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Abstract

We show that Deep Neural Networks introduce two heteroscedastic Gumbel noise
sources into Q-Learning. To account for these noise sources, we propose Double
Gumbel Q-Learning, a Deep Q-Learning algorithm applicable for both discrete
and continuous control. In discrete control, we derive a closed-form expression
for the loss function of our algorithm. In continuous control, this loss function
is intractable and we therefore derive an approximation with a hyperparameter
whose value regulates pessimism in Q-Learning. We present a default value for our
pessimism hyperparameter that enables DoubleGum to outperform DDPG, TD3,
SAC, XQL, quantile regression, and Mixture-of-Gaussian Critics in aggregate over
33 tasks from DeepMind Control, MuJoCo, MetaWorld, and Box2D and show that
tuning this hyperparameter may further improve sample efficiency.

1 Introduction

Reinforcement Learning (RL) algorithms learn optimally rewarding behaviors (Sutton and Barto,
1998, 2018). Recent RL algorithms have attained superhuman performance in Atari (Mnih et al.,
2015), Go (Silver et al., 2016), Chess (Schrittwieser et al., 2020), StarCraft (Vinyals et al., 2019),
simulation racing (Wurman et al., 2022), and have also been used to control stratospheric balloons
(Bellemare et al., 2020) and magnetic fields in Tokamak nuclear fusion reactors (Degrave et al.,
2022). All these aforementioned agents use a Q-function (Watkins and Dayan, 1992) to measure the
respective quality of their behaviors.

Many algorithms (Lillicrap et al., 2015; Mnih et al., 2016, 2015; Schulman et al., 2015; Fujimoto
et al., 2018; Haarnoja et al., 2018b) learn a Q-function by minimizing the Mean-Squared Bellman
Error (MSBE). The functional form of the MSBE was motivated by an analogy to the popular
Mean-Squared Error (MSE) in supervised learning regression problems, but there is little theoretical
justification for its use in RL (Bradtke and Barto, 1996; Ernst et al., 2005; Riedmiller, 2005).

Training a deep neural network to minimize the MSBE is empirically unstable (Irpan, 2018; Henderson
et al., 2018; Van Hasselt et al., 2016) because deep neural networks induce overestimation bias in
the Q-function (Thrun and Schwartz, 1993; Fujimoto et al., 2018). A popular method to reduce
overestimation ‘pessimistically’ selects less positive Q-values from an ensemble of Q-functions,
effectively returning low-quantile estimates (Fujimoto et al., 2018; Kuznetsov et al., 2020; Ball et al.,
2023). However, an ensemble is computationally expensive and quantiles only provide discrete-
grained control over the degree of pessimism. Curiously, pessimism has mainly been applied to
‘continuous control’ problems that require continuous-valued actions and not discrete control.
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This paper analyzes noise in Deep Q-Learning. We introduce a loss function for Deep Q-Learning
and a scalar hyperparameter that adjusts pessimism without an ensemble. These two innovations form
Double Gumbel Q-Learning (DoubleGum), 1 an off-policy Deep Q-Learning algorithm applicable
to both discrete and continuous control. Our paper is structured as follows:

1. Section 2.1 shows that the MSBE implicitly uses a noise model of the Bellman Optimality
Equation with additive homoscedastic noise. Section 4.1 shows that this noise model is
empirically too coarse to fully capture the distribution of noise in Deep Q-Learning.

2. Section 3 derives a noise model of the Soft Bellman Equation with additive heteroscedastic
logistic noise derived from two heteroscedastic Gumbel noise sources. Section 4.1 shows
that our noise model is a better empirical fit to the noise distribution in Deep Q-Learning.

3. Section 3.3 shows that when the soft value function in the Soft Bellman Equation is in-
tractable in continuous control, its approximation leads to methods that adjust pessimism.
Section 3.1 presents a method to adjust pessimism with a single scalar hyperparameter, and
its effect is empirically verified in Section 4.2.

4. Section 5 discusses related work, notably presenting DoubleGum as a special case of Distri-
butional RL and a generalization of existing Maximum Entropy (MaxEnt) RL algorithms.

5. Section 6 benchmarks DoubleGum, showing marginal improvements over DQN baselines
on 3 classic discrete control tasks and improved aggregate performance over DDPG, SAC,
TD3, XQL and two Distributional RL algorithms over 33 continuous control tasks.

2 Mathematical Background

Reinforcement Learning agents learn to make maximally rewarding decisions in an environment
(Sutton and Barto, 1998, 2018). In Markov Decision Process (MDP) environments, a Q-function
specifies the expected amount of reward an agent obtains (Watkins and Dayan, 1992) and is also
known as a state-action value function. MDPs define a transition probability p(s′ | s, a) and reward
r(s, a, s′) for every pair of states s, s′ ∈ S and action a ∈ A (Bellman, 1957; Howard, 1960).
Decisions are made by a policy π(a | s) at every discrete timestep and the Q-function of π at s, a is

Qπ(s, a) = E
π,p

 n∑
j=i

γjrj

∣∣∣∣∣∣si = s, ai = s

 , denoting r(sj , aj , sj+1) as rj ,

where the discount factor γ ∈]0, 1[ ensures finite Q for infinite time-horizon n (Samuelson, 1937).
The expectation in the Q-function is computed over a trajectory sequence of s and a induced by the
coupling of the policy and the transition function.

In every MDP, an optimal policy π⋆ makes maximally rewarding decisions following s →
argmaxaQ

⋆(s, a) (Watkins and Dayan, 1992). Q⋆ is the optimal value function specified as the
unique fixed point of the Bellman Optimality Equation of the MDP (Bellman, 1957)

Q⋆(s, a) = E
p(s′|s,a)

[
r + γmax

a′
Q⋆(s′, a′)

]
, over all s and a, denoting r(s, a, s′) as r. (1)

In Deep Q-Learning, Q⋆ is approximated by a neural network Qθ with parameters θ. Following
Munos and Szepesvári (2008), θ is updated by a sequence of optimization problems whose ith stage
iteration is given by

θi+1 = argmin
θ

L(Qθ, yθ̄i), where yi(s, a) = E
p(s′|s,a)

[
r + γmax

a′
Qθ̄i(s

′, a′)
]
,

where the ‘stop-gradient’ operator (̄·) denotes evaluating but not optimizing an objective with respect
to its argument and y is dubbed the bootstrapped target. In this work, we restrict our environments to
deterministic MDPs, so the resultant expectation over s′ is computed over one sample.

Typically, the loss function L(Qθ, yθ̄i) = Es,a
(
Qθ(s, a)− yθ̄i(s, a)

)2
is the Mean-Squared Bellman

Error (MSBE). At every i, L is minimized with stochastic gradient descent by a fixed number of
gradient descent steps and not optimized to convergence (Mnih et al., 2015; Lillicrap et al., 2015).

1Code: https://github.com/dyth/doublegum
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2.1 Deriving the Mean-Squared Bellman Error

Thrun and Schwartz (1993) model Qθ(s, a) as a random variable whose value varies with θ, s and a.
They set up a generative processQθ(s, a) = Q⋆(s, a)−ϵθ,s,a showing that the function approximator
Qθ is a noisy function of the implicit true value Q⋆, but they do not make any assumptions about ϵ. 2

We derive the MSBE with two additional assumptions: ϵθ,s,a
iid∼ N (0, σ2), whereN is a homoscedas-

tic normal due to the Central Limit Theorem (CLT) 3 and secondly Q⋆(s, a) ≈ yθ̄(s, a), where θ
are the parameters at an arbitrary optimization stage. Incorporating these two assumptions into the
noise model yields yθ̄(s, a) = Qθ(s, a) + ϵθ,s,a, uncovering the implicit assumption that Temporal-
Difference (TD) errors yθ̄ −Qθ follow a homoscedastic normal. Maximum Likelihood Estimation
(MLE) of θ on the resultant noise model yields the MSBE after abstracting away the constants

max
θ

E
s,a

log p(yθ̄(s, a)) = min
θ

E
s,a

[
log σ

√
2π +

1

σ2
(Qθ(s, a)− yθ̄(s, a))2

]
.

2.2 The Limiting Distribution in Bootstrapped Targets

Both assumptions used to derive the MSBE are theoretically weak. First, the CLT states that iid
samples of an underlying distribution tend towards a homoscedastic normal but do not account for the
form of the underlying distribution. Secondly, there is no analytic justification forQ⋆(s, a) ≈ yθ̄(s, a).
Substituting the Thrun and Schwartz (1993) model in the RHS of the Bellman Optimality Equation
yields

Q⋆(s, a) = E
p(s′|s,a)

[
r + γmax

a′
[Qθ(s

′, a′) + ϵθ,s′,a′ ]
]
= E
p(s′|s,a)

[r + γgθ,s′ ] ̸= yθ̄(s, a) .

When the max over a finite number of iid samples with unbounded support is taken, the Extreme
Value Theorem (EVT) gives the limiting distribution of the resultant random variable as a Gumbel
distribution (Fisher and Tippett, 1928; Gnedenko, 1943), defined here as gθ,s′ ∼ G(α, β). Expressions
relating α and β to the parameters of the underlying iid random variables are rarely analytically
expressible (Kimball, 1946; Jowitt, 1979) and there is no guarantee Q⋆(s, a) ≈ yθ̄(s, a).

