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Abstract

The bird’s-eye-view (BEV) perception plays a critical role in autonomous driving
systems, involving the accurate and efficient detection and tracking of objects
from a top-down perspective. To achieve real-time decision-making in self-driving
scenarios, low-latency computation is essential. While recent approaches to BEV
detection have focused on improving detection precision using Lift-Splat-Shoot
(LSS)-based or transformer-based schemas, the substantial computational and mem-
ory burden of these approaches increases the risk of system crashes when multiple
on-vehicle tasks run simultaneously. Unfortunately, there is a dearth of literature
on efficient BEV detector paradigms, let alone achieving realistic speedups. Unlike
existing works that focus on reducing computation costs, this paper focuses on
developing an efficient model design that prioritizes actual on-device latency. To
achieve this goal, we propose a latency-aware design methodology that considers
key hardware properties, such as memory access cost and degree of parallelism.
Given the prevalence of GPUs as the main computation platform for autonomous
driving systems, we develop a theoretical latency prediction model and introduce
efficient building operators. By leveraging these operators and following an ef-
fective local-to-global visual modeling process, we propose a hardware-oriented
backbone that is also optimized for strong feature capturing and fusing. Using
these insights, we present a new hardware-oriented framework for efficient yet
accurate camera-view BEV detectors. Experiments show that HotBEV achieves
a 2%⇠23% NDS gain, and 2%⇠7.8% mAP gain with a 1.1⇥⇠3.4⇥ speedups
compared to existing works on V100; On multiple GPU devices such as GPU GTX
2080 and the low-end GTX 1080, HotBEV achieves 1.1⇥⇠6.3⇥ faster than others.
The code is available at HotBEV.

1 Introduction

Recently, there has been a growing interest in 3D object detection (also known as BEV perception
tasks) from multi-camera images, especially in the context of autonomous driving. While LiDAR-
based methods have made remarkable progress, camera-only-based approaches have gained extensive
attention due to their lower expenses and ability to identify color-based road elements such as traffic
lights and signs [1]. Mainstream camera-only-based approaches for multi-camera 3D object detection
tasks can be broadly classified into two research domains: 1) 3D reconstruction detectors, which
project 2D features from the image view into the bird’s-eye view (BEV) to extract intrinsic and
extrinsic information [2, 3, 4, 5, 6, 7]. However, these approaches suffer from degradation due to
the inaccuracy of the depth information predicted from 2D features. 2) 3D projection detectors,
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Figure 1: (a) Comparison with previous backbone methods in real-world object detection. Hot-
BEV captures the global/local information better than others. (b) HotBEV aims to search for
specialized model designs for target GPU devices.

which encode information such as 3D position and object queries into 2D features and then sample
corresponding features for end-to-end 3D bounding box prediction [8, 9, 1]. These approaches
overcome the problem of inaccuracies in the BEV features caused by the prediction of depth values
or distributions. In particular, 3D projection detectors are considered one of the dominant future
multi-view BEV perception techniques.

Figure 2: The trade-off between performance
(mAP/NDS) and hardware efficiency (FPS) for
different methods on the nuScenes test dataset.
HotBEV outperforms SOTA efficient transformer-
based detectors on both precision and efficiency.
Models are evaluated on NVIDIA V100.

Despite the impressive performance exhibited
by 3D projection detectors, their on-device in-
ference speed is limited by various factors. i)
Detectors employing a CNN-based backbone of-
ten demonstrate inferior detection performance
compared to those with a transformer-based
backbone [10]. Additionally, transformers are
known to possess computation and memory
complexities [11], which obstruct scalability,
particularly when deploying them on resource-
limited devices. ii) Many prior works [2, 7, 8]
prioritized efficient model design by only rely-
ing on hardware-agnostic metrics like compu-
tation FLOPs, neglecting to account for the ac-
tual hardware’s performance, such as the actual
inference latency. Current detectors lack opti-
mizations for specific hardware deployments,
including factors like memory access cost, de-
gree of parallelism, and compiler characteristics,
all of which significantly impact hardware throughput during inference. The quadratic memory com-
plexity associated with original self-attention operations further exacerbates the disparity between
theoretical FLOPs and actual hardware performance. Notably, most current in-vehicle chips adopt
the GPU architecture, which poses greater challenges and requires further investigation despite its
essential role. iii) To bridge the gap between the theoretical and practical efficiency of deep models,
researchers have started considering the real latency in the network design phase. Hardware profil-
ing [12, 13], which is generally utilized to estimate on-device speed, is dedicated and time-consuming.
And profiling should be redone once the model structure, size, and hardware type change. Thousands
of measurements are required for each operation to ensure data correctness. In contrast, there is a need
for a practical, plug-and-play model capable of efficiently estimating inference latency, specifically
designed for general GPU architectures.

