
Improving day-ahead Solar Irradiance Time Series
Forecasting by Leveraging Spatio-Temporal Context

Oussama Boussif 1,2 ∗ Ghait Boukachab 1,3 ∗ Dan Assouline 1,2 ∗

Stefano Massaroli1,2 Tianle Yuan4 Loubna Benabbou3 Yoshua Bengio1,2

1Mila - Québec AI Institute 3Université du Québec à Rimouski
2Université de Montréal 4NASA Goddard Space Flight Center

Abstract

Solar power harbors immense potential in mitigating climate change by substan-
tially reducing CO2 emissions. Nonetheless, the inherent variability of solar
irradiance poses a significant challenge for seamlessly integrating solar power into
the electrical grid. While the majority of prior research has centered on employing
purely time series-based methodologies for solar forecasting, only a limited number
of studies have taken into account factors such as cloud cover or the surrounding
physical context. In this paper, we put forth a deep learning architecture designed
to harness spatio-temporal context using satellite data, to attain highly accurate
day-ahead time-series forecasting for any given station, with a particular emphasis
on forecasting Global Horizontal Irradiance (GHI). We also suggest a methodol-
ogy to extract a distribution for each time step prediction, which can serve as a
very valuable measure of uncertainty attached to the forecast. When evaluating
models, we propose a testing scheme in which we separate particularly difficult
examples from easy ones, in order to capture the model performances in crucial
situations, which in the case of this study are the days suffering from varying
cloudy conditions. Furthermore, we present a new multi-modal dataset gathering
satellite imagery over a large zone and time series for solar irradiance and other
related physical variables from multiple geographically diverse solar stations. Our
approach exhibits robust performance in solar irradiance forecasting, including
zero-shot generalization tests at unobserved solar stations, and holds great promise
in promoting the effective integration of solar power into the grid.

1 Introduction

Solar power has become an increasingly important source of renewable energy in recent years, with
the potential to help mitigate the effects of climate change by reducing greenhouse gas emissions
(Doblas-Reyes et al., 2021; IEA, 2021). However, the variability of solar irradiance - the amount
of solar radiation that reaches the earth’s surface - presents a challenge for integrating solar power
into the grid. Accurate forecasting of solar irradiance can assist grid operators in dealing with the
variability of solar power, leading to a more efficient and dependable integration of solar power into
the grid. As a result, this can help to reduce the requirement for costly and environmentally damaging
backup power sources.
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Figure 1: CrossViViT architecture, in its Multi-Quantile version. (1) The spatio-temporal context
videos are tokenized, partially masked, and encoded with a vision transformer, using Rotary Positional
Embedding, (2) The time series are tokenized and encoded in parallel with a transformer, (3) Both
resulting latents are fed into L layers of a cross transformer to mix them into one latent, (4) the output
is passed into another transformer decoder, (5) and passed to multiple MLP heads which predict
multiple quantiles, forming a prediction interval for each day-ahead time-series prediction.

Solar irradiance is influenced by a range of factors, including the time of day, the season, weather
patterns, and the position of the sun in the sky. However, one of the most significant factors affecting
solar irradiance variability is cloud cover. Clouds can block or scatter solar radiation, leading to rapid
changes in solar irradiance at the earth’s surface. Forecasting solar irradiance accurately thus requires
modeling cloud cover, as well as accounting for the inherent variability of the system.

While a lot of previous work has focused on using pure time-series approaches to forecast solar
irradiance (Yang et al., 2022), few have incorporated cloud cover (Nielsen et al., 2021; Bone et al.,
2018; Si et al., 2021) and even fewer tackled the challenging day-ahead forecasting, often focusing
on the easier very short term predictions (2 to 4 hours). When forecasting solar irradiance at a specific
station, relying solely on its local physical variables is insufficient due to the significant spatial
variability of cloud cover. To accurately anticipate the impact of clouds on incoming solar radiation,
it is necessary to consider their motion and trajectory within a larger spatial context encompassing
the station. In this paper, we incorporate satellite imaging to forecast solar irradiance at any chosen
station and propose a multi-modal architecture that can in principle be used to forecast any physical
variable. This study reveals the inadequacy of conventional testing schemes using conventional
metrics like MAE or RMSE on an entire dataset for evaluating solar irradiance forecasting models.
They fail to capture the models’ performance in crucial cloud-related scenarios. Hence, we emphasize
the necessity of a separate evaluation approach to address the complexity of cloud impact on solar
irradiance variability. To allow for the metrics to show such performances by limiting the smoothing
effect of the averaging, we propose a testing scheme based on multiple splits of the test data, separating
particularly difficult examples from easy ones, for the task at hand. This is particularly important
for practical downstream tasks related to solar irradiance estimation, such as the monitoring of solar
power plants, where the correct prediction of such difficult examples can have a very high impact, as
easy examples (in the presence of light cloud cover) can be treated fairly well by very simple models
(such as a clear-sky or persistence model, as presented in section 5.1).
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Contributions: Our focus is on the application of machine learning to time-series forecasting, with
a particular emphasis on utilizing multi-modal spatio-temporal data that includes physical, weather,
and remotely sensed variables. The main contributions of this paper can be summarized as follows:

• We present a deep learning architecture called CrossViViT, designed to leverage spatio-
temporal context (such as satellite data) in order to achieve highly accurate medium-term (1
day horizon) time-series forecasting at any given station. This paper focuses specifically on
forecasting Global Horizontal Irradiance (GHI).

• We present a Multi-Quantile version of the model which allows to extract uncertainty
estimation attached to each prediction. This methodology, although applied here in our
context, should be applicable to any forecasting task and framework.

• We present a multi-modal dataset that combines satellite imagery with solar irradiance
and other physical variables. The dataset covers a period of 14 years, from 2008 to 2022,
and includes data from six geographically diverse solar stations. This dataset is unique in
its combination of diverse variables and long time span, and is intended to facilitate the
development and evaluation of new multi-modal forecasting models for solar irradiance.

• We propose a forecasting testing scheme based on multiple time splits of the test data,
separating particularly difficult examples from easy ones, therefore allowing to capture the
models’ performances in problematic examples.

• We experimentally show that the proposed approach can generalize to a new station not seen
during training in a zero-shot generalization forecasting setting.

2 Related works

Machine Learning for time-series forecasting Deep learning approaches have gained popularity for
time-series forecasting in recent years due to their ability to model complex nonlinear relationships
and capture temporal dependencies. These approaches have demonstrated superior performance
compared to traditional statistical methods, motivating further research in this area. In a recent survey
(Wen et al., 2022), it was found that transformers, renowned for their success in natural language
processing and computer vision, were also effective for time-series analysis. The authors discussed
the strengths and limitations of transformers and compared the structure and performance of recent
transformer-based architectures on a benchmark weather dataset (Zhou et al., 2021). The particular
case of solar irradiance forecasting represents an interesting application for time-series models (Wang
et al., 2019a; Narvaez et al., 2021; Alzahrani et al., 2017). One recent study developed a multi-step
attention-based model for solar irradiance forecasting that generates deterministic predictions and
quantile predictions as well (Sharda et al., 2021). In a similar perspective, Jønler et al. (2023)
developed a probabilistic solar irradiance transformer that incorporates gated recurrent units and
temporal convolution networks, demonstrating strong performance for short-term horizons.

