ β

]

≤P

[
p1 = vm, ηp2

(x̃u
t ) ≤ ηm(x̃u

t ) ≤ ηp2
(x̃u

t ) +
ϵ

τvmvm(x̃u
t )

+
ξ2

∑H
h=1[whf

h
vm(x̃u

t )]

β2(β2 − ξ2)τvmvm(x̃u
t )

]

≤P

[
ηp2(x̃

u
t ) ≤ ηp1(x̃

u
t ) ≤ ηp2(x̃

u
t ) +

ϵ

τvmvm(x̃u
t )

+
ξ2

β2(β2 − ξ2)τvmvm(x̃u
t )

]
.

(12)

Recall that ϵ ≤ α0τvmvm (x̃u
t )β2(β2−ξ2)−ξ2

β2(β2−ξ2)
, which implies ϵ

τvmvm (x̃u
t )

+ ξ2
β2(β2−ξ2)τvmvm (x̃u

t )
≤ α0.

Hence, the relaxed Multiclass Tsybakov Condition holds and the probability of Case-2 is bounded by

C
(

ϵβ2(β2−ξ2)+ξ2
β2(β2−ξ2)τvmvm (x̃u

t )

)λ

, namely, C
(
O(ϵ+ ξ2)

)λ
.
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Finally, for Case-3 of EDRUT, we have:

P
[
p1 ̸= ṽut , p1 ̸= vm

]
≤P

[
p1 ̸= vm

]
=P

[
p1 ̸= vm, ηp1

(x̃u
t ) ≥ ηp2

(x̃u
t ),

∑H
h=1

[
whf

h
p1
(x̃u

t )
]∑H

h=1

[
whfh

vm(x̃u
t )
] < 1

]

≤P

[
ηp1(x̃

u
t ) ≥ ηp2(x̃

u
t ),

H∑
h=1

[
whf

h
p1
(x̃u

t )
]
<

H∑
h=1

[
whf

h
vm(x̃u

t )
]]

≤P

[
ηp1

(x̃u
t ) ≥ ηp2

(x̃u
t ),

H∑
h=1

wh

[
η̃p1

(x̃u
t )− ϵ

]
<

H∑
h=1

wh

[
η̃m(x̃u

t ) + ϵ
]]

=P

[
ηp1

(x̃u
t ) ≥ ηp2

(x̃u
t ), η̃p1

(x̃u
t )− ϵ < η̃m(x̃u

t ) + ϵ

]

=P

[
ηp1

(x̃u
t ) ≥ ηp2

(x̃u
t ),

∑
vj∈V

τvjp1
(x̃u

t )ηvj (x̃
u
t ) <

∑
vj∈V

τvjvm(x̃u
t )ηvj (x̃

u
t ) + 2ϵ

]

=P

[
ηp1(x̃

u
t ) ≥ ηp2(x̃

u
t ), τp1p1(x̃

u
t )ηp1(x̃

u
t ) +

∑
vj ̸=p1

τvjp1(x̃
u
t )ηvj (x̃

u
t ) <

τp1vm(x̃u
t )ηp1(x̃

u
t ) +

∑
vj ̸=p1

τvjvm(x̃u
t )ηvj (x̃

u
t ) + 2ϵ

]

=P

[
ηp1

(x̃u
t ) ≥ ηp2

(x̃u
t ), ηp1

(x̃u
t )
[
τp1p1

(x̃u
t )− τp1vm(x̃u

t )
]
<

∑
vj ̸=p1

[
τvjvm(x̃u

t )− τvjp1(x̃
u
t )
]
ηvj (x̃

u
t ) + 2ϵ

]

=P

[
ηp1(x̃

u
t ) ≥ ηp2(x̃

u
t ), ηp1(x̃

u
t ) <

∑
vj ̸=p1

[
τvjvm(x̃u

t )− τvjp1(x̃
u
t )
]
ηvj (x̃

u
t ) + 2ϵ[

τp1p1(x̃
u
t )− τp1vm(x̃u

t )
] ]

