
Mutual-Information Regularized Multi-Agent
Policy Iteration

Jiangxing Wang
School of Computer Science

Peking University
jiangxiw@stu.pku.edu.cn

Deheng Ye
Tencent Inc.

dericye@tencent.com

Zongqing Lu†

School of Computer Science
Peking University

BAAI
zongqing.lu@pku.edu.cn

Abstract

Despite the success of cooperative multi-agent reinforcement learning algorithms,
most of them focus on a single team composition, which prevents them from
being used in more realistic scenarios where dynamic team composition is possible.
While some studies attempt to solve this problem via multi-task learning in a fixed
set of team compositions, there is still a risk of overfitting to the training set, which
may lead to catastrophic performance when facing dramatically varying team com-
positions during execution. To address this problem, we propose to use mutual
information (MI) as an augmented reward to prevent individual policies from rely-
ing too much on team-related information and encourage agents to learn policies
that are robust in different team compositions. Optimizing this MI-augmented
objective in an off-policy manner can be intractable due to the existence of dynamic
marginal distribution. To alleviate this problem, we first propose a multi-agent
policy iteration algorithm with a fixed marginal distribution and prove its conver-
gence and optimality. Then, we propose to employ the Blahut–Arimoto algorithm
and an imaginary team composition distribution for optimization with approximate
marginal distribution as the practical implementation. Empirically, our method
demonstrates strong zero-shot generalization to dynamic team compositions in
complex cooperative tasks.

1 Introduction

The cooperative multi-agent reinforcement learning (MARL) problem has attracted the attention
of many researchers for being a well-abstracted model for many real-world problems, such as
traffic signal control (Wang et al., 2021), autonomous warehouse (Zhou et al., 2021), and even
AutoML (Wang et al., 2022) as the feedback to the machine learning community. In a cooperative
MARL problem, we aim to train a group of agents that can cooperate to achieve a common goal. Such
a common goal is often defined by a global reward function that is shared among all agents. Although
this objective is naturally centralized, we want agents to be able to execute in a fully decentralized
manner. Under such a requirement, Kraemer and Banerjee (2016) proposed the centralized training
with decentralized execution (CTDE) framework, where a centralized critic is learned to evaluate the
performance of the joint policy in terms of the global reward and a group of decentralized individual
policies are learned via the centralized critic to realize decentralized execution.

With a centralized critic, multi-agent policy gradient methods directly use it to guide the update
of each decentralized individual policy. Based on this idea, a series of studies (Lowe et al., 2017;
Kuba et al., 2022; Yu et al., 2022; Ye et al., 2020) have been proposed with different optimization

†Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



techniques for policy improvement. On the other hand, as the centralized critic is used to guide
the learning of decentralized individual policies, many CTDE algorithms choose to factorize the
centralized critic into decentralized individual utilities via the mixer network. This line of research is
called value decomposition (Sunehag et al., 2018). Based on different design choices of the mixer
network, a variety of value decomposition methods (Sunehag et al., 2018; Rashid et al., 2018; Wang
et al., 2020; Zhang et al., 2021) has been proposed and achieved great success in cooperative MARL
problems.

Despite the success of CTDE methods, previous research mainly focuses on training agents under a
fixed team composition, which has been shown to exhibit serious overfitting issues (Wen et al., 2022),
and leads to catastrophic performance when facing unseen team compositions. One natural way to
solve this problem is to introduce multiple team compositions during training to alleviate overfitting.
However, due to the existence of the mixer network and the network structure of individual utilities
and policies, such a strategy cannot be simply applied to many existing CTDE methods.

REFIL (Iqbal et al., 2021) attempts to address this problem and proposes to use multi-head atten-
tion (Vaswani et al., 2017) in the mixer network and individual utilities to handle dynamic team
compositions. It further proposes an imaginary objective based on random sub-group partitioning to
accelerate the training process given a fixed set of team compositions. Although REFIL is able to
handle dynamic team compositions, as it is still trained on a fixed set of team compositions, there is
still a risk of overfitting to not a single team composition, but a set of team compositions, which has
been demonstrated in several previous studies (Liu et al., 2021; Shao et al., 2022).

The overfitting issue can be attributed to the lack of robustness in different team compositions. When
facing an arbitrary team composition during execution, one agent’s observed information about
team composition can arbitrarily vary from what it experienced during training. If the agent puts
too much credit on this highly varied information to make decisions, it may fail to achieve robust
behavior. As the variation of team composition is uncontrollable, one way to achieve robust behavior
is to reduce the reliance on team-related information. Based on this intuition, we propose MIPI
(Mutual-Information Regularized Multi-Agent Policy Iteration), minimizing the mutual information
between the policy of the agent and the team-related information to encourage robust behavior of each
agent. Inspired by SAC (Haarnoja et al., 2018), we combine the global reward of environment and
mutual information of each agent as a new objective and learn individual policies to optimize them
at the same time. As the incorporation of mutual information imposes a challenge on optimization
due to the existence of dynamic marginal distribution, we first propose a multi-agent policy iteration
algorithm with a fixed marginal distribution and prove its convergence and optimality. Then, we
propose to utilize the Blahut–Arimoto algorithm (Cover, 1999) and an imaginary team composition
distribution for optimization under an approximate dynamic marginal distribution as the practical
implementation.

To empirically justify our algorithm, we first evaluate the performance of MIPI in a simple yet
challenging matrix game. Compared with the other two baselines using pure environmental reward
and entropy-augmented reward, using mutual information as an augmented reward can help the agent
find the policy that can achieve consistent performance across different team compositions. Then,
we move to a more complicated scenario, StarCraft Micromanagement Tasks. While having the
same level of performance in the training set, MIPI achieves better zero-shot generalization results in
unseen team compositions during evaluation.

2 Related Work

2.1 Centralized Training with Decentralized Execution (CTDE)

CTDE methods can be categorized into value decomposition and multi-agent policy gradient, de-
pending on whether a centralized critic is decomposed or not. For value decomposition methods, a
centralized critic is decomposed into decentralized utilities through the mixer network. Different
mixers have been proposed as different interpretations of the Individual-Global-Maximum (Rashid
et al., 2018) (IGM) principle or its equivalence, which ensures the consistency between optimal local
actions and optimal joint action. VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018) give
sufficient conditions for IGM by additivity and monotonicity, respectively. QPLEX (Wang et al.,
2020) and FOP (Zhang et al., 2021) take advantage of duplex dueling architecture to guarantee IGM.

2



In multi-agent policy gradient, a centralized critic function is directly used to guide the update of
each decentralized individual policy. Most multi-agent policy gradient methods can be considered as
an extension of the policy gradient method from RL to MARL. For example, MAPPDG (Lowe et al.,
2017) extends DDPG (Lillicrap et al., 2016), HATRPO (Kuba et al., 2022) extends TRPO (Schulman
et al., 2015), MAPPO (Yu et al., 2022) and CoPPO (Wu et al., 2021) extend PPO (Schulman et al.,
2017).

