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Abstract

While distributional reinforcement learning (DistRL) has been empirically effective,
the question of when and why it is better than vanilla, non-distributional RL has
remained unanswered. This paper explains the benefits of DistRL through the
lens of small-loss bounds, which are instance-dependent bounds that scale with
optimal achievable cost. Particularly, our bounds converge much faster than those
from non-distributional approaches if the optimal cost is small. As warmup, we
propose a distributional contextual bandit (DistCB) algorithm, which we show
enjoys small-loss regret bounds and empirically outperforms the state-of-the-art
on three real-world tasks. In online RL, we propose a DistRL algorithm that
constructs confidence sets using maximum likelihood estimation. We prove that
our algorithm enjoys novel small-loss PAC bounds in low-rank MDPs. As part of
our analysis, we introduce the ℓ1 distributional eluder dimension which may be of
independent interest. Then, in offline RL, we show that pessimistic DistRL enjoys
small-loss PAC bounds that are novel to the offline setting and are more robust to
bad single-policy coverage.

1 Introduction

The goal of reinforcement learning (RL) is to learn a policy that minimizes/maximizes the mean
loss/return (i.e., cumulative costs/rewards) along its trajectory. Classical approaches, such as Q-
learning [Mnih et al., 2015] and policy gradients [Kakade, 2001], often learn Q-functions via
least square regression, which represent the mean loss-to-go and act greedily with respect to these
estimates. By Bellman’s equation, Q-functions suffice for optimal decision-making and indeed these
approaches have vanishing regret bounds, suggesting we only need to learn means well [Sutton and
Barto, 2018]. Since the seminal work of Bellemare et al. [2017], however, numerous developments
showed that learning the whole loss distribution can actually yield state-of-the-art performance in
stratospheric balloon navigation [Bellemare et al., 2020], robotic grasping [Bodnar et al., 2020],
algorithm discovery [Fawzi et al., 2022] and game playing benchmarks [Hessel et al., 2018, Dabney
et al., 2018a, Barth-Maron et al., 2018]. In both online [Yang et al., 2019] and offline RL [Ma
et al., 2021], distributional RL (DistRL) algorithms often perform better and use fewer samples in
challenging tasks when compared to standard approaches that directly estimate the mean.

Despite learning the whole loss distribution, DistRL algorithms use only the mean of the learned
distribution for decision making, not extracting any additional information such as higher moments.
In other words, DistRL is simply employing a different and seemingly roundabout way of learning the
mean: first, learn the loss-to-go distribution via distributional Bellman equations, and then, compute
the mean of the learned distribution. Lyle et al. [2019] provided some empirical explanations of
the benefits of this two-step approach, showing that learning the distribution, e.g., its moments or
quantiles, is an auxiliary task that leads to better representation learning. However, the theoretical
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question remains: does DistRL, i.e., learning the distribution and then computing the mean, yield
provably stronger finite-sample guarantees and if so stronger how and when?

In this paper, we provide the first mathematical basis for the benefits of DistRL via the lens of
small-loss bounds, which are instance-dependent bounds that depend on the minimum achievable
cost in the problem [Agarwal et al., 2017].1 For example in linear MDPs, typical worst-case regret
bounds scale on the order of poly(d,H)

√
K, where d is the feature dimension, H is the horizon,

and K is the number of episodes [Jin et al., 2020b]. In contrast, small-loss bounds will scale on the
order of poly(d,H)

√
K · V ⋆ + poly(d,H) log(K), where V ⋆ = minπ V

π is the optimal expected
cumulative cost for the problem. We assume cumulative costs are normalized in [0, 1] without loss of
generality. As V ⋆ becomes negligible (approaches 0), the first term vanishes and the small-loss bound
yields a faster convergence rate of O(poly(d,H) log(K)), compared to the O(poly(d,H)

√
K) rate

in standard uniform bounds. Since we always have V ⋆ ≤ 1, small-loss bounds simply match the
standard uniform bounds in the worst case.

As warm-up, we show that maximum likelihood estimation (MLE), i.e., maximizing log-likelihood,
can be used to obtain small-loss regret bounds for contextual bandits (CB), i.e., the one-step RL
setting. Then, we turn to the online RL setting, and propose an optimistic DistRL algorithm that
optimizes over confidence sets constructed via MLE applied to the distributional Bellman equations.
We prove our algorithm attains the first small-loss PAC bounds in low-rank MDPs [Agarwal et al.,
2020]. Our proof uses a novel regret decomposition with triangular discrimination and also introduces
the ℓ1 distributional eluder dimension, which generalizes the ℓ2 distributional eluder dimension of Jin
et al. [2021a] and may be of independent interest. Furthermore, we design an offline distributional
RL algorithm using the principle of pessimism, and show our algorithm obtains the first small-loss
bounds in offline RL. Our offline small-loss bound holds under the weak single-policy coverage.
Notably, our result has a novel robustness property that allows our algorithm to strongly compete
with policies that either are well-covered or have small-loss, while prior approaches solely depended
on the former. Finally, we find that our distributional CB algorithm empirically outperforms existing
approaches in three challenging CB tasks.

Our key contributions are as follows:

1. As warm-up, we propose a distributional CB algorithm and prove that it obtains a small-
loss regret bound (Section 4). We empirically demonstrate it outperforms state-of-the-art CB
algorithms in three challenging benchmark tasks (Section 7).

2. We propose a distributional online RL algorithm that enjoys small-loss bounds in settings with
low ℓ1 distributional eluder dimension, which we show can always capture low-rank MDPs. The
ℓ1 distributional eluder dimension may be of independent interest (Section 5).

3. We propose a distributional offline RL algorithm and prove that it obtains the first small-loss
bounds in the offline setting. Our small-loss guarantee exhibits a novel robustness to bad
coverage, which implies strong improvement over more policies than existing results in the
literature (Section 6).

In sum, we show that DistRL can yield small-loss bounds in both online and offline RL, which
provide a concrete theoretical justification for the benefits of distribution learning in decision making.

2 Related Works

Theory of Distributional RL Rowland et al. [2018, 2023] proved asymptotic convergence guar-
antees of popular distributional RL algorithms such as C51 [Bellemare et al., 2017] and QR-DQN
[Dabney et al., 2018b]. However, these asymptotic results do not explain the benefits of distributional
RL over standard approaches, since they do not imply stronger finite-sample guarantees than those
obtainable with non-distributional algorithms. In contrast, our work shows that distributional RL
yields adaptive finite-sample bounds that converge faster when the optimal cost of the problem is
small. Wu et al. [2023] recently derived finite-sample bounds for distributional off-policy evaluation
with MLE, while our offline RL section focuses on off-policy optimization.

1“First-order” generally refers to bounds that scale with the optimal value, either the maximum reward or the
minimum cost. To highlight that we are minimizing cost, we call our bounds “small-loss”.

2



First-order bounds in bandits When maximizing rewards, first-order “small-return” bounds can
be easily derived from EXP4 [Auer et al., 2002], since receiving the worst reward 0 with probability
(w.p.) δ contributes at mostR⋆δ to the regret2. When minimizing costs, receiving the worst loss 1 w.p.
δ may induce large regret relative to L⋆ if L⋆ is small. To illustrate, if R⋆ = 0 then all policies are
optimal, so no learning is needed and the small-return bound is vacuous. Yet if L⋆ = 0, sub-optimal
policies may have a large gap from L⋆, so small-loss bounds in this regime are meaningful. Small-loss
bounds are achievable in multi-arm bandits [Foster et al., 2016], semi-bandits [Neu, 2015, Lykouris
et al., 2022], and CBs [Allen-Zhu et al., 2018, Foster and Krishnamurthy, 2021].

First-order bounds in RL Jin et al. [2020a], Wagenmaker et al. [2022] obtained small-return
regret for tabular and linear MDPs via concentration bounds that scale with the variance. The idea
is that the return’s variance is bounded by some multiple of the expected value, which is bounded
by V ⋆ in the reward-maximizing setting, i.e., Var(

∑
h rh | πk) ≤ c · V πk ≤ c · V ⋆. However, the

last inequality fails in the loss-minimizing setting, so the variance approach does not easily yield
small-loss bounds. Small-loss regret for tabular MDPs was resolved by Lee et al. [2020, Theorem
4.1] using online mirror descent with the log-barrier on the occupancy measure. Moreover, Kakade
et al. [2020, Theorem 3.8] obtains small-loss regret for linear-quadratic regulators (LQRs), but their
Assumption 3 posits that the coefficient of variation for the cumulative costs is bounded, which is
false in general even in tabular MDPs. To the best of our knowledge, there are no known first-order
bounds for low-rank MDPs or in offline RL.

Risk-sensitive RL A well-motivated use-case of DistRL is risk-sensitive RL, where the goal is to
learn risk-sensitive policies that optimize some risk measure, e.g., Conditional Value-at-Risk (CVaR),
of the loss [Dabney et al., 2018b]. Orthogonal to risk-sensitive RL, this work focuses on the benefits
of DistRL for standard risk-neutral RL. Our insights may lead to first-order bounds for risk-sensitive
RL, which we leave as future work.

3 Preliminaries

As warmup, we begin with the contextual bandit problem with an arbitrary context space X , finite
action space A with size A and conditional cost distributions C : X ×A → ∆([0, 1]). Throughout,
we fix some dominating measure λ on [0, 1] (e.g., Lebesgue for continuous or counting for discrete)
and let ∆([0, 1]) be all distributions on [0, 1] that are absolutely continuous with respect to λ. We
identify such a distribution with its density with respect to λ, and we also write C(y | x, a) for
(C(x, a))(y). Let K denote the number of episodes. At each episode k ∈ [K], the learner observes
a context xk ∈ X , samples an action ak ∈ A, and then receives a cost ct ∼ C(xt, at), which we
assume to be normalized, i.e., ct ∈ [0, 1]. The goal is to design a learner that attains low regret with
high probability, where regret is defined as

RegretCB(K) =
∑K

k=1 C̄(xk, ak)− C̄(xk, π⋆(xk)),

where f̄ =
∫
yf(y)dλ(y) for any f ∈ ∆([0, 1]) and π⋆(xk) = argmina∈A C̄(xk, a).

The focus of this paper is reinforcement learning (RL) under the Markov Decision Process (MDP)
model, with observation space X , finite action space A with size A, horizon H , transition kernels
Ph : X ×A → ∆(X ) and cost distributions Ch : X ×A → ∆([0, 1]) at each step h ∈ [H]. We start
with the Online RL setting, which proceeds over K episodes as follows: at each episode k ∈ [K],
the learner plays a policy πk ∈ [X → ∆(A)]H ; we start from a fixed initial state x1; then for each
h = 1, 2, . . . ,H , the policy samples an action ah ∼ πk

h(xh), receives a cost ch ∼ Ch(xh, ah), and
transitions to the next state xh+1 ∼ Ph(xh, ah). Our goal is to compete with the optimal policy that
minimizes expected the loss, i.e., π⋆ ∈ argminπ∈Π V

π where V π = Eπ

[∑H
h=1 ch

]
. Regret bounds

aim to control the learner’s regret with high probability, where regret is defined as,

RegretRL(K) =
∑K

k=1 V
πk − V ⋆.

If the algorithm returns a single policy π̂, it is desirable to obtain a Probably Approximately Correct
(PAC) bound on the sub-optimality of π̂, i.e., V π̂ − V ⋆.

2Assume rewards/losses in [0, 1] and R⋆/L⋆ is the maximum/minimum expected reward/loss.
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The third setting we study is Offline RL, where instead of needing to actively explore and collect data
ourselves, we are given H datasets D1,D2, . . . ,DH to learn a good policy π̂. Each Dh contains N
i.i.d. samples (xh,i, ah,i, ch,i, x′h,i) from the process (xh,i, ah,i) ∼ νh, ch,i ∼ Ch(xh,i, ah,i), x

′
h,i ∼

Ph(xh,i, ah,i), where νh ∈ ∆(X × A) is arbitrary, e.g., the visitations of many policies from the
current production system. The goal is to design an offline procedure with a PAC guarantee for π̂,
which should improve over the data generating process.

Distributional RL For a policy π and h ∈ [H], let Zπ
h (xh, ah) ∈ ∆([0, 1]) denote the dis-

tribution of the loss-to-go
∑H

t=h ct conditioned on rolling in π from xh, ah. The expectation
of the above is Qπ

h(xh, ah) = Z̄π
h (xh, ah) and V π

h (xh) = Eah∼πh(xh)[Q
π
h(xh, ah)]. We use

Z⋆
h, Q

⋆
h, V

⋆
h to denote these quantities with π⋆. Recall the regular Bellman operator acts on a

function f : X × A → [0, 1] as follows: T π
h f(x, a) = C̄h(x, a) + Ex′∼Ph(x,a),a′∼π(x′)[f(x

′, a′)].
Analogously, the distributional Bellman operator [Morimura et al., 2012, Bellemare et al., 2017] acts
on a conditional distribution d : X ×A → ∆([0, 1]) as follows: T π,D

h d(x, a)
D
= Ch(x, a)+d(x

′, a′),

where x′ ∼ Ph(x, a), a
′ ∼ π(x′) and D

= denotes equality of distributions. Another way to think
about the distributional Bellman operator is that a sample z ∼ T π,D

h d(x, a) is generated as fol-
low: z := c + y, where c ∼ Ch(x, a), x

′ ∼ Ph(x, a), a
′ ∼ π(x′), y ∼ d(x′, a′). We will also

use the Bellman optimality operator T ⋆
h and its distributional variant T ⋆,D

h , defined as follows:

T ⋆
h f(x, a) = C̄h(x, a) + Ex′∼Ph(x,a)[mina∈A f(x

′, a′)] and T ⋆,D
h d(x, a)

D
= Ch(x, a) + d(x′, a′)

where x′ ∼ Ph(x, a), a
′ = argmina d̄(x

′, a). Please see Table 2 for an index of notations.

4 Warm up: Small-Loss Regret for Distributional Contextual Bandits

In this section, we propose an efficient reduction from CB to online maximum likelihood estimation
(MLE), which is the standard tool for distribution learning that we will use throughout the paper.
In our CB algorithm, we balance exploration and exploitation with the reweighted inverse gap
weighting (ReIGW) of Foster and Krishnamurthy [2021], which defines a distribution over actions
given predictions f̂ ∈ RA and a parameter γ ∈ R++: setting b = argmina∈A f̂(a) as the best action
with respect to the predictions, the weight for any other action a ̸= b is,

ReIGWγ(f̂ , γ)[a] :=
f̂(b)

Af̂(b) + γ(f̂(a)− f̂(b))
, (1)

and the rest of the weight is allocated to b: ReIGWγ(f̂ , γ)[b] = 1−
∑

a̸=b ReIGWγ(f̂ , γ)[a].