=P

[
ηp2(x̃

u
t ) ≤ ηp1(x̃

u
t ) < ηp2(x̃

u
t )+∑

vj ̸=p1

[
τvjvm(x̃u

t )− τvjp1
(x̃u

t )
]
ηvj (x̃

u
t ) + 2ϵ−

[
τp1p1

(x̃u
t )− τp1vm(x̃u

t )
]
ηp2

(x̃u
t )[

τp1p1
(x̃u

t )− τp1vm(x̃u
t )
] ]

(13)

Recall that ϵ ≤ 1
2

[[
τp1p1 (x̃

u
t )− τp1vm (x̃u

t )
][
α0 + ηp2 (x̃

u
t )
]
−
∑

vj ̸=p1

[
τvjvm (x̃u

t )− τvjp1 (x̃
u
t )
]
ηvj (x̃

u
t )
]
,

which implies
∑

vj ̸=p1

[
τvjvm (x̃u

t )−τvjp1 (x̃u
t )
]
ηvj (x̃

u
t )+2ϵ−

[
τp1p1 (x̃u

t )−τp1vm (x̃u
t )
]
ηp2 (x̃u

t )[
τp1p1

(x̃u
t )−τp1vm (x̃u

t )
] ≤ α0. Hence,

the relaxed Multiclass Tsybakov Condition holds and the probability of Case-3 is bounded by

C

(∑
vj ̸=p1

[
τvjvm (x̃u

t )−τvjp1 (x̃u
t )
]
ηvj (x̃

u
t )+2ϵ−

[
τp1p1 (x̃u

t )−τp1vm (x̃u
t )
]
ηp2 (x̃u

t )[
τp1p1

(x̃u
t )−τp1vm (x̃u

t )
] )λ

, namely, C
(
O(ϵ)

)λ.

B.4 The Proof of Theorem 3

EDDUI =P

[
p′1 = ṽut−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] < β′

]
+ P

[
p′1 ̸= ṽut−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]
. (14)
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Theorem 3 (The Upper Bound of EDDUI). Given Assumption 1 and the set of weights
{
wh

∣∣ 1≤
h≤H, 0≤wh ≤ 1,

∑H
h=1 wh = 1

}
, ∀
〈

⃗xu
t , ṽ

u
t−l

〉
, let β′

1 =

[
τ ′
ṽu
t−l

ṽu
t−l

( ⃗xu
t )η′

p′2
( ⃗xu

t )+
∑

vj ̸=ṽu
t−l

τ ′
vj ṽ

u
t−l

η′
vj

( ⃗xu
t )∑H

h=1
[wh

⃗fh
⃗vm
( ⃗xu

t )]

]
,

β′
2 =

[ ∑H
h=1[wh

⃗fh
ṽu
t−l

( ⃗xu
t )]

τ ′
⃗vm ⃗vm

( ⃗xu
t )η′

p′2
( ⃗xu

t )+
∑

vj ̸= ⃗vm
τ ′
vj ⃗vm

( ⃗xu
t )η′

vj
( ⃗xu

t )

]
, ξ′1 = |β′ − β′

1|, ξ′2 = |β′ − β′
2|. Assume ξ′2 < β′

2,

ϵ′ ≤ min
[
α0τ ′ṽu

t−l
ṽu
t−l

( ⃗xu
t ) − ξ′1,

α0τ
′
⃗vm ⃗vm

( ⃗xu
t )β′

2(β
′
2−ξ′2)−ξ′2

β′
2(β

′
2−ξ′2)

, 1
2

[
[τ ′

p′1p
′
1
( ⃗xu

t ) − τ ′
p′1 ⃗vm

( ⃗xu
t )][α0 + η′

p′2
( ⃗xu

t )] −∑
vj ̸=p′1

[τ ′vj ⃗vm
( ⃗xu

t )−τ ′vjp′1
( ⃗xu

t )]η
′
vj
( ⃗xu

t )
]]

. We have: EDDUI ≤ C
(
O(ϵ′+ξ′1)

)λ
+C
(
O(ϵ′+ξ′2)

)λ
+C
(
O(ϵ′)

)λ
.