In this paper, we propose a hardware-oriented transformer-based framework (HotBEV) for camera-
only 3D detection tasks, which achieves both higher detection precision and remarkable speedup
across both high-end GPUs and low-end GPUs (see Figure 1). Firstly, we propose a theoretical latency
prediction model by considering the algorithm, the scheduling strategy, and the hardware properties.
Given a target GPU, we directly use the latency, rather than the computation FLOPs, to guide our
algorithm design. Then we perform a latency breakdown of major modules in classic camera-only
detectors and figure out that the backbone is usually the speed bottleneck. After benchmarking

2



Total Patch 
Embedding

Attention NormRepCNNLinear OthersTotal Decoder Backbone Position
Enders

othersBev 
Ecoder

CenterPoint
Head

Figure 3: Device speed breakdown. Left: The latency breakdown of representative Camera-only
Detectors (Input resolution: 3x256x704 for PETRv2, others 3x900x1600). Middle and Left: Results
are obtained on NVIDIA V100, GeForce GTX 2080 Ti, and GeForce GTX 1080 Ti. The on-device
speed for frequently used backbone and various operators is reported. (Input resolution: 3x224x224)
standard backbones on high-end (V100) and low-end (GTX 1080 Ti) GPUs, we propose efficient
operators and fusion techniques for model on-device implementation. Based on these operators
and the process of vision modeling, we design a hardware-oriented backbone with strong feature
enhancement by information interaction between model stages. Then we extend the latency-aware
design methodology to other parts, such as image embedding and decoder, and propose the basic
design paradigm of HotBEV. Finally, guided by the latency prediction model, we generate the family
of HotBEV through a standard search algorithm. Experiments show that our proposed framework can
achieve a 2%⇠23% NDS gain and 2%⇠7.8% mAP with a 1.1⇥⇠3.4⇥ speedups compared to existing
works on V100 (see Figure 2). On multiple GPU devices such as GPU GTX 2080 HotBEV can
reach 1.1⇥⇠6.3⇥ faster than other models; for the low-end GTX 1080, our framework can achieve
1.1⇥⇠4.9⇥ faster than others. Overall, our contributions are summarized as follows:

• We propose a latency-aware design methodology for 3D object detection based on BEV perception.
• We propose a hardware-oriented backbone that excels at capturing and fusing features.
• According to our analysis of efficient operators and strong feature modeling, we propose a new

hardware-oriented framework for the BEV detector.
• We conduct experiments to showcase the superior inference accuracy of HotBEV compared to

SOTA efficient BEV detectors while also highlighting its significant hardware efficiency.

2 Related Work

Current multi-view 3D object detectors can be divided into two schemas: LSS-based schema [3] and
transformer-based schema.

LSS-based schema. BEVDet [2] is the first study that combines LSS and LiDAR detection head
which uses LSS to extract BEV feature and LiDAR detection head to propose 3D bounding boxes. By
introducing previous frames, BEVDet4D [5] acquires the ability of velocity prediction. For the above
works, the models are complex, so many hardware platforms do not support some inside operators.

Transformer-based schema. BEVDepth [2] uses LiDAR to generate depth GT for supervision and
encodes camera intrinsic and extrinsic parameters to enhance the model’s ability of depth detection.
DETR3D [9] extends DETR [14] into 3D space, using a transformer to generate 3D bounding
boxes. Following the DETR3D, PETR [8] converts 3D coordinates into 3D position embedding to
perceive the 3D scene. And BEVFormer [1] uses deformable transformer [15] to extract features from
images and cross attention to link the characteristics between different frames for velocity prediction.
Although better performance is achieved through these works, the computation cost (e.g., over 170
GFLOPs) or realistic speed has yet to be optimized. We are the first to work on transformer-based 3D
detectors to explore comparable performance and fast inference speed on diverse hardware platforms
while maintaining acceptable detection accuracy.

Hardware-aware network design. Several existing works have addressed the issue of realistic
latency during the network design phase, exploring two distinct directions. Firstly, some researchers
evaluate speed directly on targeted devices and derive guidelines for developing hand-designed effi-
cient models, as demonstrated by [16]. Secondly, others employ the technique of neural architecture
search (NAS) to search for fast models, exemplified by [17]. Nevertheless, conducting speed tests on
various hardware platforms for our proposed structures can be exceedingly labor-intensive due to
the extensive range of candidates and their corresponding properties. Additionally, obtaining precise
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results for small-scale structures on low-end devices presents its own set of challenges. In contrast,
our latency prediction model directly estimates the inference speed on specific computing platforms,
circumventing these difficulties.