Algorithm 1 Distributional CB (DISTCB)
1: Input: number of episodes K, failure probability δ, ReIGW learning rate γ.
2: Initialize any cost distribution f (1).
3: for episode k = 1, 2, . . . ,K do
4: Observe context xk.
5: Sample action ak ∼ pk = ReIGW(f̄ (k)(xk, ·), γ) from Eq. (1).
6: Observe cost ck ∼ C(xk, ak) and update online MLE oracle with ((xk, ak), ck).
7: end for

We propose Distributional Contextual Bandit (DISTCB) in Algorithm 1, a two-step procedure for each
episode k ∈ [K]. Upon seeing context xk, DISTCB first samples an action ak from ReIGW generated
by means of our estimated cost distributions for each action, i.e., f̂(a) = f̄ (k)(xk, a),∀a ∈ A (Line 5).
Then, DISTCB updates f (k)(· | xk, ak) by maximizing the log-likelihood to estimate the conditional
cost distribution C(· | xk, ak) (Line 6). Formally, this second step is achieved via an online MLE
oracle with a realizable distribution class FCB ⊂ X × A → ∆([0, 1]); let Regretlog(K) be some
upper bound on the log-likelihood regret for all possibly adaptive sequences {xk, ak, ck}k∈[K],∑K

k=1 logC(ck | xk, ak)− log f (k)(ck | xk, ak) ≤ Regretlog(K).

Under realizability, C ∈ FCB , we expect Regretlog(K) ∈ O(log(K)). For instance, ifFCB is finite,
exponentially weighted average forecaster guarantees Regretlog(K) ≤ log |FCB | [Cesa-Bianchi and
Lugosi, 2006, Chapter 9]. We now state our main result for DISTCB.
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Theorem 4.1. For any δ ∈ (0, 1), w.p. at least 1 − δ, running DISTCB with γ = 10A ∨√
40A(C⋆+log(1/δ))

112(Regretlog(K)+log(1/δ))
has regret scaling with C⋆ =

∑K
k=1 mina∈A C̄(xk, a),

RegretDISTCB(K) ≤ 232
√
AC⋆ Regretlog(K) log(1/δ) + 2300A

(
Regretlog(K) + log(1/δ)

)
.

The dominant term scales with the optimal sum of costs
√
C⋆ which shows that DISTCB obtains

small-loss regret. DISTCB is also computationally efficient since each episode simply requires
computing the ReIGW. FastCB is the only other computationally efficient CB algorithm with small-
loss regret [Foster and Krishnamurthy, 2021, Theorem 1]. Our bound matches that of FastCB in
terms of dependence on A,C⋆ and log(1/δ). Our key difference with FastCB is the online supervised
learning oracle: in DISTCB, we aim to learn the conditional cost distribution by maximizing log-
likelihood, while FastCB aims to perform regression with the binary cross-entropy loss. In Section 7,
we find that DISTCB empirically outperforms SquareCB and FastCB in three challenging CB tasks,
which reinforces the practical benefits of distribution learning in CB setting.

4.1 Proof Sketch

First, apply the per-round inequality for ReIGW [Foster and Krishnamurthy, 2021, Theorem 4] to get,

RegretDistCB(K) ≲
K∑

k=1

Eak∼pk

[
A

γ
C̄(sk, ak) + γ

(
f̄ (k)(sk, ak)− C̄(sk, ak)

)2
f̄ (k)(sk, ak) + C̄(sk, ak)︸ ︷︷ ︸

⋆

]
.

For any distributions f, g ∈ ∆([0, 1]), their triangular discrimination3 is defined as D△(f ∥ g) :=∫ (f(y)−g(y))2

f(y)+g(y) dλ(y). The key insight is that ⋆ can be bounded by the triangular discrimination

of f (k)(sk, ak) and C(sk, ak): by Cauchy-Schwartz and y2 ≤ y for y ∈ [0, 1], we have f̄ − ḡ =∫
y(f(y)− g(y))dλ(y) ≤

√∫
y(f(y) + g(y))dλ(y)

√∫ (f(y)−g(y))2

f(y)+g(y) dλ(y), and hence,∣∣f̄ − ḡ∣∣ ≤√(f̄ + ḡ
)
D△(f ∥ g). (△1)

So, Eq. (△1) implies that ⋆ is bounded by D△(f (k)(sk, ak) ∥ C(sk, ak)). Since D△ is equivalent
(up to universal constants) to the squared Hellinger distance, Foster et al. [2021, Lemma A.14] implies
the above can be bounded by the online MLE regret, so w.p. at least 1− δ, we have

RegretDistCB(K) ≲
∑K

k=1
A
γ

(
C̄(sk, ak) + log(1/δ)

)
+ γ
(
Regretlog(K) + log(1/δ)

)
.

From here, we just need to rearrange terms and set the correct γ. Appendix C contains the full proof.

5 Small-Loss Bounds for Online Distributional RL

We now extend our insights to the online RL setting and propose a DistRL perspective on GOLF [Jin
et al., 2021a]. While GOLF constructs confidence sets of near-minimizers of the squared Bellman
error loss, we propose to construct these confidence sets using near-maximizers of the log-likelihood
loss to approximate MLE. To leverage function approximation for learning conditional distributions,
we use a generic function class F ⊆ (X ×A → ∆([0, 1]))H where each element f ∈ F is a tuple
f = (f1, . . . , fH) such that each fh is a candidate estimator for Z⋆

h, the distribution of loss-to-go∑H
t=h ct under π⋆. For notation, fH+1(x, a) = δ0 denotes the dirac at zero for all x, a.

We now present our Optimistic Distributional Confidence set Optimization (O-DISCO) algorithm in
Algorithm 2, consisting of three key steps per episode. At episode k ∈ [K], O-DISCO first identifies
the f (k) with the minimal expected value at h = 1 over the previous confidence set Fk−1 (Line 4).
This step induces global optimism. Then, O-DISCO collects data for this episode by rolling in with
the greedy policy πk with respect to the mean of f (k) (Line 6). Finally, O-DISCO constructs a

3Triangular discrimination is also known as Vincze-Le Cam divergence [Vincze, 1981, Le Cam, 2012].
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Algorithm 2 Optimistic Distributional Confidence set Optimization (O-DISCO)
1: Input: number of episodes K, distribution class F , threshold β.
2: Initialize Dh,0 ← ∅ for all h ∈ [H], and set F0 = F .
3: for episode k = 1, 2, . . . ,K do
4: Set optimistic estimate f (k) = argminf∈Fk−1

mina f̄1(x1, a).

5: Set πk
h(x) = argmina f̄

(k)
h (x, a).

6: Roll out πk and obtain a trajectory x1,k, a1,k, c1,k, . . . , xH,k, aH,k, cH,k.
For each h ∈ [H], augment the dataset Dh,k = Dh,k−1 ∪ {(xh,k, ah,k, ch,k, xh+1,k)}.

7: For all (h, f) ∈ [H] × F , sample yfh,i ∼ fh+1(x
′
h,i, a

′) and a′ = argmina f̄h+1(x
′
h,i, a),

where (xh,i, ah,i, ch,i, x
′
h,i) is the i-th datapoint of Dh,k. Then, set zfh,i = ch,i + yfh,i and

define the confidence set

Fk =

{
f ∈ F :

k∑
i=1

log fh(z
f
h,i | xh,i, ah,i) ≥ max

g∈Fh

k∑
i=1

log g(zfh,i | xh,i, ah,i)− 7β,∀h ∈ [H]

}
.

8: end for
9: Output: π̄ = unif(π1:K).

confidence set Fk by including a function f if it exceeds a threshold on the log-likelihood objective
using data zfh,i ∼ T

⋆,D
h fh+1(xh,i, ah,i) for all steps h simultaneously (Line 7). This step is called

local fitting, as each f ∈ Fk has the property that fh is close-in-distribution to T ⋆,D
h fh+1 for all

h. We highlight that O-DISCO only learns the distribution for estimating the mean, i.e., Lines 4
and 6 only use the mean f̄ . This seemingly roundabout way of estimating the mean is exactly how
distributional RL algorithms such as C51 differ from the classic DQN.

To ensure that MLE succeeds for the Temporal-Difference (TD) style confidence sets, we need the
following distributional Bellman Completeness (BC) condition introduced in Wu et al. [2023].

Assumption 5.1 (Bellman Completeness). For all π, h ∈ [H], fh+1 ∈ Fh+1 =⇒ T π,D
h fh+1 ∈ Fh.

5.1 The ℓ1 Distributional Eluder Dimension

We now introduce the ℓ1 distributional eluder dimension. Let S be an abstract input space, let Ψ be a
set of functions mapping S → R and let D be a set of distributions on S.
Definition 5.2 (ℓp-distributional eluder dimension). For any function class Ψ ⊆ S → R, distribution
class D ⊆ ∆(S) and ε > 0, the ℓp-distributional eluder dimension (denoted by DEp(Ψ,D, ε)) is the
length L of the longest sequence d(1), d(2), . . . , d(L) ⊆ D such that there exists ε′ ≥ ε, such that for
all t ∈ [L], we have that there exists f ∈ Ψ such that |Ed(t)f | > ε and also

∑t−1
i=1|Ed(i)f |p ≤ εp.

When p = 2, this is exactly the ℓ2 distributional eluder of Jin et al. [2021a, Definition 7]. We’re
particularly interested in the p = 1 case, which can be used with MLE’s generalization bounds. The
following is a key pigeonhole principle for the ℓ1 distributional eluder dimension.
Theorem 5.3. Let C := supd∈D,f∈Ψ|Edf | be the envelope. Fix any K ∈ N and sequences
f (1), . . . , f (K) ⊆ Ψ, d(1), . . . , d(K) ⊆ D. Let β be a constant such that for all k ∈ [K], we have,∑k−1

i=1

∣∣Ed(i)f (k)
∣∣ ≤ β. Then, for all k ∈ [K], we have

k∑
t=1

∣∣∣Ed(t)f (t)
∣∣∣ ≤ inf

0<ε≤1
{DE1(Ψ,D, ε)(2C + β log(C/ε)) + kε}.

As we’ll see later, Theorem 5.3 is the key tool that transfers triangular discrimination guarantees on
the training distribution to any new test distribution. Another key property is that the ℓ1 dimension
generalizes the original ℓ2 dimension of Jin et al. [2021a].
Lemma 5.4. For any Ψ,D and ε > 0, we have DE1(Ψ,D, ε) ≤ DE2(Ψ,D, ε).

Finally, we note that our distributional eluder dimension generalize the regular ℓ1 eluder from Liu
et al. [2022], which can be seen by taking D to be dirac distributions.
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5.2 Small-Loss Bounds for O-DISCO

We will soon prove small-loss regret bounds with the “Q-type” dimension, where “Q-type” refers to
the fact that S = X ×A. While low-rank MDPs are not captured by the “Q-type” dimension, they
are captured by the “V-type” dimension where S = X [Jin et al., 2021a, Du et al., 2021]. For PAC
bounds with the V-type dimension, we need to slightly modify the data collection process in Line 6
with uniform action exploration (UAE). Instead of executing πk for a single trajectory, partially
roll-out πk for H times where for each h ∈ [H], we collect xh,k ∼ dπ

k

h , take a random action
ah,k ∼ unif(A), observe ch,k ∼ Ch(xh,k, ah,k), x

′
h,k ∼ Ph(xh,k, ah,k) and augment the dataset

Dh,k = Dh,k−1 ∪ {(xh,k, ah,k, ch,k, x′h,k)}. The modified algorithm is detailed in Appendix B.

We lastly need to define the function and distribution classes measured by the distributional
eluder dimension. The Q-type classes are Dh = {(x, a) 7→ dπh(x, a) : π ∈ Π} and Ψh ={
(x, a) 7→ D△(f(x, a) ∥ T ⋆,Df(x, a)) : f ∈ F

}
. Similarly, the V-type classes are Dh,v =

{x 7→ dπh(x) : π ∈ Π} and Φh,v =
{
x 7→ Ea∼Unif(A)[D△(f(x, a) ∥ T ⋆,Df(x, a))] : f ∈ F

}
. Fi-

nally, define DE1(ε) = maxh DE1(Ψh,Dh, ε) and DE1,v(ε) = maxh DE1(Ψh,v,Dh,v, ε).
Theorem 5.5. Suppose DistBC holds (Assumption 5.1). For any δ ∈ (0, 1), w.p. at least 1 − δ,
running O-DISCO with β = log(HK|F|/δ) guarantees the following regret bound,

RegretO-DISCO(K) ≤ 160H
√
KV ⋆ DE1(1/K) log(K)β + 18000H2 DE1(1/K) log(K)β.

If UAE = TRUE (Algorithm 4), then the learned mixture policy π̄ is guaranteed to satisfy,

V π̄ − V ⋆ ≤ 160H

√
AV ⋆ DE1,v(1/K) log(K)β

K
+

18000H2ADE1,v(1/K) log(K)β

K
.

Compared to prior bounds for GOLF [Jin et al., 2021a], the leading
√
K terms in our bounds

enjoy the same sharp dependence in H,K and the eluder dimension. Our bounds further enjoy one
key improvement: the leading terms are multiplied with the instance-dependent optimal cost V ⋆,
giving our bounds the small-loss property. For example, if V ⋆ ≤ O(1/

√
K), then our regret bound

converges at a fast O(H2 DE1(1/K) log(K)β) rate. While there are existing first-order bounds in
online RL, our bound significantly improves on their generality. For example, Zanette and Brunskill
[2019], Jin et al. [2020a], Wagenmaker et al. [2022] used Bernstein bonuses that scale with the
conditional variance and showed that careful analysis can lead to “small-return” bounds in tabular
and linear MDPs. However, “small-return” bounds do not imply “small-loss” bounds and “small-loss”
bounds are often harder to obtain4. While it is possible that surgical analysis with variance bonuses
can lead to small-loss bounds in tabular and linear MDPs, this approach may not scale to settings
with non-linear function approximation such as low-rank MDPs.

On Bellman Completeness Exponential error amplification can occur in online and offline RL
under only realizability of Q functions [Wang et al., 2021a,b,c, Foster et al., 2022]. With only
realizability, basic algorithms such as TD and Fitted-Q-Evaluation (FQE) can diverge or converge
to bad fixed point solutions [Tsitsiklis and Van Roy, 1996, Munos and Szepesvári, 2008, Kolter,
2011]. As a result, BC has risen as a de facto sufficient condition for sample efficient RL [Chang
et al., 2022, Xie et al., 2021, Zanette et al., 2021]. Finally, we highlight that our method can be
easily extended to hold under generalized completeness, i.e., there exist function classes Gh such
that fh+1 ∈ Fh+1 =⇒ T π,D

h fh+1 ∈ Gh [as in Jin et al., 2021a, Assumption 14]. Simply replace
maxg∈Fh

in the confidence set construction with maxg∈Gh
. While adding functions to F may break

BC (as BC is not monotonic), we can always augment G to satisfy generalized completeness.

Computational complexity When taken as is, OLIVE [Jiang et al., 2017], GOLF, and our al-
gorithms are version space methods that suffer from a computational drawback: optimizing over
the confidence set is NP-hard [Dann et al., 2018]. However, the confidence set is purely for deep
exploration via optimism and can be replaced by other computationally efficient exploration strategies.
For example, ε-greedy suffices in problems that don’t require deep and strategic exploration, i.e., a
large myopic exploration gap [Dann et al., 2022]. With ε-greedy, a replay buffer, and discretization,
our algorithm essentially recovers C51 [Bellemare et al., 2017]. We leave developing and analyzing
computationally efficient algorithms based on our insights as promising future work.