Proof. For the first term of EDDUI, we have:

P

[
p′1 = ṽut−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] < β′

]

≤P

[
p′1 = ṽut−l, η

′
ṽu
t−l

( ⃗xu
t ) ≥ η′p′2

( ⃗xu
t ),

H∑
h=1

wh

[
η̃′ṽu

t−l
( ⃗xu

t )− ϵ′
]
< β′

H∑
h=1

[
wh

⃗fh
vm

( ⃗xu
t )
]]

=P

[
p′1 = ṽut−l, η

′
ṽu
t−l

( ⃗xu
t ) ≥ η′p′2

( ⃗xu
t ), η̃

′
ṽu
t−l

( ⃗xu
t ) < β′

H∑
h=1

[
wh

⃗fh
vm

( ⃗xu
t )
]
+ ϵ′

]

=P

[
p′1 = ṽut−l, η

′
ṽu
t−l

( ⃗xu
t ) ≥ η′p′2

( ⃗xu
t ),

∑
vj∈V

τ ′vj ṽu
t−l

η′vj ( ⃗xu
t ) < β′

H∑
h=1

[
wh

⃗fh
vm

( ⃗xu
t )
]
+ ϵ′

]

≤P

[
p′1 = ṽut−l, η

′
p′2

( ⃗xu
t ) ≤ η′ṽu

t−l
( ⃗xu

t ) <
β′∑H

h=1

[
wh

⃗fh
vm

( ⃗xu
t )
]
+ ϵ′ −

∑
vj ̸=ṽu

t−l

[
τ ′vj ṽu

t−l
η′vj ( ⃗xu

t )
]

τ ′ṽu
t−l

ṽu
t−l

( ⃗xu
t )

]

≤P

[
p′1 = ṽut−l, η

′
p′2

( ⃗xu
t ) ≤ η′ṽu

t−l
( ⃗xu

t ) <
(β′

1 + ξ′1)
∑H

h=1

[
wh

⃗fh
vm

( ⃗xu
t )
]
+ ϵ′ −

∑
vj ̸=ṽu

t−l

[
τ ′vj ṽu

t−l
η′vj ( ⃗xu

t )
]

τ ′ṽu
t−l

ṽu
t−l

( ⃗xu
t )

]
.

(15)

We substitute β′
1 with

τ ′
ṽu
t−l

ṽu
t−l

( ⃗xu
t )η

′
p′2

( ⃗xu
t )+

∑
vj ̸=ṽu

t−l
τ ′
vj ṽ

u
t−l

η′
vj

( ⃗xu
t )∑H

h=1[wh
⃗fh
⃗vm
( ⃗xu

t )]
and obtain:

P

[
p′1 = ṽut−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] < β′

]

≤P

[
p′1 = ṽut−l, η

′
p′
2
( ⃗xu

t ) ≤ η′ṽu
t−l

( ⃗xu
t ) < η′p′

2
( ⃗xu

t ) +
ϵ′

τ ′ṽu
t−lṽ

u
t−l

( ⃗xu
t )

+
ξ′1

∑H
h=1

[
wh

⃗fh
vm( ⃗xu

t )
]

τ ′ṽu
t−lṽ

u
t−l

( ⃗xu
t )

]

≤P

[
η′p′

2
( ⃗xu

t ) ≤ η′ṽu
t−l

( ⃗xu
t ) < η′p′

2
( ⃗xu

t ) +
ϵ′ + ξ′1

τ ′ṽu
t−lṽ

u
t−l

( ⃗xu
t )

]
.