3 Deriving a Deep Q-Learning Algorithm from First Principles

We find an analytic expression that relates the limiting Gumbel distribution to parameters of the
underlying noise distribution from function approximation. To do so, we assume that noise in the
Thrun and Schwartz (1993) model is a heteroscedastic Gumbel noise with state-dependent spread

Qθ(s, a) = Q⋆(s, a)− gθ,a(s), gθ,a(·) iid∼ G(0, βθ(·)), for all a ∈ A , (2)

Appendix A.1 restates the finding of McFadden et al. (1973) and Rust (1994), which results in the
following expression with the soft value function V soft

θ

max
a

Q⋆(s, a) = max
a

[Qθ(s, a) + gθ,a(s)] = βθ(s) log

∫
exp

(
Qθ(s, a)

βθ(s)

)
da+ gθ(s)

= V soft
θ (s) + gθ(s), where gθ,a(·), gθ(·) iid∼ G(0, βθ(·)) . (3)

Substituting Equations 2 and 3 into 1 yields a new noise model of the Soft Bellman Optimality
Equation with two function approximators and two heteroscedastic Gumbel noise sources

Qθ(s, a) + gθ,a(s) = E
p(s′|s,a)

[
r + γV soft

θ̄ (s′) + γgθ̄(s
′)
]
. (4)

We now develop this noise model into a loss function used in our algorithm, DoubleGum.
2This equation derives from an unnumbered equation at the top of Page 3 of Thrun and Schwartz (1993), and

we have renamed their variables to fit our notation. The authors add the noise ϵ to Q⋆, but we subtract it for
notational clarity later on without loss of generality. We additionally subscript the noise by θ to clarify that the
random variable is resampled for different θs in the function approximator.

3Ernst et al. (2005) and Riedmiller (2005) introduced the MSBE to Q-Learning, arguing that MSE was
popular for regression problems in supervised learning. In regression, the MSE arises from MLE parameter
estimation of a homoscedastic normal, which is assumed to exist because of the CLT.
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3.1 Merging Two Distributions

We replace Qθ with a new function approximator Qnew
θ (s, a) = Qθ(s, a) + gθ(s), resulting in a new

soft value function on the RHS of Equation 4

V soft
θ (s) + gθ(s) = βθ(s) log

∫
exp

(
Qnew
θ (s, a)

βθ(s)

)
da = V soft, new

θ (s) (Appendix A.2),

and a LHS with a heteroscedastic logistic random variable obtained in Appendix A.3 from the
difference of two Gumbel random variables with equation spreads. Note that this operation is only
permissible in MDPs without terminating states. Equation 4 simplifies into

Qnew
θ (s, a) + lθ,a(s) = E

p(s′|s,a)

[
r + γV soft, new

θ̄
(s′)
]
, lθ,a(·) ∼ L (0, βθ(·)) , (5)

the Soft Bellman Equation with heteroscedastic logistic noise. The bootstrapped targets in this
equation is the RHS, which we will denote by ysoft

θ̄
(s, a).

3.2 Parameter Estimation with Moment Matching

Equation 5 does not allow MLE of θ because the heteroscedastic logistic is not a member of the
exponential family and lacks a sufficient statistical estimator. We learn θ with moment matching by
MLE of a heteroscedastic normal ysoft

θ̄
(s, a) ∼ N (Qnew

θ (s, a), σθ(s)) given by

min
θ

log σθ(s) +(ysoft
θ̄

(s, a)−Qnew
θ (s, a)

σθ(s)

)2
 , (6)

and recovering the logistic location and spread as Qnew
θ (s, a) and βθ(s) = σθ(s)

√
3
π .

3.3 Computing the Bootstrapped Targets

ysoft
θ is calculated with one sample from s′ and a′ where appropriate. In discrete control, A is finite

and the expression V soft, new
θ is a sum. The resultant bootstrapped target in discrete control is

ydiscrete
θ (s, a, r, s′) = r + γV soft, new

θ (s′) .

In continuous control, V soft, new
θ is intractable because A contains infinitesimally small quantities.

Appendix A.4, adapted from Equation 19 in Haarnoja et al. (2017), variationally approximates the
integral with respect to a policy neural network πϕ(a | s) with parameters ϕ, producing

V soft, new
θ (s) = E

πϕ(a|s)
[Qnew

θ (s, a)] + βθ(s)C[πϕ || pθ], where pθ(a | s) ∝ exp
Qnew
θ (s, a)

βθ(s)
. (7)

Denoting C[πϕ || pθ] as a constant π√
3
c yields bootstrapped targets of

ycontinuous
θ (s, a, r, s′) = r + γ E

πϕ(a′|s′)
[Qnew

θ (s′, a′)] + γcσθ(s
′) . (8)

We treat c as a hyperparameter named the pessimism factor defined before training and held constant
throughout. Appendix F.1 empirically finds that a default value of c = −0.1 and details how c may
be adjusted. Appendix B.3 shows that the pessimism factor performs the same role as pessimistic
ensembles but with more computational efficiency and fine-grained control.

3.4 Algorithm

Algorithm 1 presents pseudocode for DoubleGum, an off-policy Deep Q-Learning algorithm that
learns θ in both discrete and continuous control. DoubleGum is named after the two Gumbels used in
the derivation of its noise model, Equation 4. We outline some implementation details that empirically
improved the stability of training.

Target Networks: As is standard, ydiscrete and ycontinuous are computed with target networks, whose
parameters we denote by ψ. We used target networks with exponential moving weight updating. This
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Algorithm 1: DoubleGum: An Off-Policy Deep Q-Learning Algorithm
Input: MDP (S,A, r, p), replay buffer D = ∅ (Lin, 1992), initial parameters θ0 (and ϕ0 in

continuous control), initial state s, learning rates ηθ and ηϕ, target network EMA rate ηψ ,
batch size n.

Output: Parameters θ (and ϕ in continuous control)
1 if discrete control then
2 define π(s) = maxaQ

new
θi

(s, a) at iteration i
3 define y = ydiscrete

4 define σ = σθi(s) at iteration i
5 else if continuous control then
6 define π(s) = πϕi(s) at iteration i
7 define y = ycontinuous

8 define σ = σθi(s, a) at iteration i
9 ψ0 ← θ0

10 for iteration i do
11 a← π(s)
12 s′ ∼ p(s | s, a)
13 D ← D ∪ {(s, a, r(s, a, s′), s′)}
14 s← s′

15 θi+1 ← θi − ηθ∇θ E
(s,a,r,s′)1:n∼D

[Jθ,yψi ,σ(s, a, r, s
′)]

∣∣∣∣
θi

16 ψi+1 ← ηψψi + (1− ηψ)θi+1

17 if continuous control then

18 ϕi+1 ← ϕi + ηϕ∇ϕ E
(s,a,r,s′)1:n∼D

[Qnew
θi

(s, πϕ(s))]

∣∣∣∣
ϕi

is commonly used in continuous control (Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al.,
2018b), and has been recently been shown to improve discrete control (D’Oro et al., 2022).

Q-Functions with Variance Networks: We learn σ with variance networks (Nix and Weigend, 1994;
Kendall and Gal, 2017). In discrete control, σθ(s) is a variance head added to the Q-network, and is
approximated as σθ(s, a) in continuous control. The variance head is a single linear layer whose input
is the penultimate layer of the main Q-network and output is a single unit with a SoftPlus activation
function (Dugas et al., 2000) that ensures its positivity. Seitzer et al. (2022) improves stability during
training by multiplying the entire loss by σθ̄, the numerical value of the variance network, yielding a
loss function for θ which for continuous control is

Jθ,yψ,σθ (s, a, r, s
′) =

[
σθ̄(s, a)

(
log σθ(s, a) +

(
yψ(s, a, r, s

′)−Qnew
θ (s, a)

σθ(s, a)

)2
)]

. (9)

Note that in the above equation σθ̄(s, a) would be σθ̄(s) in discrete control. We do not have any
convergence guarantees for this loss function, and Appendix C discusses this issue in more detail.

Policy: In discrete control, actions are taken by maxaQ
new
θ (s, a) as standard. Exploration was

performed by policy churn (Schaul et al., 2022). In continuous control, the policy πϕ is a separate
network. We use a DDPG fixed-variance actor because Yarats et al. (2021) showed it trained more
stably than a SAC actor with learned variance. Following Laskin et al. (2021), the actor’s outputs
were injected with zero-mean Normal noise with a standard deviation of 0.2 truncated to 0.3.