4In Appendix J, we show a slight modification of our approach also yields “small-return” bounds.
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5.3 Instantiation with Low-Rank MDPs

The low-rank MDP [Agarwal et al., 2020] is a standard abstraction for non-linear function approx-
imation used in theory [Uehara et al., 2021] and practice [Zhang et al., 2022, Chang et al., 2022].

Definition 5.6 (Low-rank MDP). A transition model Ph : X ×A → ∆(X ) has rank d if there exist
unknown features ϕ⋆h : X × A → Rd, µ⋆

h : X → Rd such that Ph(x
′ | x, a) = ϕ⋆h(x, a)

⊤µ⋆
h(x

′)

for all x, a, x′. Also, assume maxx,a ∥ϕ⋆h(x, a)∥2 ≤ 1 and ∥
∫
gdµ⋆

h∥2 ≤ ∥g∥∞
√
d for all functions

g : X → R. The MDP is called low-rank if Ph is low-rank for all h ∈ [H].

We now specialize Theorem 5.5 to low-rank MDPs with three key steps. First, we bound the V-type
eluder dimension by DE1,v(ε) ≤ O(d log(d/ε)), which is a known result that we reproduce in
Theorem G.4. The next step requires access to a realizable Φ class, i.e., for all h ∈ [H], ϕ⋆h ∈ Φ,
which is a standard assumption for low-rank MDPs [Agarwal et al., 2020, Uehara et al., 2021,
Mhammedi et al., 2023]. Given the realizable Φ, we can construct a specialized F for the low-rank
MDP: F lin = F lin

1 × · · · × F lin
H ×F lin

H+1 where F lin
H+1 = {δ0} and for all h ∈ [H],

F lin
h =

{
f(z | x, a) =

〈
ϕ(x, a), w(z)

〉
: ϕ ∈ Φ, w : [0, 1]→ Rd, (2)

s.t. max
z
∥w(z)∥2 ≤ α

√
d and max

x,a,z

〈
ϕ(x, a), w(z)

〉
≤ α

}
,

where α := maxh,π,z,x,a Z
π
h (z | x, a) is the largest mass for the cost-to-go distributions. In

Appendix D, we show that F lin satisfies DistBC. Further, if costs are discretized into a uniform grid
of M points, its bracketing entropy is bounded by Õ(dM + log |Φ|). Discretization is necessary to
bound the statistical complexity of F lin and is common in practice, e.g., C51 and Rainbow both set
M = 51 which works well in Atari games [Bellemare et al., 2017, Hessel et al., 2018].

Theorem 5.7. Suppose the MDP is low-rank. For any δ ∈ (0, 1), w.p. at least 1 − δ, running
O-DISCO with UAE=TRUE and with F lin as described above learns a policy π̄ such that,

V π̄ − V ⋆ ∈ Õ

(
H

√
AdV ⋆(dM + log(|Φ|/δ))

K
+
AdH2(dM + log(|Φ|/δ))

K

)
.

Proof. As described above, we have DE1(1/K) ≤ O(d log(dK)) and β = log(HK/δ) + dM +
log |Φ|. Since DistBC is satisfied by F lin, plugging into Theorem 5.5 gives the result.

This is the first small-loss bound for low-rank MDPs, and for online RL with non-linear function
approximation in general. Again when V ⋆ ≤ Õ(1/K), O-DISCO has a fast Õ(1/K) convergence
rate which improves over all prior results that converge at a slow Ω̃(1/

√
K) rate [Uehara et al., 2021].

5.4 Proof Sketch of Theorem 5.5

By DistBC (Assumption 5.1), we can deduce two facts about the construction ofFk: (i) Z⋆ ∈ Fk, and
(ii) elements of Fk almost satisfy the distributional Bellman equation, i.e., for all h ∈ [H], we have∑k

i=1 Eπi [δh,k(xh, ah)] ≤ O(β) where δh,k(xh, ah) = D△(f
(k)
h (xh, ah) ∥ T ⋆,D

h f
(k)
h+1(xh, ah)).

Next, we derive a corollary of Eq. (△1):∣∣f̄ − ḡ∣∣ ≤√4ḡ +D△(f ∥ g) ·
√
D△(f ∥ g). (△2)

To see why this is true, apply AM-GM to Eq. (△1) to get 2(f̄ − ḡ) ≤ f̄ + ḡ +D△(f ∥ g), which
simplifies to f̄ ≤ 3ḡ + D△(f ∥ g). Plugging this back into Eq. (△1) yields Eq. (△2). Then,
by iterating Eq. (△2) and AM-GM, we derive a self-bounding lemma: for any f, π, h, we have
f̄h(xh, ah) ≲ Qπ

h(xh, ah) +H
∑H

t=h Eπ,xh,ah
[D△(ft(xt, at) ∥ T π,D

h ft+1(xt, at))] (Lemma H.3).
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Since T πk

h f̄
(k)
h+1(x, a) = T

πk,D
h f

(k)
h+1(x, a) and T πk,D

h f
(k)
h+1 = T ⋆,D

h f
(k)
h+1, we have

V πk − V ⋆ ≤ V πk − f̄ (k)1 (x1, π
k
1 (x1)) (optimism from fact (i))

=
∑H

h=1 Eπk

[
T πk

h f̄
(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]
(performance difference)

≤ 2
∑H

h=1

√
Eπk [f̄

(k)
h (xh, ah) + δh,k(xh, ah)]

√
Eπk [δh,k(xh, ah)] (Eq. (△2))

≲
√
V πkw +H

∑H
h=1 Eπk [δh,k(xh, ah)]

√
HEπk [δh,k(xh, ah)]. (Lemma H.3)

The implicit inequality V πk − V ⋆ ≲
√
V ⋆ +H

∑H
h=1 Eπk [δh,k(xh, ah)]

√
HEπk [δh,k(xh, ah)]

can then be obtained by AM-GM and rearranging. The final step is to sum over k and bound∑K
k=1 Eπk [δh,k(xh, ah)] via the eluder dimension’s pigeonhole principle (Theorem 5.3 applied with

fact (ii)). Please see Appendix H for the full proof.

6 Small-Loss Bounds for Offline Distributional RL

We now propose Pessimistic Distributional Confidence set Optimization (P-DISCO; Algorithm 3),
which adapts the distributional confidence set technique from the previous section to the offline setting
by leveraging pessimism instead of optimism. Notably, P-DISCO is a simple two-step algorithm that
achieves the first small-loss PAC bounds in offline RL. First, construct a distributional confidence set
for each policy π based on a similar log-likelihood thresholding procedure as in O-DISCO, where
the difference is we now use data sampled from T π,D

h fh+1 instead of T ⋆,D
h fh+1. Next, output the

policy with the most pessimistic mean amongst all the confidence sets.

Algorithm 3 Pessimistic Distributional Confidence set Optimization (P-DISCO)
1: Input: datasets D1, . . . ,DH , distribution function class F , threshold β, policy class Π.
2: For all (h, f, π) ∈ [H] × F × Π, sample yf,πh,i ∼ fh+1(x

′
h,i, πh+1(x

′
h,i)), where

(xh,i, ah,i, ch,i, x
′
h,i) is the i-th datapoint of Dh. Then, set zf,πh,i = ch,i + yf,πh,i and define

the confidence set,

Fπ =

{
f ∈ F :

N∑
i=1

log fh(z
f,π
h,i | xh,i, ah,i) ≥ max

g∈Fh

N∑
i=1

log g(zf,πh,i | xh,i, ah,i)− 7β,∀h ∈ [H]

}
.

3: For each π ∈ Π, define the pessimistic estimate fπ = argmaxf∈Fπ
Ea∼π(x1)

[
f̄1(x1, a)

]
.

4: Output: π̂ = argmaxπ∈Π Ea∼π(x1)

[
f̄π1 (x1, π)

]
.

In offline RL, many works made strong all-policy coverage assumptions [Antos et al., 2008, Chen
and Jiang, 2019]. Recent advancements [Kidambi et al., 2020, Xie et al., 2021, Uehara and Sun, 2022,
Rashidinejad et al., 2021, Jin et al., 2021b] have pursued best effort guarantees that aim to compete
with any covered policy π̃, with sub-optimality of the learned π̂ degrading gracefully as coverage
worsens. The coverage is measured by the single-policy concentrability C π̃ = maxh

∥∥ddπ̃
h/dνh

∥∥
∞.

We adopt this framework and obtain the first small-loss PAC bound in offline RL.
Theorem 6.1 (Small-Loss PAC bound for P-DISCO). Assume Assumption 5.1. For any δ ∈ (0, 1),
w.p. at least 1− δ, running P-DISCO with β = log(H|Π||F|/δ) learns a policy π̂ that enjoys the
following PAC bound with respect to any comparator policy π̃ ∈ Π:

V π̂ − V π̃ ≤ 9H

√
C π̃V π̃β

N
+

30H2C π̃β

N
.

To the best of our knowledge, this is the first small-loss bound for offline RL, which we highlight
illustrates a novel robustness property against bad coverage. Namely, the dominant term not only
scales with the coverage coefficient C π̃ but also the comparator policy’s value V π̃. In particular,
P-DISCO can strongly compete with a comparator policy π̃ if one of the following is true: (i) ν has
good coverage over π̃, so the O(1/

√
N) term is manageable; or (ii) π̃ has small-loss, in which case

we may even obtain a fast O(1/N) rate. Thus, P-DISCO has two chances at strongly competing
with π̃, while conventional offline RL methods solely rely on (i) to be true.
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7 Distributional CB Experiments
Algorithm: SquareCB FastCB DistCB (Ours)

King County Housing [Vanschoren et al., 2013]

All episodes .756 (.0007) .734 (.0007) .726 (.0003)
Last 100 ep. .725 (.0012) .719 (.0013) .708 (.0019)

Prudential Life Insurance [Montoya et al., 2015]

All episodes .456 (.0082) .491 (.0029) .411 (.0038)
Last 100 ep. .481 (.0185) .474 (.0111) .388 (.0086)

CIFAR-100 [Krizhevsky, 2009]

All episodes .872 (.0010) .856 (.0016) .838 (.0021)
Last 100 ep. .828 (.0024) .793 (.0031) .775 (.0027)

Table 1: Avg cost over all episodes and last 100
episodes (lower is better). We report ‘mean (sem)’
over 10 seeds.

We now compare DISTCB with SquareCB
[Foster and Rakhlin, 2020] and the state-of-
the-art CB method FastCB [Foster and Krish-
namurthy, 2021], which respectively minimize
the squared loss and log loss for estimating
the conditional mean. The key question we
investigate here is whether learning the con-
ditional mean via distribution learning with
MLE will demonstrate empirical benefit over
the non-distributional approaches. We consider
three challenging tasks that are all derived from
real-world datasets and we briefly describe the
construction below.

King County Housing This dataset consists
of home features and prices, which we normal-
ize to be in [0, 1]. The action space is 100 evenly spaced prices between 0.01 and 1.0. If the learner
overpredicts the true price, the cost is 1.0. Else, the cost is 1.0 minus predicted price.

Prudential Life Insurance This dataset contains customer features and an integer risk level in [8],
which is our action space. If the model overpredicts the risk level, the cost is 1.0. Otherwise, the cost
is .1× (y − ŷ) where y is the actual risk level, and ŷ is the predicted risk level.

CIFAR-100 This popular image dataset contains 100 classes, which correspond to our actions, and
each class is in one of 20 superclasses. We assign cost as follows: 0.0 for predicting the correct class,
0.5 for the wrong class but correct superclass, and 1.0 for a fully incorrect prediction.

Results Across tasks, DISTCB achieves lower average cost over all episodes (i.e., normalized regret)
and over the last 100 episodes (i.e., most updated policies’ performance) compared to SquareCB. This
indicates the empirical benefit of the distributional approach over the conventional approach based
on least square regression, matching the theoretical benefit demonstrated here. Perhaps surprisingly,
DISTCB also consistently outperforms FastCB. Both methods obtain first-order bounds with the
same dependencies on A and C⋆, which suggests that DISTCB’s empirical improvement over FastCB
cannot be fully explained by existing theory. The only difference between DISTCB and FastCB is that
the former integrates online MLE while the latter directly estimates the mean by minimizing the log
loss (binary cross-entropy). An even more fine-grained understanding of the benefits of distribution
learning may therefore be helpful in explaining this improvement. Appendix K contains all experiment
details. Reproducible code is available at https://github.com/kevinzhou497/distcb.

8 Conclusion

We showed that distributional RL leads to small-loss bounds in both online and offline RL, and we
also proposed a distributional CB algorithm that outperforms the state-of-the-art FastCB. A fruitful
direction would be to investigate connections of natural policy gradient with our MLE distributional-
fitting scheme to inspire a practical offline RL algorithm with small loss guarantees, à la Cheng et al.
[2022]. Finally, it would be interesting to investigate other loss functions that yield small-loss or even
faster bounds.

Acknowledgements This material is based upon work supported by the National Science Founda-
tion under Grant Nos. IIS-1846210 and IIS-2154711.
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Appendices
A Notations

Table 2: List of Notations

S,A, A State and action spaces, and A = |A|.
∆(S) The set of distributions supported by S.
d̄ The expectation of any real-valued distribution d, i.e., d̄ = Ey∼d[y].
[N ] {1, 2, . . . , N} for any natural number N .
Zπ
h (x, a) Distribution of

∑H
t=h ct given xh = x, ah = a rolling in from π.

Qπ
h(x, a), V

π
h (x) Qπ

h(x, a) = Z̄π
h (x, a) and V π

h = Ea∼π(x)[Q
π
h(x, a)].

π⋆ Optimal policy, i.e., π⋆ = argminπ V
π
1 (x1).

Without loss of optimality, we take π⋆ : X → A to be Markov & deterministic.
Z⋆
h, Q

⋆
h, V

⋆
h Zπ

h , Q
π
h, V

π
h with π = π⋆, the optimal policy.

T π
h , T ⋆

h The Bellman operators that act on functions.
T π,D
h , T ⋆,D

h The distributional Bellman operators that act on conditional distributions.
V π, Zπ, V ⋆, Z⋆ V π = V π

1 (x1), Zπ = Zπ
1 (x1). V

⋆, Z⋆ are defined similarly with π⋆.
dπh(x, a) The probability of π visiting (x, a) at time h.
C π̃ Coverage coefficient maxh

∥∥ddπ̃
h/dνh

∥∥
∞.

D△(f ∥ g) Triangular discrimination between f, g.
H(f ∥ g) Hellinger distance between f, g.
DKL(f ∥ g) KL divergence between f, g.

A.1 Statistical Distances

Let f, g be distributions over Y . Then,

D△(f ∥ g) =
∑
y

(f(y)− g(y))2

f(y) + g(y)
,

H(f ∥ g) =
√

1

2

∑
y

(√
f(y)−

√
g(y)

)2
,

DKL(f ∥ g) =
∑
y

f(y) log(f(y)/g(y)),

DTV (f ∥ g) =
1

2

∑
y

|f(y)− g(y)|.