3 Methodology

In this section, we present our approach to efficiently and accurately predict the on-device latency of an
architecture on the target device using the latency prediction model. Additionally, we detail efficient
operators and fusion implementation techniques. According to the process of vision modeling, we
introduce an efficient embedding module and a hardware-oriented backbone that excels at capturing
and fusing features. Then our proposed basic design paradigm for HotBEV is based on these efficient
operators, the process of vision modeling, and the detection flow of DETR3D [9]. Finally, guided by
the latency prediction model, we generate a family of models known as HotBEV through a standard
search algorithm [18]. Note that we also adapt the Temporal Aligned Module (TAM) in [19] to
efficiently improve performance and robustness.

3.1 Latency-aware Design

3.1.1 Latency Prediction Model

Figure 4: Hardware Modeling. The memory sys-
tem includes 1) off-chip memory, 2) on-chip global
memory, and 3) memory in the PEs.

We introduce a novel latency prediction model,
denoted by E, which enables direct prediction
of the latency of runtime design choices on any
target GPU. This allows for the efficient identifi-
cation of optimal model settings on correspond-
ing platforms. Specifically, the latency predictor
E considers the hardware properties H , layer
type T , channel dimension C, and input gran-
ularity G as input for each design choice and
outputs the predicted latency of the block as
l = E(H,T,C,G).

Hardware model. We model a hardware device as multiple processing engines (PEs), allowing for
parallel computation with varying degrees of parallelism. As illustrated in Figure 4, we represent
the memory system using a three-level structure [20, 21], which includes: 1) off-chip memory, 2)
on-chip global memory, and 3) memory in the PEs. This hardware model enables accurate prediction
of the latency of data movement and computation.

Latency prediction modeling. It includes three steps: 1) Input/output shape definition. The initial
step is to calculate the input and output shapes. 2) Operation mapping to hardware. Based on our
hardware model, we first divide the output feature map into multiple tiles and assign each tile to
a separate PE for parallel processing. 3) Latency estimation. We evaluate the latency of each tile,
which comprises both data movement and computation latency: l=ldata+lcompute. For ldata, we
leverage our hardware model (see Figure 4) and compute the sum of input and output data movement
latencies as ldata=lin+lout. These latencies are estimated based on hardware bandwidth and input
granularity G (equivalent to resolution scale). We assume that each PE moves the required input
feature maps and weights just once to compute an output tile. For lcompute, we use the maximum
throughput of FP32 computation on PEs and the FLOPs required to compute a single output tile. The
total computation latency can be determined by considering the number of tiles and PEs. We test
three types of hardware devices, NVIDIA V100, NVIDIA GTX 2080, and NVIDIA GTX 1080. For
a more detailed description of our latency prediction model, please refer to Appendix A.

3.1.2 Efficient Operators and Fusion Techniques of Model Implementation

The development of efficient network architectures for resource-limited devices has greatly benefited
from reduced parameters and floating-point operations (FLOPs) and improved accuracy. However,
conventional efficiency metrics, such as FLOPs, overlook memory cost and degree of parallelism. In
this study, we aim to improve network runtime speed and detection performance by identifying and
modifying building blocks that are not hardware-friendly. To achieve this, we first perform a latency
breakdown of major modules in classic camera-only detectors, DETR3D, PETR [8], PETRv2 [19],
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BEVDeT [4], and BEVFormer [1], which reveals that the backbone is usually the speed bottleneck
(66%⇠78%). Therefore, we deploy common backbones on high-end (V100) and low-end (GTX 1080
Ti) GPUs and benchmark their speed, as illustrated in Figure 3. We then introduce efficient operators
and fusion techniques to improve the speed and detection performance of these networks.

Convolutional modulation for efficient global modeling. Instead of calculating the similarity
score matrix (attention matrix [22]), we simplify self-attention by modulating the value V with
convolutional features as Figure 5(c). Our approach uses convolutional modulation rather than self-
attention to build relationships since they are more memory-efficient, particularly when processing
high-resolution images. Due to the modulation operation, our method differs from traditional residual
blocks and can adapt to the input content.

Fusing BatchNorm into the preceding fully-connected layer. After analyzing various backbones
as shown in Figure 3, we found that LayerNorm (LN) accounts for approximately 10% to 15% of
the network’s total latency. Dynamic normalization techniques like LN gather running statistics
during inference, resulting in delays that impact speed. On the other hand, BatchNorm (BN) is more
memory and computation-efficient, as it is fused with the preceding fully-connected layer, reducing
data movement and computation load (see Figure 4). To this end, we modified the WMSA/SWMSA
in Swin [10] by replacing LN-Linear with Linear-BN, which we refer to as WMSAbn/SWMSAbn.
By switching to a BN-based design, we achieved a 13% to 15% speedup with no significant loss
in accuracy (less than 0.3%). Based on the accuracy analysis in Appendix A, one advantage of
the window-based self-attention on the efficient implementation compared to other transformer
architectures: It can replace the LayerNorm with BatchNorm and then perform the fusing tech-
nique with acceptable accuracy. And replacing the LayerNorm directly with the BatchNorm in the
original self-attention is difficult since the model training cannot converge. Therefore, we consider
WMSAbn/SWMSAbn as our design candidates.