2.2 Dynamic Team Composition

While classical CTDE methods mainly focus on fixed team compositions, in real-world applications,
agents that can adapt to dynamic team composition are preferable. To address this problem, RE-
FIL (Iqbal et al., 2021) incorporates multi-head attention (Vaswani et al., 2017) into the networks
and further introduces an imaginary objective based on random sub-group partitioning to accelerate
the training process on a fixed set of team compositions. While REFIL learns policies that can
handle dynamic team compositions, studies (Liu et al., 2021; Shao et al., 2022) suggest that it
generalizes poorly on unseen team compositions. The necessity of training agents that can generalize
to unseen team compositions is evident using the automated warehouse as an example, where it is
very common to add more agents (more agents got purchased) or delete some agents (some agents
got broken). Therefore, agents have to deal with different teams in the application scenario, which
can not be fully covered during training. In order to learn policies that can adapt to unseen team
compositions, many studies choose to sacrifice the requirement of decentralized execution. For
example, a centralized agent is assumed in COPA (Liu et al., 2021), which has a global view of
the environment and coordinates agents by distributing individual strategies. In SOG (Shao et al.,
2022), a communication channel is assumed to elect conductors, so that the corresponding groups are
constructed with conductor-follower consensus. Unlike these methods, we do not assume any kind of
centralization during execution, such that the ability of decentralized execution is fully preserved.
In CollaQ (Zhang et al., 2020), the decentralized utility function is decomposed into two terms: the
self-term that only relies on the agent’s own state, and the interactive term that is related to states of
nearby agents. By using an additional MARA loss to constrain the contribution of the interactive
term in the decentralized utility function, CollaQ solves the generalization on the dynamic team
composition problem with CTDE being preserved. Unlike this method, MIPI uses mutual information
to constrain the contribution of team-related information in the agent’s policy.

2.3 Information-Theoretic Principles in RL

In the standard RL problem, the objective is to solely optimize the environmental reward. However, in
many problems, we not only want to optimize the cumulative rewards but also want the learned policy
to exhibit some other properties. Therefore, a line of research across single-agent and multi-agent
domains has been proposed using different information-theoretic principles for policy optimization.
For example, SQL (Haarnoja et al., 2017) and SAC (Haarnoja et al., 2018) incorporate the maximum
entropy principle to encourage exploration and diverse behavior. FOP (Zhang et al., 2021) further
extends this idea to MARL and proves its convergence and optimality. As the augmented entropy term
distorts the original objective in the original MDP, which may lead to undesirable behavior in some
scenarios (Eysenbach and Levine, 2019). To solve this problem, DMAC (Su and Lu, 2022) proposes
to use the divergence between the current policy and previous policy to replace entropy, which
yields a bound of the discrepancy between the converged policy and optimal policy in the original
MDP. Using divergence to guide the policy optimization is also very popular in offline RL (Levine
et al., 2020), for example, F-BRC (Kostrikov et al., 2021) and ICQ (Yang et al., 2021), where the
divergence is used to control the similarity between learned policy and behavior policy. While the
entropy and KL divergence can be seen as a measurement of the distance to a fixed policy, the mutual
information is about the distance to a dynamic marginal policy. In MIRL (Grau-Moya et al., 2019)
and MIRACLE (Leibfried and Grau-Moya, 2020), the environmental reward is combined with mutual
information to encourage the learned policy to be close to an optimal prior policy, which is also
dynamically learned during the RL process instead of being fixed throughout. Unlike (Grau-Moya
et al., 2019; Leibfried and Grau-Moya, 2020) that aim at a generalized version of SAC in single-agent
RL, the purpose of our work is to solve generalization on dynamic team composition in MARL.

Mutual information (MI) has been widely used in previous MARL research for various purpose, e.g.,
exploration (Mahajan et al., 2019; Wang et al., 2019; Zheng et al., 2021), coordination (Konan et al.,
2021; Kim et al., 2023), individuality (Jiang and Lu, 2021), diversity (Li et al., 2021) and social

3



influence (Jaques et al., 2019). Unlike these works that mainly focus on the performance of agents in
a fixed team, we focus on the generalization ability of agents over different or even unseen teams.
Also, these works mainly try to increase the mutual information between two variables to enhance
the dependency between variables. However, in our work, we try to decrease the mutual information
between the agent’s policy and team-related information to reduce the dependency between these
two variables and avoid overfitting. Being an exception, PMIC (Li et al., 2022) maximizes the MI
associated with the superior trajectories and minimizes the MI associated with the inferior trajectories
at the same time. However, it still focuses on the training of a fixed team, while our work focuses on
the training of a dynamic team and the generalization over unseen teams.

3 Background

In this paper, we formulate cooperative MARL with dynamic team composition as a multi-agent
Markov decision process (MMDP) with entities. MMDP with entities can be defined by a tuple
⟨E , S,A, U, P, r, γ⟩. E is the set of entities in the environment, S is the set of states, and each
state s is composed by the state of each entity s = {se}. It is worth noting that except agents
a ∈ A, there are also other entities in the environments (e.g., landmarks, obstacles, agents with
fixed behavior). U = U1 × · · · × U|A| is the joint action space, where Ui is the individual action
space for each agent i. For the rigorousness of proof, we assume full observability such that at each
state s ∈ S, each agent i receives state s, chooses an action ui ∈ Ui, and all actions form a joint
action u ∈ U . The state transitions to the next state s′ upon u according to the transition function
P (s′|s,u) : S × U × S → [0, 1], and all agents receive a shared reward r(s,u) : S × U → R.
The objective is to learn an individual policy πi(ui|s) for each agent such that they can cooperate
to maximize the expected cumulative discounted return, E[

∑∞
t=0 γ

trt], where γ ∈ [0, 1) is the
discount factor. In CTDE, from a centralized perspective, a group of local policies can be viewed
as a joint policy πjt(u|s). For this joint policy, we can define the joint state-action value function
Qjt(st,ut) = Est+1:∞,ut+1:∞ [

∑∞
k=0 γ

trt+k|st,ut]. Note that although we assume full observability
for the rigorousness of proof, we use the trajectory of each agent τi ∈ Ti : (Y × Ui)

∗ to replace state
s for each agent to settle the partial observability in practice, where Y is the observation space.

Since we are discussing dynamic team composition in this paper, we further denote s+i as team-
unrelated information for agent i (agent’s own information), and use s−i to denote team-related
information that varies along team composition (e.g., information of other agents, landmarks, obsta-
cles). Although we assume full observability for each agent (i.e., s is the same for all agents), s+i and
s−i can be different as the circumstance of each agent per se is different. One can easily conclude that
s = {s+i , s

−
i } for each agent i.

