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1 Experimental details10

In this section, we present details about training CrossViViT and its Multi-Quantile variant, as well11

as the time-series baselines.12

1.1 Training setup13

1.1.1 CrossViViT14

CrossViViT integrates two modalities: satellite video data and time-series station data. For both15

modalities, essential information such as geographic coordinates, elevation, and precise time-stamps16

is available. In this section, we provide a comprehensive explanation of the encoding process for each17

feature and conclude by presenting the hyperparameters of the model.18

We first start by encoding the timestamps. For each time point, we have access to the following time19

features: The year, the month, the day, the hour and the minute at which the measurement was made.20

We use a cyclical embedding to encode these time features discarding the year. For a time feature x,21

its corresponding embedding can be expressed as:22

[
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2πx

ω(x)

)
, cos

(
2πx
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(1)
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Where ω(x) is the frequency for time feature x (see Table 1) for the frequency of each time feature).23

We concatenate these features to form our final time embedding that we simply concatenate to the24

context and the time-series channels respectively. Furthermore, we incorporate the elevation data25

for each coordinate in both the context and the time-series. Specifically, the elevation values are26

concatenated to their corresponding channels in the context and time-series representations.27

Regarding the geographic coordinates, we possess information regarding the latitude and longitude28

for both the context and the station. These coordinates are normalized so as to lie in [−1, 1]:29 {
lat← 2

( lat+90
180

)
− 1

lon← 2
( lon+180

360

)
− 1

(2)

ROtary Positional Encoding Next, we embed these coordinates using ROtary Positional Embed-30

ding (ROPE) that we provide a PyTorch implementation for:31

ROtary Positional Encoding
1 class AxialRotaryEmbedding(nn.Module):
2 def __init__(self, dim, max_freq):
3 super().__init__()
4 self.dim = dim
5 scales = torch.linspace(1.0, max_freq / 2, dim // 4)
6

7 self.register_buffer("scales", scales)
8

9 def forward(self, coords: torch.Tensor):
10 """
11 Args:
12 coords (torch.Tensor): Coordinates of shape [B, 2, height, width]
13 """
14 seq_x = coords[:, 0, 0, :]
15 seq_x = seq_x.unsqueeze(-1)
16 seq_y = coords[:, 1, :, 0]
17 seq_y = seq_y.unsqueeze(-1)
18

19 scales = self.scales[(*((None, None)), Ellipsis)]
20 scales = scales.to(coords)
21

22 seq_x = seq_x * scales * pi
23 seq_y = seq_y * scales * pi
24

25 x_sinu = repeat(seq_x, "b i d -> b i j d", j=seq_y.shape[1])
26 y_sinu = repeat(seq_y, "b j d -> b i j d", i=seq_x.shape[1])
27

28 sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim=-1)
29 cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim=-1)
30

31 sin, cos = map(lambda t: rearrange(t, "b i j d -> b (i j) d"), (sin,
cos))↪→

32 sin, cos = map(lambda t: repeat(t, "b n d -> b n (d j)", j=2), (sin,
cos))↪→

33 return sin, cos

Table 1: Frequency of each time feature.

Time feature Frequency

Month 12
Day 31
Hour 24

Minute 60
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Training configuration CrossViViT was trained on two RTX8000 GPUs, over 17 epochs with32

early stopping. Its Multi-Quantile variant was also trained on two RTX8000 GPUs, over 12 epochs33

with early stopping. The remaining settings are identical for both variants: An effective batch size of34

20 was utilized for both models; The training process employed the AdamW optimizer (Loshchilov35

and Hutter, 2019) with a weight decay of 0.05; A cosine warmup strategy was implemented, gradually36

increasing the learning rate from 0 to 0.0016 over five epochs before starting the decay phase.37

Below, we highlight the relevant model hyperparameters for CrossViViT and Multi-Quantile Cross-38

ViViT:39

CrossViViT hyperparameters
1 patch_size: [8, 8]
2 use_glu: True
3 max_freq: 128
4 num_mlp_heads: 1
5

6 ctx_masking_ratio: 0.99
7 ts_masking_ratio: 0
8

9 # These hyperparameters apply to the encoding transformers and cross-attention
10 dim: 384
11 depth: 16
12 heads: 12
13 mlp_ratio: 4
14 dim_head: 64
15 dropout: 0.4
16

17 # These only apply to the decoding transformer
18 decoder_dim: 128
19 decoder_depth: 4
20 decoder_heads: 6
21 decoder_dim_head: 128