Fusing multiple branches into one single branch in reparameterized CNNs. Multi-branch
structures come with increased data movement cost, as the activation values of each branch are saved
into PE memory or on-chip memory (if the PE memory is insufficient) to compute the subsequent
tensor in the graph. Additionally, the synchronization cost arising from multiple branches impacts
the overall runtime [23]. To address these challenges, we use RepCNN [24] as a network component,
which fuses multiple branches into more single-branch substructures during inference. This approach
enables even distribution of computation among multiple PEs, preventing imbalanced computation
overheads associated with multiple branches. The resulting operator fusion improves memory access
and parallel computation on multiple PEs.

3.2 Architecture Design

We present HotBEV, a hardware-oriented framework for multi-view 3D detection. Given a set
of I={Ii 2 R3⇥H⇥W

, i = 1, . . . , N}, our framework leverages a hardware-oriented backbone
(HOB) to extract 2D multi-view features, F 2d={F 2d

i
2 RC⇥H⇥W

, i = 1, . . . , N}. The coordinates

generator generates 3D coordinates, which are aligned with the coordinate system of the frame
t using the temporal aligned module (TAM) concerning the previous frame t � 1. Next, the 2D
features and 3D coordinates from adjacent frames are concatenated and fed into the 3D position

encoder to obtain 3D-aware features. Our hardware-oriented decoder uses these features as keys and
values, which interacts with detection queries initialized from standard learnable 3D anchor points
with a small MLP network. Finally, the updated queries are input to the detection head for the final
prediction. For coordinates generator and position encoder, please refer to [8].

3.2.1 Hardware-Oriented Backbone with Strong Feature Enhancement

Hardware-oriented backbone. Based on our GPU breakdown 3, we found that the backbone
consistently caused the most latency. To maintain detection precision while removing this speed
bottleneck, we propose a powerful transformer encoder for feature capturing and fusing, as shown in
the backbone design in Figure 5. We divide the backbone into four stages S, following the granularity
of data flow in ResNet [25]. Since features scale from the local to the global visual receptive field,
we introduce the HOB block design as shown in Figure 5(a). In each HOB block, we use several
consecutive local-wise attention mechanisms to extract local information (texture-level semantics),
followed by global attention to enhance global information (abstract-level semantics) in the feature
map. Furthermore, we insert a semantic-augmented module (consisting of an upsampling layer
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Figure 5: The design of our proposed HotBEV. The workflow follows the DETR3D, and the main
components include that (a) Overall backbone: includes four stages, where feature size scales along
the stage. To enhance the semantic information of low-level features, one semantic-augmented
module (SAM) is added at the end of each stage. (b) Design of the HOB block, which contains
multiple local/global attention layers. (c) The convolutional modulation for efficient global modeling.
(d) Hardware-Oriented Decoder.
and global attention) into every two consecutive HOB blocks (except between Stage 1 and 2) to
further enhance low-level semantics in the current stage, as shown in Figure 12. Notably, unlike other
methods such as [10, 25], we simultaneously enhance texture-level and abstract-level information in
each stage. To reinforce texture-level semantics, we leverage information interaction between stages,
not just between layers in the same stage. By using the efficient operators described in Section 3.1.2,
we provide the “two-phase design space” (DS) of the HOB backbone:

DS1
i,local,s=1,2,3, 2 {RepCNNi

,WMSAi

bn, SWMSAi

bn},
DS2

i,local,s=4, 2 {WMSAi

bn, SWMSAi

bn},
DS1,2

i,glocal
2 {ConvModula},

(1)

where local represents the candidates of local-wise attention while global for the global attention; the
1st phase covers S1, S2, S3 of the backbone, and the 2nd phase for S4; i denotes the i

th block.

Image embedding module. Figure 3 reveals that patch embedding is a speed bottleneck on multiple
platforms due to its reliance on a non-overlapping convolutional layer with large kernel size and
stride. Unfortunately, most compilers and acceleration techniques, such as Winograd, do not support
this type of layer well. To address this issue, we propose a faster downsampling method using a
convolution stem, which consists of three hardware-efficient 3⇥3 convolutions with a stride of 2. To
obtain input embeddings L0 of size H

G
⇥ W

G
⇥ C for an input image x2RH⇥W⇥3, we divide it into

H⇥W

G⇥G
patches and feed them to the convolution stem:

l

H

G
⇥W

G
⇥D1

0 = PatchEmbed(xH⇥W⇥3). (2)