Context mixing / Multimodal learning for time-series forecasting Previous studies highlight the
potential of time-series methods for solar irradiance forecasting, emphasizing the significance of short-
term horizons in solar energy management. However, day-ahead forecasting remains challenging due
to the influence of cloud cover on surface irradiance (Bone et al., 2018; Si et al., 2021), a problem
which we aim to address in this paper. Thus, it is crucial to account for cloud effects in solar irradiance
forecasting regardless of the chosen method. For instance, Zhang et al. (2023) investigated the impact
of cloud movement on irradiance prediction and proposed an approach to automatically learn the
relationship between sky image appearance and solar irradiance. A concurrent work (Liu et al.,
2023) proposed a multimodal-learning framework for ultra-short-term (10min-ahead) solar irradiance
forecasting. They used Informer (Zhou et al., 2021) to encode historical time-series data, then
utilized Vision Transformer (Dosovitskiy et al., 2020) to handle sky images. Finally, they employed
cross-attention to couple the two modalities. The studies discussed above highlight the potential of
incorporating external data sources, such as sky images and satellite images, in combination with
time-series approaches to improve the accuracy of solar forecasting.

Operator Learning Utilizing available satellite imagery to forecast GHI over a region presents
limitations as it may not capture clouds that exist at a resolution beyond that of the satellite data. To
ensure accurate forecasting of quantities of interest, the ability to query the model at any possible
resolution and any point within the domain becomes crucial. Recent advancements have witnessed
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the rise of algorithms focusing on learning operators capable of mapping across functional spaces,
with a focus on solving partial differential equations (PDE) (Lu et al., 2019; Li et al., 2021; Kovachki
et al., 2021; Li et al., 2020). These operators can effectively map initial conditions to PDE solutions,
making it possible to query the learned solution theoretically anywhere within its domain. Fourier
Layers, developed by Li et al. (2021), enable zero-shot prediction on both uniform and non-uniform
grids with learnable deformations (Li et al., 2022). Pathak et al. (2022) replace attention in ViT
(Dosovitskiy et al., 2020) with Fourier layer mixing for competitive weather forecasting results
with faster inference. MeshFreeflowNet (Jiang et al., 2020) learns high-resolution frames from
corresponding lower resolution ones by querying the model at any point of the domain for irregular
grids. Similarly, Boussif et al. (2022) employ message passing with a low-resolution graph for zero-
shot super-resolution PDE learning. Additionally, message passing neural PDE solvers (Brandstetter
et al., 2022) exhibit spatio-temporal multi-scale capabilities benefiting from long-expressive memory
(Equer et al., 2023; Rusch et al., 2022). We note that while these approaches were developed for
PDEs in mind, they can still be used for weather-related applications.

Uncertainty estimation When performing solar irradiance forecasting, deterministic forecasts are not
sufficient to characterize the inherent variance and uncertainty in solar irradiance data. Probabilistic
forecasts, providing uncertainty information, are crucial for energy system management (Wang et al.,
2019b). (Doubleday et al., 2020) and (Yagli et al., 2020) benchmark solar forecasting methods,
emphasizing calibration and sharpness in prediction intervals. Specifically in short term solar
irradiance forecasting, Zelikman et al. (2020) delves into post-hoc calibration for better predictions.
Turkoglu et al. (2022) introduces FiLM-Ensemble, balancing predictive accuracy and calibration in
uncertainty estimation. The deep ensembles approach by Lakshminarayanan et al. (2016) aggregates
neural network predictions, capturing both data noise and model uncertainties. Few studies tackle
uncertainty evaluation in a regression setting, rather than in classification one, which consists in
the estimation of prediction intervals. Sønderby et al. (2020), performing precipitation forecasting,
suggests an easy solution: the output is separated in 512 bins and the model predicts the precipitation
rate (probability) in each of the bins, resulting ultimately in a distribution. Other methodologies
include bootstrapping and ensembling methods, drawing a distribution out of multiple predictions
from submodels, following the spirit of Quantile Regression Forests (Meinshausen and Ridgeway,
2006). The evolving landscape of solar irradiance forecasting underscores the importance of a
calibrated, comprehensive, and robust probabilistic approach to address inherent uncertainties.

3 Methodology

We develop a framework for solar irradiance time-series forecasting, incorporating spatio-temporal
context alongside historical time-series data from multiple stations. This framework is inspired by
recent advancements in video transformer models (Arnab et al., 2021; Feichtenhofer et al., 2022)
and multi-modal models that leverage diverse data sources such as images and time series (Liu
et al., 2023). To establish the foundation for our framework, we provide a brief overview of the
Rotary Positional Embedding (Su et al., 2021). Subsequently, we present the proposed architecture,
CrossViViT, in detail, outlining its key components and design principles. Details about the ViT
(Dosovitskiy et al., 2020) and ViViT architectures can be found in the Appendix.

3.1 Rotary Positional Embedding

As we are dealing with permutation-variant data, assigning positions to patches before using attention
is necessary. A common approach is to use additive positional embedding, which considers the
absolute positions of the patches added into the input sequence. However, for our case, it is more
appropriate to have dot-product attention depend on the relative "distance" between the patches. This
is because the station should only be concerned with the distance and direction of nearby clouds, and
therefore, a relative positional embedding is more sensible.

To this end we make use of RoPE (Su et al., 2021) to mix the station time series and the context. The
station and each patch in the context are assigned their normalized latitude and longitude coordinates
in [−1, 1] which are used as positions for RoPE. Details about the formulation used are left to the
Appendix.
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3.2 Cross Video Vision Transformer for time-series forecasting (CrossViViT)

CrossViViT. Our approach aims to integrate the available historical time-series data with video
clips of spatio-temporal physical context to enhance the prediction of future time series for solar
irradiance. The overall methodology, depicted in Figure 1, can be summarized as follows:

1. Tokenizing: The video context V ∈ RT×Cctx×H×W , with T frames for each of the Cctx

channels, and H and W respectively the height and width of the video images, is divided
into Np non-overlapping patches and linearly projected into a sequence of d-dimensional
context tokens zctx ∈ RT×Np×d. We use the Uniform frame sampling ViViT scheme Arnab
et al. (2021) to embed the videos we have at hand, the frames being concatenated along
the batch dimension, and the sample frequency being defined at 30 minutes. The historical
time series t ∈ RT×Cts are linearly projected into a sequence of d-dimensional time-series
tokens zts ∈ RT×d. We augment the context tokens with RoPE, as presented in section 3.1,
and a learnt positional encoding for the time-series tokens.

2. Masking: As a regularizing mechanism, we allow the model to mask a portion of the past
time series and the video context before adding the positional encodings. During the training
phase, a masking ratio mctx is randomly sampled from a uniform distribution U(0, 0.99)
for the context, and the corresponding patches are masked accordingly. We also explored
masking the time series to encourage the model to rely more on the context but in practice,
no masking gave the best performance. We note that during inference, no masking is applied.

3. Encoding: We encode the time series and the past video context separately with two
transformer architectures: a spatio-temporal encoder similar to a ViT for the video context,
and a multi layer transformer for the input time series. More specifically, the context tokens
alone and time series alone are passed through L separate transformer layers (we keep the
same number of layers L for both encoders), including Multi-Head Self-Attention (MSA),
LayerNorm (LN) and Multi-Layer Perceptron (MLP) blocks, so that for each layer l, we
perform the following operations:

yctx
l = MSA(LN(zctxl )) + zctxl yts

l = MSA(LN(ztsl )) + ztsl (1)

zctxl+1 = MLP(LN(yctx
l )) + yctx

l ztsl+1 = MLP(LN(yts
l )) + yts

l (2)

4. Mixing: We combine the resulting context and time-series latents, respectively zctxL and ztsL ,
within L layers of a Transformer with Cross Attention (CA) Vaswani et al. (2017) (we keep
the same number of layers in the entire encoder-mixer architecture). After adding ROPE,
the two L-th layers are mixed with CA and passed through an MLP block. The output of
each layer becomes a mixed latent which is in turn mixed with the context latent zctxL and
again passed through a block of MLP. Formally, the following operations are performed
respectively at the first layer (left equations) and on the remaining layers (right equations) of
the CA:

ymix
1 = CA(LN(zctxL , ztsL )) + ztsL ymix

l = CA(LN(zctxL , zmix
l )) + zmix

l (3)

zmix
2 = MLP(LN(ymix

1 )) + ymix
1 zmix

l+1 = MLP(LN(ymix
l )) + ymix

l (4)

5. Decoding: The sequence of mixed tokens zmix
L returned by the layers of Cross Transformer

is then passed through N layers of another Transformer as a decoder, before adding a learnt
positional embedding to the token sequence. Each layer n of the Transformer is again
formed by MSA, LN and MLP blocks:

yn = MSA(LN(zn)) + zn (5)
zn+1 = LN(MLP(LN(yn)) + yn) (6)

The output decoded sequence zN is passed through a final MLP head to output the final
predicted future time series tpred ∈ RT×Cts .