Multi-Quantile CrossViViT hyperparameters
1 patch_size: [8, 8]
2 use_glu: True
3 max_freq: 128
4 num_mlp_heads: 11
5 quantiles: [0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98]
6

7 ctx_masking_ratio: 0.99
8 ts_masking_ratio: 0
9

10 # These hyperparameters apply to the encoding transformers and cross-attention
11 dim: 256
12 depth: 16
13 heads: 12
14 mlp_ratio: 4
15 dim_head: 64
16 dropout: 0.4
17

18 # These only apply to the decoding transformer
19 decoder_dim: 128
20 decoder_depth: 4
21 decoder_heads: 6
22 decoder_dim_head: 128
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1.1.2 Time-series baselines40

We conducted training on a total of nine baseline models, and we emphasize the importance of the41

hyperparameters used for each of these models. Below, we provide a comprehensive overview of the42

hyperparameters employed in our study:43

• seq_len: Input sequence length.44

• label_len: Start token length.45

• pred_len: Prediction sequence length.46

• enc_in: Encoder input size.47

• dec_in: Decoder input size.48

• e_layers: Number of encoder layers.49

• d_layers: Number of decoder layers.50

• c_out: Output size.51

• d_model: Dimension of model.52

• n_heads: Number of attention heads.53

• d_ff: Dimension of Fully Connected Network.54

• factor: Attention factor.55

• embed: Time features encoding, options:[timeF, fixed, learned].56

• distil: Whether to use distilling in encoder.57

• moving average: Window size of moving average kernel.58

We adapted the majority of the baselines using the Time Series Library (TSlib (Wu et al., 2023)),59

which served as a valuable resource in our experimentation. We refer the reader to the original papers,60

which served as a base for the hyperparameters utilized in our study, in order to have a comprehensive61

understanding of the models and the training settings.62

LightTS
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 d_model: 256
6 dropout: 0.05
7 chunk_size: 24

FiLM
1 model:
2 enc_in: 10
3 seq_len: 48
4 label_len: 24
5 pred_len: 48
6 e_layers: 2
7 ratio: 0.4

DLinear
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 moving_avg: 25
6 individual: False

Crossformer
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 d_model: 1024
6 n_heads: 2
7 e_layers: 4
8 d_ff: 2048
9 factor: 10

10 dropout: 0.01

Reformer
1 model:
2 enc_in: 10
3 c_out: 1
4 seq_len: 48
5 pred_len: 48
6 d_model: 512
7 n_heads: 8
8 e_layers: 3
9 d_ff: 2048

10 factor: 5
11 dropout: 0.05
12 embed: timeF
13 activation: gelu

PatchTST
1 model:
2 enc_in: 10
3 c_out: 1
4 seq_len: 48
5 pred_len: 48
6 d_model: 1024
7 n_heads: 6
8 e_layers: 3
9 d_ff: 2048

10 factor: 10
11 dropout: 0.05
12 embed: timeF
13 activation: gelu
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Autoformer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out:
5 seq_len: 48
6 label_len: 24
7 pred_len: 48
8 moving_avg: 25
9 d_model: 1024

10 n_heads: 8
11 e_layers: 3
12 d_layers: 2
13 d_ff: 2048
14 factor: 10
15 dropout: 0.01
16 embed: timeF
17 activation: gelu

Informer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out: 1
5 label_len: 24
6 pred_len: 48
7 d_model: 2048
8 n_heads: 4
9 e_layers: 2

10 d_layers: 2
11 d_ff: 2048
12 factor: 5
13 dropout: 0.1
14 embed: timeF
15 activation: gelu
16 distil: True

FEDformer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out: 1
5 seq_len: 48
6 label_len: 24
7 pred_len: 48
8 moving_avg: 25
9 d_model: 512

10 n_heads: 8
11 e_layers: 3
12 d_layers: 2
13 d_ff: 2048
14 dropout: 0.05
15 version: fourier
16 mode_select: random
17 modes: 32

The training of the baselines took place on a single RTX8000 GPU over the course of 100 epochs.63

During training, a batch size of 64 was consistently employed. For model optimization, we utilized64

the AdamW optimizer (Loshchilov and Hutter, 2019), incorporating a weight decay value set to 0.05.65

Moreover, we implemented a learning rate reduction strategy known as Reduce Learning Rate on66

Plateau, which gradually decreased the learning rate by a factor of 0.5 after a patience of 10 epochs.67