The following standard inequalities will be helpful:
H2 ≤ DTV ≤

√
2H,

2H2 ≤ D△ ≤ 4H2, (Lemma A.1)

H ≤
√
DKL.

Lemma A.1. For any distributions f, g, we have 2H2(f ∥ g) ≤ D△(f ∥ g) ≤ 4H2(f ∥ g).

Proof. Recall that

D△(f ∥ g) =
∫
y

(
f(y)−g(y)√
f(y)+g(y)

)2

.

Applying 1√
f(y)+

√
g(y)
≤ 1√

f(y)+g(y)
≤

√
2√

f(y)+
√

g(y)
concludes the proof.
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B Modified Algorithms with UAE and for Small Returns Bounds

In this section, we present the O-DISCO algorithm with Uniform Action Exploration (UAE). We
also present versions of O-DISCO and P-DISCO for the reward-maximizing setting (instead of the
cost-minimizing setting studied throughout the paper); if SMALLRETURN is turned on, we can derive
small-return bounds in Appendix J.

Algorithm 4 O-DISCO (with UAE and small return)
1: Input: number of episodes K, distribution function class F , threshold β, flag UAE, flag

SMALLRETURN.
2: Initialize Dh,0 ← ∅ for all h ∈ [H], and set F0 = F .
3: Set op = max if SMALLRETURN else op = min.
4: for episode k = 1, 2, . . . ,K do
5: Set f (k) = arg opf∈Fk−1

opa f̄1(x1, a).

6: Set πk
h(x) = arg opa f̄

(k)
h (x, a).

7: if UAE then
8: For each h ∈ [H], collect xh,k ∼ dπ

k

h , ah,k ∼ unif(A), ch,k ∼ Ch(xh,k, ah,k), x
′
h,k ∼

Ph(xh,k, ah,k), and augment the dataset Dh,k = Dh,k−1 ∪
{
(xh,k, ah,k, ch,k, x

′
h,k)

}
.

9: else
10: Roll out πk and obtain a trajectory x1,k, a1,k, c1,k, . . . , xH,k, aH,k, cH,k.

For each h ∈ [H], augment the dataset Dh,k = Dh,k−1 ∪ {(xh,k, ah,k, ch,k, xh+1,k)}.
11: end if
12: For all (h, f) ∈ [H] × F , sample yfh,i ∼ fh+1(x

′
h,i, a

′) and a′ = arg opa f̄h+1(x
′
h,i, a),

where (xh,i, ah,i, ch,i, x
′
h,i) is the i-th datapoint of Dh,k. Also, set zfh,i = ch,i + yfh,i and

define the confidence set,

Fk =

{
f ∈ F :

k∑
i=1

log fh(z
f
h,i | xh,i, ah,i) ≥ max

f̃∈F

k∑
i=1

log f̃h(z
f
h,i | xh,i, ah,i)− 7β,∀h ∈ [H]

}
.

13: end for
14: Output: π̄ = unif(π1:K).

Algorithm 5 P-DISCO (with small return)
1: Input: datasets D1, . . . ,DH , distribution function class F , threshold β, policy class Π, flag

SMALLRETURN.
2: For all (h, f, π) ∈ [H] × F × Π, sample yf,πh,i ∼ fh+1(x

′
h,i, πh+1(x

′
h,i)), where

(xh,i, ah,i, ch,i, x
′
h,i) is the i-th datapoint of Dh. Then, set zf,πh,i = ch,i + yf,πh,i and define

the confidence set,

Fπ =

{
f ∈ F :

N∑
i=1

log fh(z
f,π
h,i | xh,i, ah,i) ≥ max

f̃∈F

N∑
i=1

log f̃h(z
f,π
h,i | xh,i, ah,i)− 7β,∀h ∈ [H]

}
.

3: Set op = max if SMALLRETURN else op = min.
4: For each π ∈ Π, define the pessimistic estimate fπ = arg opf∈Fπ

Ea∼π(x1)

[
f̄1(x1, a)

]
.

5: Output: π̂ = arg opπ∈Π Ea∼π(x1)

[
f̄π1 (x1, π)

]
.
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C Proofs for DISTCB

Lemma C.1 (Azuma). Let {Xi}i∈[N ] be a sequence of random variables supported on [0, 1], adapted
to filtration {Fi}i∈[N ]. For any δ ∈ (0, 1), we have w.p. at least 1− δ,

N∑
t=1

E[Xt | Ft−1] ≤
N∑
t=1

Xt +
√
N log(2/δ), (Standard Azuma)

N∑
t=1

E[Xt | Ft−1] ≤ 2

N∑
t=1

Xt + 2 log(1/δ). (Multiplicative Azuma)

Proof. For standard Azuma, see Zhang [2023, Theorem 13.4]. For multiplicative Azuma, apply
[Zhang, 2023, Theorem 13.5] with λ = 1. The claim follows, since 1

1−exp(−λ) ≤ 2.

Theorem 4.1. For any δ ∈ (0, 1), w.p. at least 1 − δ, running DISTCB with γ = 10A ∨√
40A(C⋆+log(1/δ))

112(Regretlog(K)+log(1/δ))
has regret scaling with C⋆ =

∑K
k=1 mina∈A C̄(xk, a),

RegretDISTCB(K) ≤ 232
√
AC⋆ Regretlog(K) log(1/δ) + 2300A

(
Regretlog(K) + log(1/δ)

)
.

Proof of Theorem 4.1. First, recall the per-step inequality of ReIGW Foster and Krishnamurthy
[2021, Theorem 4], which states: for any f̂ and γ ≥ 2A, if we set p = ReIGWγ(f̂ , γ), then, for all
f ∈ [0, 1]A, we have∑

a p(a)(f(a)− f(a⋆)) ≤
5A
γ

∑
a p(a)f(a) + 7γ

∑
a p(a)

(f̂(a)−f(a))
2

f̂(a)+f(a)
,

where a⋆ = argmina f(a). For any k ∈ [K], applying this to f̂ = f̄ (k)(sk, ·), p = pk and
f = C̄(sk, ·), we have
K∑

k=1

Eak

[
C̄(sk, ak)− C̄(sk, π⋆(sk))

]
≤

K∑
k=1

Eak

[
5A

γ
C̄(sk, ak) + 7γ

(
f̄ (k)(sk, ak)− C̄(sk, ak)

)2
f̄ (k)(sk, ak) + C̄(sk, ak)

]

≤
K∑

k=1

Eak

[
5A

γ
C̄(sk, ak) + 7γD△(f (k)(sk, ak) ∥ C(sk, ak))

]
(Eq. (△1))

Since D△ ≤ 4H2, we have
K∑

k=1

Eak

[
D△(f (k)(sk, ak) ∥ C(sk, ak))

]
≤ 4

K∑
k=1

Eak

[
H2
(
C(sk, ak) ∥ f (k)(sk, ak)

)]
≤ 8

K∑
k=1

H2
(
C(sk, ak) ∥ f (k)(sk, ak)

)
+ 8 log(1/δ) (Multiplicative Azuma, since H2 ∈ [0, 1])

≤ 8Regretlog(K) + 10 log(1/δ). (Foster et al. [2021, Lemma A.14])

Hence, we have
K∑

k=1

Eak

[
C̄(sk, ak)− C̄(sk, π⋆(sk))

]
≤ 5A

γ

K∑
k=1

Eak

[
C̄(sk, ak)

]
+ 70γ

(
Regretlog(K) + log(1/δ)

)
.

Finally, recalling that 1/(1− ε) ≤ 1 + 2ε when ε ≤ 1
2 , and the fact that 5A

γ ≤
1
2 , we have

K∑
k=1

Eak

[
C̄(sk, ak)− C̄(sk, π⋆(sk))

]
≤ 10A

γ

K∑
k=1

Eak

[
C̄(sk, π

⋆(sk))
]
+ 140γ

(
Regretlog(K) + log(1/δ)

)
.
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By Azuma’s inequality, we have

K∑
k=1

C̄(sk, ak)− C̄(sk, π⋆(sk))

≤ 2

K∑
k=1

Eak

[
C̄(sk, ak)− C̄(sk, π⋆(sk))

]
+ 2 log(1/δ)

≤ 20A

γ

K∑
k=1

Eak

[
C̄(sk, π

⋆(sk))
]
+ 140γ

(
Regretlog(K) + log(1/δ)

)
+ 2 log(1/δ)

≤ 40A

γ
(C⋆ + log(1/δ)) + 140γ

(
Regretlog(K) + log(1/δ)

)
+ 2 log(1/δ).

(Multiplicative Azuma)

Now set γ =

√
40A(C⋆+log(1/δ))

140(Regretlog(K)+log(1/δ))
∨ 10A.

Case 1 is when
√

40A(C⋆+log(1/δ))

140(Regretlog(K)+log(1/δ))
≤ 10A, i.e., (C⋆ + log(1/δ)) ≤

280A
(
Regretlog(K) + log(1/δ)

)
, we have the above is at most

4(C⋆ + log(1/δ)) + 1120A
(
Regretlog(K) + log(1/δ)

)
+ 2 log(1/δ)

≤ 2240A
(
Regretlog(K) + log(1/δ)

)
+ 2 log(1/δ).

Case 2 is when the left term dominates, then the bound is,

2
√
4480A(C⋆ + log(1/δ))

(
Regretlog(K) + log(1/δ)

)
+ 2 log(1/δ)

≤ 2
√
13440AC⋆ Regretlog(K) log(1/δ) + 4480A log2(1/δ) + 2 log(1/δ)

≤ 232
√
AC⋆ Regretlog(K) log(1/δ) + 134

√
A log(1/δ) + 2 log(1/δ).

Putting these two cases together, we have the result.
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D Distributional Bellman Completeness in low-rank MDPs

The goal of this section is to show that, under mild conditions in low-rank MDPs, there always exists
a function class with bounded bracketing number that satisfies the distributional BC condition. First,
let us recall the low-rank MDP In this section, we show that linear MDPs automatically satisfy the
distributional Bellman completeness assumption.
Definition 5.6 (Low-rank MDP). A transition model Ph : X ×A → ∆(X ) has rank d if there exist
unknown features ϕ⋆h : X × A → Rd, µ⋆

h : X → Rd such that Ph(x
′ | x, a) = ϕ⋆h(x, a)

⊤µ⋆
h(x

′)

for all x, a, x′. Also, assume maxx,a ∥ϕ⋆h(x, a)∥2 ≤ 1 and ∥
∫
gdµ⋆

h∥2 ≤ ∥g∥∞
√
d for all functions

g : X → R. The MDP is called low-rank if Ph is low-rank for all h ∈ [H].

Suppose that we have a function class Φ such that ϕ⋆h ∈ Φ for all h, i.e., Φ is a realizable function
class. For example, in linear MDPs, this is automatically satisfied since we know ϕ⋆ a priori, so Φ is
the singleton with ϕ⋆. Having a realizable Φ class is standard for solving low-rank MDPs [Uehara
et al., 2021, Agarwal et al., 2023].

In what follows, let α = maxh,π,z,x,a Z
π
h (z | x, a) denote the maximum density/mass value of the

loss-to-go distributions. Note that α ≥ 1 always since the mass at H + 1 is deterministically placed
at zero. If we further know that Zπ

h is discretely distributed, then α = 1. If Zπ
h is continuously

distributed, we assume it is bounded.

We consider the function class in Eq. (2), which we reproduce here:

F lin
h =

{
f(z | x, a) =

〈
ϕ(x, a), w(z)

〉
: ϕ ∈ Φ, w : [0, 1]→ Rd, (3)

s.t. max
z
∥w(z)∥2 ≤ α

√
d and max

x,a,z

〈
ϕ(x, a), w(z)

〉
≤ α

}
.

The next lemma (Lemma D.1) shows that this function class satisfies distributional BC.
Lemma D.1. F lin satisfies distributional BC (Assumption 5.1).

Proof. We denote ∥f∥∞ = maxz,x,a f(z |x, a). For any fh+1 ∈ F lin
h+1, we have ∥fh+1∥∞ ≤ α by

the construction of F lin
h+1. Then, let T D be either the distributional Bellman operator or distributional

optimality operator, the following equalities hold for the appropriate a′(x′) based on T D,

T Dfh+1(z |x, a) =
∫
X
Pr
h
(x′ |x, a)

∫
R
Pr
h
(c | x, a)fh+1(z − c |x′, a′(x′)) dx′ dc

=

〈
ϕ⋆h(x, a),

∫
X
µh(x

′)

∫
R
Pr
h
(c | x, a)fh+1(z − c |x′, a′(x′)) dcdx′︸ ︷︷ ︸

:=wh(z)

〉

Since
∫
R Prh(c | x, a)fh+1(z − c |x′, a′(x′)) dc ≤ ∥fh+1∥∞, we know that

∥wh(z)∥2 ≤ ∥fh+1∥∞
√
d ≤ α

√
d.

We further note that

max
x,a,z

〈
ϕ⋆h(x, a), wh(z)

〉
= max

x,a,z
T Dfh+1(z |x, a) ≤ ∥fh+1∥∞ ≤ α.

Also note that ϕ⋆h ∈ Φ by realizability. Therefore, T Dfh+1 ∈ F lin
h , which is the distributional BC

condition.

D.1 Bounding the bracketing number via discretized rewards

We now bound the bracketing number of F lin
h under a discretization assumption that costs and

costs-to-gos can only take M many discrete values on an evenly spaced grid. This can be interpreted
as discretizing the reward space, and it can be shown that this discretization error is small for regret
or PAC bounds [Wang et al., 2023, Section 6]. Structural assumptions are necessary to bound the
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complexity of F lin
h and such discretization assumptions are common in practice, e.g., C51 [Bellemare

et al., 2017] and Rainbow [Hessel et al., 2018] both set M = 51 which works well in Atari games.
After discretizing, we can consider w as a mapping from [M ], the discrete set on M elements, rather
than from the interval [0, 1]. Note also that since Zπ

h are discrete, we have α = 1.

Now, let ε > 0 be arbitrary and fixed. Recall that the ℓ∞ bracketing number is equivalent (up to
universal constants) to the ℓ∞ covering number, so we will work with the latter. Let B(r) denote
the d-dimensional ball of radius r (in ℓ2). Recall that the ε-covering number (in ℓ2) of functions
[M ] 7→ B(r) scales as O((r/ε)dM ). LetWε be such the smallest cover. We can build a ℓ∞ cover of
F lin

h as follows: Cε = {(x, a, z) 7→ ⟨ϕ(x, a), w(z)⟩, w ∈ Wε, ϕ ∈ Φ}.

To check this is a ε cover, consider any f ∈ F lin
h . f corresponds to some ϕ and w. Let w′ be

the neighbor of w in Wε and let f ′(x, a, z) = ⟨ϕ(x, a), w′(z)⟩ so indeed f ′ ∈ Cε. Then, for
any x, a, z, we have |⟨ϕ(x, a), w(z) − w′(z)⟩| ≤ ∥ϕ(x, a)∥2∥w(z) − w′(z)∥2 ≤ ε. Hence, Cε is
an ℓ∞ cover of size O((

√
d/ε)dM · |Φ|), and so we have shown that logN[](ε,F lin

h , ∥ · ∥∞) ≤
O(dM log(d/ε) + log |Φ|).