Network Architecture: All networks had two hidden layers of size 256, ReLU activations (Glorot
et al., 2011), orthogonal initialization (Saxe et al., 2013) with a gain of

√
2 for all layers apart from

the last layer of the policy and variance head, which had gains of 1. This initialization had been shown
to be empirically advantageous in policy-gradient and Q-Learning methods in Huang et al. (2022a)
and Kostrikov (2021), respectively. Ball et al. (2023) improves stability in continuous control using
LayerNorm (Ba et al., 2016). We find that the similar method of GroupNorm (Wu and He, 2018) with
16 groups without a shift and scale (Xu et al., 2019) worked better, but only in continuous control.
All parameters were optimized by Adam (Kingma and Ba, 2014) with default hyperparameters.
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Figure 1: The empirical distribution of noise in discrete control CartPole-v1. (a, b): Fitted
normal, logistic, and Gumbel distributions against (a) unstandardized and (b) standardized empirical
distributions in Deep Q-Learning at the end of training. (c): Negative Log-Likelihoods (NLLs)
of the noise in Deep Q-Learning under different distributions throughout training (lower is better).
Appendix D.1 presents further results in more discrete and continuous control tasks.
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Figure 2: The effect of changing pessimism factor c on the target Q-value in continuous control.
Appendix D.2 presents further results in more tasks.

4 Empirical Evidence for Theoretical Assumptions

4.1 Noise Distributions in Deep Q-Learning

Figure 1 shows the evolution of noise during training DoubleGum in the classic control task of
CartPole-v1. Histograms in Figures 1(a) and 1(b) were generated from 104 samples from the
replay buffer after 1 million training timesteps. Figure 1(a) computes TD-errors by yψ(s, a, r, s′)−
Qnew
θ (s, a), while Figure 1(b) computes standardized TD-errors by dividing the previous equation by

σθ(s) or σθ(s, a) where appropriate. The normal, logistic, and Gumbel distributions were fitted by
moment matching, and homo(scedastic) and hetero(scedastic) distributions were respectively fitted
to unstandardized and standardized data. Figure 1(c) shows the mean and standard deviation over
12 Negative Log-Likelihoods (NLLs), each computed from a different training run with a different
(randomly chosen) initial seed. Every NLL was computed over 104 samples from the replay buffer
every 1000 timesteps of training.

Figure 1(a) shows that a homoscedastic normal coarsely fits the empirical distribution, forming a
good estimate of the mean but not the spread. Our result contradicts Garg et al. (2023) that fitted
a Gumbel to the empirical distribution. We discuss this discrepancy in Appendix E.1. Figure 1(b)
shows that a heteroscedastic Logistic captures both the mean and spread of the TD-errors, validating
Equations 5 and its derivation. Finally, Figure 1(c) shows that a moment-matched heteroscedastic
normal used in DoubleGum is a suitable approximation to the heteroscedastic logistic throughout
training, validating Equation 6. Appendix D.1 shows that the trend in Figure 1(c) holds for other
discrete control environments as well as continuous control.

4.2 Adjusting The Pessimism Factor

Figure 2 plots a 12-sample IQM and standard deviation over 1
256

∑256
i=1Q

new
ψ (si, ai), the average

magnitude of the target Q-value used in bootstrapped targets. Figure 2 and Appendix D.2 show that
the average magnitude increases as the pessimism factor c increases, validating its effectiveness.
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5 Related Work

5.1 Theoretical Analyses of the Noise in Q-Learning

Logistic Q-Learning Bas-Serrano et al. (2021) presents a similar noise model to DoubleGum but
with a homoscedastic logistic instead of a heteroscedastic logistic in Equation 5. Their distribution
is derived from the linear-programming perspective of value-function learning described in Section
6.9 of Puterman (2014)) and Peters et al. (2010). While DoubleGum learns a Q-function off-policy,
Logistic Q-Learning uses on-policy rollouts to compute the Q-values of the current policy. We do
not benchmark against Logistic Q-Learning because their method is on-policy and only uses linear
function approximation.

Extreme Q-Learning (XQL) Garg et al. (2023) presents a noise model for Deep Q-Learning with
one homosecdastic Gumbel noise source, as opposed to the two heteroscedastic Gumbels in Equation
4. Parameters are learned by the LINear-EXponential (LINEX) loss Varian (1975) formed from the
log-likelihood of a Gumbel distribution. XQL is presented in more detail in Appendix B.4.

Gumbel Noise in Deep Q-Learning: Thrun and Schwartz (1993) argued that the max-operator
in bootstrapped targets transformed zero-mean noise from function approximation into statistically
biased noise. The authors did not recognize that the resultant noise distribution was Gumbel, and
this was realized by Lee and Powell (2012). Unlike DoubleGum, these two works did not make
assumptions about the distribution of function approximator noise but instead focused on mitigating
the overestimation bias of bootstrapped targets. In economics, McFadden et al. (1973) and Rust (1994)
assume the presence of Gumbel noise from noisy reward observations (unlike DoubleGum, which
assumes that noise comes from function approximation) and derives the soft value function we present
in Appendix A.1 for static and dynamic discrete choice models. XQL brings the Rust-McFadden
et al. model to deep reinforcement learning to tackle continuous control.

The soft value function was introduced to model stochastic policies (Rummery and Niranjan, 1994;
Fox et al., 2015; Haarnoja et al., 2017, 2018b). The most prominent algorithm that uses the soft
value function is Soft Actor-Critic (SAC) (Haarnoja et al., 2018a,b), which Appendix B.2 shows
is a special case of DoubleGum when Qnew

θ is learned by homoscedastic instead of heteroscedastic
normal regression and the spread is a tuned scalar parameter instead of a learned state-dependent
standard deviation. Appendix B.2 also shows that Deep Deterministic Policy Gradients (DDPG)
(Lillicrap et al., 2015) is a simpler special case of SAC that has recently been shown to outperform
and train more stably than SAC (Yarats et al., 2021).

5.2 Empirically Similar Methods to DoubleGum

Distributional RL models the bootstrapped targets and Q-function as distributions. In these methods,
a Q-function is learned by minimizing the divergence between itself and a target distribution. The
most similar distributional RL method to DoubleGum is Mixture-of-Gaussian (MoG) Critics,
introduced in Appendix A of Barth-Maron et al. (2018). DoubleGum is a special case of MoG-
Critics with only one Gaussian (such as in Morimura et al. (2012)) and mean samples of the target
distribution. Curiously, Shahriari et al. (2022) shows that sample-efficiency of training improves
when bootstrapped target sampled are increasingly near the mean but did not try mean sampling.
Nevertheless, Shahriari et al. (2022) show that MoG-Critics outperforms a baseline with the C51
distributional head (Bellemare et al., 2017) popular in discrete control, obtaining state-of-the-art
results in DeepMind Control. In discrete control with distributional RL, C51 has been superseded by
Quantile Regression (QR) methods (Dabney et al., 2018b,a; Yang et al., 2019) that predict quantile
estimates of a distribution. Ma et al. (2020); Wurman et al. (2022) and Teng et al. (2022) apply QR to
continuous control.

Adjusting pessimism greatly improves the sample efficiency of RL. Fujimoto et al. (2018) showed
empirical evidence of overestimation bias in continuous control and mitigated it with pessimistic
estimates computed by Twin Networks. However, Twin Networks may sometimes harm sample
efficiency because the optimal degree of pessimism varies across environments. To address this, the
degree of pessimism is adjusted during training (Lan et al., 2020; Wang et al., 2021; Karimpanal
et al., 2021; Moskovitz et al., 2021; Kuznetsov et al., 2020, 2022; Ball et al., 2023), often with the
help of an ensemble. In contrast, DoubleGum uses one Q-network and one scalar hyperparameter
fixed throughout training.
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Figure 3: Discrete control, IQM of returns ± standard deviation over 12 seeds.

Many other RL methods add or subtract the learned standard deviation to bootstrapped tar-
gets. Risk-Aware RL subtracts a learned standard deviation to learn a low-variance policy (La and
Ghavamzadeh, 2013; Tamar and Mannor, 2013; Tamar et al., 2016). Upper-Confidence Bounded
(UCB) methods add a learned standard deviation to explore high-variance regions (Lee et al., 2021;
Teng et al., 2022). These methods use a combination of ensembles and variance networks, but
it is also possible to derive a Bellman equation for the variance following Dearden et al. (1998).
The current state-of-the-art method in RL with variance estimation is Mai et al. (2022), which uses
both variance networks and ensembles. The use of ensembles is motivated by the need to capture
model uncertainty – differences between Q-functions with different parameters. We believe that
ensembles are unnecessary because model uncertainty will be expressed in bootstrapped targets from
two different timesteps as parameters change through learning and that all variation in bootstrapped
targets will henceforth be captured by variance networks.

6 Results

6.1 Discrete Control

We benchmarked DoubleGum on classic discrete control tasks against two baselines from the DQN
family of algorithms (Figure 3). All algorithms were implemented following Section 3.4. Appendix
E.3 discusses the baseline algorithms in more detail.

Performance was evaluated by the InterQuartile Mean (IQM) over 12 runs, each one with a different
randomly initialized seed. Agarwal et al. (2021) showed that the IQM was a robust performance
metric in RL. 12 was chosen because it was the smallest multiple of four (so a IQM could be
computed) greater than the 10 seeds recommended by Henderson et al. (2018). In each run, the
policy was evaluated by taking the mean of 10 rollouts every 1000 timesteps, following Fujimoto
et al. (2018).