For the hyperparameter tuning of the baselines, we employed the Orion package (Bouthillier et al.,68

2022), which is an asynchronous framework designed for black-box function optimization. Its69

primary objective is to serve as a meta-optimizer specifically tailored for machine learning models.70

As an example, we present the details of the Crossformer hyperparameter tuning scheme, showcasing71

the approach we followed to optimize its performance:

Crossformer hyperparameters tuning
1 params:
2 optimizer.lr: loguniform(1e-8, 0.1)
3 optimizer.weight_decay: loguniform(1e-10, 1)
4 d_model: choices([128,256,512,1024,2048])
5 d_ff: choices([1024,2048,4096])
6 n_heads: choices([1,2,4,8,16])
7 e_layers: choices([1,2,3,4,5])
8 dropout: choices([0.01,0.05,0.1,0.2,0.25])
9 factor: choices([2,5,10])

10 max_epochs: fidelity(low=5, high=100, base=3)

72

2 Additional results and visualisations73

2.1 Performance on (unobserved) validation PAY station, on validation and test years74

This section presents a comprehensive comparative analysis that assesses the performance of Cross-75

ViViT in relation to various timeseries approaches and solar irradiance baselines specifically for the76

PAY station. The evaluation encompasses both the validation period (2017-2019) and the test period77

(2020-2022), with the validation period serving as the basis for model selection. The results, as78

presented in Table 2, offer compelling evidence of the superior performance of CrossViViT compared79

to the alternative approaches across all evaluation splits. These findings underscore the crucial role of80

accurately capturing cloud dynamics in solar irradiance forecasting, which is particularly pronounced81

in the "Hard" splits.82
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Table 2: Comparison of model performances in the val station PAY, during test years (2020-2022)
and val years (2017-2019). We report the MAE and RMSE for the easy and difficult splits (presented
in the main paper) along with the number of data points for each split. We add the MAE resulting from
the Multi-Quantile CrossViViT median prediction, along with pt, the probability for the ground-truth
to be included within the interval, averaged across time steps.

Models Parameters

PAY (Test years - 2020-2022) PAY (Val years - 2017-2019)

All (12171) Easy (8053) Hard (4118) All (27166) Easy (16683) Hard (10483)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence N/A 61.9 140.05 44.98 105.47 94.99 190.31 63.61 141.16 48.57 108.91 87.54 180.99
Fourier3 N/A 69.21 129.29 52.17 91.61 102.53 181.63 71.71 130.58 56.03 94.81 96.68 172.86
Fourier4 N/A 65.67 131.13 48.77 93.68 98.72 183.48 67.35 132.41 51.8 96.71 92.08 174.79
Fourier5 N/A 63.39 132.38 46.14 95.08 97.14 184.71 65.71 133.87 50.03 98.61 90.66 175.98
Clear Sky (Ineichen, 2016) N/A 65.99 138.78 56.41 116.72 84.72 174.03 62.12 131.69 52.59 109.91 77.28 160.36

ReFormer (Kitaev et al., 2020) 8.6M 59.15 109.75 51.67 91.67 73.79 138.44 59.3 109.3 54.06 94.31 67.64 129.62
Informer (Zhou et al., 2021) 56.7M 79.18 133.47 75.8 126.07 85.78 146.86 77.51 131.72 75.65 126.58 80.46 139.52
FiLM (Zhou et al., 2022b) 9.4M 69.87 124.86 55.93 91.15 97.11 172.72 71.1 125.32 58.35 94.17 91.39 163.06
PatchTST (Nie et al., 2023) 9.6M 63.21 131.64 53.06 113.78 83.06 160.93 63.88 131.14 55.47 115.59 77.25 152.64
LighTS (Zhang et al., 2022) 32K 58.57 111.22 48.93 88.69 77.4 145.53 58.22 110.84 50.72 91.24 70.16 136.33
CrossFormer (Zhang and Yan, 2023) 227M 59.64 111.03 51.04 90.34 76.45 143.08 59.39 111.49 52.55 93.15 70.29 135.66
FEDFormer (Zhou et al., 2022a) 23.6M 63.44 110.62 58.15 97.33 73.79 132.83 62.46 109.92 59.88 100.61 66.57 123.3
DLinear (Zeng et al., 2022) 4.7K 75.09 128.64 59.42 93.82 105.74 178.04 76.78 129.45 62.64 97.93 99.29 167.81
AutoFormer (Wu et al., 2021) 50.4M 73.36 117.22 68.89 105.52 82.12 137.25 71.39 114.96 69.42 106.79 74.54 126.88