(16)
Recall that ϵ′ ≤ α0τ

′
ṽu
t−lṽ

u
t−l

( ⃗xu
t ) − ξ′1, which implies ϵ′+ξ′1

τ ′
ṽu
t−l

ṽu
t−l

( ⃗xu
t )

≤ α0. Hence, the relaxed

Multiclass Tsybakov Condition holds, and the probability of the first term of EDDUI (Eq. 14) is

bounded by C
(

ϵ′+ξ′1
τ ′
ṽu
t−l

ṽu
t−l

( ⃗xu
t )

)λ

, namely, C
(
O(ϵ′ + ξ′1)

)λ
.

For the second term of EDDUI, we have:

P

[
p′1 ̸= ṽut−l,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]

=P

[
p′1 ̸= ṽut−l, p

′
1 = ⃗vm,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]

+ P

[
p′1 ̸= ṽut−l, p

′
1 ̸= ⃗vm,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]
(17)
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For the first term of Eq. 17, we have:

P

[
p′1 ̸= ṽut−l, p

′
1 = ⃗vm,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]

≤P

[
p′1 = ⃗vm,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]

≤P

[
p′1 = ⃗vm, η′ ⃗vm

( ⃗xu
t ) ≥ η′p′

2
( ⃗xu

t ),

H∑
h=1

wh

[
η̃′ ⃗vm

( ⃗xu
t )− ϵ′

]
≤

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
]

β′

]

=P

[
p′1 = ⃗vm, η′ ⃗vm

( ⃗xu
t ) ≥ η′p′

2
( ⃗xu

t ), η̃
′
⃗vm
( ⃗xu

t ) ≤
∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
]

β′ + ϵ′

]

=P

[
p′1 = ⃗vm, η′ ⃗vm

( ⃗xu
t ) ≥ η′p′

2
( ⃗xu

t ),
∑
vj∈V

τ ′vjvm( ⃗xu
t )η

′
vj ( ⃗xu

t ) ≤
∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
]

β′ + ϵ′

]

≤P

[
p′1 = ⃗vm, η′p′

2
( ⃗xu

t ) ≤ η′ ⃗vm
( ⃗xu

t ) ≤

∑H
h=1[wh

⃗fh
⃗vm
( ⃗xu

t )]

β′ −
∑

vj ̸=vm

[
τ ′vjvm( ⃗xu

t )η
′
vj ( ⃗xu

t )
]

τ ′ ⃗vm ⃗vm
( ⃗xu

t )
+

ϵ′

τ ′ ⃗vm ⃗vm
( ⃗xu

t )

]

≤P

[
p′1 = ⃗vm, η′p′

2
( ⃗xu

t ) ≤ η′ ⃗vm
( ⃗xu

t ) ≤

∑H
h=1[wh

⃗fh
⃗vm
( ⃗xu

t )]

β′
2−ξ′2

−
∑

vj ̸=vm

[
τ ′vjvm( ⃗xu

t )η
′
vj ( ⃗xu

t )
]

τ ′ ⃗vm ⃗vm
( ⃗xu

t )
+

ϵ′

τ ′ ⃗vm ⃗vm
( ⃗xu

t )

]

=P

[
p′1 = ⃗vm, η′p′

2
( ⃗xu

t ) ≤ η′ ⃗vm
( ⃗xu

t ) ≤

∑H
h=1[wh

⃗fh
⃗vm
( ⃗xu

t )]

β′
2

−
∑

vj ̸=vm

[
τ ′vjvm( ⃗xu

t )η
′
vj ( ⃗xu

t )
]

τ ′ ⃗vm ⃗vm
( ⃗xu

t )
+

ϵ′

τ ′ ⃗vm ⃗vm
( ⃗xu

t )

+
ξ′2

∑H
h=1[wh

⃗fh
⃗vm
( ⃗xu

t )]

β′
2(β

′
2 − ξ′2)τ

′
⃗vm ⃗vm

( ⃗xu
t )

]
(18)