3.2.2 Hardware-Oriented Decoder

To alleviate the convergence difficulties in the 3D scene, we initialize a set of learnable 3D anchor
points with a 0⇠1 uniform distribution. Then, we input the coordinates of the 3D anchor points
into a small MLP network with two linear layers of Sigmoid function in between and generate the
initial object query Q0. The decoder is applied to predict the final abstract semantics and generate the
bounding box. Our decoder consists of six global attention blocks and is divided into two parts, as
shown in Figure 5(d). The front three layers take object queries as the only input and perform the
self-attention computation, aiming at separating different objects as [14]; The back three layers take
object queries as queries and image features as keys and values. As shown in Figure 12, they perform
the cross-attention between object queries and image features to extract the content and position of

6



Table 1: Comparison of different methods on the nuScenes val set. FPS is tested on V100 with INT8.
Method Backbone Resolution Frames NDS " mAP " mATE # mASE # mAOE # mAVE # mAAE # FPS
BEVDet ResNet50 256 × 704 1 0.379 0.298 0.725 0.279 0.589 0.86 0.245 25.8
BEVDet4D ResNet50 256 × 704 2 0.457 0.322 0.703 0.278 0.495 0.354 0.206 25.9
PETRv2 ResNet50 256 × 704 2 0.456 0.349 0.7 0.275 0.58 0.437 0.187 30.2
BEVDepth ResNet50 256 × 704 2 0.475 0.351 0.639 0.267 0.479 0.428 0.198 24.3
FastBEV-MS ResNet50 256 × 704 4 0.485 0.343 0.647 0.282 0.36 0.342 0.225 –
SOLOFusion ResNet50 256 × 704 16 0.534 0.427 0.567 0.274 0.511 0.252 0.181 20.2
SOLOFusion ResNet50 256 × 704 4 0.494 0.362 0.607 0.304 0.539 0.293 0.19 21.4

HotBEV HOB-nano 256 × 704 4 0.455 0.35 0.636 0.271 0.449 0.542 0.36 39.2
HotBEV HOB-tiny 256 × 704 4 0.487 0.362 0.628 0.27 0.438 0.412 0.19 31.7
HotBEV HOB-base 256 × 704 4 0.506 0.369 0.625 0.264 0.362 0.364 0.153 27.2

BEVDet ResNet101-DCN 640 x 1600 1 0.472 0.393 0.608 0.259 0.366 0.822 0.191 2.95
FCOS3D ResNet101-DCN 900 × 1600 1 0.395 0.372 0.806 0.268 0.511 1315 0.7 2.64
DETR3D ResNet101-DCN 900 × 1600 1 0.434 0.349 0.716 0.268 0.379 0.842 0.2 5.74
PGD ResNet101-DCN 900 × 1600 1 0.335 0.409 0.732 0.263 0.423 1.285 0.172 2.17
Focal-PETR ResNet101-DCN 512 × 1408 1 0.461 0.39 0.678 0.263 0.395 0.804 0.202 10.23
PETR ResNet101-DCN 512 × 1408 1 0.441 0.366 0.717 0.267 0.412 0.834 0.19 8.84
BEVFormer ResNet101-DCN 900 × 1600 4 0.517 0.416 0.673 0.274 0.372 0.394 0.198 4.65
PolarDETR ResNet101-DCN 900 × 1600 2 0.488 0.383 0.707 0.269 0.344 0.518 0.196 5.43

HotBEV HOB-nano 512 × 1408 4 0.47 0.385 0.648 0.243 0.422 0.715 0.183 12.38
HotBEV HOB-tiny 512 × 1408 4 0.512 0.407 0.634 0.235 0.408 0.632 0.175 11.39
HotBEV HOB-base 512 × 1408 4 0.525 0.427 0.62 0.221 0.36 0.55 0.163 9.08

the object. For efficient modeling, we leverage the convolutional modulation layer as the decoder
component (more details in Appendix A).

To generate temporal-aligned 3D coordinates, we adapted the technique TAM [19]. Subsequently,
we combine the resulting 3D coordinates with the 2D features and feed them into a 3D position

encoder [8]. This allows us to obtain temporal-aligned 3D-aware features, which improve the model’s
localization, attitude, speed estimation, and overall robustness.

3.3 Training

Our design space (Eq. (1)), also as search space is a selection of possible blocks, including RepCNN,
WMSA, SWMA (for local-wise attention layer), and convolutional modulation (for global-wise
attention layer). We propose a simple, fast yet effective gradient-based search algorithm to obtain a
candidate network that just needs to train the supernet for once. To train our supernet, we adopt the
Gumble Softmax sampling to get the importance score for the blocks within each search space/stage.
During each step of training, a number of blocks are sampled to obtain a subnet structure. The latency
of this subnet can be estimated using our latency prediction model.

Supernet design. We use the two-phase design space (DS) as the search space and train the supernet
for the HOB backbone. We only search the backbone’s structures, dimensions C, and input granularity
G, while the decoder uses fixed structures with dimensions adapted to the backbone.

Latency-aware model slimming. It has three steps:

1) Train the supernet with the Gumble Softmax sampling [26] to get the importance score for the
blocks within each DS.