4 Method

In this section, we present our method, MIPI, as follows. In Section 4.1, we introduce the mutual
information (MI) augmented objective for regularizing the reliance on s−i for each agent. However,
due to the existence of the dynamic marginal distribution, direct optimization on this objective can
be intractable in practice. Therefore, in Section 4.2, we first discuss a multi-agent policy iteration
with a fixed marginal distribution and prove its convergence and optimality. Then, in Section 4.3, we
discuss how to use an imaginary team composition distribution to achieve an approximate dynamic
marginal distribution and how to use the Blahut–Arimoto algorithm (Cover, 1999) to optimize the
corresponding objective. Finally, in Section 4.4, we summarize the learning framework of MIPI.

4.1 MI-Augmented Objective

The learning objective of standard MARL can be formulated as follows,

argmax
πjt

Eρ(s0),πjt,P

[
T∑

t=0

γtr(st,ut)

]
, (1)

4



where ρ(s0) is the distribution of initial state. We can further rewrite it as:

argmax
πjt

T∑
t=0

Eρπjt
(st)

[
Eπjt(ut|st)

[
γtr(st,ut)

]]
, (2)

where ρπjt
(st) is the the marginal distribution over states at timestep t. Recall that the conditional

mutual information between x and y given z can be expressed as follows,

MI(x; y|z) = Ep(y,z)

[
Ep(x|y,z)

[
log

p(x|y, z)
p(x|z)

]]
.

The conditional mutual information can be used to measure the dependency between variable x and y
with z given. Therefore, as our goal is to reduce the reliance of πi(ui|s) = πi(ui|s+i , s

−
i ) on s−i , we

can formulate conditional mutual information as follows,

MI(ui; s
−
i |s

+
i ) = Eρ(s+i ,s−i )

[
Eπi(ui|s+i ,s−i )

[
log

πi(ui|s+i , s
−
i )

π̂i(ui|s+i )

]]

= Eρ(s+i ),ρ(s−i |s+i )

[
Eπi(ui|s)

[
log

πi(ui|s)
πi(ui|s+i )

]]
,

where πi(ui|s+i ) =
∑

s−i
ρ(s−i |s

+
i )πi(ui|s+i , s

−
i ). Incorporating the conditional mutual information

of all agents into the standard MARL objective, we now have the MI-augmented objective used in
this paper:

argmax
πjt

T∑
t=0

Eρπjt
(st)

[
Eπjt(ut|st)

[
γt
(
r(st,ut)− α

∑
i

log
πi(ui,t|st)
πi(ui,t|s+i,t)

)]]
(3)

s.t. πi(ui,t|s+i,t) =
∑
s−i,t

ρπjt(s
−
i,t|s

+
i,t)πi(ui,t|s+i,t, s

−
i,t), (4)

where the coefficient α is used to determine the trade-off between maximizing global reward and
minimizing mutual information.

4.2 Multi-Agent Policy Iteration with a Fixed Marginal Distribution

As we can see in (4), the optimization of (3) is highly coupled with a dynamic marginal distribution
πi(ui,t|s+i,t). What’s even worse is, this marginal distribution is determined by ρπjt

(s−i,t|s
+
i,t), which

is related to πjt, making the optimization problem even harder. However, one may notice that, if such
a marginal distribution πi(ui,t|s+i,t) is given and fixed, this problem becomes much easier and can be
solved in an off-policy manner. Therefore, in this section, we introduce multi-agent policy iteration
with a fixed marginal distribution and prove its convergence and optimality, and in the next section,
we discuss how to approximate the dynamic marginal distribution by integrating constraints similar
to (4) into this multi-agent policy iteration. First, let us define the joint value function Vjt and joint
state-action value function Qjt as follows,

V
πjt

jt (s) = Eπjt

[∑
t=0

γt
(
r(st,ut)− α

∑
i

log
πi(ui,t|st)
πi(ui,t|s+i,t)

)
|s0 = s

]
Q

πjt

jt (s,u) = r(s,u) + γ Es′∼P

[
Vjt(s

′)
]
,

where πi(ui,t|s+i,t) is the fixed marginal distribution for each agent i. With the above definition, we
can further deduce that:

V
πjt

jt (s) = Eπjt

[
Q

πjt

jt (s,u)− α
∑
i

log
πi(ui|s)
πi(ui|s+i )

]
.

We can then define the joint policy evaluation operator as

Γπjt Qjt(s,u) := r(s,u) + γ Es′ [Vjt(s
′)] (5)

and have the following lemma.

5



Lemma 1 (Joint Policy Evaluation). Consider the modified Bellman backup operator Γπjt (5) and
a mapping Q0

jt : S × U → R with |U | <∞, and define Qk+1
jt = Γπjt

Qk
jt. Then, the sequence Qk

jt

will converge to the joint Q-function of πjt as k →∞.

Proof. See Appendix A.1.

Using Lemma 1, we can get Qjt for any joint policy πjt. However, it is hard for us to use Qjt for
individual policy improvement. To solve this problem, many value decomposition methods choose to
factorize the joint state-action value function Qjt into the utility function Qi of each agent and use
Qi to guide the individual policy improvement of πi. In this paper, we factorize the joint state-action
value function into the following form, which is shared by many value decomposition methods (Zhang
et al., 2021; Su and Lu, 2022; Wang et al., 2023):

Q
πjt

jt (s,u) =
∑
i

wi(s) ∗Qπi
i (s, ui) + b(s). (6)

After the evaluation of the joint policy and the decomposition of Qjt, we construct the following
optimization problem for individual policy improvement.

πnew
i = argmax

π′
i

Eπ′
i

[
Q

πold
i

i (s, ui)− α log
π′
i(ui|s)

πi(ui|s+i )

]
(7)

Based on the above optimization problem, we have the following lemma for individual policy
improvement.

Lemma 2 (Individual Policy Improvement). Let πnew
i be the optimizer of the maximization problem

in (7). Then, we have Q
πnew
jt

jt (s,u) ≥ Q
πold
jt

jt (s,u) for all (s,u) ∈ |S| × |U | with |U | < ∞, where
πold
jt (u|s) =

∏
i π

old
i (ui|s) and πnew

jt (u|s) =
∏

i π
new
i (ui|s).

Proof. See Appendix A.2.

Combining Lemma 1 and 2, we can have the following theorem which proves the convergence and
optimality of multi-agent policy iteration with a fixed marginal distribution.

Theorem 1 (Multi-Agent Policy Iteration with a Fixed Marginal Distribution). For any joint
policy πjt, if we repeatedly apply joint policy evaluation and individual policy improvement. Then

the joint policy πjt(u|s) =
∏n

i=1 πi(ui|s) will eventually converge to π∗
jt, such that Q

π∗
jt

jt (s,u) ≥
Q

πjt

jt (s,u) for all πjt, assuming |U | <∞.