3.3 Multi-Quantiles: Extracting prediction intervals

To obtain prediction intervals for each forecasted value, we propose a easy methodology which
can be used for any deep learning forecasting model, here resulting in an alternative version of the

5



Station Latitude Longitude
Cabauw (CAB) (Knap, 2007) 51◦58′N 4◦55′E
Cener (CNR) (Olano, 2022) 42◦48′N 1◦36′W
Izana (IZA) (Cuevas-Agulló, 2014) 28◦18′N 16◦29′W
Palaiseau (PAL) (Haeffelin, 2014) 48◦42′N 2◦12′E
Payerne (PAY) (Vuilleumier, 2018) 46◦48′N 6◦56′E
Tamanrasset (TAM) (Baika, 2023) 22◦47′N 5◦31′E

Figure 2: Stations and satellite data. Left: Lo-
cation of the six meteorological stations consid-
ered in the study with the red border indicating
the spatial extent (TAM is out of the considered
window). Additionally, three of the eleven spec-
tral channels under investigation are highlighted:
IR_108, VIS_008 and WV_073 channels are in-
frared (10.8µ), visible (0.8µm) and water vapor
(7.3µm) channels respectively. Right: Table sum-
marizing the geographic coordinates and eleva-
tion of each station used in the paper.

CrossViViT architecture. In this modified version, the original MLP head is replaced with Nheads

parallel MLPs, each dedicated to predicting a specific quantile of the distribution for each time step.
To achieve this, we employ distinct quantile loss functions for each MLP head. By summing these
quantile losses, we obtain a comprehensive Multi-Quantile loss, which serves as the training objective
for the model. The quantile loss (Koenker and Hallock, 2001) Lα(y, ŷ) for the α quantile is defined
as:

Lα(y, ŷ) = max{α(ŷ − y), (1− α)(y − ŷ)}. (7)

The Multi-Quantile loss, aiming to learn multiple quantile predictions ŷα for a chosen set of quantiles
vA, is then defined as: MQL(y, ŷα∈vA) =

∑
α∈vA

Lα(y, ŷα). The selection of quantile heads vα
is a crucial hyperparameter that determines the density of the output distribution generated by the
model. To achieve a 96% prediction interval while maintaining a sufficiently dense distribution, we
set the list of quantiles as vA = [0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 0.98]. It is worth noting
that, it is possible to assign different weights to the quantiles to guide the learning process. This
approach can be beneficial in scenarios where the task requires a preference for overestimation or
underestimation. However, in this study, our primary objective was to provide a prediction interval,
leading to the conservative choice of quantile distribution and uniformly weighing the Lα’s.

4 Dataset

This section provides a comprehensive description of the dataset designed for this study and shared
publicly, including all the applied pre-processing steps.

4.1 Time series

The time-series measurements were obtained from Baseline Surface Radiation Network datasets
(Driemel et al., 2018). The experiments in this paper use data from six locations (Figure 2), collected
at a 30-minute resolution over a 15-year period (2008-2022). The data captures diverse patterns,
ranging from consistent irradiance levels under clear skies to fluctuations caused by intermittent
clouds affecting surface solar radiation. The data contains measurements of the pressure in the station,
clear sky components, Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI).

The GHI component was computed using the formula: GHI = DNI × cos z +DHI where z is
the zenith angle of the sun obtained from the pvlib python library (Holmgren et al., 2020). The
Ineichen model (Ineichen, 2016) available through the same library is utilized to obtain the clear sky
components. The 2008-2016 data is used for training while subsets of the 2017-2022 data and stations
are used for validation and test performance evaluations. In this study, the models are trained and
evaluated to forecast the GHI component for a 24-hour period ahead, based on a history of 24-hour
measurements.

6



Table 1: Comparison of model performances across test stations TAM and CAB, during test years
(2020-2022) for CAB, and val years (2017-2019) for TAM. We report the MAE and RMSE for the
easy and difficult splits presented in section 5.2 along with the number of data points for each split.
We add the MAE resulting from the Multi-Quantile CrossViViT median prediction, along with pt,
the probability for the ground-truth to be included within the interval, averaged across time steps.
Additionally, we ablate RoPE against a learned positional embedding.

Models Parameters

CAB (2020-2022) TAM (2017-2019)

All (9703) Easy (5814) Hard (3889) All (2299) Easy (2064) Hard (235)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence N/A 63.57 131.44 52.56 109.05 80.04 159.14 32.26 94.71 20.8 59.47 132.92 238.12
Fourier3 N/A 68.91 121.23 56.51 93.854 87.46 153.29 56.0 94.85 45.48 62.62 148.42 231.47
Fourier4 N/A 65.74 123.15 53.82 96.38 83.56 154.76 44.02 92.22 33.15 57.56 139.56 232.61
Fourier5 N/A 64.67 124.22 52.67 97.94 82.61 155.44 40.26 91.36 28.94 55.57 139.68 233.52
Clear Sky (Ineichen, 2016) N/A 67.19 140.11 60.55 125.66 77.12 159.28 40.61 98.02 31.07 63.4 124.42 242.26

ReFormer (Kitaev et al., 2020) 8.6M 57.42 102.73 53.75 92.97 62.92 115.81 81.6 137.04 78.57 129.72 108.22 189.55
Informer (Zhou et al., 2021) 56.7M 72.26 122.89 70.85 118.85 74.35 128.69 83.43 140.38 82.6 138.46 90.66 156.22
FiLM (Zhou et al., 2022b) 9.4M 68.37 116.86 59.66 95.35 81.4 143.11 62.72 99.71 54.99 77.63 130.66 210.58
PatchTST (Nie et al., 2023) 9.6M 60.76 119.41 54.77 107.71 69.7 135.01 66.94 132.44 62.4 124.25 106.77 189.72
LighTS (Zhang et al., 2022) 32K 54.91 102.88 49.55 89.28 62.92 120.38 68.51 114.59 64.61 104.98 102.77 177.98
CrossFormer (Zhang and Yan, 2023) 227M 55.98 101.84 51.59 90.2 62.55 117.11 68.85 116.45 65.4 107.88 99.16 175.08
FEDFormer (Zhou et al., 2022a) 23.6M 56.38 99.27 53.08 90.13 61.31 111.54 92.12 146.52 91.13 142.83 100.82 175.64
DLinear (Zeng et al., 2022) 4.7K 75.01 121.01 65.21 99.72 89.65 147.21 75.54 115.40 69.04 98.74 132.67 211.28
AutoFormer (Wu et al., 2021) 50.4M 64.34 104.53 60.81 95.14 69.63 117.17 115.88 170.91 117.36 171.07 102.87 169.47

CrossViViT 145M 50.35 99.18 47.04 89.6 55.30 112.00 49.46 94.96 44.01 79.91 97.40 179.30
CrossViViT (Learned PE) 2 145M 51.11 103.66 47.31 95.13 56.84 115.31 109.28 196.44 111.33 197.63 91.29 185.61