2) Use latency prediction model E (Section 3.1.1) to estimate the on-device latency of each candidate.

3) Perform latency-aware model slimming on the supernet obtained from step 1) by FPS evaluated
with predictor E. Specifically, we use the score s of each candidates to define the importance score
of DSi as s

RepCNN
i

+s
WMSA
i

s
SWMSA
i

for S1, S2, S3, and s
WMSA
i

s
SWMSA
i

for S4. We sum up all the scores of all DS within
that S and deduce the score for each S. Then we define the evolution process (all performed in the
current least important S): a) remove the 1st SWMSA ; b) remove the 1st WMSA; c) reduce the
width by multiples of 16. Then we predict the current FPS f and decide by FPS_NDS_drop(-%*f).
This process is repeated until the target throughput is reached.

4 Experiments

4.1 Datasets and Implementation Details

We conduct comprehensive experiments on the nuScenes dataset [27], which contains 1000 driving
scenes of 20-second length for each. The scenes are officially split into 700, 150, and 150 scenes
for training, validation, and testing. The dataset includes approximately 1.4M camera images.
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Table 2: Comparison for large backbone and resolutions on the nuScenes val set (FPS on V100).
Method Backbone Resolution NDS " mAP " mATE # mASE # mAOE # mAVE # mAAE # FPS
PETR ResNet101 1600×900 0.442 0.37 0.711 0.267 0.383 0.865 0.201 5.7
PETRv2 ResNet101 1600×640 0.524 0.421 0.681 0.267 0.357 0.377 0.186 -
BEVDet4D Swin-B 1600×640 0.515 0.396 0.619 0.26 0.361 0.399 0.189 -
BEVDepth ResNet101 512×1408 0.535 0.412 0.565 0.266 0.358 0.331 0.19 2.3
BEVFormerv2 ResNet50 1600×640 0.529 0.423 0.618 0.273 0.413 0.333 0.181 -
PolarFormer-T ResNet101 1600×900 0.528 0.432 0.648 0.27 0.348 0.409 0.201 3.5
Sparse4D ResNet101-DCN 900×1600 0.541 0.436 0.633 0.279 0.363 0.317 0.177 4.3

HotBEV HOB-base 512 × 1408 0.525 0.427 0.62 0.221 0.36 0.55 0.163 5.5

Evaluation metrics include mean Average Precision (mAP) and five types of true positive metrics
(TP metrics): mean Average Translation Error (mATE), mean Average Scale Error (mASE), mean
Average Orientation Error (mAOE), mean Average Velocity Error (mAVE), mean Average Attribute
Error (mAAE). We also report nuScenes Detection Score (NDS) to capture all aspects of the nuScenes
detection tasks. We follow the training recipe from PETR but mainly report results with 24 training
epochs to compare with other detection models. Experiments were run on 8 NVIDIA V100.

4.2 Model Accuracy and Speed Performance

Main results. As delineated in Table 1, our model is compared to an array of existing camera-based
methodologies. These include FCOS3D [28], DETR3D [9], PGD [29], PETR [8], PETRv2 [19],
Focal-PETR [30], BEVDet [4], BEVDet4D [5], BEVFormer [1], BEVDepth [2], and PolarDETR
[31]. The table lists the backbone type, image resolution, number of frames, inference speed (FPS),
and accuracy on the nuScenes validation set for each method. The backbone options include ResNet50
and ResNet101-DCN [25]. Our streamlined models surpass other methods in both performance score
and inference speed.

In particular, our compact model, HOB-tiny (256 ⇥ 704), with 0.487 NDS, 0.362 mAP, and 19.8
FPS, outperforms BEVDet (0.379 NDS, 0.298 mAP, 16.7 FPS), BEVDet4D (0.457 NDS, 0.322 mAP,
16.7 FPS), PETRv2 (0.456 NDS, 0.349 mAP, 18.9 FPS), and BEVDepth (0.475 NDS, 0.351 mAP,
15.7 FPS) with a ResNet50 backbone, achieving a 2.5% ⇠ 28.5% NDS gain, 3.1% ⇠ 21.5% mAP
gain and 4.8% ⇠ 26.1% FPS gain. The reductions in the orientation error, velocity error, and attribute
error all contribute to enhancing the NDS score. Even with a larger input resolution, our model
continues to offer an unrivaled balance of accuracy and speed compared to extant work. For instance,
our HOB-nano model (512 × 1408) achieves 2% NDS and 13.6% FPS increase with a 1.3% mAP
and score difference when compared to Focal-PETR (ResNet101-DCN, 512 ⇥ 1408). Our HOB-tiny
model (512 ⇥ 1408) surpasses PolarDETR (0.488 NDS, 0.383 mAP, 3.5 FPS) in both speed and
accuracy. Our HOB-base model (512 ⇥ 1408) also surpasses BEVFormer (0.517 NDS, 0.416 mAP, 3
FPS) in both speed and accuracy. For detailed configurations of our model and detailed analysis of
temporal modeling and robustness related to frame length, please refer to Appendix A.