Proof. See Appendix A.3.

4.3 Approximation for Dynamic Marginal Distribution

With the multi-agent policy iteration above, we can have Qjt and corresponding Qi for each agent,
however, under a fixed marginal distribution. In this section, we discuss how to approximate the
dynamic marginal distribution to decouple ρπjt(s

−
i,t|s

+
i,t) from πjt, and introduce the Blahut–Arimoto

algorithm for the corresponding optimization.

Notice that the original objective (3) comes with a constraint (4). In Section 4.2, what we did is to
remove this constraint for an easier optimization process. What we are going to do here, is to add a
similar constraint back. First, consider the meaning of ρπjt(s

−
i |s

+
i ), it represents the potential team

composition given team-unrelated information. Therefore, inspired by REFIL (Iqbal et al., 2021), we
randomly partition team composition under s = {s+i , s

−
i } into different subgroups, yielding a set

of imaginary team compositions and corresponding imaginary distribution ρ̂(s∗i |s
+
i ) for imaginary

team-related information. With this imaginary distribution, we can propose the approximate objective

6



Environment

. . .

Mixer Network

. . .
Critic 1 Critic |A|

Agent 1 Agent |A|

. . .

. . .

W2

W1

. . .

+

+

M
H
A

MHA

MLP

MLP

GRU

MLP

MLP

MLP

MLP

GRU

MLP

Figure 1: Learning framework of MIPI, where each agent i has three modules: a utility function
Qi(s, ui; θi), a policy πi(ui|s;ϕi), and a marginal policy πi(ui|s+i ;ωi).

for (3) as follows,

argmax
πjt

T∑
t=0

Eρπjt
(st)

[
Eπjt(ut|st)

[
γt
(
r(st,ut)− α

∑
i

log
πi(ui,t|st)
πi(ui,t|s+i,t)

)]]
(8)

s.t. πi(ui,t|s+i,t) =
∑
s∗i,t

ρ̂(s∗i,t|s+i,t)πi(ui,t|s+i,t, s
∗
i,t). (9)

Therefore, we can have the approximate optimization problem for (7) as follows,

πnew
i =argmax

π′
i

Eπ′
i

[
Q

πold
i

i (s, ui)− α log
π′
i(ui|s)

π′
i(ui|s+i )

]
(10)

s.t. π′
i(ui|s+i ) =

∑
s∗i

ρ̂(s∗i |s+i )π
′
i(ui|s+i , s

∗
i ). (11)

The objective above exhibits similarities with the rate-distortion problem (Cover, 1999), which could
be solved using the Blahut–Arimoto algorithm. Although with the approximation above we break
the convergence of Theorem 1, by using the Blahut–Arimoto algorithm we can have the following
theorem, indicating the convergence of (10) as shown in Leibfried and Grau-Moya (2020).

Theorem 2 (Convergence of Constrained Individual Policy Improvement). The optimization
problem induced by (10) can be solved by iterating in an alternate fashion through the following two
equations:

πm
i (ui|s+i ) =

∑
s∗i

ρ̂(s∗i |s+i )π
m
i (ui|s+i , s

∗
i ) (12)

πm+1
i (ui|s+i , s

−
i ) =

πm
i (ui|s+i ) exp(Qi(s, ui)/α)∑

ui
πm
i (ui|s+i ) exp(Qi(s, ui)/α)

, (13)

where m refers to the iteration index. Denoting the total number of iterations as M , the presented
scheme converges at a rate of O(1/M) to an optimal policy π∗

i for any given bounded utility function
Qi and any initial policy π0

i .

Proof. See Appendix A.4.

4.4 MIPI Framework

In Section 4.2 and 4.3, we propose our learning algorithm in theory. In this section, we discuss how
to implement our algorithm in practice, which can be summarized in Figure 1.

7



In MIPI, each agent has a utility function Qi(s, ui; θi), a policy πi(ui|s;ϕi), and a marginal policy
πi(ui|s+i ;ωi). For joint policy evaluation, with the utilities of agents, we use a mixer network
Mixer(·, s; Θ) to get the joint state-action value function Qjt as follows,

Qjt(s,u) = Mixer([Qi(s, ui; θi)]
|A|
i=1, s; Θ) (14)

=

|A|∑
i=1

wi(s)Qi(s, ui; θi) + b(s), (15)

Where wi(s) ≥ 0 is a positive weight used to linearly decompose Qjt with the IGM principle being
preserved. Same as REFIL, wi(s) is computed via the attention mechanism to handle dynamic
team composition. With Qjt, we can update the utilities and the mixer network by minimizing the
following TD error:

L([θi]|A|
i=1,Θ) = ED

[
Qjt(s,u)−

(
r(s,u) + γ

(
Q̂jt(s

′,u′)− α

|A|∑
i

log
πi(u

′
i|s′)

πi(u′
i|s

′+
i )

))]
, (16)

where D is the replay buffer, Q̂jt is the target network and u′
i is sampled from the current policy

πi(ui|s;ϕi) of each agent. To accelerate the training with a fixed set of team compositions, we also
incorporate the same imaginary objective based on random sub-group partitioning as REFIL for joint
policy evaluation.

As we described in Section 4.3, the constrained individual policy improvement is achieved via an
iterative update of πi(ui|s;ϕi) and πi(ui|s+i ;ωi). For πi(ui|s+i ;ωi), we update it via the maximum
likelihood estimation:

L(ωi) = ED

[
Es∗i ∼ρ̂(s∗i |s

+
i ),ui∼πi(ui|s+i ,s∗i )

[
log πi(ui|s+i )

]]
. (17)

For πi(ui|s;ϕi), we update it by minimizing the KL-divergence as follows,

L(ϕi) = ED

[
Eui∼πi(ui|s)

[
α
(
log

πi(ui|s)
πi(ui|s+i )

)
−Qi(s, ui)

]]
. (18)

5 Experiments

In this section, we evaluate MIPI in two different scenarios. One is a simple yet challenging matrix
game, which we use to illustrate how mutual information may help to learn generalizable policies.
Then, we evaluate MIPI in a complicated cooperative MARL scenario: StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019), comparing it against REFIL, AQMIX (Iqbal et al.,
2021), CollaQ (Zhang et al., 2020) and MAPPO (Yu et al., 2022). More details about experiments,
hyperparameters, and the learning curve of each algorithm are included in Appendix B and C. All
results are presented using the mean and standard deviation of five runs with different random seeds.

5.1 An Illustrative Example: Matrix Game

We first use a matrix game to explain how mutual information works in solving generalization
problems. In this game, we have two agents, and each of them can take two actions {0, 1} and
can take one of the two types {A,B}. During training, we train these two agents under team
compositions (A,B) and (B,A), where the corresponding payoff matrices are shown in Figure 2(a)
and 2(b). However, during evaluation, we test their performance on team composition (B,B), and
have Figure 2(c) as the payoff matrix, which is different from training scenarios.