We replace β′
2 with

∑H
h=1[wh

⃗fh
ṽu
t
( ⃗xu

t )]

τ ′
⃗vm ⃗vm

( ⃗xu
t )η

′
p′2

( ⃗xu
t )+

∑
vj ̸=vm

τ ′
vjvm

( ⃗xu
t )η

′
vj

( ⃗xu
t )

and continue the calculation:

P

[
p′1 ̸= ṽut , p

′
1 = vm,

∑H
h=1

[
wh

⃗fh
ṽu
t
( ⃗xu

t )
]∑H

h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β

]

≤P

[
p′1 = ⃗vm, η′p′

2
( ⃗xu

t ) ≤ η′ ⃗vm
( ⃗xu

t ) ≤ η′p′
2
( ⃗xu

t ) +
ϵ′

τ ′ ⃗vm ⃗vm
( ⃗xu

t )
+

ξ′2
∑H

h=1[wh
⃗fh
⃗vm
( ⃗xu

t )]

β′
2(β

′
2 − ξ′2)τ

′
⃗vm ⃗vm

( ⃗xu
t )

]

≤P

[
η′p′

2
( ⃗xu

t ) ≤ η′ ⃗vm
( ⃗xu

t ) ≤ η′p′
2
( ⃗xu

t ) +
ϵ′

τ ′ ⃗vm ⃗vm
( ⃗xu

t )
+

ξ′2
β′
2(β

′
2 − ξ′2)τ

′
⃗vm ⃗vm

( ⃗xu
t )

]
.

(19)

Recall that ϵ′ ≤ α0τ
′
⃗vm ⃗vm

( ⃗xu
t )β

′
2(β

′
2−ξ′2)−ξ′2

β′
2(β

′
2−ξ′2)

, which implies ϵ′

τ ′
⃗vm ⃗vm

( ⃗xu
t )

+
ξ′2

β′
2(β

′
2−ξ′2)τ

′
⃗vm ⃗vm

( ⃗xu
t )

≤ α0.
Hence, the relaxed Multiclass Tsybakov Condition holds and the probability of the first term of Eq. 17

is bounded by C
(

ϵ′β′
2(β

′
2−ξ′2)+ξ′2

β′
2(β

′
2−ξ′2)τ

′
⃗vm ⃗vm

( ⃗xu
t )

)λ

, namely, C
(
O(ϵ′ + ξ′2)

)λ
.
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Finally, for the second term of Eq. 17, we have:

P

[
p′1 ̸= ṽut−l, p

′
1 ̸= ⃗vm,

∑H
h=1

[
wh

⃗fh
ṽu
t−l

( ⃗xu
t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] ≥ β′

]

=P

[
p′1 ̸= vm, η′

p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ),

∑H
h=1

[
wh

⃗fh
p′1
( ⃗xu

t )
]

∑H
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
] < 1

]

≤P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ),

H∑
h=1

[
wh

⃗fh
p′1
( ⃗xu

t )
]
<

H∑
h=1

[
wh

⃗fh
⃗vm
( ⃗xu

t )
]]

≤P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ),

H∑
h=1

wh

[
η̃′
p′1
( ⃗xu

t )− ϵ′
]
<

H∑
h=1

wh

[
η̃′

⃗vm
( ⃗xu

t ) + ϵ′
]]

=P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ), η̃
′
p′1
( ⃗xu

t )− ϵ′ < η̃′
⃗vm
( ⃗xu

t ) + ϵ′
]

=P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ),
∑
vj∈V

τ ′
vjp

′
1
( ⃗xu

t )η
′
vj ( ⃗xu

t ) <
∑
vj∈V

τ ′
⃗vm
( ⃗xu

t )η
′
vj ( ⃗xu

t ) + 2ϵ′
]