Our research specifically targets small models, so our results are particularly favorable for these
models compared to other studies. For a comprehensive understanding, we also present a comparison
with baseline models that possess larger backbones and increased input sizes in Table 2. Notably, we
surpass baseline models in frames per second (FPS) while maintaining comparable accuracy levels.

Table 3: Comparison with 3D reconstruction-
based BEV detectors on the nuScenes val set.

Methods NDS" mAP" FPS
PointPillars 61.3 52.3 29
SECOND 63 52.6 14.3

CenterPoint 66.8 59.6 12.4

HotBEV-nano 47 38.5 31.8
HotBEV-tiny 51.2 40.7 20.4

HOB-base 52.5 42.7 16.1

Comparison with 3D reconstruction-based BEV
detectors. Table 3 shows that 3D reconstruction-
based BEV detectors are better than our methods by
up to 19.8 NDS but with inferior on-device speed
than ours by up to 19.4 FPS. Even though the de-
tection performance of image-only detectors cannot
be superior to Lidar-only methods, these results also
motivate us to implement our design into one of the
commercial mainstream, post-fusion systems to im-
prove hardware efficiency. Currently, the pre-fusion
family, such as BevFusion, is costly to deploy in practice. The current in-vehicle market is dominated
by camera-only solutions, such as Tesla, or post-fusion of camera and lidar signals, such as XPeng
Motors, whose camera part still deploys camera-only solutions [32]. Hence, our research aims to
explore the efficient and effective camera-only 3D detection series for practical implementation. So
we choose state-of-the-art frameworks, and multi-frame models as the starting point of our research.

8



NVIDIA GTX 2080

2
4
8

16

32

64

G
ranularity

NVIDIA GTX 1080

Figure 6: Left and middle: The trade-off between performance (NDS) and hardware efficiency
(FPS) for different detection methods on the nuScenes val set with different GPUs. Right: Various
granularity settings on the HOB backbone of HotBEV.
Moreover, according to [33], the camera processing modules occupy 33% ⇠ 42% of the whole latency
distribution for the post-fusion system. Our hardware-oriented design with enhanced image feature
representation can be leveraged in the camera encoder part of the current in-vehicle detection system
to improve on-device efficiency.

Performance on multiple GPU devices. To evaluate the hardware throughput, we implement the
latency-aware model slimming on two other devices: NVIDIA GTX 2080 Ti which has a 5.5M size
L2 cache with 448 Gbps memory bandwidth; NVIDIA GTX 1080 Ti which has a 5.5M size L2 cache
with 325 Gbps memory bandwidth; We report the average FPS of over 1000 inferences. As depicted
in Figure 6, our approach surpasses current camera-only BEV frameworks in terms of both hardware
efficiency and performance. Other methods typically overlook the constraints imposed by limited
memory and parallelism in on-device runtimes, leading to further degradation in speed performance
on devices with limited resources. Without hardware optimization, e.g., int8 quantization, some
methods fail to produce results within a reasonable timeframe. In contrast, our models strike the
optimal balance between speed and performance, making them the superior choice among existing
approaches. For example, on GTX 2080, our HotBEV (0.385 mAP) is 4.5⇥ faster than BEVDet
(0.393 mAP); our HotBEV (0.407 mAP) is 2.6⇥ faster than BEVformer (0.416 mAP); our HotBEV
(0.427 mAP) is 1.4⇥ faster than PolarDETR (0.383 mAP).

The speed-up effect is superior to that in Table 1, demonstrating our framework’s enhanced GPU
generalization ability compared to other approaches. It’s worth noting that our logic extends beyond
autonomous driving. Firstly, our backbone is designed to cater to general vision tasks. Secondly, the
hardware model is specifically optimized for GeMM. In the appendix, we showcase our implementa-
tion on diverse general vision tasks such as classification and 2D detection.

Table 4: Our proposed results on Orin.
Methods Backbone Resolution NDS" mAP" FPS
HotBEV HOB-nano 512x1408 0.47 0.385 31.8
HotBEV HOB-tiny 512x1408 0.512 0.407 20.4
HotBEV HOB-base 512x1408 0.525 0.427 16.1

Performance on multiple commercial Orin. It is
necessary to test the speed on an actual commercial
chip. As shown in Table 4, we test our HotBEV
models on Orin to validate our framework. Before
testing, we quantized our model into INT8 with a
tensorRT engine. And then run the test 50 times for each model to obtain stable results.