MAE pt MAE pt MAE pt MAE pt MAE pt MAE pt

Multi-Quantile CrossViViT (small) 78.8M 61.80 0.91 57.03 0.93 68.94 0.90 81.20 0.71 78.93 0.70 101.18 0.75
Multi-Quantile CrossViViT (large) 145.5M 74.26 0.89 68.83 0.91 82.39 0.87 79.73 0.76 76.08 0.76 111.74 0.75

4.2 Satellite images

In this study, we utilize the EUMETSAT Rapid Scan Service (RSS) dataset (Holmlund, 2003), which
spans a period of 15 years from 2008 to 2022, with an original resolution of 5 minutes, later aligned
with the time series data. Our analysis focuses on the non-High Resolution Visible (non-HRV)
channels, which encompass 11 spectral channels with a spatial resolution of 6-9km and provide
comprehensive coverage of the upper third of the Earth, with a particular emphasis on Europe. These
channels, including Infrared and Water vapor, offer valuable information for our investigation. To
facilitate our analysis, we reprojected the original geostationary projection data onto the World
Geodetic System 1984 (WGS 84) coordinate system (Jacob et al., 2022). The region of interest is
depicted in Figure 2. Note that one of the 6 stations, TAM, lies slightly outside the region we consider,
and therefore represents an out-of-distribution station in term of the context we use.

To augment the contextual information, we computed the optical flow for each channel using the
TVL1 algorithm (Sánchez Pérez et al., 2013) from the OpenCV package (Bradski, 2000). The optical
flow represents the "velocity" of pixels between consecutive frames, which in our case corresponds to
the motion of clouds. Furthermore, we included the elevation map as an additional channel in our
dataset. The pre-processed satellite data originally had a resolution of 5122, but for computational
efficiency, we downscale it to 642.

5 Experiments and Results

In this section, we outline the baselines utilized for comparison alongside the suggested architecture.
We describe the experimental setup and present the results, benchmarking our framework against
state-of-the-art forecasting models across various test configurations. Additionally, we employ a split
methodology to assess model performance in challenging prediction scenarios, which hold significant
implications for downstream tasks associated with solar irradiance estimation.

The models are trained using a dataset spanning a period of 9 years, from 2008 to 2016, encompassing
the stations IZA, CNR, and PAL. Validation is performed on a separate dataset covering 3 years, from
2017 to 2019, for the PAY station. The TAM and CAB stations serve as the test dataset, consisting of
3 years from 2020 to 2022 for CAB, and from 2017 to 2019 for TAM. Each model takes a historical

2We replace RoPE with learnable spatial positional encoding. This was done by adding a learnable parameter
p ∈ RN×d to the encoded input, where N is the number of tokens in each satellite frame.
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input of 24 hours and predicts the GHI for the subsequent 24 hours, employing a sliding window
approach. Details about the implementation and hyperparameter tuning can be found in the Appendix.

5.1 Baselines

We conduct a comprehensive comparison between our approach and several state-of-the-art deep
learning architectures specifically designed for forecasting tasks. These architectures are explicitly
mentioned in the results tables, such as Table 1. Additionally, we propose dummy baselines that are
tailored to solar irradiance forecasting, namely:

Persistence: This baseline relies solely on the past day’s time-series data, considering it as the
prediction for future values.

Clear Sky baseline: This baseline uses the computable clear sky components of solar irradiance
(Ineichen model (Ineichen, 2016)), which represent the total amount of irradiance that would reach
the station in the absence of clouds.

Fourier approximations: We compute Fourier approximations over the previous day’s time series,
and apply a low-pass filter to keep a limited number of modes. We consider 3 baselines: Fourier3,
Fourier4, and Fourier5, corresponding to approximations with 3, 4, and 5 modes, respectively.

5.2 “Hard” vs. “Easy” forecasting scenarios

To assess the capability of the suggested model in capturing cloud-induced variability in GHI forecasts,
we perform evaluations on test stations using various time splits, aiming to identify its strengths and
limitations in comparison to previous approaches. This analysis allows us to pinpoint the specific
scenarios where CrossViViT excels, as well as the areas where it falls short. Furthermore, it provides
insights into the comparative strengths and weaknesses of previous approaches.

Given the favorable performance of the Persistence baseline when the GHI values exhibit similarity
between consecutive days, we propose a time split approach that categorizes examples as either
"Easy" or "Hard" based on the extent of GHI variation. The "Easy" examples entail minimal changes
in GHI across consecutive days (the Persistence baseline works well), while the "Hard" examples
involve significant variations (the Persistence baseline fails). To quantify the similarity, we employ
a measure based on the ratio of the area under the GHI curve for the two days. In order to assign
equal importance to ratios such as 0.5 (indicating GHI half that of the previous day) and 2 (indicating
GHI double that of the previous day), we utilize the measure r =

∣∣∣log y
yprev

∣∣∣. Here, y represents the
GHI over a 24-hour period, and yprev represents the GHI over the previous 24 hours. Accordingly, we
categorize cases as "Easy" when r <

∣∣log ( 2
3

)∣∣, and "Hard" otherwise.

5.3 Performance on stations and years outside the training distribution

Table 1 presents a comprehensive comparison of the proposed CrossViViT approach with state-of-
the-art timeseries models and dummy baselines. The evaluation is conducted on the test stations TAM
and CAB, covering the periods 2017-2019 and 2020-2022, respectively. It is important to note that
due to the unavailability of data for TAM during the 2020-2022 period, we perform the evaluation
using the 2017-2019 data instead.

During the 2017-2019 period, CrossViViT achieves the lowest MAE compared to the time-series
models on the TAM station. However, it is important to note that the persistence baseline still
outperforms our approach. This performance disparity can be attributed to the characteristics of the
TAM station, which is situated in a desert region characterized by predominantly clear and sunny days.
As we incorporate cloud information, it may occasionally underestimate the GHI in such clear-sky
conditions. Furthermore, the training dataset consists of data from only one "sunny" station located in
the Canary Islands (IZA), limiting the availability of examples to effectively learn clear-sky patterns.
Based on these results, one can see that for stations characterized by low irradiance intermittency,
a combination of persistence and clear-sky models might be sufficient. For the 2020-2022 period
on the CAB station, CrossViViT outperforms all baselines across different time splits. This notable
improvement can be attributed to the specific meteorological conditions of the CAB station, which
experiences a higher frequency of cloudy days. This aligns with the primary focus of our research,
which aims to accurately forecast GHI under cloudier conditions. Predictions visualisations can be
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Figure 3: Prediction visualisations from CrossViViT for four examples in CAB station, on the
2020-2022 test period. (a) CrossViViT predictions. (b) Multi-Quantile CrossViViT median (q0.50
quantile) predictions with [q0.02,q0.98] prediction interval. (c) Predictions from a strong baseline,
CrossFormer, (d) Fourier spectrum of the target, our prediction, and CrossFormer prediction. Figure
(a) illustrates that CrossViViT closely aligns with the ground truth by effectively capturing cloud
variations, whereas CrossFormer assumes a clear-sky pattern. This is confirmed by the Fourier spectra
depicted in (d), where CrossFormer’s spectrum exhibits a rapid decay in contrast to CrossViViT.

seen in Figure 3, along with the comparison of the fourier spectra of our prediction, the ground truth
and a strong baseline, CrossFormer.

5.4 Zero-shot forecasting on unseen stations and in-distribution years

To evaluate the zero-shot capabilities of CrossViViT in terms of performance on unseen stations, we
maintain the same time period as the training data, thereby emphasizing the spatial dimension
of the analysis. The radar plots presented in Figure 4 demonstrate that our approach consistently
outperforms the baselines across all splits for the CAB and PAY stations, which are characterized
by higher cloud cover. However, it is noteworthy that Persistence remains competitive for the TAM
station, particularly in the "easy" splits where irradiance variations are minimal throughout the day.
This observation further underscores the efficacy of CrossViViT in accurately accounting for cloud
conditions, particularly when examining the performance metrics of the "Hard" split.