Figure 3 shows that DoubleGum sometimes obtains better sample efficiency than baselines, but not
significantly more to necessitate further discrete control experiments. In the remainder of this work,
we focus on continuous control, where we found DoubleGum to be more effective.

6.2 Continuous Control

We present two modes of evaluating DoubleGum because our algorithm has a pessimism factor
hyperparameter we choose to tune per suite. We, therefore, benchmark all continuous control
algorithms with default pessimism (Figure 4) and without pessimism-tuning per-suite (Figure 5).
Table 5 presents default and per-suite pessimism values.

We compare against seven baselines. The first five are popular algorithms in the continuous control
literature: DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018b),
MoG-Critics (Shahriari et al., 2022) and XQL (Garg et al., 2023). Here, DDPG, TD3, and SAC
represent MaxEnt RL, MoG-Critics represent Distributional RL, and XQL is the algorithm with
the most similar noise model to ours. We introduce two further baselines: QR-DDPG, a stronger
Distributional RL baseline that combines quantile regression (Dabney et al., 2018b) with DDPG,
and FinerTD3, TD3 with an ensemble of five networks as opposed to a network of two ensembles
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in the original TD3 that enables finer control over the degree of pessimism with an ensemble of
five networks. All algorithms were implemented following design decisions outlined in Section 3.4.
Appendix E.4 discusses the algorithms in more detail.

The pessimism of DoubleGum was tuned by changing its pessimism factor. The pessimism of
baseline algorithms was tuned by manually choosing whether to use Twin Networks (Fujimoto et al.,
2018) or not. Note that we refer to DDPG with Twin Networks as TD3. The pessimism of FinerTD3
was tuned by selecting which quantile estimate to use from an ensemble of five networks. The
pessimism of MoG-Critics could not be tuned because its critic does not support paired sampling
between ensemble members. Appendices F.1 and F.2 respectively detail how the pessimisms of
DoubleGum and baseline algorithms were adjusted.

We benchmarked DoubleGum on 33 tasks over 4 continuous control suites comprising respectively
of 11 DeepMind Control (DMC) tasks (Tassa et al., 2018; Tunyasuvunakool et al., 2020), 5 MuJoCo
tasks (Todorov et al., 2012; Brockman et al., 2016), 15 MetaWorld tasks (Yu et al., 2020) and 2
Box2D tasks (Brockman et al., 2016). We follow Agarwal et al. (2021) and evaluate performance
with the normalized IQM with 95% stratified bootstrap confidence intervals aggregated over all 33
tasks. 12 runs from each task was collected by a similar method to that described in Section 6.1.
Further details of the tasks and their aggregate metric are detailed in Appendix E.2.

Figure 4 shows that DoubleGum outperformed all baselines in aggregate over 33 tasks when all
algorithms used their default pessimism settings. Figure 5 shows that DoubleGum outperformed
all baselines in aggregate over 33 tasks when the pessimism of all algorithms is adjusted per suite.
Comparing the figures shows that adjusting the pessimism of DoubleGum per suite also attained a
higher aggregate score than DoubleGum with default pessimism.

7 Discussion

This paper studied the noise distribution in Deep Q-Learning from first principles. We derived a
noise model for Deep Q-Learning that used two heteroscedastic Gumbel distributions. Converting
our noise model into an algorithm yielded DoubleGum, an off-policy Deep Q-Learning algorithm
applied to both discrete and continuous control.

In discrete control, our algorithm attained competitive performance to the baselines. Despite having an
numerically exact loss function in discrete control, DoubleGum was very sensitive to hyperparameters.
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Practically, using Dueling DQN (Wang et al., 2016) to learn a Q-function was crucial to getting
DoubleGum to work. Appendix D.1 shows that our noise model fits the underlying noise distribution
of Deep Q-Learning and we therefore suspect that instability in discrete control might be due to the
training dynamics of deep learning and not our theory.

In continuous control, we introduced a pessimism factor hyperparameter to approximate our otherwise
intractable noise model. We provided a default value for the pessimism factor that outperformed
popular Q-Learning baselines in aggregate over 33 tasks. Tuning this hyperparameter yielded even
greater empirical gains. Our method of tuning pessimism was more computationally efficient and
finer-grained than popular methods that tuned a quantile estimate from an ensemble.

In continuous control, DoubleGum outperformed all baselines in aggregate. We hypothesize that Dou-
bleGum outperformed MaxEnt RL baselines because DoubleGum is a more expressive generalization
of SAC, which is itself more expressive than DDPG as shown in Appendix B.2. Our theory showed
that TD-errors follow a heteroscedastic Logistic, and we believe that modeling this distribution should
be sufficient for distributional RL. We hypothesize that more complex distributions considered by the
Distributional RL methods QR and MoG overfit to the replay buffer and might not generalize well to
online rollouts. FinerTD3 performs marginally poorer than DoubleGum, even when pessimism was
adjusted per-suite. We believe this is because FinerTD3 adjusts pessimism finer than other baselines,
but still not as fine as the continuous scalar in DoubleGum. Finally, we hypothesize that DoubleGum
outperformed XQL because our noise model better fits the underlying noise distribution in Deep
Q-Learning, as shown in Appendix D.1.

This paper shows that better empirical performance in Deep RL may be attained through a better
understanding of theory. To summarize, we hope that our work encourages the community to increase
focus on reducing the gap between theory and practice to create reinforcement learning algorithms
that train stably across a wide variety of environments.

7.1 Limitations

Theoretically, our work lacks a convergence guarantee for DoubleGum. This is exceptionally
challenging because to the best of our knowledge there are currently no convergence guarantees for
heteroscedastic regression. Appendix C discusses convergence in more detail.

Experimentally, there are many areas left open for future work. For speed in proof of concept
experiments, we only swept over five values for the pessimism factor hyperparameter and only
tuned per-suite. We anticipate that a more thorough search of the pessimism factor combined with a
per-task selection will improve our results even further. An obvious follow-up would be an algorithm
that automatically adjusted the pessimism factor during training. Additionally, we only focused on
environments with state observations to not deal with representation learning from visual inputs.
Another obvious next step would be to train DoubleGum on visual inputs or POMDPs.
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A Proofs

A.1 The SoftMax Location of Gumbel Distribution

We refer to the log-sum-exp operator as the SoftMax operator. This is not the same-named operator
in Bridle (1989, 1990), which we suggest should be (re-)named SoftArgMax.
Theorem 1.

max
i

[αi + gi] = β log
∑
i

exp

(
αi
β

)
+ g, where g, gi ∼ G (0, β)

where G is a Gumbel distribution. A Gumbel random variable g ∼ G(α, β) specified by location
α ∈ R and spread β > 0 has PDF p(g) = 1

β exp(−z − exp(−z)) with z = (g − α)/β and CDF
P (g) = 1

β exp(− exp(−z)) (Gumbel, 1935).

Proof. First note

αi + gi, gi ∼ G (0, β) =⇒ αi + gi ∼ Gi (αi, β)
Then, denoting y = maxi[αi + gi]

P (X ⩽ y) =
∏
i

Pi(X ⩽ y)

=
∏
i

Gi(X ⩽ y)

=
∏
i

exp

(
− exp

(
−x− αi

β

))

= exp

(
−
∑
i

exp

(
−x− αi

β

))

= exp

(
− exp

(
−x
β

)∑
i

exp

(
αi
β

))

= exp

(
− exp

(
−x
β
+ log

∑
i

exp

(
αi
β

)))

= exp

(
− exp

(
− 1

β

(
x− β log

∑
i

exp

(
αi
β

))))

= G
(
β log

∑
i

exp

(
αi
β

)
, β

)

= β log
∑
i

exp

(
αi
β

)
+ g, where g ∼ G (0, β)

When applied to discrete Q-Learning, we produce

max
A

[Qθ(s, a) + gθ,a(s)] = βθ(s) log

∫
As

exp

(
Qθ(s, a)

βθ(s)

)
da+ gθ(s) (10)

where gθ,a(·), gθ(·) ∼ G (0, βθ(·)) , for all a ∈ A.

We assume that the same result holds for the continuous case if |A| <∞, an assumption first used
in Lemma 1, Appendix B.1, Page 11 of Haarnoja et al. (2018a) to ensure boundedness. Here, we
require the output of the max-operator to be bounded, which cannot be the case when the number of
its arguments is∞.
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A.2 Shifting the Value Function

Theorem 2.

β log
∑
i

exp

(
αi + g

β

)
= β log

∑
i

exp

(
αi
β

)
+ g

Proof.

β log
∑
i

exp

(
αi + g

β

)
= β log

∑
i

exp

(
αi
β

+
g

β

)
(11)

= β log exp

(
g

β

)∑
i

exp

(
αi
β

)
(12)

= β log exp

(
g

β

)
+ β log

∑
i

exp

(
αi
β

)
(13)

= β log
∑
i

exp

(
αi
β

)
+ g (14)

A.3 The Difference between Two Gumbel Random Variables is a Logistic

Theorem 3.

x1, x2 ∼ G(0, β) =⇒ z = x1 − x2, z ∼ L(0, β)
where L is a logistic distribution. A logistic random variable l ∼ L(α, β) with location α and spread
β has PDF exp (−(l−α)/β)

β(1+exp (−(l−α)/β))2 and CDF 1
1+exp (−(l−α)/β) .