Linear MDPs: Recall that in linear MDPs, we know the true ϕ⋆ and so |Φ| = 1. Thus, the
bracketing number is simply O(dM log(d/ε)) in linear MDPs.

Summary and comparison with regular BC: In summary, under the assumption that rewards
are discretized, we know that low-rank MDPs automatically have distributional function classes
that satisfy distributional BC and have bounded bracketing numbers. Furthermore, recall that [Wu
et al., 2023] showed that Linear Quadratic Regulators (LQRs), with deterministic transitions, also
have function classes that satisfy distributional BC and have bounded bracketing numbers. Thus,
distributional BC holds for the most interesting cases covered by the standard Bellman completeness,
e.g., linear MDPs, low-rank MDPs and LQRs. Since learning conditional distributions is statistically
harder than learning the conditional mean, we need to pay the price in assuming reward/transitions
satisfy regularity assumptions to bound the bracketing number appropriately.
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E Generalization Bounds for Maximum Likelihood Estimation

This section reviews generalization bounds for the maximum likelihood estimator (MLE). We adopt
the same sequential condition probability estimation setup as in Agarwal et al. [2020, Appendix E],
which we now recall for completeness. Let X be the context/feature space and Y be the label space,
and we are given a dataset D = {(xi, yi)}i∈[n] from a martingale process: for i = 1, 2, ..., n, sample
xi ∼ Di(x1:i−1, y1:i−1) and yi ∼ p(· | xi). Let f⋆(x, y) = p(y | x) and we are given a realizable,
i.e., f⋆ ∈ F , function class F : X ×Y → ∆(R) of distributions. The MLE is an estimate for f⋆ that
maximizes the log-likelihood objective over our dataset:

f̂MLE = argmax
f∈F

n∑
i=1

log f(xi, yi).

For our guarantees to hold for general hypotheses classes F , we use the bracketing number to quantify
the statistical complexity of F [van de Geer, 2000].
Definition E.1 (Bracketing Number). Let G be a set of functions mapping X → R. Given two
functions l, u such that l(x) ≤ u(x) for all x ∈ X , the bracket [l, u] is the set of functions g ∈ G
such that l(x) ≤ g(x) ≤ u(x) for all x ∈ X . We call [l, u] an ε-bracket if ∥u− l∥ ≤ ε. Then, the
ε-bracketing number of G with respect to ∥·∥, denoted by N[](ε,G, ∥·∥) is the minimum number of
ε-brackets needed to cover G.

Since the triangular discrimination is equivalent to squared Hellinger up to universal constants, we
now prove MLE generalization bounds in terms of squared Hellinger.
Lemma E.2. Let f1 : X → ∆(Y) and f2 : X × Y → R+ satisfying supx∈X

∫
Y f2(x, y)dy ≤ s,

then for any distribution D ∈ ∆(X ), we have

Ex∼D
[
H2(f1(x) ∥ f2(x, ·))

]
≤ (s− 1)− 2 logEx∼D,y∼f1(x) exp

(
−1

2
log(f1(x, y)/f2(x, y))

)
.

Proof. This follows from the proof of Wu et al. [2023, Lemma C.1].

Lemma E.3. Fix δ ∈ (0, 1). Then w.p. at least 1− δ, for any f ∈ F , we have
n∑

i=1

Ex∼Di

[
H2(f(x, ·) ∥ f⋆(x, ·))

]
≤ 6nϵ|Y|+ 2

n∑
i=1

log
(
f⋆(xi, yi)/f(xi, yi)

)
+ 8 log

(
N[](ϵ,F , ∥ · ∥∞)/δ

)
. (4)

Rearranging, we also have
n∑

i=1

log
(
f(xi, yi)/f

⋆(xi, yi)
)
≤ 3nϵ|Y|+ 4 log

(
N[](ϵ,F , ∥ · ∥∞)/δ

)
. (5)

Proof. We take an ϵ-bracketing of F , {[li, ui] : i = 1, 2, . . . }, and denote F̃ = {ui : i = 1, 2, . . . }.
Applying Lemma 24 of Agarwal et al. [2020] to function class F̃ and using Chernoff method, w.p. at
least 1− δ, for all f̃ ∈ F̃ , we have

− log E
D′

exp(L(f̃(D), D′))︸ ︷︷ ︸
(i)

≤ −L(f̃(D), D) + 2 log
(
N[](ϵ,F , ∥ · ∥∞)/δ

)︸ ︷︷ ︸
(ii)

. (6)

Now, fix any f ∈ F and pick f̃ ∈ F̃ as the upper bracket, i.e., f ≤ f̃ . Now set L(f,D) =∑n
i=1−1/2 log(f⋆(xi, yi)/f(xi, yi)). Then the right hand side of (6) is

(ii) =
1

2

n∑
i=1

log(f⋆(xi, yi)/f̃(xi, yi)) + 2 log
(
N[](ϵ,F , ∥ · ∥∞)/δ

)
≤1

2

n∑
i=1

log(f⋆(xi, yi)/f(xi, yi)) + 2 log
(
N[](ϵ,F , ∥ · ∥∞)/δ

)
.

22



On the other hand, since H is a metric, we have
n∑

i=1

E
x∼Di

H2 (f(x, ·), f⋆(x, ·)) ≤
n∑

i=1

E
x∼Di

(
H
(
f(x, ·), f̃(x, y)

)
+H

(
f̃(x, y), f⋆(x, ·)

))2
≤2

n∑
i=1

E
x∼Di

H2
(
f(x, ·), f̃(x, y)

)
︸ ︷︷ ︸

(iii)

+2

n∑
i=1

E
x∼Di

H2
(
f̃(x, y), f⋆(x, ·)

)
︸ ︷︷ ︸

(iv)

.

For (iii), by the definition, we have f̃(x, y)− f(x, y) ∈ [0, ϵ] for all x, so

(iii) =

n∑
i=1

E
x∼Di

H2
(
f(x, ·), f̃(x, y)

)
≤

n∑
i=1

E
x∼Di

2

∫
y

∣∣∣f(x, y)− f̃(x, y)∣∣∣dy ≤ 2nϵ|Y|.

For (iv), we apply Lemma E.2 with f1 = f⋆ and f2 = f̃ (thus s = 1 + ϵ|Y|) and get

(iv) =nϵ|Y| − 2
n∑

i=1

log E
x,y∼f⋆(x,·)

exp

(
−1

2
log
(
f⋆(x, y)/f̃(x, y)

))

=nϵ|Y| − 2

n∑
i=1

log E
x,y∼Di

exp

(
−1

2
log
(
f⋆(x, y)/f̃(x, y)

))

=nϵ|Y| − 2 log E
x,y∼D′

[
exp

(
n∑

i=1

−1

2
log
(
f⋆(x, y)/f̃(x, y)

))∣∣∣∣∣D
]

=nϵ|Y|+ 2 · (i).

By plugging (iii) and (iv) back we get

n∑
i=1

E
x∼Di

H2 (f(x, ·), f⋆(x, ·)) ≤ 6nϵ|Y|+ 4 · (i).

Notice that (i) ≤ (ii), so we complete the proof by plugging (ii) into the above.

We first state the MLE generalization result for finite F .

Theorem E.4. Suppose F is finite. Fix any δ ∈ (0, 1), set β = log(|F|/δ) and define

F̂ =

{
f ∈ F :

n∑
i=1

log f(xi, yi) ≥ max
f̃∈F

n∑
i=1

f̃(xi, yi)− 4β

}
.

Then w.p. at least 1− δ, the following holds:

(1) The true distribution is in the version space, i.e., f⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth data-generating distribution,
i.e., for all f ∈ F̂

n∑
i=1

Ex∼Di

[
H2(f(x, ·) ∥ f⋆(x, ·))

]
≤ 22β.

Proof. These two claims follow from Lemma E.3 with ϵ = 0, and so N[](ϵ,F , ∥ · ∥∞) = |F|. For
(1), apply Eq. (5) to f = f̂MLE to see that f⋆ ∈ F̂ . For (2), apply Eq. (4) and note that the sum term
is at most 4β. Thus, the right hand side of Eq. (4) is at most (6 + 8 + 8)β = 22β.

We now state the result for infinite F using bracketing entropy.
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Theorem E.5. Fix any δ ∈ (0, 1), set β = log(N[]((n|Y|)−1,F , ∥ · ∥∞)/δ) and define

F̂ =

{
f ∈ F :

n∑
i=1

log f(xi, yi) ≥ max
f̃∈F

n∑
i=1

f̃(xi, yi)− 7β

}
.

Then w.p. at least 1− δ, the following holds:

(1) The true distribution is in the version space, i.e., f⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth data-generating distribution,
i.e., for all f ∈ F̂

n∑
i=1

Ex∼Di

[
H2(f(x, ·) ∥ f⋆(x, ·))

]
≤ 28β.

Proof. These two claims follow from Lemma E.3 with ϵ = 1/n|Y|. For (1), apply Eq. (5) to f = f̂MLE

to see that f⋆ ∈ F̂ . For (2), apply Eq. (4) and note that the sum term is at most 7β. Thus, the right
hand side of Eq. (5) is at most (6 + 14 + 8)β = 28β.

F Confidence set construction with general function class

In this section, we extend the confidence set construction of O-DISCO and P-DISCO to general F ,
which can be infinite. Our procedure constructs the confidence set by performing the thresholding
scheme on an ε-net of F . While constructing an ε-net for F is admittedly a computationally hard
procedure, this is still information theoretically possible and our focus in O-DISCO and P-DISCO
is to show that distributional RL information-theoretically leads to small-loss bounds.

We first define some notations. Let F↓ and F↑ denote a lower and upper ε-bracketing of F ,
i.e., for any f ∈ F , there exists an ε-bracket [f↓, f↑] such that for all h, f↓h ≤ fh ≤ f↑h with
f↓ ∈ F↓, f↑ ∈ F↑. Recall that a lower bracket g ∈ F↓ may not be a valid distribution, but since
elements of F map to non-negative values, we can assume g has non-negative entires as well. Also,
we have αg

h(x, a) :=
∫
gh(z | x, a) ≥ 1− ε, so for ε small enough, g is normalizable. Hence, define

g̃(z | x, a) = αg
h(x, a)

−1g(z | x, a) as the normalized version, which is a valid distribution that we
can sample from.

Now, consider any martingale {xh,i, ah,i, ch,i}i∈[n],h∈[H], which could be the online data up to
episode k or the offline data (consisting of N i.i.d. samples). We define the MLE with re-
spect to a lower bracket element as follows. For any h ∈ [H], g ∈ F↓, π ∈ Π, sample
yg,πh,i ∼ g̃h+1(x

′
h,i, π(x

′
h,i)), and zg,πh,i = ch,i + yg,πh,i , define the MLE solution for (g, π) at time

h as,

MLEg,π
h = argmax

f∈F

n∑
i=1

log fh(z
g,π
h,i | xh,i, ah,i).

Also, define the version space with respect to the above MLE as,

Fg,π,h =

{
f ∈ F :

n∑
i=1

log fh(z
g,π
h,i | xh,i, ah,i) ≥

n∑
i=1

log MLEg,π
h (zg,πh,i | xh,i, ah,i)− β

}
.

We now prove a key result that implies that T π
h f

↓
h+1 falls into the confidence set Ff↓,π,h.

Theorem F.1. For any δ ∈ (0, 1) and suppose n ≥ 2. Then, w.p. at least 1− δ, for any h ∈ [H], g ∈
F , f↓ ∈ F↓, π ∈ Π, we have
n∑

i=1

log gh(z
f↓,π
h,i | xh,i, ah,i)− log T π

h f
↓
h+1(z

f↓,π
h,i | xh,i, ah,i) ≤ log(e4N[](n

−1,F , ∥·∥∞)2|Π|/δ).

where zf
↓,π

h,i = ch,i + yf
↓,π

h,i and yf
↓,π

h,i ∼ f̃
↓
h+1(· | x′h,i, πh+1(x

′
h,i)).
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Proof of Theorem F.1. Consider a ε-bracketing of F where ε ≤ 1/n ≤ 1/2; we will study each
element and conclude with a union bound. For any lower bracket l and upper bracket u in the
bracketing (note l, u need not correspond to the same bracket). Recall that αl

h+1(x, a) :=
∫
lh+1(z |

x, a), so we have 1− ε ≤ αl
h+1 ≤ 1 since l is a lower ε-bracket of distributions. Therefore, we have

E

[
exp

n∑
i=1

log

(
uh(z

l,π
h,i | xh,i, ah,i)

T π
h lh+1(z

l,π
h,i | xh,i, ah,i)

)]
=

n∏
i=1

Eνh,i

[
uh(z

l,π
h,i | xh,i, ah,i)

T π
h lh+1(z

l,π
h,i | xh,i, ah,i)

]
,

where νh,i is the distribution of data from i-th round and time h. Note that νh,i(x, a, c, x′) =
dh,i(x, a)Ch(c | x, a)Ph(x

′ | x, a) for some distribution dh,i(x, a). Now focus on each i, so for all i,
we have

Eνh,i

[
uh(z

l,π
h,i | xh,i, ah,i)

T π
h lh+1(z

l,π
h,i | xh,i, ah,i)

]

=

∫
x,a,c,x′,y

νh,i(x, a, c, x
′)l̃h+1(y | x′, π(x′))

uh(c+ y | x, a)∫
c,x′ νh,i(c, x′ | x, a)lh+1(y | x′, π(x′))

=

∫
x,a,z

dh,i(x, a)

∫
z

uh(z | x, a)

×
∫
c,x′

νh,i(c, x
′ | x, a)l̃h+1(z − c | x′, π(x′))

1∫
c,x′ νh,i(c, x′ | x, a)lh+1(z − c | x′, π(x′))

=

∫
x,a,z

dh,i(x, a)

∫
z

uh(z | x, a)αl
h+1(x, a)

−1

≤ 1 + ε

1− ε
= 1 +

2ε

1− ε
≤ 1 +

4

n
.

Therefore,

E

[
exp

n∑
i=1

log

(
uh(z

l,π
h,i | xh,i, ah,i)

T π
h lh+1(z

l,π
h,i | xh,i, ah,i)

)]
≤ (1 + 4/n)

n ≤ e4.

Thus, by Markov’s inequality, w.p. at least 1− δ, we have
n∑

i=1

log

(
uh(z

l,π
h,i | xh,i, ah,i)

T π
h lh+1(z

l,π
h,i | xh,i, ah,i)

)
≤ ln(e4/δ).

To conclude, apply union bound to get this result for all brackets.