As we can see in Figure 2(a), 2(a), 2(c), we have different optimal joint actions in different team
compositions. However, there exists a generalizable joint action (a1 = 0, a2 = 0) that can achieve
consistent performance regardless of team compositions, even if it is not an optimal joint action in
any team composition.

In Figure 2(d), we plot the evaluation results of three algorithms during training, which is evaluated
on team composition (B,B). These three algorithms are all the same except they receive different re-
wards: pure environmental reward, environmental reward combined with entropy, and environmental

8



a1

a2
0 1

0 8 10

1 0 0

(a) payoff matrix: (A,B)

a1

a2
0 1

0 8 0

1 10 0

(b) payoff matrix: (B,A)

a1

a2
0 1

0 8 0

1 0 10

(c) payoff matrix: (B,B)

� ��� ��� ��� ��� ����

���������

�

�

�

�

�

�

�

�
�
�
�
�
�

�����������

������������������

�������

�����

(d) learning curves

Figure 2: A matrix game with different team compositions: (a) (b) (c) payoff matrices for different
team compositions; (d) learning curves of different methods on team composition (B,B).

Table 1: Final performance on all SMAC maps. MIPI outperforms REFIL, AQMIX, and CollaQ in 8
out of 9 evaluation maps. We bold the best mean performance for each map.

Tasks
#Agent Algorithms Training Evaluation

3-5 6 7 8

SZ

MIPI 0.659±0.02 0.453±0.08 0.404±0.062 0.276±0.076
REFIL 0.674±0.038 0.441±0.103 0.352±0.078 0.236±0.103

AQMIX 0.528±0.044 0.343±0.105 0.291±0.084 0.182±0.058
CollaQ 0.588±0.03 0.366±0.086 0.314±0.076 0.198±0.097

MAPPO 0.256±0.01 0.129±0.019 0.148±0.031 0.036±0.015

CSZ

MIPI 0.548±0.032 0.42±0.102 0.297±0.112 0.261±0.09
REFIL 0.568±0.027 0.348±0.057 0.229±0.053 0.164±0.06

AQMIX 0.509±0.054 0.323±0.096 0.216±0.101 0.152±0.071
CollaQ 0.459±0.061 0.362±0.13 0.267±0.099 0.231±0.095

MAPPO 0.248±0.037 0.12±0.029 0.06±0.028 0.054±0.013

MMM

MIPI 0.548±0.023 0.495±0.054 0.447±0.041 0.467±0.067
REFIL 0.605±0.057 0.437±0.118 0.329±0.171 0.224±0.163

AQMIX 0.501±0.036 0.447±0.043 0.344±0.071 0.251±0.089
CollaQ 0.589±0.027 0.513±0.07 0.423±0.026 0.286±0.083

MAPPO 0.289±0.097 0.32±0.102 0.25±0.063 0.275±0.098

reward combined with mutual information. As we can see in Figure 2(d), with the help of mutual
information, agents are able to resist the temptation of overfitting to the specific team composition
and learn behavior that can generalize across different team compositions.

5.2 StarCraft Micromanagement Tasks

5.2.1 Performance

Further, we evaluate MIPI on SMAC with the map designed by Iqbal et al. (2021). We customize
three different types of scenarios (SZ, CSZ, and MMM) based on this map for our experiments. In
SZ scenarios, agents can take two different unit types, in CSZ and MMM, agents can take three
different unit types. During training, the maps randomly initialize 3-5 agents and the same number
of enemies at the start of each episode. During the evaluation, we use 6-8 agents and 6-8 enemies.
Results are shown in Table 1. In general, MIPI outperforms the baselines in 8 out of 9 evaluation
scenarios. When the evaluation scenario is similar to the training scenarios, the gap between MIPI
and other baselines is relatively small, whereas, in the evaluation scenario that is very different from
the training scenarios, the gap between MIPI and other baselines becomes larger. In terms of the
training performance, REFIL achieves the best result in all three scenarios, as it does not consider the
overfitting issue at all. However, the performance of MIPI is still at the same level as REFIL, which
indicates that MIPI can achieve better zero-shot generalization without sacrificing the performance
on the training set.

9



Table 2: Final performance on all SMAC maps. MIPI is compared with ablation baselines. We bold
the best mean performance for each map.

Tasks
#Agent Algorithms Training Evaluation

3-5 6 7 8

SZ
MIPI 0.659±0.02 0.453±0.08 0.404±0.062 0.276±0.076
Value 0.621±0.042 0.336±0.075 0.275±0.114 0.154±0.052

Entropy 0.105±0.035 0.024±0.011 0.015±0.011 0.01±0.01

CSZ
MIPI 0.548±0.032 0.42±0.102 0.297±0.112 0.261±0.09
Value 0.542±0.059 0.368±0.083 0.207±0.076 0.172±0.112

Entropy 0.316±0.04 0.237±0.051 0.076±0.041 0.066±0.041

MMM
MIPI 0.548±0.023 0.495±0.054 0.447±0.041 0.467±0.067
Value 0.545±0.048 0.505±0.058 0.391±0.083 0.319±0.105

Entropy 0.265±0.034 0.2±0.085 0.16±0.064 0.075±0.044

5.2.2 Ablation

Although MIPI uses the random sub-group partitioning as in REFIL, it is an actor-critic structure,
whereas REFIL uses only a critic. Therefore, one may question whether the improved generalization
of MIPI is due to the introduction of mutual information, or simply due to the introduction of the actor.
To eliminate such a concern, we build two ablation baselines, Value and Entropy, where all other
perspectives are the same as MIPI, except they use pure environmental reward and entropy-augmented
reward, respectively. As we can see in Table 2, MIPI also outperforms these two baselines, which
demonstrates the importance of MI-augmented reward in MIPI.

6 Conclusion

In this paper, we propose MIPI, an MI-regularized multi-agent policy iteration algorithm to improve
the generalization ability of agents under unseen team compositions. We first prove the convergence
and optimality of our algorithm given a fixed marginal distribution, then we propose to use an
imaginary distribution to approximate the dynamic marginal distribution to better approximate the
original objective and incorporate the Blahut–Arimoto algorithm into the multi-agent policy iteration
to optimize this approximate objective. We evaluate our algorithm in complex coordination scenarios,
SMAC, and demonstrate that MIPI can achieve better zero-shot generalization results, without
sacrificing the performance on the training set.

One potential limitation of this work is the introduction of approximation distorts the original
mutual information augmented objective and breaks the convergences of multi-agent policy iteration.
One possible solution to this problem is to seek alternative solutions using on-policy optimization
methods (Schulman et al., 2015, 2017; Grudzien et al., 2022) to optimize the augmented objective.