CrossViViT 145M 51.47 107.73 41.59 85.14 70.81 141.87 52.02 108.77 44.71 90.47 63.65 132.79

MAE pt MAE pt MAE pt MAE pt MAE pt MAE pt

Multi-Quantile CrossViViT 78.8M 59.06 0.83 54.96 0.83 67.06 0.84 57.65 0.86 51.75 0.87 67.05 0.86

2.2 Visualisations for day ahead time series predictions83

This section presents visualizations of predictions generated by CrossViViT and CrossFormer on the84

PAY station for both the validation period (2017-2019) (see Figure 2) and the test period (2020-2022)85

(see Figure 1). We also present visualizations of predictons generated by the Multi-Quantile version,86

for the two periods, on the PAY station. The predictions depicted in red are the median (50% quantile)87

estimation from the model, and the generated prediction interval is defined as the interval between88

the two predefined quantiles: [q0.02, q0.98]89

3 Vision Transformers (ViT) and Video Vision Transformers (ViViT)90

ViT The Vision Transformer (ViT) model (Dosovitskiy et al., 2020) leverages self-attention mecha-91

nisms inspired by the popular transformer architecture (Bahdanau et al., 2015; Vaswani et al., 2017)92

to efficiently process images. The input image of dimensions H ×W is divided into non-overlapping93

patches xi ∈ Rh×w, which are linearly projected and transformed into d-dimensional vector tokens94

zi ∈ Rd using a learned weight matrix E that applies 2D convolution. The sequence of patches is95

defined as z = [zclass,Ex1, ...,ExP ] +Epos, where zclass is an optional learned classification token96

representing the class label, and Epos ∈ RP×d is a 1D learned positional embedding that encodes97

position information.98

To extract global features from the image, the embedded patches undergo K transformer layers.99

Each transformer layer k consists of Multi-Headed Self-Attention (MSA) (Vaswani et al., 2017),100

layer normalization (LN) (Ba et al., 2016), and MLP blocks with residual connections. The MLPs101

consist of two linear layers separated by the Gaussian Error Linear Unit (GELU) activation function102

(Hendrycks and Gimpel, 2016). The output of the final layer can be used for image classification,103

either by directly utilizing the classification token or by applying global average pooling to all tokens104

zL if the classification token was not used initially.105

ViViT The Video Vision Transformer (Arnab et al., 2021) extends the ViT model to handle video106

classification tasks by incorporating both spatial and temporal dimensions within a transformer-like107

architecture. The authors propose multiple versions of the model, with a key consideration being how108

to embed video clips for attention computation.109

Two approaches are presented: (1) Uniform frame sampling and (2) Tubelet embedding. The first110

method involves uniformly sampling nt frames from the video clip, applying the same ViT embedding111

method Dosovitskiy et al. (2020) to each 2D frame independently, and concatenating the resulting112

tokens into a single sequence. The second method extracts non-overlapping spatio-temporal "tubes"113
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Figure 1: Visualizations of CrossViViT and CrossFormer are presented for a subset of 12 randomly
selected days from the "Hard" split on the PAY station during the test period spanning from 2020 to
2022.
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Figure 2: Visualizations of CrossViViT and CrossFormer are presented for a subset of 12 randomly
selected days from the "Hard" split on the PAY station during the validation period spanning from
2017 to 2019.
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Figure 3: Visualizations of Multi-Quantile CrossViViT (median prediction and [q0.02, q0.98] prediction
interval) and CrossFormer predictions are presented for a subset of 12 randomly selected days from
the "Hard" split on the PAY station during the validation period spanning from 2020 to 2022.
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Figure 4: Visualizations of Multi-Quantile CrossViViT (median prediction and [q0.02, q0.98] prediction
interval) and CrossFormer predictions are presented for a subset of 12 randomly selected days from
the "Hard" split on the PAY station during the validation period spanning from 2017 to 2019.
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from the input volume and linearly projects them into Rd, effectively extending ViT’s embedding114

technique to 3D data, akin to performing a 3D convolution. Intuitively, the second method allows115

for the fusion of spatio-temporal information during tokenization, whereas the first method requires116

independent temporal fusion post-tokenization. Experimental results, however, show only slightly117

superior performance for the second method in specific scenarios, despite its significantly higher118

computational complexity (Arnab et al., 2021).119
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