5.5 Multi-Quantile results

Table 1 also shows results of the Multi-Quantile CrossViViT, including the MAE of the median
prediction (the 0.5 quantile), along with the test confidence pt obtained for the prediction interval: the
probability for the ground-truth to be included within the interval, for each time step, averaged across
the entire dataset considered. As for the other models, the evaluation is conducted on the test stations
TAM and CAB, covering the periods 2017-2019 and 2020-2022, respectively. It is important to note
that for this Multi-Quantile version, the goal is not to provide the best prediction from the median
but rather to provide confident prediction intervals, with a high pt, ideally close to 96%, which we
theoretically should reach using 0.02 and 0.98 extreme quantiles. We include a small version of the
Multi-Quantile model, and a large one, matching the number of parameters used for our Cross ViViT
model. The small model provides the best performance.

The prediction intervals achieved a high level of confidence, surpassing 0.9, for the unseen CAB
station. However, for the TAM station, the harsh environmental conditions of the desert posed a
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Figure 4: Radar plots illustrating the comparative analysis of CrossViViT performance with Persis-
tence and CrossFormer models, during training years (the in-distribution period from 2008 to 2016),
on the unobserved stations of TAM, CAB, and PAY, respectively on (a), (b) and (c). CrossViViT
demonstrates greater versatility compared to CrossFormer in forecasting under diverse conditions.
Persistence struggles to accurately predict under challenging conditions, particularly on "Hard" days.

challenge for reliable estimation of prediction intervals, due to the abundance of clear sky components
which is not seen during training. Although the median prediction results were comparatively inferior
to those of a baseline method, it demonstrates consistent patterns in its variation across easy and
difficult cases. Furthermore, the test confidence of the proposed method remains relatively constant
across different splits, for both stations. Prediction visualisations can be seen on Figure 3.

5.6 Ablating the Rotary Positional Embedding

In order to assess the influence of RoPE, we ablate this design choice against a learned positional
encoding which was the standard encoding used in ViViT. As Table 1 shows, RoPE contributes to
the good performance in OOD stations and OOD years. Moreover, in the hard cases of the CAB
station, RoPE outperforms the learnable positional encoding showcasing its importance in capturing
cloud-induced variations.

6 Conclusion, Limitations, and Future Work

We present CrossViViT, an architecture for accurate day-ahead time-series forecasting of solar
irradiance using the spatio-temporal context derived from satellite data. We suggest a testing scheme
that captures model performance in crucial situations, such as days with varying cloudy conditions,
and we enable the extraction of a distribution for each time step prediction. We also introduce a new
multi-modal dataset that provides a diverse collection of solar irradiance and related physical variables
from multiple geographically diverse solar stations. CrossViViT exhibits robust performance in solar
irradiance forecasting, including zero-shot tests at unobserved solar stations during unobserved years,
and holds great promise in promoting the effective integration of solar power into the grid.

However, there are some limitations to our study. Firstly, we would benefit to include more test
years and stations to further validate the effectiveness of our approach. It would also be interesting
to explore different past and future horizons to further evaluate the robustness of our model across
different prediction and context horizons. The training time remains our key limitation since it takes
close to 5 hours per epoch on a single GPU (see Appendix), but we plan on optimizing the architecture
further in future work. Lastly, we plan to investigate the use of a cropping methodology on the context
as a regularization method. Despite these limitations, our study clearly highlights the importance of
incorporating spatio-temporal context in solar irradiance forecasting and demonstrates the potential
of deep learning in addressing the challenges associated with variability in solar irradiance. Given
the promising results observed in our current study, we intend to investigate the applicability of
CrossViViT to other physical variables that are significantly influenced by their surrounding context.
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A Experimental details

In this section, we present details about training CrossViViT and its Multi-Quantile variant, as well
as the time-series baselines.

A.1 Training setup

A.1.1 CrossViViT

CrossViViT integrates two modalities: satellite video data and time-series station data. For both
modalities, essential information such as geographic coordinates, elevation, and precise time-stamps
is available. In this section, we provide a comprehensive explanation of the encoding process for each
feature and conclude by presenting the hyperparameters of the model.

We first start by encoding the timestamps. For each time point, we have access to the following time
features: The year, the month, the day, the hour and the minute at which the measurement was made.
We use a cyclical embedding to encode these time features discarding the year. For a time feature x,
its corresponding embedding can be expressed as:

[
sin

(
2πx

ω(x)

)
, cos

(
2πx

ω(x)

)]
(8)

Where ω(x) is the frequency for time feature x (see Table 2) for the frequency of each time feature).
We concatenate these features to form our final time embedding that we simply concatenate to the
context and the time-series channels respectively. Furthermore, we incorporate the elevation data
for each coordinate in both the context and the time-series. Specifically, the elevation values are
concatenated to their corresponding channels in the context and time-series representations.

Regarding the geographic coordinates, we possess information regarding the latitude and longitude
for both the context and the station. These coordinates are normalized so as to lie in [−1, 1]:

{
lat← 2

( lat+90
180

)
− 1

lon← 2
( lon+180

360

)
− 1

(9)

Table 2: Frequency of each time feature.
Time feature Frequency

Month 12
Day 31
Hour 24

Minute 60

Rotary Positional Emebedding Next, we embed these coordinates using Rotary Positional Em-
bedding (RoPE) that we provide a PyTorch implementation for:
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Rotary Positional Embedding
1 class AxialRotaryEmbedding(nn.Module):
2 def __init__(self, dim, max_freq):
3 super().__init__()
4 self.dim = dim
5 scales = torch.linspace(1.0, max_freq / 2, dim // 4)
6

7 self.register_buffer("scales", scales)
8

9 def forward(self, coords: torch.Tensor):
10 """
11 Args:
12 coords (torch.Tensor): Coordinates of shape [B, 2, height, width]
13 """
14 seq_x = coords[:, 0, 0, :]

15 seq_x = seq_x.unsqueeze(-1)
16 seq_y = coords[:, 1, :, 0]
17 seq_y = seq_y.unsqueeze(-1)
18

19 scales = self.scales[(*((None, None)), Ellipsis)]
20 scales = scales.to(coords)
21

22 seq_x = seq_x * scales * pi
23 seq_y = seq_y * scales * pi
24

25 x_sinu = repeat(seq_x, "b i d -> b i j d", j=seq_y.shape[1])
26 y_sinu = repeat(seq_y, "b j d -> b i j d", i=seq_x.shape[1])
27

28 sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim=-1)
29 cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim=-1)

30

31 sin, cos = map(lambda t: rearrange(t, "b i j d -> b (i j) d"), (sin,
cos))↪→

32 sin, cos = map(lambda t: repeat(t, "b n d -> b n (d j)", j=2), (sin,
cos))↪→

33 return sin, cos

Training configuration CrossViViT was trained on two RTX8000 GPUs, over 17 epochs with
early stopping. Its Multi-Quantile variant was also trained on two RTX8000 GPUs, over 12 epochs
with early stopping. The remaining settings are identical for both variants: An effective batch size of
20 was utilized for both models; The training process employed the AdamW optimizer (Loshchilov
and Hutter, 2019) with a weight decay of 0.05; A cosine warmup strategy was implemented, gradually
increasing the learning rate from 0 to 0.0016 over five epochs before starting the decay phase.