Acknowledgments and Disclosure of Funding

This work was supported in part by NSF China under grant 62250068 and Tencent. The authors
would like to thank the anonymous reviewers for their valuable comments.

10



References
Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Benjamin Eysenbach and Sergey Levine. If maxent rl is the answer, what is the question? arXiv
preprint arXiv:1910.01913, 2019.

Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft q-learning with mutual-information
regularization. In International conference on learning representations, 2019.

Jakub Grudzien, Christian A Schroeder De Witt, and Jakob Foerster. Mirror learning: A unifying
framework of policy optimisation. In International Conference on Machine Learning, pages
7825–7844, 2022.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pages 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson, and Fei
Sha. Randomized entity-wise factorization for multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 4596–4606. PMLR, 2021.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent
deep reinforcement learning. In International conference on machine learning, pages 3040–3049.
PMLR, 2019.

Jiechuan Jiang and Zongqing Lu. The emergence of individuality. In International Conference on
Machine Learning, pages 4992–5001. PMLR, 2021.

Woojun Kim, Whiyoung Jung, Myungsik Cho, and Youngchul Sung. A variational approach to
mutual information-based coordination for multi-agent reinforcement learning. arXiv preprint
arXiv:2303.00451, 2023.

Sachin G Konan, Esmaeil Seraj, and Matthew Gombolay. Iterated reasoning with mutual information
in cooperative and byzantine decentralized teaming. In International Conference on Learning
Representations, 2021.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pages 5774–5783. PMLR, 2021.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. In International
conference on learning representations, 2022.

Felix Leibfried and Jordi Grau-Moya. Mutual-information regularization in markov decision pro-
cesses and actor-critic learning. In Conference on Robot Learning, pages 360–373. PMLR, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991–4002, 2021.

11



Pengyi Li, Hongyao Tang, Tianpei Yang, Xiaotian Hao, Tong Sang, Yan Zheng, Jianye Hao,
Matthew E Taylor, Wenyuan Tao, and Zhen Wang. Pmic: Improving multi-agent reinforce-
ment learning with progressive mutual information collaboration. In International Conference on
Machine Learning, pages 12979–12997. PMLR, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International conference on learning representations, 2016.

Bo Liu, Qiang Liu, Peter Stone, Animesh Garg, Yuke Zhu, and Anima Anandkumar. Coach-player
multi-agent reinforcement learning for dynamic team composition. In International Conference on
Machine Learning, pages 6860–6870. PMLR, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in neural information processing systems, 32, 2019.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pages 4295–4304. PMLR, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jianzhun Shao, Zhiqiang Lou, Hongchang Zhang, Yuhang Jiang, Shuncheng He, and Xiangyang
Ji. Self-organized group for cooperative multi-agent reinforcement learning. Advances in Neural
Information Processing Systems, 35:5711–5723, 2022.

Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International
Conference on Machine Learning, pages 20580–20603. PMLR, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 2085–2087, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
execution: Multi-agent conditional policy factorization. In International conference on learning
representations, 2023.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020.

12



Tong Wang, Jiahua Cao, and Azhar Hussain. Adaptive traffic signal control for large-scale scenario
with cooperative group-based multi-agent reinforcement learning. Transportation research part C:
emerging technologies, 125:103046, 2021.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration.
arXiv preprint arXiv:1910.05512, 2019.

Zhaozhi Wang, Kefan Su, Jian Zhang, Huizhu Jia, Qixiang Ye, Xiaodong Xie, and Zongqing Lu.
Multi-agent automated machine learning. arXiv preprint arXiv:2210.09084, 2022.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling problem. Advances in Neural Information
Processing Systems, 35:16509–16521, 2022.

Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. Coordinated proximal
policy optimization. Advances in Neural Information Processing Systems, 34:26437–26448, 2021.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, et al. Towards playing full moba games with deep reinforcement learning.
Advances in Neural Information Processing Systems, 33:621–632, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 12491–12500. PMLR, 2021.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Multi-agent collaboration via reward attribution decomposition. arXiv preprint
arXiv:2010.08531, 2020.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Tong Zhou, Dunbing Tang, Haihua Zhu, and Zequn Zhang. Multi-agent reinforcement learning
for online scheduling in smart factories. Robotics and Computer-Integrated Manufacturing, 72:
102202, 2021.

13



A Proofs

A.1 Proof of Lemma 1

Lemma 1 (Joint Policy Evaluation). Consider the modified Bellman backup operator Γπjt
(5) and

a mapping Q0
jt : S × U → R with |U | <∞, and define Qk+1

jt = Γπjt
Qk

jt. Then, the sequence Qk
jt

will converge to the joint Q-function of πjt as k →∞.

Proof. First, define the augmented reward2 as:

rπjt(s,u) := r(s,u)− αEs′

[
Eπjt

[∑
i

log
πi(ui|s′)
πi(ui|s′+i )

]]
.

Then, rewrite the update rule as:

Qjt(s,u)← rπjt
(s,u) + γ Es′,u′∼πjt

[Qjt(s
′,u′)].

Last, apply the standard convergence results for policy evaluation (Sutton and Barto, 2018).

A.2 Proof of Lemma 2

Lemma 2 (Individual Policy Improvement). Let πnew
i be the optimizer of the maximization problem

in (7). Then, we have Q
πnew
jt

jt (s,u) ≥ Q
πold
jt

jt (s,u) for all (s,u) ∈ |S| × |U | with |U | < ∞, where
πold
jt (u|s) =

∏
i π

old
i (ui|s) and πnew

jt (u|s) =
∏

i π
new
i (ui|s).

Proof. As πnew
i optimizes (7), we can have:

Eπnew
i

[
Q

πold
i

i (s, ui)− α log
πnew
i (ui|s)
πi(ui|s+i )

]
≥ Eπold

i

[
Q

πold
i

i (s, ui)− α log
πold
i (ui|s)
πi(ui|s+i )

]
. (19)

Since we assume that:

Q
πjt

jt (s,u) =
∑
i

wi(s) ∗Qπi
i (s, ui) + b(s),

we can have:

Eu∼πnew
jt

[
Q

πold
jt

jt (s,u)− α
∑
i

log
πnew
i (ui|s)
πi(ui|s+i )

]

= Eu∼πnew
jt

[∑
i

wi(s) ∗Q
πold
i

i (s, ui) + b(s)− α
∑
i

log
πnew
i (ui|s)
πi(ui|s+i )

]

=
∑
i

Eui∼πnew
i

[
wi(s) ∗Q

πold
i

i (s, ui)− α log
πnew
i (ui|s)
πi(ui|s+i )

]
+ b(s)

≥
∑
i

Eui∼πold
i

[
wi(s) ∗Q

πold
i

i (s, ui)− α log
πold
i (ui|s)
πi(ui|s+i )

]
+ b(s)

= Eu∼πold
jt

[
Q

πold
jt

jt (s,u)− α
∑
i

log
πold
i (ui|s)
πi(ui|s+i )

]

= V
πold
jt

jt (s), (20)

where the inequality is from plugging in (19).