=P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ), τ
′
p′1p

′
1
( ⃗xu

t )η
′
p′1
( ⃗xu

t ) +
∑

vj ̸=p′1

τ ′
vjp

′
1
( ⃗xu

t )η
′
vj ( ⃗xu

t ) <

τ ′
p′1 ⃗vm

( ⃗xu
t )η

′
p′1
( ⃗xu

t ) +
∑

vj ̸=p′1

τ ′
⃗vm
( ⃗xu

t )η
′
vj ( ⃗xu

t ) + 2ϵ′
]

=P

[
η′
p′1
( ⃗xu

t ) ≥ η′
p′2
( ⃗xu

t ), η
′
p′1
( ⃗xu

t )
[
τ ′
p′1p

′
1
( ⃗xu

t )− τ ′
p′1 ⃗vm

( ⃗xu
t )
]
<

∑
vj ̸=p′1

[
τ ′

⃗vm
( ⃗xu

t )− τ ′
vjp

′
1
( ⃗xu

t )
]
η′
vj ( ⃗xu

t ) + 2ϵ′
]

=P

[
η′
p′2
( ⃗xu

t ) ≤ η′
p′1
( ⃗xu

t ) < η′
p′2
( ⃗xu

t )+∑
vj ̸=p′1

[
τ ′

⃗vm
( ⃗xu

t )− τ ′
vjp

′
1
( ⃗xu

t )
]
η′
vj ( ⃗xu

t ) + 2ϵ′ −
[
τ ′
p′1p

′
1
( ⃗xu

t )− τ ′
p′1 ⃗vm

( ⃗xu
t )
]
η′
p′2
( ⃗xu

t )[
τ ′
p′1p

′
1
( ⃗xu

t )− τ ′
p′1 ⃗vm

( ⃗xu
t )
] ]

(20)

Recall that ϵ′ ≤ 1
2

[
[τ ′

p′1p
′
1
( ⃗xu

t ) − τ ′
p′1 ⃗vm

( ⃗xu
t )][α0 + η′

p′2
( ⃗xu

t )] −
∑

vj ̸=p′1
[τ ′ ⃗vm

( ⃗xu
t ) − τ ′

vjp
′
1
( ⃗xu

t )]η
′
vj
( ⃗xu

t )
]
,

which implies
∑

vj ̸=p′1

[
τ ′

⃗vm
( ⃗xu

t )−τ ′
vjp

′
1
( ⃗xu

t )
]
η′
vj

( ⃗xu
t )+2ϵ′−

[
τ ′
p′1p′1

( ⃗xu
t )−τ ′

p′1 ⃗vm
( ⃗xu

t )
]
η′
p′2

( ⃗xu
t )[

τ ′
p′1p′1

( ⃗xu
t )−τ ′

p′1 ⃗vm
( ⃗xu

t )
] ≤ α0. Hence,

the relaxed Multiclass Tsybakov Condition holds and the probability of Case-3 is bounded by

C

(∑
vj ̸=p′1

[
τ ′

⃗vm
( ⃗xu

t )−τ ′
vjp

′
1
( ⃗xu

t )
]
η′
vj

( ⃗xu
t )+2ϵ′−

[
τ ′
p′1p′1

( ⃗xu
t )−τ ′

p′1 ⃗vm
( ⃗xu

t )
]
η′
p′2

( ⃗xu
t )[

τ ′
p′1p′1

( ⃗xu
t )−τ ′

p′1 ⃗vm
( ⃗xu

t )
] )λ

, namely, C
(
O(ϵ′)

)λ.

B.5 The Proof of Theorem 4

Theorem 4. Let R be a list of K items randomly sampled from V with replacement, ζ ∈ (0, 1),
rH(xu

t , vi) =
∑

vj∈V I
[∑H

h=1[whf
h
vj
(x̃u

t )] >
∑H

h=1[whf
h
vi
(x̃u

t )]
]

be the rank of item vi over the entire
item set at the H-th epoch, and r̂H(xu

t , vi) =
∑

vj∈R I
[∑H

h=1[whf
h
vj
(x̃u

t )] >
∑H

h=1[whf
h
vi
(x̃u

t )]
]

be the

rank of vi over R at the H-th epoch. We have: P
[∣∣ r̂H (xu

t ,vi)

K
− rH (xu

t ,vi)

|V|
∣∣ ≥ ζ

]
≤ exp(−2Kζ2).