Proof. First, construct the convolution based on the joint PDF

L(z) = P (Z ⩽ z)

= P (X1 −X2 ⩽ z)

= P (X1 ⩽ z + x2)

=

∫ ∞

−∞

∫ z+x2

−∞
g(x1) g(x2) dx1 dx2

=

∫ ∞

−∞
G(z + x2) g(x2) dx2 .

Rewriting x2 as x yields

L(z) =
∫ ∞

−∞
G(z + x) g(x) dx

=

∫ ∞

−∞
exp

(
exp−z + x

β

)
exp

(
−x
β
− exp−x

β

)
dx

=

∫ ∞

−∞
exp

(
−e− x

β

(
1 + e−

z
β

))
e−

x
β dx

=

∫ ∞

0

1

β
exp

(
−u
(
1 + e−

z
β

))
du, where u = e−

x
β , du = − 1

β
e−

z
β dx

=
1

β

1

1 + e−
z
β
e

(
−u

(
1+e

− z
β
))∣∣∣∣∞

0

=
1

1 + e−
z
β
.

which is the CDF of L(0, β).
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A.4 Soft Q-Learning Identity

Theorem 4. For an arbitrary p(x)

β log

∫
exp

(
E(x)

β

)
dx = E

x∼p(·)
[E(x)] + β C[p || p⋆], where p⋆(x) =

exp E(x)
β∫

exp E(x)
β dx

Proof.

E
p(x)

[E(x)] + β C[p || p⋆] = E
p(x)

[E(x)]− β

∫
p(x) log

exp E(x)
β∫

exp E(x′)
β dx′

dx

= β

∫
p(x) log

∫
exp

E(x′)

β
dx′ dx

= β log

∫
exp

E(x)

β
dx

When applied to Q-Learning, the following identity produces

β(s) log

∫
exp

(
Qθ(s, a)

β(s)

)
da = E

πϕ(a′|s′)
[Qθ(s, a)] + β(s)C[πϕ || pθ]

where pθ(a | s) =
exp Qθ(s,a)

β(s)∫
exp Qθ(s,a′)

β(s) da′

B Further Theory and Derivations

B.1 Actor Loss

The actor losses used in DoubleGum, SAC, and DDPG are all derived from the same principle. For a
given s, the actor loss function should minimizes the following (reverse) KL-Divergence, previously
presented in Equation 7.

min
ϕ
β DKL[πϕ || pθ], where pθ(a | s) =

expQnew
θ (s, a)/β∫

expQnew
θ (s, a′)/β da′

.

This simplifies as

min
ϕ
β DKL[πϕ || pθ] = min

ϕ
β

∫
πϕ(a | s) log

πϕ(a | s)
pθ(a | s)

da

= max
ϕ

[
βH[πϕ] + β

∫
πϕ(a | s) log

expQnew
θ (s, a)/β∫

expQnew
θ (s, a′)/β da′

da

]

= max
ϕ

[
βH[πϕ] + β

∫
πϕ(a | s)

Qnew
θ (s, a)

β
da

]
which is then estimated by Monte-Carlo samples from πϕ as

max
ϕ

E
πϕ(a|s)

[Qnew
θ (s, a)− β log πϕ(a | s)] . (15)

SAC (Haarnoja et al., 2018a,b) has a policy with learned variance and state-independent β. DDPG
(Lillicrap et al., 2015) has a fixed-variance policy which removes the second term in Equation 15 as it
is constant with respect to the maximization. DoubleGum has a state-dependent β(s), but uses the
same actor loss as DDPG because DoubleGum uses a DDPG fixed-variance policy.
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B.2 Maximum-Entropy Reinforcement Learning

SACv1 (Haarnoja et al., 2018b) is a special case of DoubleGum and DDPG (Lillicrap et al., 2015) is
a special case of SAC. All three continuous control algorithms have an actor and critic loss derived
from the same principle. Section B.1 shows this for the actor losses of DoubleGum, SAC, and DDPG.
We now relate the critic losses to each other, starting from the most general case, DoubleGum. In
continuous control, DoubleGum uses the following noise model, formed from substituting Equation
7 into Equation 5:

Qnew
θ (s, a) + lθ,a(s) = E

p(s′|s,a)

[
r + γ E

πϕ(a′|s′)
[Qnew

θ (s′, a′)] + γβθ(s)C[πϕ || pθ]
]
. (16)

Here, lθ,a(·) ∼ L(0, βθ(·)) is a logistic distribution and pθ(a | s) ∝ exp
Qnew
θ (s,a)
βθ(s)

. The DoubleGum
critic loss is derived from this noise model by approximating the RHS with Equation 8 and learning θ
with moment matching in Section 3.2.

The SAC noise model is derived from Equation 16 in three ways. First, SAC approximates lθ,a(s) ∼
L(0, βθ(·)) as nθ,a ∼ N (0, σ), motivated by the fact that both distributions have the same mean/mode.
Secondly, SAC approximates the DoubleGum state-dependent logistic spread βθ(s) as temperature
parameter β learned not as a part of the critic but by itself with Lagrangian dual gradient descent.
Thirdly, SAC breaks down C[πϕ || pθ] = H[πϕ] + DKL[πϕ || pθ] before assuming that the KL-
Divergence is negligible, given that it is minimized by the actor loss. These three approximations
yield the SAC noise model as

Qnew
θ (s, a) + nθ,a = E

p(s′|s,a)

[
r + γ E

πϕ(a′|s′)
[Qnew

θ (s′, a′) + β log πϕ(a
′ | s′)]

]
. (17)

MLE of θ wrt the above noise model yields the MSBE critic loss.

DDPG is a special case of SAC that assumes β → 0, removing the last term in Equation 17.
limβ→0 pθ(a | s) becomes deterministic, so πϕ may be modelled by a deterministic policy.

B.3 Interpreting the Cross-Entropy as a Pessimism Factor

In continuous control, Fujimoto et al. (2018) introduced Twin Networks, a method that improved
sample-efficiency with pessimistic bootstrapped targets computed by returning a sample-wise min-
imum from an ensemble of two Q-functions. Follow-up work selects a quantile estimate from an
ensemble (Kuznetsov et al., 2020; Chen et al., 2021; Ball et al., 2023), which we demonstrate is
equivalent to estimating V soft, new

θ,β .

Suppose there is an ensemble of n networks where the ith network follows Qθi(s, a) = Qθ(s, a) +
zi(s, a). Here, Qθ is an ‘ideal’ function approximator never instantiated nor computed and z is an
arbitrary noise source. When n is sufficiently large,

min
i

E
πϕ(a|s)

[Qθi(s, a)] = min
i

E
πϕ(a|s)

[Qθ(s, a) + zi(s, a)] = E
πϕ(a|s)

[Qθ(s, a)] + min
i
zi(s)

= E
πϕ(a|s)

[Qθ(s, a)]− g(s), where g(s) ∼ G(α(s), β(s)) .

A Gumbel random variable g ∼ G(α, β) has E[g] = α + γeβ, where γe is the Euler-Mascheroni
constant, so for a deterministic environment the bootstrapped targets become

r + γ E
πϕ(a′|s′)

[Qθ(s
′, a′)]− γα(s′)− γγeβ(s′) ,

recovering Equation 8, the DoubleGum continuous control targets, up to an additive term γα(s′),
while −γγeβ(s′) recovers the spread γcσθ(s′) up to a negative scaling factor, indicating that the
default c should be negative. Moskovitz et al. (2021) and Ball et al. (2023) showed that the appropriate
ensemble size and selected quantile changes the overestimation bias, so appropriate values would
ensure α(s′) = 0.
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B.4 Comparison between DoubleGum and XQL

We present an explanation of Extreme Q-Learning (XQL) as presented in Appendix C.1 of Garg et al.
(2023). XQL can be derived from Soft Bellman Equation backups given by

Q(s, a)← E
p(s′|s,a)

[r(s, a, s′) + γV soft(s)], where V soft(s) = β log
∑
a′

exp

(
Q(s′, a′)

β

)
and β is a fixed hyperparameter. Computing the log-sum-exp of V soft is intractable in continuous
control, as the sum over a′ becomes an integral in continuous control tasks.

Garg et al. (2023) present a method of estimating its value using Gumbel regression. Given a
(potentially infinite) set of scalars x ∈ X , Gumbel regression provides a method to estimate the
numerical value of log-sum-expβ(x) = β log

∑
X expx/β. Gumbel regression assumes x ∼

G(α, β), where G is a homoscedastic Gumbel distribution, and β is a fixed (hyper)parameter. α
estimated by MLE tends towards log-sum-expβ(x). MLE is performed by numerically maximizing
the log-likelihood of a Gumbel distribution, which recovers the LINear-EXponential (LINEX) loss
function introduced by Varian (1975).