Below, we highlight the relevant model hyperparameters for CrossViViT and Multi-Quantile Cross-
ViViT:
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CrossViViT hyperparameters
1 patch_size: [8, 8]
2 use_glu: True
3 max_freq: 128
4 num_mlp_heads: 1
5

6 ctx_masking_ratio: 0.99
7 ts_masking_ratio: 0
8

9 # These hyperparameters apply to the encoding transformers and cross-attention
10 dim: 384
11 depth: 16

12 heads: 12
13 mlp_ratio: 4
14 dim_head: 64
15 dropout: 0.4
16

17 # These only apply to the decoding transformer
18 decoder_dim: 128
19 decoder_depth: 4
20 decoder_heads: 6
21 decoder_dim_head: 128

Multi-Quantile CrossViViT hyperparameters
1 patch_size: [8, 8]
2 use_glu: True
3 max_freq: 128
4 num_mlp_heads: 11
5 quantiles: [0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98]
6

7 ctx_masking_ratio: 0.99
8 ts_masking_ratio: 0
9

10 # These hyperparameters apply to the encoding transformers and cross-attention
11 dim: 256

12 depth: 16
13 heads: 12
14 mlp_ratio: 4
15 dim_head: 64
16 dropout: 0.4
17

18 # These only apply to the decoding transformer
19 decoder_dim: 128
20 decoder_depth: 4
21 decoder_heads: 6
22 decoder_dim_head: 128

A.1.2 Time-series baselines

We conducted training on a total of nine baseline models, and we emphasize the importance of the
hyperparameters used for each of these models. Below, we provide a comprehensive overview of the
hyperparameters employed in our study:

• seq_len: Input sequence length.

• label_len: Start token length.

• pred_len: Prediction sequence length.

• enc_in: Encoder input size.
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• dec_in: Decoder input size.
• e_layers: Number of encoder layers.
• d_layers: Number of decoder layers.
• c_out: Output size.
• d_model: Dimension of model.
• n_heads: Number of attention heads.
• d_ff: Dimension of Fully Connected Network.
• factor: Attention factor.
• embed: Time features encoding, options:[timeF, fixed, learned].
• distil: Whether to use distilling in encoder.
• moving average: Window size of moving average kernel.

We adapted the majority of the baselines using the Time Series Library (TSlib (Wu et al., 2023)),
which served as a valuable resource in our experimentation. We refer the reader to the original papers,
which served as a base for the hyperparameters utilized in our study, in order to have a comprehensive
understanding of the models and the training settings.

LightTS
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 d_model: 256
6 dropout: 0.05
7 chunk_size: 24

FiLM
1 model:
2 enc_in: 10
3 seq_len: 48
4 label_len: 24
5 pred_len: 48
6 e_layers: 2
7 ratio: 0.4

DLinear
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 moving_avg: 25
6 individual: False

Crossformer
1 model:
2 enc_in: 10
3 seq_len: 48
4 pred_len: 48
5 d_model: 1024
6 n_heads: 2
7 e_layers: 4
8 d_ff: 2048
9 factor: 10

10 dropout: 0.01

Reformer
1 model:
2 enc_in: 10
3 c_out: 1
4 seq_len: 48
5 pred_len: 48
6 d_model: 512
7 n_heads: 8
8 e_layers: 3
9 d_ff: 2048

10 factor: 5
11 dropout: 0.05
12 embed: timeF
13 activation: gelu

PatchTST
1 model:
2 enc_in: 10
3 c_out: 1
4 seq_len: 48
5 pred_len: 48
6 d_model: 1024
7 n_heads: 6
8 e_layers: 3
9 d_ff: 2048

10 factor: 10
11 dropout: 0.05
12 embed: timeF
13 activation: gelu
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Autoformer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out:
5 seq_len: 48
6 label_len: 24
7 pred_len: 48
8 moving_avg: 25
9 d_model: 1024

10 n_heads: 8
11 e_layers: 3
12 d_layers: 2
13 d_ff: 2048
14 factor: 10
15 dropout: 0.01
16 embed: timeF
17 activation: gelu

Informer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out: 1
5 label_len: 24
6 pred_len: 48
7 d_model: 2048
8 n_heads: 4
9 e_layers: 2

10 d_layers: 2
11 d_ff: 2048
12 factor: 5
13 dropout: 0.1
14 embed: timeF
15 activation: gelu
16 distil: True

FEDformer
1 model:
2 enc_in: 10
3 dec_in: 10
4 c_out: 1
5 seq_len: 48
6 label_len: 24
7 pred_len: 48
8 moving_avg: 25
9 d_model: 512

10 n_heads: 8
11 e_layers: 3
12 d_layers: 2
13 d_ff: 2048
14 dropout: 0.05
15 version: fourier
16 mode_select: random
17 modes: 32

The training of the baselines took place on a single RTX8000 GPU over the course of 100 epochs.
During training, a batch size of 64 was consistently employed. For model optimization, we utilized
the AdamW optimizer (Loshchilov and Hutter, 2019), incorporating a weight decay value set to 0.05.
Moreover, we implemented a learning rate reduction strategy known as Reduce Learning Rate on
Plateau, which gradually decreased the learning rate by a factor of 0.5 after a patience of 10 epochs.

For the hyperparameter tuning of the baselines, we employed the Orion package (Bouthillier et al.,
2022), which is an asynchronous framework designed for black-box function optimization. Its
primary objective is to serve as a meta-optimizer specifically tailored for machine learning models.
As an example, we present the details of the Crossformer hyperparameter tuning scheme, showcasing
the approach we followed to optimize its performance:

Crossformer hyperparameters tuning
1 params:
2 optimizer.lr: loguniform(1e-8, 0.1)
3 optimizer.weight_decay: loguniform(1e-10, 1)
4 d_model: choices([128,256,512,1024,2048])
5 d_ff: choices([1024,2048,4096])
6 n_heads: choices([1,2,4,8,16])
7 e_layers: choices([1,2,3,4,5])
8 dropout: choices([0.01,0.05,0.1,0.2,0.25])
9 factor: choices([2,5,10])

10 max_epochs: fidelity(low=5, high=100, base=3)

B Additional results and visualisations

B.1 Performance on (unobserved) validation PAY station, on validation and test years

This section presents a comprehensive comparative analysis that assesses the performance of Cross-
ViViT in relation to various timeseries approaches and solar irradiance baselines specifically for the
PAY station. The evaluation encompasses both the validation period (2017-2019) and the test period
(2020-2022), with the validation period serving as the basis for model selection. The results, as
presented in Table 3, offer compelling evidence of the superior performance of CrossViViT compared
to the alternative approaches across all evaluation splits. These findings underscore the crucial role of
accurately capturing cloud dynamics in solar irradiance forecasting, which is particularly pronounced
in the "Hard" splits.
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Table 3: Comparison of model performances in the val station PAY, during test years (2020-2022)
and val years (2017-2019). We report the MAE and RMSE for the easy and difficult splits (presented
in the main paper) along with the number of data points for each split. We add the MAE resulting from
the Multi-Quantile CrossViViT median prediction, along with pt, the probability for the ground-truth
to be included within the interval, averaged across time steps.