2We assume πi(ui|s) and πi(ui|s+i ) to be ϵ-soft policy (Sutton and Barto, 2018) to avoid the log term being
undefined.

14



Last, considering the modified Bellman equation, the following holds:

Q
πold
jt

jt (s,u) = r(s,u) + γ Es′

[
V

πold
jt

jt (s′)
]

≤ r(s,u) + γ Es′

[
Eu′∼πnew

jt

[
Q

πold
jt

jt (s′,u′)− α
∑
i

log
πnew
i (u′

i|s′)
πi(u′

i|s
′+
i )

]]
...

≤ Q
πnew
jt

jt (s,u),

where we have repeatedly expanded Q
πold
jt

jt on the RHS by applying the modified Bellman equation
and the inequality in (20).

A.3 Proof of Theorem 1

Theorem 1 (Multi-Agent Policy Iteration with a Fixed Marginal Distribution). For any joint
policy πjt, if we repeatedly apply joint policy evaluation and individual policy improvement. Then

the joint policy πjt(u|s) =
∏n

i=1 πi(ui|s) will eventually converge to π∗
jt, such that Q

π∗
jt

jt (s,u) ≥
Q

πjt

jt (s,u) for all πjt, assuming |U | <∞.

Proof. First, by Lemma 2, the sequence {πk
jt} monotonically improves with Q

πk+1
jt

jt ≥ Q
πk
jt

jt . Since

the augmented reward is bounded, then Q
πk
jt

jt is bounded. Thus, this sequence must converge to some
π∗
jt. Then, at convergence, we have the following inequality:

Eπ∗
i

[
Q

π∗
i

i (s, ui)− α log
π∗
i (ui|s)

πi(ui|s+i )

]
≥ Eπi

[
Q

π∗
i

i (s, ui)− α log
πi(ui|s)
πi(ui|s+i )

]
,∀πi ̸= π∗

i .

Using the same iterative argument as in the proof of Lemma 2, we get Q
π∗
jt

jt (s,u) ≥ Q
πjt

jt (s,u) for
all (s,u) ∈ |S| × |U |. That is, the state-action value of any other policy πjt is lower than or equal to
that of the converged policy π∗

jt. Therefore, π∗
jt is the optimal joint policy.

A.4 Proof of Theorem 2

Theorem 2 (Convergence of Constrained Individual Policy Improvement). The optimization
problem in (10) can be solved by iterating in an alternate fashion through the following two equations:

πm
i (ui|s+i ) =

∑
s∗i

ρ̂(s∗i |s+i )π
m
i (ui|s+i , s

∗
i )

πm+1
i (ui|s+i , s

−
i ) =

πm
i (ui|s+i ) exp(Qi(s, ui)/α)∑

ui
πm
i (ui|s+i ) exp(Qi(s, ui)/α)

,

where m refers to the iteration index. Denoting the total number of iterations as M , the presented
scheme converges at a rate of O(1/M) to an optimal policy π∗

i for any given bounded utility function
Qi and any initial policy π0

i .

Proof. First, we notice that for a fixed πi(ui|s+i , s∗i ), we can have its optimal marginal as constrained
in (11):

πi(ui|s+i ) =
∑
s∗i

ρ̂(s∗i |s+i )πi(ui|s+i , s
∗
i ).

Then, for a fixed marginal πi(ui|s+i ), we can have the optimal πi(ui|s+i , s∗i ) by solving (10) via
standard variational calculus:

π(ui|s+i , s
−
i ) =

π(ui|s+i ) exp(Qi(s, ui)/α)∑
ui

π(ui|s+i ) exp(Qi(s, ui)/α)
.

Lastly, with the above two equations, we can apply Theorem 1 in Leibfried and Grau-Moya (2020) to
finish our proof.

15



B Experiment Settings and Implementation Details

B.1 Matrix Game

In the matrix game, we use a learning rate of 3× 10−4 for all algorithms. For the algorithm that uses
mutual information as the augmented reward, we set the number of Blahut–Arimoto iterations to 1.
For algorithms that use mutual information and entropy as the augmented reward, we fix α as 0.5.
The batch size used in the experiment is 64. Critics and polices used in the experiments consist of
one hidden layer of 64 units with ELU non-linearity. For the mixer network, we use a hypernetwork
similar to QMIX (Rashid et al., 2018), except no non-linearity is used. The environment and model
are implemented in Python. All models are built by PyTorch and are trained via 1 Nvidia RTX 1060
GPU to conduct all the experiments. Each experiment takes roughly 1 hour.

B.2 SMAC

In StarCraft II, we use a learning rate of 5×10−4 for all algorithms. The structure of the critic network
and the mixer network of MIPI are the same as REFIL (Iqbal et al., 2021) except no non-linearity
is used in the mixer of MIPI. The number of Blahut–Arimoto iterations is set to 4 for MIPI in this
experiment. The policy network of MIPI shares all layers with the critic network except the last layer
of the policy network being a different fully-connected layer. The target networks will be updated
once every 200 training episodes for all algorithms. The temperature parameters α and αi are fixed as
0.03 in SZ and CSZ and fixed as 0.1 in MMM for MIPI and Entropy. For REFIL, AQMIX, and CollaQ,
we use their default settings. For CollaQ, as the original implementation is based on a different
SMAC environment where the entity-level observation is not available, we re-implement CollaQ with
minimum changes to adapt the entity-level observation based on the framework provided in REFIL to
ensure fairness of comparison. For MAPPO, as there is no published version of MAPPO for dynamic
team compositions, we choose to implement MAPPO following Papoudakis et al. (2021), with
additional attention modules used in the policy and the critic to handle dynamic team compositions.
The environment and model are implemented in Python. All models are built by PyTorch and are
trained via a mixture of 4 Nvidia A100, 4 RTX 3090, and 1 RTX 2080 TI GPUs to conduct all
the experiments. Each experiment takes 6 to 32 hours depending on the algorithms and scenarios.
Our implementation of MIPI is based on REFIL (Iqbal et al., 2021) with MIT license. It is worth
noting that, although we assume full observability for the rigorousness of proof, the trajectory of each
agent is used to replace state s for each agent as input to settle the partial observability in all SMAC
experiments.