Garg et al. (2023) incorporate Gumbel regression into deep Q-Learning in two ways, which they
name X-SAC and X-TD3. X-SAC combines Gumbel regression to estimate the soft value function
used in SACv0 (Haarnoja et al., 2018a). The soft value function V soft

ρ (s) is a neural network whose
parameters ρ are learned by Gumbel regression from Qψ(s, a) ∼ G(Vρ(s), β), where ψ are target
network parameters. A neural network Qθ with parameters θ may then be learned by the MSE
between itself and Ep(s′|s,a)[r(s, a, s′) + γV soft

ρ (s)]. X-SAC is vastly different from DoubleGum,
because our algorithm does not estimate the soft value function with a separate neural network.

Gumbel regression is directly used to learn the Q-values in X-TD3. First, the bootstrapped targets are
thusly rewritten

ysoft(s, a) = E
p(s′|s,a)

[
r + γβ log

∑
a′

exp

(
Qϕ(s

′, a′)

β

)]

= E
p(s′|s,a)

[
γβ log

∑
a′

exp

(
r + γQψ(s

′, a′)−Qθ(s, a)
γβ

)]
In environments with deterministic environments, which comprise all environments considered by
Garg et al. (2023) and our paper, Lemma C.1 of Garg et al. (2023) provides a method of learning the
soft value function with Gumbel regression on ysoft(s, a) ∼ G(Qθ(s, a), γβ). The Gumbel regression
objective used in X-TD3 to learn θ is vastly different from the moment matching with the logistic
distribution DoubleGum uses to learn θ.

To motivate their use of Gumbel regression, Garg et al. (2023) derived a noise model which they use
to present empirical evidence of homoscedastic Gumbel noise. In contrast, we presented empirical
evidence of heteroscedastic logistic noise formed from a noise model with two heteroscedastic
Gumbel distributions.

C A Discussion on The Convergence of DoubleGum

To the best of our knowledge, there are two types of convergence analysis in Q-Learning: 1) operator-
theoretic analysis over tabular Q-functions, and 2) training dynamics of neural network parameters.
We believe the second is more appropriate for DoubleGum, because our theory addresses issues in
using neural networks (and not tables) for Q-learning. Nevertheless, for completeness, we discuss
convergence guarantees for the tabular setting and the function approximation setting. While we can
guarantee convergence for the former setting, we have no guarantees for the second.

C.1 Tabular Q-Functions

Appendices B.1 and B.2 present DoubleGum as a MaxEnt RL algorithm. When Q-functions are
tabular, Appendix A of Haarnoja et al. (2018a) shows that MaxEnt RL algorithms may be derived
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Algorithm 2: DoubleGum Soft Policy Iteration

Input: Finite MDP (S,A, r, p), initial tables Q, β, ysoft, initial policy π
Output: Optimal Tabular Q-function Q⋆

1 for training iteration i do
2 for all s do
3 for all a do
4 ysoft(s, a)← E

p(s′|s,a)

[
r(s, a, s′) + γβi(s

′) log
∑
a′ exp

(
Qi(s

′,a′)
βi(s′)

)]
5 Qi+1(s, a)← ysoft(s, a)

6 βi+1(s)←
√
3
π

√
V

a∼π(a|s)
[ysoft(s, a)]

7 define π(a | s)← exp(Qi+1(s,a)/βi+1(s))∑
a′ exp(Qi+1(s,a′)/βi+1(s))

from soft policy iteration. We therefore present a convergence proof for DoubleGum with tabular
Q-functions based on soft policy iteration.

DoubleGum treats the return as coming from a logistic distribution and learns its location and spread.
In the tabular setting, two tables would need to be learned, Q(s, a) and β(s). An algorithm to learn
these tables in a finite MDP with soft policy iteration is presented in Algorithm 2. Policy evaluation
is done by Lines 4-6 while Line 7 performs policy improvement.

Proof of convergence of Algorithm 2 is similar to the SAC proof of convergence in Appendix B of
Haarnoja et al. (2018a). This should not be surprising, given that Appendix B.2 shows SAC as a
special case of DoubleGum. We first show that policy evaluation converges and that a new policy
found by policy improvement does not reduce the magnitude of the value function.
Lemma 5 (Soft Policy Evaluation). Consider the Soft Policy Evaluation operator given by

Qi+1(s, a)← E
p(s′|s,a)

[
r(s, a, s′) + γβi(s

′) log
∑
a′

exp

(
Qi(s

′, a′)

βi(s′)

)]
over all (s, a) pairs.

limi→∞Qi converges to the soft Q-value.

Proof. Following Appendix A.4

β(s) log
∑
a

exp

(
Q(s, a)

β(s)

)
= E
π(a|s)

[Qθ(s, a)] + β(s)C[π || p]

where p(a | s) = exp(Q(s, a)/β(s))∑
a′ exp(Q(s, a′)/β(s))

the bootstrapped targets may be thusly rewritten

E
p(s′|s,a)

[
r(s, a, s′) + γβ(s′) log

∑
a′

exp

(
Q(s′, a′)

β(s′)

)]

= E
p(s′|s,a)

[
r(s, a, s′) + γ E

π(a′|s′)
[Q(s′, a′)] + β(s′)C[π || p]

]
= E
p(s′|s,a)

[
r′(s, a, s′) + γ E

π(a′|s′)
[Q(s′, a′)]

]
where r′(s, a, s′) = r(s, a, s′) + β(s′)C[π || p].
Following Lemma 1 in Haarnoja et al. (2018a), Sutton and Barto (1998) gives convergence of
Qi+1(s, a)← Ep(s′|s,a)

[
r′(s, a, s′) + γEπ(a′|s′)[Qi(s′, a′)]

]
The proof of Soft Policy Improvement should be identical to SAC, given that Appendix B.1 shows
that DoubleGum and SAC use identical actor losses. As such, Lemma 5 can be used in place of
Lemma 1 in Theorem 1 of Haarnoja et al. (2018a), thus showing convergence of DoubleGum in the
tabular setting.
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C.2 Deep Q-Functions

Parameters of the deep Q-function used by DoubleGum in Algorithm 1 are learned by a loss function
equivalent to that of heteroscedastic normal regression. Convergence of DoubleGum in the function
approximation setting would therefore rely on convergence of heteroscedastic normal regression.

Zhang et al. (2023) introduces PAC-bounds for heteroscedastic normal regression, but on the condition
that the mean-estimate is close to the ground truth mean, as mentioned in Paragraph 1 of Section 4.
This is empirically achieved by Seitzer et al. (2022), who analyze heteroscedastic normal regression
and find that the mean-estimate frequently converges to an underfitting solution. This is because the
Negative Log-Likelihood (NLL) of a normal distribution is minimized when the variance becomes
large – in Equation 6, this term is denoted with σ2

θ . As such, changes in Qnew
θ will not change the

loss function much. To rectify this, Seitzer et al. (2022) multiplies the NLL of the normal with the
numerical value of the standard deviation, reducing the dominance of σθ on the loss function.

D Further Empirical Evidence for Theoretical Assumptions

D.1 Noise Distributions in Deep Q-Learning

Figure 6 presents graphs corresponding to Figure 1c for all environments considered in this paper.
Continuous control results were generated from DoubleGum with default pessimism (c = −0.1).

D.2 Adjusting The Pessimism Factor

Figure 7 presents graphs corresponding to Figure 2 for all continuous control environments considered
in this paper.

E Further Experimental Details

E.1 Noise Distribution Discrepancy with Extreme Q-Learning

In Appendix D.2 of Page 19, Garg et al. (2023) fitted a Gumbel distribution to the TD errors on
three continuous control environments. The Gumbel distribution was a good fit in two of the three
environments they benchmarked on. We could not reproduce this result and attribute the discrepancy
to experimental differences.

Garg et al. (2023) logged their batch of 256 TD errors once every 5,000 steps during training for
100,000 timesteps, producing ≈ 4000 samples which were aggregated. They also computed boot-
strapped targets with online parameters. In contrast, we sample 10,000 TD errors with bootstrapped
targets computed from target parameters at a single timestep instance, and we do not aggregate
samples across timesteps.

E.2 Continuous Control Benchmarks and Evaluation

As mentioned in Section 6.2, the evaluation metric in continuous control was the normalized IQM with
95% stratified bootstrap confidence intervals from Agarwal et al. (2021). Returns were normalized by
a minimum value computed from the mean of 100 rollouts sampled from a uniform policy and the
maximum possible return from the environment. When the maximum value was not specified, we
used the maximum value of any single rollout attained by any of the baselines.