Models Parameters

PAY (Test years - 2020-2022) PAY (Val years - 2017-2019)

All (12171) Easy (8053) Hard (4118) All (27166) Easy (16683) Hard (10483)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence N/A 61.9 140.05 44.98 105.47 94.99 190.31 63.61 141.16 48.57 108.91 87.54 180.99
Fourier3 N/A 69.21 129.29 52.17 91.61 102.53 181.63 71.71 130.58 56.03 94.81 96.68 172.86
Fourier4 N/A 65.67 131.13 48.77 93.68 98.72 183.48 67.35 132.41 51.8 96.71 92.08 174.79
Fourier5 N/A 63.39 132.38 46.14 95.08 97.14 184.71 65.71 133.87 50.03 98.61 90.66 175.98
Clear Sky (Ineichen, 2016) N/A 65.99 138.78 56.41 116.72 84.72 174.03 62.12 131.69 52.59 109.91 77.28 160.36

ReFormer (Kitaev et al., 2020) 8.6M 59.15 109.75 51.67 91.67 73.79 138.44 59.3 109.3 54.06 94.31 67.64 129.62
Informer (Zhou et al., 2021) 56.7M 79.18 133.47 75.8 126.07 85.78 146.86 77.51 131.72 75.65 126.58 80.46 139.52
FiLM (Zhou et al., 2022b) 9.4M 69.87 124.86 55.93 91.15 97.11 172.72 71.1 125.32 58.35 94.17 91.39 163.06
PatchTST (Nie et al., 2023) 9.6M 63.21 131.64 53.06 113.78 83.06 160.93 63.88 131.14 55.47 115.59 77.25 152.64
LighTS (Zhang et al., 2022) 32K 58.57 111.22 48.93 88.69 77.4 145.53 58.22 110.84 50.72 91.24 70.16 136.33
CrossFormer (Zhang and Yan, 2023) 227M 59.64 111.03 51.04 90.34 76.45 143.08 59.39 111.49 52.55 93.15 70.29 135.66
FEDFormer (Zhou et al., 2022a) 23.6M 63.44 110.62 58.15 97.33 73.79 132.83 62.46 109.92 59.88 100.61 66.57 123.3
DLinear (Zeng et al., 2022) 4.7K 75.09 128.64 59.42 93.82 105.74 178.04 76.78 129.45 62.64 97.93 99.29 167.81
AutoFormer (Wu et al., 2021) 50.4M 73.36 117.22 68.89 105.52 82.12 137.25 71.39 114.96 69.42 106.79 74.54 126.88

CrossViViT 145M 51.47 107.73 41.59 85.14 70.81 141.87 52.02 108.77 44.71 90.47 63.65 132.79

MAE pt MAE pt MAE pt MAE pt MAE pt MAE pt

Multi-Quantile CrossViViT (small) 78.8M 59.06 0.83 54.96 0.83 67.06 0.84 57.65 0.86 51.75 0.87 67.05 0.86
Multi-Quantile CrossViViT (large) 145.5M 74.18 0.89 68.69 0.91 82.38 0.87 59.97 0.87 52.67 0.88 71.59 0.85

B.2 Performance in the operational setting: 00:00 to 23:00 window only

In this section, we present an assessment of CrossViViT’s performance in an operational context,
specifically focusing on evaluations conducted within the 00:00 to 23:00 time window. This approach
provides insights into the model’s effectiveness in its intended real-world application, where it is
typically executed once daily, precisely at midnight. This evaluation setup offers a more accurate
representation of the model’s practical utility compared to the sliding window approach. Table 4 shows
that the relative performance of CrossViViT over baselines is still maintained which demonstrates the
usefulness of our approach in real-world scenarios.

Table 4: Comparison of model performances in the test station CAB, during test years (2020-2022)
and test station TAM on val years (2017-2019) for 00:00 to 23:00 windows only. We report the
MAE and RMSE for the easy and hard splits along with the number of data points for each split.

Models Parameters

CAB (2020-2022) TAM (2017-2019)

All (207) Easy (120) Hard (87) All (48) Easy (42) Hard (6)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence N/A 63.19 130.5 49.91 103.23 81.49 160.7 33.94 98.15 19.75 53.91 133.32 238.15
Fourier3 N/A 69.49 122.68 54.9 90.38 89.63 156.67 57.7 99.09 44.57 58.76 149.62 233.2
Fourier4 N/A 65.78 123.84 51.71 92.03 85.19 157.5 45.55 95.98 31.95 52.41 140.79 233.4
Fourier5 N/A 64.55 124.51 50.24 93.08 84.3 157.9 41.91 94.95 27.79 49.58 140.77 234.33
Clear Sky (Ineichen, 2016) N/A 67.31 140.42 58.68 121.49 79.21 162.96 40.93 99.03 29.42 55.82 121.5 237.99

ReFormer (Kitaev et al., 2020) 8.6M 60.64 104.52 55.98 92.28 67.07 119.35 81.5 134.89 77.95 126.06 106.36 185.29
Informer (Zhou et al., 2021) 56.7M 72.82 125.44 69.23 118.1 77.78 134.91 84.51 137.51 81.91 131.83 102.74 172.11
FiLM (Zhou et al., 2022b) 9.4M 69.36 120.87 58.65 95.01 84.14 149.36 63.42 105.46 53.4 77.02 133.58 217.82
PatchTST (Nie et al., 2023) 9.6M 64.37 124.09 56.78 108.37 74.84 142.96 73.16 142.01 67.18 130.89 115.03 203.49
LighTS (Zhang et al., 2022) 32K 61.54 105.14 54.56 87.22 71.18 125.73 61.73 101.48 52.95 80.29 123.19 193.04
CrossFormer (Zhang and Yan, 2023) 227M 58.19 104.66 52.96 90.03 65.4 121.99 66.25 113.67 58.81 95.04 118.33 200.37
FEDFormer (Zhou et al., 2022a) 23.6M 59.11 104.56 52.88 88.58 67.71 123.25 114.47 176.24 116.59 176.21 99.62 176.42
DLinear (Zeng et al., 2022) 4.7K 77.36 125.17 65.61 100.19 93.57 153.08 79.36 121.69 70.71 99.87 139.9 220.55
AutoFormer (Wu et al., 2021) 50.4M 72.16 110.54 67.87 97.6 78.07 126.23 141.97 204.4 146.02 208.11 113.62 176.2

CrossViViT 145M 51.91 101.58 46.24 87 59.73 118.8 52.72 99.11 46.47 82.53 96.42 175.79

B.3 Performance evaluation with MAPE

In this section, we report the Mean Absolute Percentage Error (MAPE)3 on test station CAB during
test years (2020-2022) and test station TAM during val years (2017-2019) (see Table 5). The MAPE
highlights even more the strength of our approach compared to the baselines. We also present results

3Since during the night, the GHI values are zero, we clamp the denominator by ϵ = 1 since the precision of
the GHI values in the dataset is 1.
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Table 5: Comparison of model performances across test stations TAM and CAB, during test years
(2020-2022) for CAB, and val years (2017-2019) for TAM, using the Mean Absolute Percentage
Error (MAPE) metric. We report the MAPE for the easy and difficult splits presented in section
5.2 along with the number of data points for each split. We add the MAPE resulting from the
Multi-Quantile CrossViViT median prediction, along with pt, the probability for the ground-truth to
be included within the interval, averaged across time steps. Additionally, we ablate RoPE against a
learned positional embedding.