For the remainder of this section, we assume the policy class Π is finite. However, it is possible
to extend our results using policy covers in the Hamming distance; in that case, log|Π| would be
replaced by the log covering number or entropy integral of Π [as in Zhou et al., 2023, Kallus et al.,
2022]. We note that for the online case, we rely on the assumption that for any f ∈ F we have
πf ∈ Π, where recall that πf

h(x) = argmina f̄h(x, a). This is because T ⋆,D is not a contraction
so we cannot operate with T ⋆,D directly and instead operate with T πf ,D. We highlight that this
assumption is automatically satisfied in tabular MDPs, since the whole policy space is finite, and
log|Π| = O(X log(A)) is lower order compared to log of the bracketing entropy of Ftab, which is
O(X2A2). In contrast, in non-distributional methods such as GOLF, the regular Bellman optimality
operator is a contraction so standard Lipschitz arguments for covering go through. We note that it is
also possible to construct covers of F in the Hellinger distance, but the metric entropy of Ftab seems
to be on the same order as its bracketing entropy.

We now describe the version space construction for general F , first for the online setting. Fix any k,
and define the set

Ff↓,π,h =

{
f ∈ F :

k∑
i=1

log fh(z
f↓,π
h,i | xh,i, ah,i) ≥

k∑
i=1

log MLEf↓,π
h (zf

↓,π
h,i | xh,i, ah,i)− β

}
Then, construct the version space as

Fk =
{
f ∈ F : fh ∈ Ff↓,πf ,h,∀h ∈ [H]

}
.
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Theorem F.2. Fix any δ ∈ (0, 1) and suppose Assumption 5.1. Set β = log(KH ·N[](K
−1,F , ∥ ·

∥∞)|Π|/δ). Then, w.p. at least 1− δ, the following holds:

(1) The optimal cost distribution is in the version space, i.e., Z⋆ ∈ Fk.

(2) For all f ∈ Fk and h ∈ [H],
k∑

i=1

Eπi

[
H2(fh(xh, ah) ∥ T ⋆,D

h fh+1(xh, ah))
]
≤ 60β.

Proof. First, we want to verify that Z⋆ ∈ Fk. Let f↓ be the lower bracket of Z⋆ and set
g = MLEf↓,π⋆

h ∈ F ; note π⋆ = πZ⋆

. By Theorem F.1, we have
∑k

i=1 log MLEf↓,π⋆

h (zf
↓,π⋆

h,i |
xh,i, ah,i) − log T π⋆,D

h f↓h+1(z
f↓,π⋆

h,i | xh,i, ah,i) ≤ O(β). Therefore, noting that Z⋆
h =

T π⋆,D
h Z⋆

h+1 ≥ T
π⋆,D
h f↓h+1 shows that Z⋆

h ∈ Ff↓,π⋆,h for every h, implying that Z⋆ ∈ Fk.

For the second claim, fix any f ∈ Fk and h ∈ [H]. Then,
k∑

i=1

Eπi

[
H2(fh(xh, ah) ∥ T ⋆,D

h fh+1(xh, ah))
]

=

k∑
i=1

Eπi

[
H2(fh(xh, ah) ∥ T πf ,D

h fh+1(xh, ah))
]

≤ 2

k∑
i=1

Eπi

[
H2(fh(xh, ah) ∥ T πf ,D

h f̃↓h+1(xh, ah)) +H2(T πf ,D
h f̃↓h+1(xh, ah) ∥ T

πf ,D
h fh+1(xh, ah))

]
≤ 2(28β + 3kε).

The β comes from Theorem E.5, and for ε, we used the fact that H2 ≤ H ≤ TV , and
k∑

i=1

Eπi

[
TV (T πf ,D

h f̃↓h+1(xh, ah) ∥ T
πf ,D
h fh+1(xh, ah))

]
=

k∑
i=1

Eπi

∫
z

∣∣∣T πf ,D
h f̃↓h+1(z | xh, ah)− T

πf ,D
h fh+1(z | xh, ah))

∣∣∣
=

k∑
i=1

Eπi

∫
z

∑
c,x′

ν(c, x′ | xh, ah)
∣∣∣f̃↓h+1(z − c | x

′, πf (x′))− fh+1(z − c | x′, πf (x′))
∣∣∣

≤
k∑

i=1

3ε = 3kε,

since for any x, a, we have
∫
z

∣∣∣f̃↓h+1(z | x, a)− fh+1(z | x, a)
∣∣∣ ≤ 3ε. There are two cases. If

f̃↓h+1(z | x, a) ≥ fh+1(z | x, a), then f̃↓h+1(z | x, a) − fh+1(z | x, a) ≤ (1 − ε)−1f↓h+1(z |
x, a) − fh+1(z | x, a) ≤ 2εfh+1(z | x, a) since (1 − ε)−1 ≤ 1 + 2ε. If f̃↓h+1(z | x, a) <
fh+1(z | x, a), then fh+1(z | x, a)− f̃↓h+1(z | x, a) ≤ fh+1(z | x, a)− f↓h+1(z | x, a) ≤ ε. Thus,∫
z
max(2εfh+1(z | x, a), ε) ≤

∫
z
2εfh+1(z | x, a) + ε = 3ε. Thus, setting ε = 1/K gives

k∑
i=1

Eπi

[
H2(fh(xh, ah) ∥ T ⋆,D

h fh+1(xh, ah))
]
≤ 59β.

For the offline setting, fix any π and define its general version space as,

Fπ =
{
f ∈ F : fh ∈ Ff↓,π,h,∀h ∈ [H]

}
.
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Theorem F.3. Fix any δ ∈ (0, 1) and suppose Assumption 5.1. Set β = log(H|Π| ·
N[]((n|Y|)−1,F , ∥ · ∥∞)/δ). Then, w.p. at least 1− δ, the following holds for all policies π ∈ Π:

(1) The policy cost distribution is in the version space, i.e., Zπ ∈ Fπ .

(2) Any function in the version space has bounded triangular discrimination with the ground
truth data-generating distribution, i.e., for all f ∈ Fπ and h ∈ [H],

Eνh

[
H2(fh(xh, ah) ∥ T π,D

h fh+1(xh, ah))
]
≤ 60βN−1.

Proof. The proof is the same as in Theorem F.2, but instead of πf , we fix any π.

G The ℓp distributional eluder dimension

Let S denote any input space (for example, we will later instantiate S = X or S = X ×A). Let Ψ
denote a set of functions mapping from S → R. Let D be a set of distributions on S.

Recall the definition of ε-independent sequence (of distributions) from Jin et al. [2021a].

Definition G.1 (ℓ2-independent sequence). A distribution ν ∈ D is (ε, ℓ2)-independent of a sequence{
d(1), . . . , d(n)

}
⊂ D if there exists ψ ∈ Ψ such that |Eνψ| > ε and also

√∑n
i=1(Ed(i)ψ)

2 ≤ ε.

Note that the definition is on sequences of distributions, which generalizes the original definition on
sequences of points from Russo and Van Roy [2013].

We now generalize the above definition for the general ℓp norm.

Definition G.2 (ℓp-independent sequence). A distribution ν ∈ D is (ε, ℓp)-independent of a sequence{
d(1), . . . , d(n)

}
⊂ D if there exists ψ ∈ Ψ such that |Eνψ| > ε and also

∑n
i=1|Ed(i)ψ|p ≤ εp.

Using the definition of independent sequences established so far, we define the ℓp distributional eluder
dimension.

Definition G.3 (ℓp-distributional eluder dimension). For any p, define the ℓp-distributional eluder
dimension (denoted by DEp(Ψ,D, ε)) as the length of the longest sequence {d(1), . . . , d(d)} ⊂ D
such that there exists ε′ ≥ ε, such that for all t ∈ [d], d(t) is (ε′, ℓp)-independent of d(1), . . . , d(t−1).

Of particular interest to us is the ℓ1 case. We show that the ℓ1 eluder dimension is dominated by the
ℓ2 eluder dimension of Jin et al. [2021a].

Lemma 5.4. For any Ψ,D and ε > 0, we have DE1(Ψ,D, ε) ≤ DE2(Ψ,D, ε).

Proof. Since
√∑

i x
2
i ≤

∑
i|xi|, we have that any witness (long independent sequence) for ℓ1 is

also a witness for ℓ2. So, the maximum length of the ℓ2 witnesses is longer than the ℓ1 witnesses. Liu
et al. [2022, Proposition 19] obtains an analogous result for the non-distributional eluder dimension
of Russo and Van Roy [2013].

We now prove the key pigeonhole result for the ℓ1 distributional eluder dimension.

Theorem 5.3. Let C := supd∈D,f∈Ψ|Edf | be the envelope. Fix any K ∈ N and sequences
f (1), . . . , f (K) ⊆ Ψ, d(1), . . . , d(K) ⊆ D. Let β be a constant such that for all k ∈ [K], we have,∑k−1

i=1

∣∣Ed(i)f (k)
∣∣ ≤ β. Then, for all k ∈ [K], we have

k∑
t=1

∣∣∣Ed(t)f (t)
∣∣∣ ≤ inf

0<ε≤1
{DE1(Ψ,D, ε)(2C + β log(C/ε)) + kε}.

Proof. For any Γ ⊂ D, ν ∈ D, and 0 < ε ≤ 1, let L(ν,Γ, ε) denote the number of disjoint subsets
of Γ such that each subset is ε-dependent of ν, i.e., for all such disjoint subsets of Γ, it is not the case
that ν is (ε, ℓ1)-independent of each subset.
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Fact 1: For any ε, if
∣∣Ed(k)f (k)

∣∣ > ε for some k ∈ [K], then L(d(k), d(1:k−1), ε) < β/ε.
By definition of L := L(d(k), d(1:k−1), ε), there exist disjoint subsequences G(1), . . . ,G(L) of
d(1:k−1) such that each subsequence G(i) satisfies

∑
d∈G(i)

∣∣Edf
(k)
∣∣ > ε. Therefore, summing over

all subsequences, we have Lε <
∑k−1

i=1

∣∣Ed(i)f (k)
∣∣ ≤ β, where the β inequality comes from the

premise. This proves Fact 1.

Fact 2: For any ε and any sequence
{
ν(1), . . . , ν(κ)

}
⊂ D, there exists j ∈ [κ] such that

L(ν(j), ν(1:j−1), ε) ≥ J := ⌊(κ− 1)/DE1(Ψ,D, ε)⌋.
If J = 0, the claim is vacuously true. Otherwise, consider the following algorithm for finding the j:

Step 1) Initialize G(1) = [ν(1)], . . . ,G(J) = [ν(J)] and let j = J + 1.

Step 2) If ν(j) is ε-dependent on all of G(i), i ∈ [J ], then the claim is proven and terminate.

Step 3) Otherwise, there exists some G(i), i ∈ [J ] such that ν(j) is ε-independent of it. Append ν(j)

to G(i), i.e., G(i) = G(i) + [ν(j)]. Increment j = j + 1 and go back to Step 2.

Hence, we need to argue this process terminates at Step 2 before j gets to κ+ 1. We prove this by
contradiction: assume j gets to κ+ 1. Let i ∈ [J ] be such that G(i) has the most elements (break ties
arbitrarily). Since κ =

∑J
i=1

∣∣G(i)
∣∣ ≤ J∣∣G(i)

∣∣, we have that
∣∣G(i)

∣∣ ≥ κ/J ≥ κ
κ−1 DE1(Ψ,D, ε) >

DE1(Ψ,D, ε), where we’ve also used the definition of J . By construction, G(i) is an ε-eluder
sequence, i.e., it is a sequence such that each element is ε-independent of its predecessors. However,
this is a contradiction because its size is greater than DE1(Ψ,D, ε). Therefore, this process terminates
at Step 2 for some j, which is the witness for proving Fact 2.

Fact 3: For any ε and k ∈ [K], we have
∑k

t=1 I
[∣∣Ed(t)f (t)

∣∣ > ε
]
≤
(
βε−1 + 1

)
DE1(Ψ,D, ε)+1.

Fix any ε and k ∈ [K]. Let
{
d(i1), . . . , d(iκ)

}
be all the elements of d(1:k) such that Ed(t)f (t) >

ε for t = i1, . . . , iκ. By Fact 2, there exists j ∈ [κ] such that L(d(ij), d(i1:j−1), ε) ≥
⌊(κ − 1)/DE1(Ψ,D, ε)⌋. By Fact 1, we have L(d(ij), d(1:ij), ε) ≤ β/ε. Finally notice
that L(d(ij), d(i1:j−1), ε) ≤ L(d(ij), d(1:ij), ε) since adding more elements can only create
more ε-dependent-of-ν disjoint subsets. Thus, combining these inequalities, we have ⌊(κ −
1)/DE1(Ψ,D, ε)⌋ < β/ε. This implies κ ≤ (βε−1 + 1)DE1(Ψ,D, ε) + 1, which proves Fact
3.

Finishing the proof
Fix any k ∈ [K] and ω > 0. We have

k∑
t=1

∣∣∣Ed(t)f (t)
∣∣∣ = k∑

t=1

∫ C

0

I
[∣∣∣Ed(t)f (t)

∣∣∣ > y
]
dy

≤ kω +

k∑
t=1

∫ C

ω

I
[∣∣∣Ed(t)f (t)

∣∣∣ > y
]
dy

= kω +

∫ C

ω

k∑
t=1

I
[∣∣∣Ed(t)f (t)

∣∣∣ > y
]
dy

≤ kω +

∫ C

ω

{(β/y + 1)DE1(Ψ,D, y) + 1}dy (Fact 3)

≤ kω +

∫ C

ω

{(β/y + 1)DE1(Ψ,D, ω) + 1}dy (Monotonicity of DE1)

≤ kω + (d+ 1)C + dβ log(C/ω). (d := DE1(Ψ,D, ω))
This completes the proof.

G.1 Bounding V-type ℓ2 eluder dimension in low-rank MDPs

Theorem G.4 (Bound of ℓ2 distributional eluder for low-rank MDPs). Suppose the MDP is a
low-rank MDP. Let Ψ ⊂ X → [0, 1] be any class of functions mapping X to [0, 1]. Suppose

28



D = {x 7→ dπh(x) : π ∈ Π} for some h ∈ [H]. Then, we have

DE2(Ψ,D, ε) ≤ O(d log(d/ε)). (7)

Proof. If h = 1, then D is a singleton. Hence, DE2(Ψ,D, ε) ≤ 1. Hence, suppose h ≥ 2; set
h := h− 1 and we will focus on dπh+1 in the remainder. Suppose

{
d(k), f (k)

}
k∈[T ]

is any sequence

such for all k ∈ [T ], we have that (d(k), f (k)) is (ε, ℓ2)-independent of its predecessors. For any k,
set Σk =

∑k−1
i=1 Ed(i) [ϕ⋆h(xh, ah)]Ed(i) [ϕ⋆h(xh, ah)]

⊤
+ λI . Then, we have

Ed(k)f (k)(xh+1) = Ed(k)

∫
xh

ϕ⋆h(xh, ah)
⊤dµ⋆

h(xh+1)f
(k)(xh+1)

= Ed(k)ϕ⋆h(xh, ah)
⊤
∫
xh+1

f (k)(xh+1)dµ
⋆
h(xh+1).

≤ ∥Ed(k)ϕ⋆h(xh, ah)∥Σ−1
k
∥
∫
xh+1

f (k)(xh+1)dµ
⋆
h(xh+1)∥Σk

.