We benchmarked on four continuous control suites: DeepMind Control (Tassa et al., 2018; Tun-
yasuvunakool et al., 2020), MuJoCo (Todorov et al., 2012; Brockman et al., 2016), MetaWorld
(Yu et al., 2020), and Box2D (Brockman et al., 2016). These environments were selected to
be as extensive as possible. DeepMind Control and MetaWorld were chosen because of their
diversity of tasks, while the MuJoCo and Box2D environments are popular benchmarks within
the common interface of OpenAI Gym (Brockman et al., 2016), now Gymnasium (Farama
Foundation, 2023). No citation exists for Gymnasium as of writing this paper, and we link to
their GitHub repository https://github.com/Farama-Foundation/Gymnasium as suggested in
https://github.com/Farama-Foundation/Gymnasium/issues/82.
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(b) DeepMind Control
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(c) MuJoCo
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(d) MetaWorld
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(e) Box2D

Figure 6: Negative Log-Likelihoods (NLLs) of the noise in Deep Q-Learning under different
distributions throughout training (lower is better). Mean calculated per-task ± standard deviation.
The legend for all graphs is in Figure 6e.
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(b) MuJoCo
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(c) MetaWorld
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(d) Box2D

Figure 7: The effect of changing pessimism factor c on the target Q-value in continuous control. IQM
calculated per-task ± standard deviation. The legend for all graphs is in Figure 7d.
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DeepMind Control (DMC) was designed to benchmark continuous control, over a broad range of
agent morphologies. We selected agent morphologies that could be trained from states with a broad
range of action spaces from 1 (acrobot) to 38 (dog). We did not benchmark on humanoid_CMU as
this environment was not intended to be solved with RL from scratch, unlike the other baselines. The
hardest task was selected from each of the agent morphologies. Properties of the 11 DMC tasks are
presented in Table 1a.

MetaWorld was designed to have a diverse range of tasks to evaluate the generalization ability of
learned policies. Each environment within MetaWorld is therefore made up of multiple tasks, all with
the same underlying structure of an MDP but with different numerical values of their parameters. We
follow the method of Seyde et al. (2022) to benchmark on a single MetaWorld task by first selecting
an environment and then randomly selecting a set of numerical parameters. Each new instantiation of
a MetaWorld task would result in a different set of hyperparameters. As such, we expect the error
bars in the aggregate statistics of MetaWorld to be substantially larger than the other environments.
We benchmark on tasks formed from the union of the ML1, MT10, and ML10 train tasks that a policy
in MetaWorld would be trained on, as well as the five environments benchmarked in Seyde et al.
(2022). Properties of the 15 MetaWorld tasks are presented in Table 1c.

MuJoCo was evaluated on the same tasks as SAC (Haarnoja et al., 2018b). These tasks were all
locomotion-based. Properties of the 5 MuJoCo tasks are presented in Table 1b.

Box2D was evaluated on all continuous control tasks from states. Properties of the 2 Box2D tasks are
presented in 1d.

E.3 Discrete Control Baselines

Discrete control algorithms were implemented as described in Section 3.4. Hyperparameters used in
discrete control algorithms are detailed in Tables 2 and 3. We provide explanations for these design
choices as follows.

DQN: The original DQN algorithm in Mnih et al. (2015) was designed for pixel inputs. We modified
DQN to use state inputs by using an architecture described in Section 3.4 we used in continuous
control that was popular for use with state inputs. Conversely to the continuous control architecture,
we found removing GroupNorm (Wu and He, 2018) was crucial to getting DQN to work. Similarly
to the continuous control architecture, we found that changing the initialization and target network
updating drastically improved performance. We also used the MSE and Adam (Kingma and Ba,
2014) optimizers as Ceron and Castro (2021) showed that this yielded improved performance
over the Huber Loss (Huber, 1992) and RMSProp (Hinton et al., 2012) of the original DQN. Our
implementation of DQN solves classic discrete control tasks that the CleanRL (Huang et al., 2022b)
reproduction of the original DQN paper at https://docs.cleanrl.dev/rl-algorithms/dqn/
#experiment-results_1 could not solve.

Dueling Double DQN (Dueling DDQN) was a baseline modified from Hessel et al. (2018) designed
to be as compatible with DoubleGum as possible. Rainbow evaluated six innovations to DQN: Double
DQN (Van Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), noisy networks (Fortunato et al.,
2017), n-step returns, C51 distributional RL (Bellemare et al., 2017), and prioritized replay (Schaul
et al., 2016). We only used the first two of these six innovations in DoubleGum. We did not find
n-step returns effective in discrete domains we considered, nor prioritized replay. Distributional
RL was incompatible with DoubleGum, while Schwarzer et al. (2023) did not find noisy networks
advantageous.

DoubleDQN was implemented following Van Hasselt et al. (2016) by computing bootstrapped targets
of Qnew

ψ (s,maxaQ
new
θ (s, a)). Dueling DQN was implemented following Wang et al. (2016), with the

advantage and value heads having two layers with a hidden layer of size 256 and ReLU activations.
The stability of Dueling DQN was greatly improved by setting the biases of both dueling heads to 0.

DoubleGum was implemented as Dueling DDQN with an additional variance head described in
Section 3.4.
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Table 1: Properties of Continuous Control Environments

(a) DeepMind Control

Environment Task Action Dimension Maximum Return Minimum Return

acrobot swingup 1 1000 3.252
reacher hard 2 1000 8.547
finger-turn hard 2 1000 67.78
hopper hop 4 1000 0.07236
fish swim 5 1000 70.99
cheetah run 6 1000 3.647
walker run 6 1000 22.96
quadruped run 12 1000 108.2
swimmer swimmer15 14 1000 157
humanoid run 21 1000 0.877
dog run 38 1000 4.883

(b) MuJoCo

Task Action Dimension Maximum Return Minimum Return

Hopper-v4 3 3572 18.52
HalfCheetah-v4 6 11960 -283.4
Walker2d-v4 6 5737 2.753
Ant-v4 8 6683 -60.06
Humanoid-v4 17 6829 122.5

(c) MetaWorld

Task Action Dimension Maximum Return Minimum Return

button-press-v2 4 10000 187.5
door-open-v2 4 10000 277.1
drawer-close-v2 4 10000 842.5
drawer-open-v2 4 10000 631.8
peg-insert-side-v2 4 10000 8.083
pick-place-v2 4 10000 5.449
push-v2 4 10000 30.62
reach-v2 4 10000 776.1
window-open-v2 4 10000 230.3
window-close-v2 4 10000 306.7
basketball-v2 4 10000 10.2
dial-turn-v2 4 10000 125.6
sweep-into-v2 4 10000 63.41
hammer-v2 4 10000 395.1
assembly-v2 4 10000 226.3

(d) Box2D

Task Action Dimension Maximum Return Minimum Return

BipedalWalker-v3 4 300 -99.97
BipedalWalkerHardcore-v3 4 300 -107.9
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Table 2: Shared Hyperparameters of Benchmarked Algorithms
Hyperparameter Value

Evaluation Episodes 10
Evaluation Frequency Maximum Timesteps / 100
Discount Factor γ 0.99
n-Step Returns 1 step
Replay Ratio 1
Replay Buffer Size 1,000,000
Maximum Timesteps 1,000,000

Table 3: Hyperparameters for Discrete Control
Hyperparameter Value

Starting Timesteps 2,000
Maximum Timesteps 100,000
Exploration Policy Churn
Optimizer Adam
Learning rate 3e-4
Number of groups in network GroupNorm 0
Network structure Linear(256), ReLU, Linear(256), ReLU

Table 4: Hyperparameters for Continuous Control
Hyperparameter Value

Starting Timesteps 10,000
Maximum Timesteps 1,000,000
Exploration Noise 0.2
Policy Noise in Critic Loss 0.1
Policy Noise in Actor Loss 0.1
Actor optimizer Adam
Actor learning rate 3e-4
Critic optimizer Adam
Critic learning rate 3e-4
Number of groups in Actor GroupNorm 16
Number of groups in Critic GroupNorm 16
Critic target networks EMA ηϕ 5e-3
Actor target networks EMA 1

Critic structure
Linear(256), GroupNorm, ReLU
Linear(256), GroupNorm, ReLU

Actor structure
Linear(256), GroupNorm, ReLU
Linear(256), GroupNorm, ReLU

Table 5: Pessimism Hyperparameters in Continuous Control

Algorithm
Pessimism Hyperparameter

Default DeepMind Control MuJoCo MetaWorld Box2D

DoubleGum (ours) −0.1 −0.1 −0.5 0.1 −0.1
DDPG/TD3 Twin Single Twin Single Twin
SAC Twin Single Twin Single Twin
XQL Twin (β = 5) Single (3) Single (5) Twin (2) Twin (5)
QR-DDPG Single Single Twin Single Twin
FinerTD3 1 1 3 3 1
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E.4 Continuous Control Baselines

Continuous control algorithms were implemented as described in Section 3.4. Hyperparameters used
in continuous control algorithms are detailed in Tables 2 and 4. Pessimism hyperparameters are
presented in Table 5 and were found following results in Appendix F.2.

As mentioned, all implementations used networks with two hidden layers of width 256, with orthogo-
nal initialization (Saxe et al., 2013) and GroupNorm (Wu and He, 2018). Following Kostrikov (2021),
target network parameters were updated with an EMA of 5e− 3 in the critic and 0 in the actor. All
these design choices differ from their original implementations but improved aggregate performance.
We provide explanations for these design choices as follows.

DDPG was introduced in Lillicrap et al. (2015) and Fujimoto et al. (2018) updated the design
choices of DDPG to empirically improve its performance. In addition to the existing changes, our
implementation uses the noise clipping scheme in the actor specified by Laskin et al. (2021).