4.3 Ablation Study
Table 5: Ablation study of HOB.
Index GA SAM NDS mAP FPS

¨ - - 0.396 0.328 21.3
≠ 3 - 0.443 0.337 21.4
Æ 3 GA 0.447 0.340 23.7
Ø 3 3 0.455 0.350 24.5

In this section, we conduct the ablations with HotBEV-nano
trained 24 epochs. The backbone is pre-trained on ImageNet
dataset [34] and trained on Nuscenes. The input image size is
256⇥704, and the number of detection queries is set to 900.

4.3.1 Analysis of Components in HotBEV

Major components of HOB. Table 5 studies how global attention (GA) and semantic-augmented
module (SAM) contribute to HOB performance. We only modify the backbone network without
disabling the 3D position encoder, TAM, and decoder modules. ¨ and ≠ show that inserting our GA
after the local-wise attention can improve 0.9% mAP and 4.7% NDS without significant impact on
speed. ≠ and Æ show that inserting one GA block costs 2.3 FPS yet only gains 0.3% mAP. Once we
replace the GA with the SAM, mAP is increased from 34% to 35%, while NDS is increased from
44.7% to 45.5%. So SAM can enhance performance and be better than simple global modeling.
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4.3.2 Analysis of Prediction Modeling

Empirical validation. To evaluate the prediction model, we varied the input granularity G and used
the 1-st block in Swin-T as a case study. Figure 7 compares our predictions and the actual testing
latency on two different GPUs, the NVIDIA V100 and GTX 1080 Ti. The results demonstrate that the
prediction model can accurately estimate the actual latency across a wide range of input granularities.

216

Figure 7: Latency prediction results.
Results are tested on NVIDIA V100 and
GTX 1080 Ti.

More granularities settings. We test various granularity
settings on the HOB backbone of HotBEV-nano to exam-
ine the effects of G. The results on the Tesla-V100 GPU
are presented in the left sub-figure of Figure 6. We increase
G from 2 and 64, which consistently improves the realis-
tic efficiency of both the NVIDIA V100 and GTX 1080
GPU. It can be found that the finest granularity (G=2)
causes substantial inefficiency despite the mAP improve-
ment. Otherwise, the coarsest granularity (G=64) benefits
the speedup with large detection precision degradation. In
specific, all networks are transformed into fixed matrix
operations on GPU platforms (General Matrix Multiply,
GeMM). The latency prediction model evaluates the speed
of matrix multiplication and the corresponding data move-
ment, so it is applicable to general networks. For example,
this modeling can be generalized in other networks as the prediction results on the 1st block in
ResNet-50 in Appendix A.

More discussion on latency predictor. Our proposed latency predictor provides some opportunities.
(1) Efficient model generation, which also proceeds with AI democratization. As the benchmarking-
based approach needs one-day training, our proposed theoretical latency predictor is training-free.
For example, the benchmarking-based approach requires 5 days to generate the dataset of 5 different
devices if 5 target models are demanded. In contrast, our proposed is off-the-shelf. Our method
provides the opportunity for inexpensive and efficient research for users who do not have access to
target devices. For instance, when the in-vehicle Orin chip is not accessible, the related efficient
model research on the Orin chip can still be advanced. In conclusion, our approach makes sense for
today’s rapidly growing demand for autonomous driving. (2) The proposed latency predictor focuses
on modeling the latency of Matrix Multiplication (MM) with generalizability. Indeed, strong GPU
simulators cannot accurately model the behavior of the latest NVIDIA GPUs.’ However, our purpose
is not to describe the behavior of GPUs. We want to reflect on the relative performance of latency for
different layer types and sizes on target GPUs. This is because our search goal is to minimize the
relative time in the search space of the current device. For generalizability, our design focuses on
latency modeling of MM, the typical computation operation in DNNs, which is mainly impacted by
the computing performance of Tensor Core, not other specific operators, so the proposed predictor
has generalizability, as shown in Figure 7 of our paper.

5 Conclusions and Limitations
We present a hardware-oriented transformer-based framework (HotBEV) for camera-only 3D detec-
tion tasks, which achieves higher detection precision and remarkable speedup across high-end and
low-end GPUs. Firstly, we propose a theoretical, plug-and-play latency prediction model. Given a tar-
get GPU, we directly use the latency to guide our algorithm design. Based on the latency breakdown
of classic camera-only detectors, we identify the backbone as the main speed bottleneck. Then, we
propose efficient operators and fusion techniques for model on-device implementation. Based on these
operators and the process of vision modeling, we design a hardware-oriented backbone with strong
feature enhancement. Then we propose the basic design paradigm of HotBEV. Finally, guided by the
latency prediction model, we generate the family of HotBEV through a standard search algorithm.
Experiments show the superior inference accuracy of HotBEV compared to SOTA BEV detectors
with significant on-device speed. Notably, while our primary focus lies in the camera-only method
for BEV perception, our latency-aware design methodology can also be applied to fusion-based BEV
methods, enabling efficient algorithm design that aligns with real-world requirements.
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