Proof. r̂H(xu
t , vi) can be deemed as a random variable that counts the number of items ranked higher

than vi in R. Since the items in R are randomly sampled from V with replacement, r̂H(xu
t , vi)

follows a Binomial distribution Binomial(K,
rH(xu

t ,vi)
|V| ). Thus, we have:

E
[
r̂H(xu

t , vi)
]
=

K · rH(xu
t , vi)

|V|
. (21)
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Meanwhile, r̂H(xu
t , vi) can also be viewed as the sum of K i.i.d. Bernoulli random variables

b1, b2, ..., bk, where bk = 1(1 ≤ k ≤ K) indicates the k-th sampled item for R is ranked higher than
vi, and bk = 0 otherwise. Hence, by applying Hoeffding’s inequality [5], we have:

P

[∣∣∣∣ 1K
K∑

k=1

bk − E
[ 1

K

K∑
k=1

bk
]∣∣∣∣ ≥ ζ

]
≤ exp(−2Kζ2). (22)

Then by replacing
∑K

k=1 bk with r̂H(xu
t , vi), we obtain:

P

[∣∣∣∣ r̂H(xu
t , vi)

K
−

E
[
r̂H(xu

t , vi)
]

K

∣∣∣∣ ≥ ζ

]
≤ exp(−2Kζ2). (23)

Next, we replace E
[
r̂H(xu

t , vi)
]

with K·rH(xu
t ,vi)

|V| according to Eq. 21:

P

[∣∣∣∣ r̂H(xu
t , vi)

K
− rH(xu

t , vi)

|V|

∣∣∣∣ ≥ ζ

]
≤ exp(−2Kζ2). (24)

C Additional Experimental Results

C.1 Hyper-parameter Settings for Baselines

For fair comparisons, we implement FPMC with PyTorch. For other baselines, we use the original
code provided by the corresponding authors. All the baselines adopt Xavier [6] initializer and
Adam [7] optimizer. We empirically find the optimal hyper-parameter setting for each baseline based
on the performance on the validation set. The detailed hyper-parameter setting for each baseline is
summarized in Table 1.

C.2 More Results on Hyper-parameter Analysis
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Figure 2: Effect of key hyper-parameters β, β′, K, and ρ of BirDRec on Beauty dataset.
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Figure 3: Effect of key hyper-parameters β, β′, K, and ρ of BirDRec on Yelp dataset.
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Figure 4: Effect of key hyper-parameters β, β′, K, and ρ of BirDRec on QK-Vedio dataset.

C.3 More Results on the Percentage of Rectified Instances
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(a) ML-1M (b) Beauty

(c) Yelp (d) QK-Video

Figure 5: Testing accuracy (NDCG@10) of our BirDRec and SASRec with increasing epochs. The
training stops if the best accuracy does not increase in 25 consecutive epochs.

(a) ML-1M (b) Beauty

(c) Yelp (d) QK-Video

Figure 6: The percentage of instances that are rectified with increasing epochs.
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Table 1: The search space of hyper-parameters and the optimal settings found by grid search for all
baselines on the four real-world datasets.