TD3 was implemented with three changes from Fujimoto et al. (2018). First, we update the actor once
per critic update – ie using a delay of 1. This is such that the only hyperparameter change between
our DDPG and TD3 is the use of Twin Networks. Secondly, we update the actor to maximize the
mean of two critics rather than a single critic, a design choice we found empirically reduced variance
between training runs. Thirdly, we do not compute the EMA of actor-network parameters. Removing
this EMA improves sample efficiency but at the cost of higher variance.

FinerTD3 (our introduced baseline) was implemented with the same hyperparameters as TD3 but
with an ensemble of 5 critic networks. We chose to use 5 networks because we tuned the pessimism
factor hyperparameter of DoubleGum over 5 values. The 5 critics in FinerTD3 enable five values of
pessimism to be used. Pessimism of FinerTD3 is adjusted in the bootstrapped targets. The 5 critic
values are sorted by decreasing positivity, and the ith smallest value is used as the target critic value
in the bootstrapped targets.

SAC was implemented with hyperparameters from Kostrikov (2021), which we found improved
performance. Kostrikov (2021) differs from Haarnoja et al. (2018b) in two additional ways from
those mentioned. The standard deviation in the actor was clipped to [−10, 2], and the target entropy
was the action dimension divided by 2 instead of just the action dimension.

XQL Garg et al. (2023) presents two off-policy algorithms: X-TD3 and X-SAC. We use X-TD3 to be
consistent with the DDPG fixed-variance actor of DoubleGum and refer to it throughout as XQL.
XQL tunes two hyperparameters per task: the use of twin networks/not and scalar hyperparameter β.
We swept over the same β-values as Garg et al. (2023): 1, 2, 5 without Twin Critics and 3, 4, 10 and
20 with Twin Critics. β was tuned in the same way as pessimism – we found a default β value and a
β tuned per-suite. β values are presented in Table 5 and were found following results in Appendix
F.2.

MoG-DDPG is formed by combining a Mixture-of-Gaussians (MoG) critic with DDPG. The MoG
critic was introduced in Appendix A of Barth-Maron et al. (2018) and improved by Shahriari et al.
(2022). The latter paper combines the MoG critic with DDPG with distributed training, but we
remove the distributed training component because we do not use it in DoubleGum.

QR-DDPG (our introduced baseline) combines the quantile regression method of Dabney et al.
(2018b) with a DDPG actor. Although Ma et al. (2020); Wurman et al. (2022) and Teng et al. (2022)
have combined quantile regression with SAC, we combine it with DDPG because DoubleGum is
built on top of DDPG. Like Dabney et al. (2018b), we use 201 quantiles, but these are initialized
with orthogonal initialization and are optimized with the MSE, rather than the Huber loss. QR
was developed for discrete control and uses the Huber loss with the RMSProp optimizer popular in
discrete control methods. We found better performance with the MSE and Adam optimizer, perhaps
confirming the result of Ceron and Castro (2021) in distributional RL for continuous control.

DoubleGum was implemented as DDPG with a variance head described in Section 3.4.

E.5 Compute Requirements

A single training run for discrete control may take up to 3 to 5 minutes on a laptop with an Intel Core
i9 CPU, NVIDIA 1050 GPU and 31.0 GiB of RAM. On the same system, a single training run for
continuous control takes 1 - 2 hours.
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Table 6: Discrete Control Numerical Results

Task
Score at 100K timesteps (IQM over 12 seeds)

DoubleGum (ours) DQN DuelingDDQN

CartPole-v1 500 ± 113.4 475 ± 105.5 496.9 ± 89.1
Acrobot-v1 -62.78 ± 1.775 -73.52 ± 5.191 -64.12 ± 17.15
MountainCar-v0 -98.17 ± 2.45 -99.37 ± 5.914 -98.75 ± 30.73

The overwhelming majority of our experiments were run on private infrastructure. This cluster had a
mixture of Intel Broadwell, Skylake, Cascade Lake, AMD Rome, AMD Milan CPUs, and NVIDIA
P100s, V100s, and A100s GPUs. Benchmarking continuous control took roughly ten times longer
than benchmarking discrete control. Multi-threaded experiments for continuous control running
twelve seeds in parallel took 5 - 8 hours. 8 algorithms (DoubleGum, DDPG, TD3, MoG-Critics,
SAC, XQL, QR-DDPG, FinerTD3) were benchmarked over 33 continuous control environments, and
there were further runs for hyperparameter sweeps (4 for DoubleGum, 1 for SAC, 6 for XQL, 1 for
QR-DDPG and 4 for FinerTD3), yielding 24 runs in total. These algorithms were run at least 10 times
for development and hyperparameter tuning. This yields a lower bound of 8× 33× 24× 10 = 63360
hours (7.23 years) of computation.

Assuming that all experiments were run on Tesla V100-SXM2-16GB (TDP of 250W), the cluster it
was run on had a carbon efficiency of 0.0006 kgCO2eq/kWh (that of the surrounding power grid)
and that there were 63360 hours of cumulative computation, the total emissions were 9.51 kgCO2eq,
equivalent to driving 36km in an average car. Estimations were conducted using the MachineLearning
Impact calculator presented in Lacoste et al. (2019).

F Further Results

F.1 Adjusting the Pessimism of DoubleGum

Figure 8 shows that sample efficiency is sensitive to the pessimism factor c adjusting pessimism per
suite greatly impacts sample efficiency. The best performing c was c = −0.1, and was thus set as the
default pessimism factor value.

Figure 9 shows that the performance of DoubleGum may be improved when the degree of pessimism
is changed per suite. This graph was used to determine what pessimism factor to use in each suite,
whose values are reported in Table 5.

F.2 Adjusting the Pessimism of Baseline Algorithms

This section presents graphs used to determine which pessimism values to use for baseline algorithms.
All final values are reported in Table 5.

Figure 10 shows that sample efficiency is sensitive to the use of pessimism determined by the use
of Twin Networks/not. In aggregate, each method was improved by using Twin Networks. Twin
networks were therefore set as the default pessimism option for all baseline algorithms apart from
QR-DDPG, because Twin Networks was not used with quantile regression in (Dabney et al., 2018b).
Figure 11 was used to determine whether to use Twin Networks/not on a per suite basis.

Similarly, Figures 14 and 15 were respectively used to determine pessimism hyperparameters for
FinerTD3. In these two graphs, numbers refer to the ith smallest value returned by the ensemble
of target critics. Finally, Figures 12 and 13 were respectively used to determine pessimism and β
hyperparameters for XQL.

F.3 Discrete Control

Table 6 presents results for discrete control at 100K timesteps.
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Figure 8: Adjusting the pessimism factor c in DoubleGum, IQM normalized score over 33 tasks in 4
suites with 95% stratified bootstrap CIs.
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Figure 9: Adjusting pessimism in DoubleGum, per-suite IQM with 95% stratified bootstrap CIs.
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Figure 10: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, IQM
normalized score over 33 tasks in 4 suites with 95% stratified bootstrap CIs. Methods that default to
use Twin Networks are dashed.
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Figure 11: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, per-suite
IQM normalized score with 95% stratified bootstrap CIs. Methods that default to use Twin Networks
are dashed.
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Figure 12: Adjusting pessimism of XQL, IQM normalized score over 33 tasks in 4 suites with 95%
stratified bootstrap CIs. Methods that use Twin Networks are dashed.
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Figure 13: Adjusting pessimism of XQL, per-suite IQM normalized score with 95% stratified
bootstrap CIs. Methods that use Twin Networks are dashed.
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Figure 14: Adjusting pessimism of FinerTD3, IQM normalized score over 33 tasks in 4 suites with
95% stratified bootstrap CIs.
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Figure 15: Adjusting pessimism of FinerTD3, per-suite IQM normalized score with 95% stratified
bootstrap CIs.
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Figure 16: Continuous control with default parameters, per-suite IQM normalized score with 95%
stratified bootstrap CIs. Methods that default to use Twin Networks are dashed.

32



0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60

DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

0.30
MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.05

0.00

0.05

IQ
M

DoubleGum, best c, (Ours)
MoG-DDPG (untuned)
best of DDPG/TD3

SAC (best w/wo Twin)
XQL (best of β w/wo Twin)

QR-DDPG (best w/wo Twin)
FinerTD3 (best pessimism)

Figure 17: Continuous control with the best pessimism hyperparameters tuned per suite, per-suite
IQM normalized score with 95% stratified bootstrap CIs.

F.4 Continuous Control with Default Pessimism

Figures 16 and 18 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with default pessimism values.

Table 7 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 18. The next
subsection presents per-suite aggregate results, corresponding to Figure 16, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.

F.5 Continuous Control with Pessimism adjusted Per-Suite

Figures 17 and 19 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with the best pessimism values adjusted per-suite.

Table 8 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 19. The next
subsection presents per-suite aggregate results, corresponding to Figure 17, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.
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Figure 18: Continuous control with default pessimism hyperparameters, per-task IQM ± standard
deviation. Methods that default to use Twin Networks are dashed. The legend for all graphs is in
Figure 18d.
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(a) DeepMind Control
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(c) MetaWorld
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Figure 19: Continuous control with the best pessimism hyperparameters adjusted per suite, per-task
IQM ± standard deviation. The legend for all graphs is in Figure 19d.
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