B.3 Resource Collection

In Resource Collection, we use a learning rate of 5× 10−4 for all algorithms. The structure of the
critic network and the mixer network of MIPI are the same as REFIL (Iqbal et al., 2021) except no
non-linearity is used in the mixer of MIPI. The number of Blahut–Arimoto iterations is set to 1 for
MIPI in this experiment. The policy network of MIPI shares all layers with the critic network except
the last layer of the policy network being a different fully-connected layer. The target networks
will be updated once every 200 training episodes for all algorithms. The temperature parameters
α and αi are fixed as 0.05 in Resource Collection for MIPI. For REFIL, AQMIX, and CollaQ,
we use their default settings. For CollaQ, as the original implementation is based on a different
SMAC environment where the entity-level observation is not available, we re-implement CollaQ with
minimum changes to adapt the entity-level observation based on the framework provided in REFIL to
ensure fairness of comparison. For MAPPO, as there is no published version of MAPPO for dynamic
team compositions, we choose to implement MAPPO following Papoudakis et al. (2021), with
additional attention modules used in the policy and the critic to handle dynamic team compositions.
The environment and model are implemented in Python. All models are built by PyTorch and are
trained via 4 Nvidia RTX 3090 GPUs to conduct all the experiments. Each experiment takes roughly
20 hours. Our implementation of MIPI is based on REFIL (Iqbal et al., 2021) with MIT license. It is
worth noting that, although we assume full observability for the rigorousness of proof, the trajectory
of each agent is used to replace state s for each agent as input to settle the partial observability in all
SMAC experiments. As suggested by previous research (Liu et al., 2021; Shao et al., 2022), random
sub-group partitioning does not work well in Resource Collection, therefore we choose not to use it
for MIPI in this experiment.

16



C Training performance on SMAC

In this section, we additionally provide the learning curves of all algorithms used in Section 5.2. As
we can see from Figure 3, these algorithms achieve similar training performance, except Entropy.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
���������������

����

�����

�������

�����

�����

������

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������������

����

�����

�������

�����

�����

������

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������������

����

�����

�������

�����

�����

������

�����

Figure 3: Learning curves of all the methods in SMAC, where the unit of x-axis is 1M timesteps and
y-axis represents the win rate of each map.

D More Experiments

D.1 Resource Collection

In this section, We further evaluate MIPI on Resource Collection, which is a more challenging
scenario in terms of the level of collaboration used by COPA (Liu et al., 2021). During training, the
map randomly initializes 3-5 agents, and during the evaluation, we will have 6-8 agents. We plot
the curve of training and evaluation performance in Figure 4. As we can see, MIPI outperforms the
baselines by a large margin, which indicates that MIPI can also perform well in scenarios requiring
strong collaboration.

��� ��� ��� ��� ��� ���
�

���

���

���

��������������������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

�������������������������������

����

�����

�����

������

�����

Figure 4: Learning curves of all the methods in Resource Collection, where the unit of x-axis is 1M
timesteps and y-axis represents the return.

D.2 Ablation on Alpha

In this section, We further include the ablation study on the impact of alpha. We train MIPI with
different alpha on 3-5 agents scenarios and evaluate their performance on 6-8 agents scenarios. We
use alpha=∞ to represent the case where team-related information is completely removed (it is worth
noting how this is different from actually set alpha=∞ in MIPI). Results are summarized in Table 3.
As we can see, unless alpha is set unreasonably, MIPI can always achieve better generalization ability
without sacrificing the training performance. It’s worth noting that alpha=∞ outperforms Value
here, which further indicates that reducing the dependency on team-related information promotes
generalization, even when the team-related information is completely removed. However, this strategy
is not widely effective and sacrifices the training performance too much in some cases (see MMM),
which further leads to a decay in both training and evaluation. In contrast, our method uses alpha to
control the degree of dependency on team-related information, which provides more flexibility.

17



Table 3: Final performance on all SMAC maps. MIPI is compared with the ablation baseline. We
bold the best mean performance for each map.

Tasks
#Agent Alpha Training Evaluation

3-5 6 7 8

SZ

0 (Value) 0.621±0.042 0.336±0.075 0.275±0.114 0.154±0.052
0.01 0.672±0.02 0.394±0.065 0.365±0.068 0.261±0.092

0.03 (MIPI) 0.659±0.02 0.453±0.08 0.404±0.062 0.276±0.076
0.05 0.643±0.02 0.447±0.062 0.408±0.054 0.313±0.069
0.1 0.475±0.073 0.277±0.125 0.26±0.093 0.146±0.075
0.5 0.175±0.053 0.056±0.015 0.129±0.026 0.043±0.021
∞ 0.546±0.069 0.429±0.036 0.389±0.038 0.221±0.004

CSZ

0 (Value) 0.542±0.059 0.368±0.083 0.207±0.076 0.172±0.112
0.01 0.592±0.02 0.378±0.033 0.364±0.073 0.304±0.056

0.03 (MIPI) 0.548±0.032 0.42±0.102 0.297±0.112 0.261±0.09
0.05 0.506±0.046 0.417±0.092 0.223±0.094 0.192±0.091
0.1 0.344±0.05 0.218±0.16 0.113±0.079 0.098±0.086
∞ 0.506±0.076 0.368±0.064 0.309±0.056 0.27±0.07

MMM

0 (Value) 0.545±0.048 0.505±0.058 0.391±0.083 0.319±0.105
0.05 0.59±0.008 0.59±0.053 0.526±0.055 0.426±0.152

0.1 (MIPI) 0.548±0.023 0.495±0.054 0.447±0.041 0.467±0.067
0.5 0.277±0.042 0.158±0.094 0.18±0.105 0.139±0.056
∞ 0.396±0.07 0.432±0.018 0.383±0.041 0.315±0.061

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

�������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

�������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����
�������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

��������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

��������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

��������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��������������

����

�����

�����

������

�����

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��������������

����

�����

�����

������

�����

Figure 5: Learning curves of all the methods in SMAC, where the unit of x-axis is 1M timesteps and
y-axis represents the win rate of each map.

D.3 Performance on Higher Level Driver

When working on the follow-up project of this paper, we noticed that REFIL can achieve better
generalization results in MMM with a higher-level NVIDIA driver without any code-level change.

18



The results are shown in Figure 5, where all algorithms are trained in a single platform that REFIL
achieves better results. As we can see, although REFIL achieves better generalization results in some
cases, MIPI can still outperform these baselines in terms of both speed and final performance by
properly setting α and αi (0.01 for sz, 0.015 for csz and 0.05 for MMM).

19


	Introduction
	Related Work
	Centralized Training with Decentralized Execution (CTDE)
	Dynamic Team Composition
	Information-Theoretic Principles in RL

	Background
	Method
	MI-Augmented Objective
	Multi-Agent Policy Iteration with a Fixed Marginal Distribution
	Approximation for Dynamic Marginal Distribution
	MIPI Framework

	Experiments
	An Illustrative Example: Matrix Game
	StarCraft Micromanagement Tasks
	Performance
	Ablation


	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2

	Experiment Settings and Implementation Details
	Matrix Game
	SMAC
	Resource Collection

	Training performance on SMAC
	More Experiments
	Resource Collection
	Ablation on Alpha
	Performance on Higher Level Driver