Parameter ML Be Ye QK Search Space
FP

M
C

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−3 10−3 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 10 5 5 10 {5, 10, 20, 30, 40, 50}
batch_size 1024 512 512 1024 {128, 256, 512, 1024}

C
as

er

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−3 10−3 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 5 5 5 5 {5, 10, 20, 30, 40, 50}
batch_size 512 256 256 512 {128, 256, 512, 1024}
horizontal_filter_num 16 16 16 32 {4, 8, 16, 32, 64}
vertical_filter_num 4 4 4 8 {1, 2, 4, 8, 16}

G
R

U
4R

ec

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 10 5 5 10 {5, 10, 20, 30, 40, 50}
batch_size 1024 512 512 1024 {128, 256, 512, 1024}
GRU_unit_number 256 256 256 512 {128, 256, 512, 1024}

SA
SR

ec

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−2 10−2 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 50 20 20 40 {5, 10, 20, 30, 40, 50}
batch_size 128 128 512 1024 {128, 256, 512, 1024}
self_attention_head_num 2 1 2 4 {1, 2, 4, 8}
self_attention_block_num 1 1 1 2 {1, 2, 3, 4}

B
E

R
T

4R
ec

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−4 10−4 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 50 20 20 40 {5, 10, 20, 30, 40, 50}
batch_size 256 256 512 1024 {128, 256, 512, 1024}
self_attention_head_num 4 1 2 4 {1, 2, 3, 4}
self_attention_block_num 4 1 1 2 {1, 2, 3, 4}

M
A

G
N

N

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 5 5 5 5 {5, 10, 20, 30, 40, 50}
batch_size 1024 512 512 1024 {128, 256, 512, 1024}
GNN_layer_num 2 2 2 2 {1, 2, 3, 4}
memory_unit_num 10 10 10 20 {5, 10, 15, 20}

B
E

R
D

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 5 5 5 5 {5, 10, 20, 30, 40, 50}
batch_size 1024 512 512 1024 {128, 256, 512, 1024}
self_attention_head_num 2 2 2 2 {1, 2, 3, 4}
self_attention_block_num 1 1 1 2 {1, 2, 3, 4}
UGCN_layer_num 2 2 2 2 {1, 2, 3, 4}
filter_ratio 0.05 0.05 0.05 0.10 {0.05, 0.10, 0.15, 0.20, 0.25}
sample_size of Lsam 4 4 4 4 {1, 2, 3, 4}

FM
L

P-
R

ec embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−3 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−3 10−3 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 50 20 20 40 {5, 10, 20, 30, 40, 50}
batch_size 1024 256 256 1024 {128, 256, 512, 1024}
learnable_filter_block_num 2 2 2 2 {1, 2, 3, 4}

ST
E

A
M

embedding_size 64 64 64 128 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−3 10−3 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 50 20 20 40 {5, 10, 20, 30, 40, 50}
batch_size 1024 256 256 1024 {128, 256, 512, 1024}
self_attention_head_num 2 1 1 2 {1, 2, 3, 4}
self_attention_block_num 1 1 1 2 {1, 2, 3, 4}
insertion_probability 0.2 0.4 0.4 0.2 {0.1, 0.2, 0.3, 0.4, 0.5}
deletion_probability 0.1 0.1 0.1 0.1 {0.1, 0.2, 0.3, 0.4, 0.5}
mask_probability 0.4 0.5 0.5 0.3 {0.1, 0.2, 0.3, 0.4, 0.5}

B
ir

D
R

ec

embedding_size 64 64 64 64 {16, 32, 64, 128}
learning_rate 10−3 10−3 10−2 10−3 {10−4, 10−3, 10−2, 10−1}
L2_regularization_coefficient 10−2 10−2 10−2 10−2 {10−4, 10−3, 10−2, 10−1}
input_length 5 5 5 5 {5, 10, 20, 30, 40, 50}
batch_size 1024 1024 1024 1024 {128, 256, 512, 1024}
threshold β in DRUT 10−1 10−1 10−1 10−1 {10−4, 10−3, 10−2, 10−1, 100}
threshold β′ in DDUI 10−1 10−1 10−1 10−1 {10−4, 10−3, 10−2, 10−1, 100}
size K of rectification pools 10 10 10 10 {5, 10, 15, 20, 25}
exponential decay rate ρ 0.9 0.9 0.9 0.9 {0.1, 0.3, 0.5, 0.7, 0.9}
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