Models Parameters
CAB (2020-2022) TAM (2017-2019)

All (9703) Easy (5814) Hard (3889) All (2299) Easy (2064) Hard (235)
Persistence N/A 0.54 0.37 0.8 0.14 0.08 0.67
Fourier3 N/A 8.43 8.22 8.76 19.98 20.37 16.6
Fourier4 N/A 5.42 5.58 5.18 7.54 7.4 8.83
Fourier5 N/A 4.21 4.17 4.26 7.55 7.44 8.47
Clear Sky (Ineichen, 2016) N/A 0.72 0.53 1.02 0.28 0.21 0.9

ReFormer (Kitaev et al., 2020) 8.6M 4.05 3.7 4.59 5.88 5.89 5.78
Informer (Zhou et al., 2021) 56.7M 6.12 4.92 7.93 5.44 5.42 5.57
FiLM (Zhou et al., 2022b) 9.4M 8.88 9.18 8.45 11.62 11.64 11.43
PatchTST (Nie et al., 2023) 9.6M 2.53 2.4 2.74 3.32 3.29 3.59
LighTS (Zhang et al., 2022) 32K 7.08 7.08 7.08 12.28 11.82 16.29
CrossFormer (Zhang and Yan, 2023) 227M 3.07 2.76 3.54 3.57 3.54 3.86
FEDFormer (Zhou et al., 2022a) 23.6M 5.35 4.95 5.96 12.83 13.15 10.01
DLinear (Zeng et al., 2022) 4.7K 13.98 12.39 16.37 13.11 12.98 14.21
AutoFormer (Wu et al., 2021) 50.4M 10.47 9.77 11.51 23.33 24.18 15.91

CrossViViT 145M 0.43 0.33 0.58 0.17 0.14 0.47
CrossViViT (Learned PE)4 145M 0.83 0.64 1.13 0.95 0.99 0.6

MAPE pt MAPE pt MAPE pt MAPE pt MAPE pt MAPE pt

Multi-Quantile CrossViViT (small) 78.8M 0.61 0.92 0.43 0.93 0.87 0.90 0.61 0.92 0.44 0.93 0.87 0.90
Multi-Quantile CrossViViT (large) 145.5M 0.69 0.89 0.49 0.91 0.99 0.87 0.69 0.89 0.49 0.91 0.99 0.87

of the ablated model for which we replace RoPE with a traditional learned Positional Encoding.
Despite showing a better performance than most baselines, it does showcase a lower performance
than the original CrossViViT, which underlines the importance of the choice of RoPE.

B.4 Inference times

Table 6 shows inference time metrics of CrossViViT and the time-series baselines and we do so by
reporting two main metrics:

• Latency: The time it takes for the model to process one instance (batch size=1).
• MAC: Number of multiply-accumulate operations (MAC). A multiply-accumulate operation

corresponds to a+ (b× c) which counts as one operation.

The above metrics have all been computed on a single RTX8000 GPU. From Table 6, we can see
that CrossViViT and its multi-quantile variant have the longest inference and training times which is
normal given that we incorporate two different modalities, one of which is usually very expensive
to process (i.e. satellite data). But we argue that in an operational setting, CrossViViT only needs
to be executed once a day which means that while it is desirable to have a relatively short inference
time, it may not be of paramount importance, especially if such speed gains come at the expense of
predictive accuracy. It is worth acknowledging that a noteworthy limitation lies in the training time,
which could potentially be improved through optimization efforts in future work.

B.5 Visualisations for day ahead time series predictions

This section presents visualizations of predictions generated by CrossViViT and CrossFormer on the
PAY station for both the validation period (2017-2019) (see Figure 6) and the test period (2020-2022)
(see Figure 5). We also present visualizations of predictions generated by the Multi-Quantile version,
for the two periods, on the PAY station. The predictions depicted in red are the median (50% quantile)
estimation from the model, and the generated prediction interval is defined as the interval between
the two predefined quantiles: [q0.02, q0.98]

4We replace RoPE with learnable spatial positional encoding. This was done by adding a learnable parameter
p ∈ RN×d to the encoded input, where N is the number of tokens in each satellite frame.
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Figure 5: Visualizations of CrossViViT and CrossFormer are presented for a subset of 12 randomly
selected days from the "Hard" split on the PAY station during the test period spanning from 2020 to
2022.
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Figure 6: Visualizations of CrossViViT and CrossFormer are presented for a subset of 12 randomly
selected days from the "Hard" split on the PAY station during the validation period spanning from
2017 to 2019.

23



Figure 7: Visualizations of Multi-Quantile CrossViViT (median prediction and [q0.02, q0.98] prediction
interval) and CrossFormer predictions are presented for a subset of 12 randomly selected days from
the "Hard" split on the PAY station during the validation period spanning from 2020 to 2022.
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Figure 8: Visualizations of Multi-Quantile CrossViViT (median prediction and [q0.02, q0.98] prediction
interval) and CrossFormer predictions are presented for a subset of 12 randomly selected days from
the "Hard" split on the PAY station during the validation period spanning from 2017 to 2019.
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Table 6: Comparison of models’ inference metrics and training times. We report the mean latency
and standard deviation in milliseconds as well as Giga MACs and the training time per epoch. All
these metrics were computed for a single NVIDIA RTX8000 GPU.

Models Latency (ms) Giga MACs Training time per epoch (s)
ReFormer (Kitaev et al., 2020) 5.43 ± 0.32 1.66 387
Informer (Zhou et al., 2021) 8.63 ± 0.30 2.54 623
FiLM (Zhou et al., 2022b) 9.5 ± 0.25 - 445
PatchTST (Nie et al., 2023) 2.69 ± 0.13 0.57 106
LighTS (Zhang et al., 2022) 0.82 ± 0.087 < 0.01 370
CrossFormer (Zhang and Yan, 2023) 17.89 ± 0.43 7.05 1300
FEDFormer (Zhou et al., 2022a) 66.41 ± 0.63 1.03 1134
DLinear (Zeng et al., 2022) 0.29 ± 0.007 < 0.01 365
AutoFormer (Wu et al., 2021) 32.03 ± 0.54 2.92 1500

CrossViViT (145M) 65.03 ± 0.43 180.47 18000
Multi-Quantile CrossViViT (78.8M) 50.48 ± 0.24 100.45 18000

C Vision Transformers (ViT) and Video Vision Transformers (ViViT)

ViT The Vision Transformer (ViT) model (Dosovitskiy et al., 2020) leverages self-attention mech-
anisms to efficiently process images, inspired by the popular transformer architecture (Bahdanau
et al., 2015; Vaswani et al., 2017) notably based on the scaled dot product attention: given the query
matrix Q, key matrix K, and value matrix V : Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V where

dk is the dimensionality of the keys. In the ViT model, the input image of dimensions H ×W is
divided into non-overlapping patches xi ∈ Rh×w, which are linearly projected and transformed into
d-dimensional vector tokens zi ∈ Rd using a learned weight matrix E that applies 2D convolution.
The sequence of patches is defined as z = [zclass,Ex1, ...,ExP ] + Epos, where zclass is an optional
learned classification token representing the class label, and Epos ∈ RP×d is a 1D learned positional
embedding that encodes position information.

To extract global features from the image, the embedded patches undergo K transformer layers.
Each transformer layer k consists of Multi-Headed Self-Attention (MSA) (Vaswani et al., 2017),
layer normalization (LN) (Ba et al., 2016), and MLP blocks with residual connections. The MLPs
consist of two linear layers separated by the Gaussian Error Linear Unit (GELU) activation function
(Hendrycks and Gimpel, 2016). The output of the final layer can be used for image classification,
either by directly utilizing the classification token or by applying global average pooling to all tokens
zL if the classification token was not used initially.

ViViT The Video Vision Transformer (Arnab et al., 2021) extends the ViT model to handle video
classification tasks by incorporating both spatial and temporal dimensions within a transformer-like
architecture. The authors propose multiple versions of the model, with a key consideration being how
to embed video clips for attention computation.

Two approaches are presented: (1) Uniform frame sampling and (2) Tubelet embedding. The first
method involves uniformly sampling nt frames from the video clip, applying the same ViT embedding
method Dosovitskiy et al. (2020) to each 2D frame independently, and concatenating the resulting
tokens into a single sequence. The second method extracts non-overlapping spatio-temporal "tubes"
from the input volume and linearly projects them into Rd, effectively extending ViT’s embedding
technique to 3D data, akin to performing a 3D convolution. Intuitively, the second method allows
for the fusion of spatio-temporal information during tokenization, whereas the first method requires
independent temporal fusion post-tokenization. Experimental results, however, show only slightly
superior performance for the second method in specific scenarios, despite its significantly higher
computational complexity (Arnab et al., 2021).
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