Focusing on the second term,

∥
∫
xh+1

f (k)(xh+1)dµ
⋆
h(xh+1)∥2Σk

=

k−1∑
i=1

(
Ed(i)

[
f (k)(xh+1)

])2
+ λd

Thus, we have shown that

Ed(k)f (k)(xh+1) ≤ ∥Ed(k)ϕ⋆h(xh, ah)∥Σ−1
k

√√√√k−1∑
i=1

(
Ed(i)

[
f (k)(xh+1)

])2
+ λd.

Then, by the independent sequence assumption, we have

Tε <

T∑
k=1

Ed(k)f (k)(xh+1) ≤
T∑

k=1

∥Ed(k)ϕ⋆h(xh, ah)∥Σ−1
k

√√√√k−1∑
i=1

(
Ed(i)

[
f (k)(xh+1)

])2
+ λd

≤
T∑

k=1

∥Ed(k)ϕ⋆h(xh, ah)∥Σ−1
k

(
ε+
√
λd
)

(
√∑k−1

i=1

(
Ed(i)

[
f (k)(xh+1)

])2 ≤ ε)
≤ 2ε

T∑
k=1

∥Ed(k)ϕ⋆h(xh, ah)∥Σ−1
k

(λ = ε2/d)

≤ 2ε
√
T

√√√√ T∑
k=1

∥Ed(k)ϕ⋆h(xh, ah)∥2Σ−1
k

≤ 2ε
√
T
√
d log(1 + T/dλ) (elliptical potential)

≤ 2ε
√
T
√
d log(1 + T/ε2). (λ = ε2/d)

For a reference of the elliptical potential, see Uehara et al. [2021, Lemmas 19&20]. Rearranging, we
have

√
T < 2

√
d log(1 + T/ε2), which implies

T ≤ 4d log(1 + T/ε2).

By applying Lemma G.5, we have T ≤ 24d log(1 + 4d/ε2). This concludes the proof.

Lemma G.5. Let c1, c2 ≥ 1 be constants. Let x ≥ 0 be a solution to x ≤ c1 log(1 + c2x). Then, we
necessarily have x ≤ 6c1 log(1 + c1c2).

Proof. Using change of variables B = x
c1

, we have the inequality is equivalent to B ≤ log(1 +B ·
c1c2). Take exp of both sides to get exp(B) ≤ αB +1 where α = c1c2. From Step 3 of the proof of
Russo and Van Roy [2013, Proposition 6], we have B ≤ e

e−1
e

e−1 (log(1 + α) + log(e/(e− 1))) ≤
3(log(1 + c1c2) + 1). Hence, x ≤ c1 · 3(log(1 + c1c2) + 1).
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G.2 Bounding Q-type ℓ2 eluder dimension in tabular MDPs

Theorem G.6 (Bound of ℓ2 distributional eluder for tabular MDPs). Suppose the MDP is a tabular
MDP. Let Ψ ⊂ X ×A → [0, 1] be any class of functions mapping X × A to [0, 1]. Suppose D be
any set of distributions. Then, we have

DE2(Ψ,D, ε) ≤ O(SA log(SA/ε)). (8)

Proof. Suppose
{
d(k), f (k)

}
k∈[T ]

is any sequence such for all k ∈ [T ], we have that (d(k), f (k))

is (ε, ℓ2)-independent of its predecessors. Since the MDP is tabular, we can interpret d(k), f (k) as
SA-dimensional vectors. For any k, set Σk =

∑k−1
i=1 d

(i)(d(i))⊤ + λI . Then, we have

Ed(k)f (k)(x, a) = (d(k))⊤f (k) ≤ ∥d(k)∥Σ−1
k
∥f (k)∥Σk

.

Focusing on the second term, we have

∥f (k)∥2Σk
=

k−1∑
i=1

(
(d(i))⊤f (k)

)2
+ λSA.

Thus, we have

Tε <

T∑
k=1

Ed(k)f (k)(x, a) ≤
T∑

k=1

∥d(k)∥Σ−1
k

√√√√k−1∑
i=1

(
Ed(i) [f (k)(x, a)]

)2
+ λSA

≤
T∑

k=1

∥d(k)∥Σ−1
k

(
ε+
√
λSA

)
≤ 2ε

T∑
k=1

∥d(k)∥Σ−1
k

(λ = ε2/SA)

≤ 2ε
√
T

√√√√ T∑
k=1

∥d(k)∥2
Σ−1

k

≤ 2ε
√
T
√
SA log(1 + T/ε2). (elliptical potential)

Rearranging, we have
√
T < 2

√
SA log(1 + T/ε2), which implies T ≤ 4SA log(1 + T/ε2). Then

by applying Lemma G.5, we have T ≤ 24SA log(1 + 4SA/ε2). This concludes the proof.
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H Proofs for Online RL

H.1 Preliminary Lemmas

Lemma H.1. For any policy π, conditional distribution d and h ∈ [H], we have

T π,D
h d(x, a) = T π

h d̄(x, a),

T ⋆,D
h d(x, a) = T ⋆

h d̄(x, a).

Proof.

T π,D
h d(x, a) = Ey∼T π,D

h d(x,a)[y]

= Ec∼Ch(x,a),x′∼Ph(x,a),a′∼πh+1(x′),y′∼d(x′,a′)[c+ y′]

= C̄h(x, a) + Ex′∼Ph(x,a),a′∼πh+1(x′),y′∼d(x′,a′)[y
′]

= C̄h(x, a) + Ex′∼Ph(x,a),a′∼πh+1(x′)

[
d̄(x′, a′)

]
= T π

h d̄(x, a).

T ⋆,D
h d(x, a) = Ey∼T ⋆,D

h d(x,a)[y]

= Ec∼Ch(x,a),x′∼Ph(x,a),a′=argminã d̄(x′,ã),y′∼d(x′,a′)[c+ y′]

= C̄h(x, a) + Ex′∼Ph(x,a),a′=argminã d̄(x′,ã),y′∼d(x′,a′)[y
′]

= C̄h(x, a) + Ex′∼Ph(x,a),a′=argminã d̄(x′,ã)

[
d̄(x′, a′)

]
= C̄h(x, a) + Ex′∼Ph(x,a)

[
min
a′

d̄(x′, a′)
]

= T ⋆
h d̄(x, a).

Lemma H.2 (Performance Difference Lemma (PDL)). For any f : (X ×A → R)H and policies
π, π′, we have

V π − Ea∼π′(x1)[f1(x1, a)] =

H∑
h=1

Eπ

[
T π′

h fh+1(xh, ah)− fh(xh, π′)
]
. (9)

Proof. We proceed by inducting on the following claim: for all h = H + 1, H, . . . , 1,

V π
h (xh)− fh(xh, π′) =

H∑
t=h

Eπ,xh

[
T π′

t ft+1(xt, at)− ft(xt, π′)
]
.

The base case of H + 1 is trivially true as everything is 0. Now fix any h and suppose the IH at h+ 1
is true. Then

V π
h (xh)− fh(xh, π′)

= Eπ,xh

[
ch + V π

h+1(xh+1)− fh+1(xh+1, π
′) + fh+1(xh+1, π

′)− fh(xh, π′)
]

= Eπ,xh

[
V π
h+1(xh+1)− fh+1(xh+1, π

′)
]
+ Eπ,xh

[ch + fh+1(xh+1, π
′)− fh(xh, π′)].

By the IH, the first term is equal to
∑H

t=h+1 Eπ,xh

[
T π′

t ft+1(xt, at)− ft(xt, π′)
]
. The second term

is exactly Eπ,xh

[
T π′

h fh+1(xh, ah)− fh(xh, π′)
]
, which concludes the proof.
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H.2 Proof of Small-Loss Regret and PAC Bounds

Recall that we defined the function class and distribution class, for each h, as

Dh(Π) = {(x, a) 7→ dπh(x, a) : π ∈ Π} (10)

Ψh =
{
(x, a) 7→ D△(f(x, a) ∥ T ⋆,Df(x, a)) : f ∈ F

}
.

Also, define the ‘V -type’ analogs as follows, which will be useful for PAC instead of regret bounds.

Dh,v(Π) = {x 7→ dπh(x) : π ∈ Π} (11)

Ψh,v =
{
x 7→ Ea∼Unif(A)[D△(f(x, a) ∥ T ⋆,Df(x, a))] : f ∈ F

}
.

Let us also overload notation for the eluder dimensions as

DE1(ε) := max
h

DE1(Ψh,Dh(Π), ε),

DE1,v(ε) := max
h

DE1(Ψh,v,Dh,v(Π), ε).

Before we prove the following main theorem, a couple of remarks are in order:

1. Recall that by Theorem G.6, we have DE1(ε) ≤ O(SA log(SA/ε)) and by Theorem G.4, we
have DE1,v(ε) ≤ O(d log(d/ε)). This shows that the Eluder dimension in terms in Theorem 5.5
are appropriately bounded.

2. In Appendix D, we showed that distributional BC (Assumption 5.1) is satisfied in low-rank
MDPs and the log bracketing number is bounded by O(dM log(d/ε) + log |Φ|) where Φ is a
realizable class for ϕ⋆. This shows that the BC assumption of Theorem 5.5 is satisfied and β is
appropriately bounded for low-rank MDPs.

Taken together, these two points imply that we have a small-loss PAC bound for low-rank MDPs:

concretely, we have V π̄ − V ⋆ ≤ Õ
(
dH
√

AV ⋆ log |Φ|
K + d2H2A log |Φ|

K

)
.

We now prove the our main result for online RL: Theorem 5.5. We will prove the result
with general function classes, so we will replace the |F| by its ℓ∞ bracketing number, i.e.,
β = log(HKN[](1/K,F , ℓ∞)/δ).

Theorem 5.5. Suppose DistBC holds (Assumption 5.1). For any δ ∈ (0, 1), w.p. at least 1 − δ,
running O-DISCO with β = log(HK|F|/δ) guarantees the following regret bound,

RegretO-DISCO(K) ≤ 160H
√
KV ⋆ DE1(1/K) log(K)β + 18000H2 DE1(1/K) log(K)β.

If UAE = TRUE (Algorithm 4), then the learned mixture policy π̄ is guaranteed to satisfy,

V π̄ − V ⋆ ≤ 160H

√
AV ⋆ DE1,v(1/K) log(K)β

K
+

18000H2ADE1,v(1/K) log(K)β

K
.

Proof. For shorthand, let δh,k(x, a) := D△(f
(k)
h (x, a) ∥ T ⋆,D

h f
(k)
h+1(x, a)) and ∆k :=∑H

h=1 Eπk [δh,k(xh, ah)]. Notice that since πk
h+1(x) = argmina f̄

(k)
h+1(x, a), we have

T πk,D
h f

(k)
h+1(x, a) = T

⋆,D
h f

(k)
h+1(x, a), so δh,k(x, a) = D△(f

(k)
h (x, a) ∥ T πk,D

h f
(k)
h+1(x, a)) as well.

By Theorem F.2, we have the following two facts for all k ∈ [K],
(i) Optimism: mina f̄

(k)
1 (x1, a) ≤ V ⋆ (since Z⋆ ∈ Fk) and

(ii) Low training error: for all h, we have

If UAE=FALSE.
∑

i<k Eπi [δh,k(sh, ah)] ≤ 240β.

If UAE=TRUE.
∑

i<k Eπi

[
Ea′∼unif(A)[δh,k(sh, ah)]

]
≤ 240β.

The 240 comes from the constants of Theorem F.2 and the fact that D△(a, b) ≤ 4H2(a, b) for all
distributions a, b.
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Now, fix any episode k ∈ [K].

V πk

− V ⋆

≤ V πk

−min
a
f̄
(k)
1 (x1, a) (Fact (i))

=

H∑
h=1

Eπk

[
T πk

h f̄
(k)
h+1(xh, ah)− f̄

(k)
h (xh, π

k
h(xh))

]
(PDL Lemma H.2)

=

H∑
h=1

Eπk

[
T πk,D
h f

(k)
h+1(xh, ah)− f̄

(k)
h (xh, ah)

]
(Lemma H.1)

≤
H∑

h=1

√
Eπk

[
4f̄

(k)
h (xh, ah) + δh,k(xh, ah)

]
·
√

Eπk [δh,k(xh, ah)] (Eq. (△2))

≤
H∑

h=1

√√√√4eV πk + 17H

H∑
t=h

Eπk [δt,k(xt, at)] ·
√
Eπk [δh,k(xh, ah)]

(Lemma H.3 and Eπ[Q
π
h(sh, ah)] ≤ V π)

≤
√
4eV πk + 17H∆k ·

√
H∆k (⋆)

≤
√
4eHV πk∆k + 5H∆k

≤ 2
√
Hη−1V πk

+ 2
√
Hη∆k + 5H∆k.

In ⋆, we used Cauchy Schwartz. Setting η = 4
√
H and rearranging, we have

V πk

≤ 2V ⋆ + 16H∆k + 10H∆k ≤ 2V ⋆ + 26H∆k.

Plugging this into ⋆, and noting 104e+ 17 ≤ 300, we have

V πk

− V ⋆ ≤
√

8eV ⋆ + 300H∆k

√
H∆k.

Thus, summing the instantaneous regrets over all episodes, we get
K∑

k=1

V πk

− V ⋆ ≤
K∑

k=1

√
8eV ⋆ + 300H∆k

√
H∆k

≤
√
8eKV ⋆ + 300H

∑
k

∆k

√
H
∑
k

∆k (Cauchy-Schwartz)

≤ 5

√
HKV ⋆

∑
k

∆k + 18H
∑
k

∆k.

Last step: bounding
∑

k ∆k. In this final step, we invoke the pigeonhole property of the eluder
dimension, as proven in Theorem 5.3. Note that the precondition of Theorem 5.3 is satisfied by Fact
(ii) mentioned at the beginning of this proof. Also, since the triangular discrimination is always
bounded by 1, we have that C in Theorem 5.3 is at most 1, and we will also pick ε = 1/K.

On one hand, if UAE=FALSE, then,
K∑

k=1

∆k =

H∑
h=1

K∑
k=1

Eπk [δh,k(xh, ah)] ≤ 1000H DE1(1/K)β log(K).

On the other hand, if UAE=TRUE, then, we use the V-type analogs,
K∑

k=1

∆k =

H∑
h=1

K∑
k=1

Eπk [δh,k(xh, ah)]

≤ A
H∑

h=1

K∑
k=1

Eπk

[
Ea∼unif(A)δh,k(xh, a)

]
≤ 1000AH DE1(1/K)β log(K).
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This concludes the proof for both the regret and PAC bounds.

Lemma H.3 (Self-bounding lemma). Let f ∈ F and let π be any policy. Let us denote δh(x, a) :=
D△(fh(x, a) ∥ T π,D

h fh+1(x, a)). Then, for all h ∈ [H], for all xh, ah, we have

f̄h(xh, ah) ≤ eQπ
h(xh, ah) + 4H

H∑
t=h

Eπ,xh,ah
[δt(xt, at)].

Proof. We prove the following refined subclaim inductively: for all h ∈ [H], for all xh, ah, we have

f̄h(xh, ah) ≤
H∑
t=h

(
1 +

1

H

)t−h

Eπ,xh,ah
[c̄t(xt, at) + 2Hδt(xt, at)]. (IH)

For H + 1 this is trivially true. Now fix any h and suppose IH is true for h+ 1. By Eq. (△2), for any
h, xh, ah, we have,

f̄h(xh, ah)− T π
h f̄h+1(xh, ah) ≤

√
4T π

h f̄h+1(xh, ah) + δh(xh, ah)
√
δh(xh, ah)

≤
√

4T π
h f̄h+1(xh, ah)δh(xh, ah) + δh(xh, ah)

≤ 1

H
T π
h f̄h+1(xh, ah) + (H + 1)δh(xh, ah). (AM-GM)

In particular, we have that

f̄h(xh, ah)

≤
(
1 +

1

H

)
T π
h f̄h+1(xh, ah) + 2Hδh(xh, ah)

=

(
1 +

1

H

)(
c̄h(xh, ah) + Exh+1∼P⋆

h (xh,ah)

[
f̄h+1(xh+1, π)

])
+ 2Hδh(xh, ah)

≤
(
1 +

1

H

)(
c̄h(xh, ah) + Exh+1∼P⋆

h (xh,ah)

[
H∑

t=h+1

(
1 +

1

H

)t−h−1

Eπ,xh+1
[c̄t(xt, at) + 2Hδt(xt, at)]

])
(IH)

+ 2Hδh(xh, ah),

which proves the inductive claim. Noting that
∑H

t=1(1 + 1/H)
t ≤ e, we have proven the lemma.

H.3 Regret Bounds for Tabular MDPs

Theorem H.4 (Small-loss regret for tabular MDP). Suppose the MDP is tabular with X states and
assume Assumption 5.1. Fix any δ ∈ (0, 1) and set β = log(HK|F|/δ). Then, w.p. at least 1− δ,

RegretO-DISCO(K) ∈ O(H
√
XAKV ⋆β +H2XAβ).

In terms of H,X,A,K scaling, our bound matches that of GOLF [Xie et al., 2023] and is only
a H factor looser than that of the minimax lower bound Õ(

√
XAK). The key benefit over prior

bounds is that our leading term scales with the minimum cost of the problem V ⋆. For example, if
V ⋆ ≈ 0, O-DISCO attains O(logK) regret while uniform regret bounds are lower bounded by
Ω(
√
K). Compared to the minimax-optimal UCBVI [Azar et al., 2017], one weakness of our theorem

is that it needs a F satisfying BC. Fortunately, in tabular MDPs where cost is only revealed at the
last step from a known distribution, we can choose Ftab as described in Wu et al. [2023, Lemma
4.15] to automatically satisfy BC. By extending our theory via bracketing entropy (Appendix F), we
can derive that Ftab yields β = O(X2A2 log(XAHK/δ)). We note that if costs are unknown but
discrete, it is possible to construct a BC function class with β scaling as O(X2A2 log(nXAHK/δ))
where n is the maximum number of possible cumulative costs.
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Extension to linear MDPs The Q-type dimension captures Linear MDPs when squared loss is used
by exploiting the fact that the bellman residual is linear in ϕ⋆(x, a) [Jin et al., 2021a]. However, since
our function class is the set of triangular discriminations, rather than the Bellman residual, we find
that the Q-type dimension does not immediately capture Linear MDPs unless regularity assumptions
are made. For instance, we believe that Linear MDPs are captured by the Q-type dimension if we
assume that Zπ

h (z | x, a) is lower bounded, i.e., the value distribution is sufficiently smooth.

I Proofs for Offline RL

Theorem 6.1 (Small-Loss PAC bound for P-DISCO). Assume Assumption 5.1. For any δ ∈ (0, 1),
w.p. at least 1− δ, running P-DISCO with β = log(H|Π||F|/δ) learns a policy π̂ that enjoys the
following PAC bound with respect to any comparator policy π̃ ∈ Π:

V π̂ − V π̃ ≤ 9H

√
C π̃V π̃β

N
+

30H2C π̃β

N
.

Proof of Theorem 6.1. For shorthand, let δπh(x, a) = D△(fπh (x, a) ∥ T
π,D
h fπh+1(x, a)) and ∆π =∑H

h=1 Eπ[δ
π
h(xh, ah)]. Also, let f(x, π) = Ea∼π(x)[f(x, a)].

By Theorem F.3, we have the following two facts, for all π ∈ Π,
(i) Pessimism: V π ≤ f̄π1 (x1, π) (since Zπ ∈ Fπ) for all π ∈ Π, and
(ii) Eνh

[δπh(xh, ah)] ≤ β′N−1 for all h where Theorem F.3 and the fact that D△ ≤ 4H2 certifies
that β′ = 240β is sufficient.

With these two facts, we can bound the suboptimality of π̂ as follows:

V π̂ − V π̃

≤ f̄ π̂1 (x1, π̂)− V π̃ (Fact (i))

≤ f̄ π̃1 (x1, π̃)− V π̃ (Policy selection scheme in Algorithm 3 (Line 4))

=

H∑
h=1

Eπ̃

[
f̄ π̃h (xh, π̃)− T π̃

h f̄
π̃
h+1(xh, ah)

]
(PDL Lemma H.2)

≤
H∑

h=1

√
Eπ̃

[
4f̄ π̃h (xh, ah) + δπ̃h(xh, ah)

]√
Eπ̃

[
δπ̃h(xh, ah)

]
(Eq. (△2))

≤
H∑

h=1

√√√√4eV π̃ + 17H

H∑
t=h

Eπ̃

[
δπ̃t (xt, at)

]√
Eπ̃

[
δπ̃h(xh, ah)

]
(Lemma H.3)

≤
√

4eV π̃ + 17H∆π̃
√
H∆π̃

≤ 4
√
HV π̃∆π̃ + 5H∆π̃.

Finally, we can bound ∆π̃ by a change of measure,

∆π̃ =

H∑
h=1

Eπ̃

[
δπ̃h(xh, ah)

]
≤ C π̃

H∑
h=1

Eνh
[δh(xh, ah)]

≤ C π̃H · β′N−1. (Fact (ii))

Therefore,

V π̂ − V π̃ ≤ 4H

√
C π̃V π̃β′

N
+

5H2C π̃β′

N
.
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J Extension: Small-Return Bounds

In this section, we show that O-DISCO and P-DISCO can also be used to obtain small-return
bounds. Compared to the algorithms presented in the main text for minimizing cost, we simply have
to replace min with max (and vice versa) for maximizing reward, i.e., see Appendix B and enable the
SMALLRETURN flag. The proofs are also largely the same, with slight changes to the first few steps.
Theorem J.1. Assume Assumption 5.1 and suppose we want to maximize returns (instead of minimize
cost), so enable the SMALLRETURN flag. Fix any δ ∈ (0, 1) and set β = log(HK|F|/δ) and
β′ = 60β. Then, w.p. at least 1− δ, running O-DISCO (Algorithm 4) with UAE = FALSE yields
the following small-loss regret bound,

RegretO-DISCO(K) ≤ 5H
√
KV ⋆ LSEC(K)β′ + 18H2 LSEC(K)β′. (12)

If instead UAE = TRUE, the outputted policy π̄ enjoys the following small-loss PAC bound,

V ⋆ − V π̄ ≤ 5H

√
AV ⋆ LSECv(K)β′

K
+ 18H2ALSECv(K)β′

K
.

Proof. Adopt the same notation as in the proof of Theorem 5.5. By Theorem F.2, we have the
following two facts for all k ∈ [K],
(i) Optimism: V ⋆ ≤ maxa f̄

(k)
1 (x1, a) (since Z⋆ ∈ Fk) and

(ii)
∑

i<k Eπi [δh,k(sh, ah)] ≤ β′ for all h. If UAE=TRUE, then ah is sampled from unif(A) rather
than πi, i.e., we have

∑
i<k Esh∼πi,ah∼unif(A)[δh,k(sh, ah)] ≤ β′, where β′ ≲ β. Theorem F.2

certifies that β′ = 60β is sufficient.

Fix any episode k ∈ [K]. Then,

V ⋆ − V πk

≤ max
a

f̄
(k)
1 (x1, a)− V πk

(Fact (i))

=

H∑
h=1

Eπk

[
f̄
(k)
h (xh, π

k
h(xh))− T πk

h f̄
(k)
h+1(xh, ah)

]
(PDL Lemma H.2)

=

H∑
h=1

Eπk

[
f̄
(k)
h (xh, ah)− T πk,D

h f
(k)
h+1(xh, ah)

]
(Lemma H.1)

≤
H∑

h=1

√
Eπk

[
4f̄

(k)
h (xh, ah) + δh,k(xh, ah)

]
·
√

Eπk [δh,k(xh, ah)] (Eq. (△2))

≤
H∑

h=1

√√√√4eV πk + 17H

H∑
t=h

Eπk [δt,k(xt, at)] ·
√
Eπk [δh,k(xh, ah)]

(Lemma H.3 and Eπ[Q
π
h(sh, ah)] ≤ V π)

≤
√
4eV πk + 17H∆k ·

√
H∆k (♣)

≤
√
4eV ⋆ + 17H∆k ·

√
H∆k

Thus, summing the instantaneous regrets over all episodes, we get
K∑

k=1

V πk

− V ⋆ ≤
K∑

k=1

√
4eV ⋆ + 17H∆k

√
H∆k

≤
√
4eKV ⋆ + 17H

∑
k

∆k

√
H
∑
k

∆k (Cauchy-Schwartz)

≤ 5

√
HKV ⋆

∑
k

∆k + 18H
∑
k

∆k.

The bounds for ∆k are the same as in Theorem 5.5.
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In some sense, the proof for the small-returns bound is actually easier than the small-loss bound.
Recall that in the cost-minimizing setting, we needed to perform a crucial Cauchy-Schwartz step to
rearrange terms at the step labelled ♣. However, in the reward-maximizing setting, we simply bound
V πk ≤ V ⋆, without needing to rearrange terms.
Theorem J.2. Assume Assumption 5.1 and suppose we want to maximize returns (instead of minimize
cost), so enable the SMALLRETURN flag. Fix any δ ∈ (0, 1) and set β = log(H|Π||F|/δ). Then,
w.p. at least 1− δ, P-DISCO (Algorithm 4) learns a policy π̂ such that for any comparator policy
π̃ ∈ Π, we have

V π̃ − V π̂ ≤ 9H

√
C π̃V π̃β

N
+

30H2C π̃β

N
.

Proof of Theorem J.2. Adopt the same notation as in the proof of Theorem 6.1. By Theorem F.3, we
have the following two facts, for all π ∈ Π,
(i) Pessimism: f̄π1 (x1, π) ≤ V π (since Zπ ∈ Fπ) for all π ∈ Π, and
(ii) Eνh

[δπh(xh, ah)] ≤ β′N−1 for all h where β′ ≤ 60β.

With these two facts, we can bound the suboptimality of π̂ as follows:

V π̃ − V π̂

≤ V π̃ − f̄ π̂1 (x1, π̂) (Fact (i))

≤ V π̃ − f̄ π̃1 (x1, π̃) (Policy selection rule in Line 5)

=

H∑
h=1

Eπ̃

[
T π̃
h f̄

π̃
h+1(xh, ah)− f̄ π̃h (xh, π̃)

]
(PDL Lemma H.2)

≤
H∑

h=1

√
Eπ̃

[
4f̄ π̃h (xh, ah) + δπ̃h(xh, ah)

]√
Eπ̃

[
δπ̃h(xh, ah)

]
. (Eq. (△2))

From here, the same argument in the proof of Theorem 6.1 finishes the proof.

K Experiment Details

Experiment Settings

In our experiments, as outlined in Foster and Krishnamurthy [2021], our γ learning rate at each time
step t is set to γt = γ0t

p where γ0 and p are hyperparameters. We use batch sizes of 32 samples
per episode, and the King County and Prudential experiments run for 5, 000 episodes while the
CIFAR-100 experiment runs for 15, 000.

For each dataset, we select the hyperparameter configuration with the best performance for each
algorithm. As we report two metrics, performance over the last 100 episodes and over all episodes, we
choose the best hyperparameters for each metric as well. While it is often the same hyperparameters
that give the best last 100 episodes and all episodes results for a model, that is not always the case.
We use the WandB (Weights and Biases) library to run sweeps over hyperparameters.

Oracles

For our regression oracles, we use ResNet18 [He et al., 2016], with a modified output layer (so
that the output is suited for 100 prediction classes) for CIFAR-100, and a simple 2 hidden-layer
neural network for the Prudential Life Insurance and King County Housing datasets. For DISTCB,
the oracle’s output layer has size AC where A is the number of actions and C is the number of
potential costs. This is reshaped so that for each action, there are predictions associated with each
potential cost, which then have a softmax function applied to them to represent cost probabilities. For
SquareCB and FastCB, the output size is A because there is just a single prediction associated with
each action. As per Foster and Krishnamurthy [2021], a sigmoid function is applied to this output
layer. All experiments were implemented using PyTorch.

Datasets

We now provide an overview table as well as additional details and context to our setups for each
dataset. Note that the number of items in each dataset in the table is the count after preprocessing.
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Datasets
Dataset Items Number of

Actions
Number of
Costs

CIFAR-100 50, 000 100 3
Prudential Life Insurance 59, 381 8 9
King County Housing 20, 148 100 101

Table 3: Overview of the three datasets and their experimental setups

Prudential Life Insurance This dataset is from the Prudential Life Insurance Kaggle competition
[Montoya et al., 2015]. It is featured in Farsang et al. [2022], which inspires our experimental setup.
The risk level in [8] directly determines the price charged to the customer. Thus, we can consider the
chosen risk level as the action taken. If the model overpredicts the risk level, we get a cost of 1.0
because this is considered over charging the customer and not getting a sale. Otherwise, the model’s
prediction is charging too little for the customer. To reiterate, the cost in this case is .1 ∗ (y − ŷ)
where y is the actual risk level, and ŷ is the predicted risk level.

King County Housing The King County housing dataset is also used in Farsang et al. [2022]. An
interesting part of the setup is that the cost construction in the case of not overpredicting differs from
the Prudential experiment, even though they’re both effectively about predicting a price point. Here,
the model’s chosen price is considered the gain, which is why the cost is 1.0 minus the chosen price.
On the other hand, in the Prudential experiment, the cost is a linear function of the difference between
the chosen value and the actual value.

CIFAR-100 For the CIFAR-100 experiment, we use the training dataset of 50, 000 images as our
dataset. The inclusion of the superclass is critical, as it lets us delineate 3 possible costs that DISTCB
can learn. Without the super class, the cost construction would be a pure binary of correct vs.
incorrect. If this were the case, the ability to test the effectiveness of learning the distribution would
be nullified. The distribution would just be whether an action is correct or not, which means our
algorithm would essentially be predicting the mean directly.

Results

The largest advantages DISTCB had over the next best algorithm were in the Prudential experiment,
with DISTCB having a .086 advantage over the last 100 episodes and a .045 advantage over all
episodes. While the gaps were not as large for the other two datasets, they are still statistically
significant and further showcase the benefit of distribution learning.
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