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Abstract

For partially observable environments, imitation learning with observation histories
(ILOH) assumes that control-relevant information is sufficiently captured in the
observation histories for imitating the expert actions. In the offline setting where
the agent is required to learn to imitate without interaction with the environment,
behavior cloning (BC) has been shown to be a simple yet effective method for
imitation learning. However, when the information about the actions executed in
the past timesteps leaks into the observation histories, ILOH via BC often ends up
imitating its own past actions. In this paper, we address this catastrophic failure
by proposing a principled regularization for BC, which we name Past Action
Leakage Regularization (PALR). The main idea behind our approach is to leverage
the classical notion of conditional independence to mitigate the leakage. We
compare different instances of our framework with natural choices of conditional
independence metric and its estimator. The result of our comparison advocates
the use of a particular kernel-based estimator for the conditional independence
metric. We conduct an extensive set of experiments on benchmark datasets in
order to assess the effectiveness of our regularization method. The experimental
results show that our method significantly outperforms prior related approaches,
highlighting its potential to successfully imitate expert actions when the past action
information leaks into the observation histories.

1 Introduction

Imitation learning (IL) aims at learning a policy that recovers an expert’s behavior from a demon-
stration dataset. Leveraging the information about state and expert action available in the dataset,
IL has been successful in many real-world applications [4, 12, 26, 27, 32, 38, 43]. Although IL
problems can be addressed using either online [17, 36] or offline algorithms [20, 33, 48], real-world
tasks often impose restrictions on interacting with the environment due to safety, cost, and ethical
concerns. Consequently, the practical necessity lies in the development of effective offline IL al-
gorithms. Behavior cloning (BC) [33] is one of the most prominent offline IL algorithms, which
learns to predict an expert’s action for each given state using an offline expert dataset via supervised
learning. BC has gained widespread recognition [7, 42] for providing a straightforward and effective
solution, especially when full access to state information is available and the dataset is sufficiently
extensive. However, when the state information is only partially available in an observation at each
timestep, which is closer to the realistic scenario (e.g. an autonomous vehicle with a limited number
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of sensors), training with any IL algorithm can be complicated. To enhance the ability of agent to infer
missing control-relevant information from observations, incorporating the history of observations
from adjacent past timesteps as input can be beneficial [2, 24].

When utilizing observation history for behavior cloning, a notable challenge emerges: the
unnecessary dependence of the imitator’s actions on the preceding actions, resulting in a suboptimal
behavior in test time. In extreme cases, this dependency can lead to undesirable behaviors, such
as the imitation policy that merely replicates its own actions from previous time steps 1, which
leads to a catastrophic result particularly in safety-critical tasks like autonomous driving. This is
often rooted at the inability to differentiate between actual and spurious causal relationship between
observation features and expert actions within the collected data [8]. Past action information is a
representative instance of such nuisance features, since it is a strongly correlated to the target expert
action. This correlation can mislead the IL algorithm into recognizing past action information, which
is not causally related to the target expert action, as a crucial feature for prediction. In this work, we
refer to this misleading phenomenon as past action information leakage.

A natural way to mitigate this phenomenon is to adopt a mechanism that blocks the leakage
of past action information irrelevant to the target expert action. In fact, Wen et al. [44] proposed
an adversarial training approach to discard such redundant information in the representation of the
observation history. This is achieved by maximizing the conditional entropy of the expert’s previous
action given the joint of the representation and target expert action. However, due to the intractability
of direct computation of the conditional entropy, this approach relies on unstable adversarial learning.
More recently, Chuang et al. [6] focuses on image-based observations and attempts to mitigate the
past action dependency by splitting the policy representation into two parts: a representation of the
observation history and a representation of the current observation. This method assumes a particular
policy structure and does not provide a systematic general approach to block the leakage of past
action information into the representation.

In this paper, we present a regularized behavior cloning framework that effectively mitigates the
leakage of past action information. We formally define the problem of the leakage of past action
information and establish a metric to quantify the magnitude of the leakage, employing the kernel-
based method called HSCIC (Hilbert-Schmidt Conditional Independence Criterion) [30]. Building
upon the metric, we devise an objective function that addresses the aforementioned problem, allowing
for a more comprehensive understanding and interpretation of existing work [44]. Moreover, we
propose a stable and efficient kernel-based regularization method that circumvents challenges such
as adversarial learning, nested optimization and reliance on a neural estimator. Lastly, we conduct
an extensive set of experiments which empirically show that our regularization method effectively
blocks the leakage of past action information across a variety of control task benchmarks.

Our contributions are summarized as follows:

• We formally define the problem of the leakage of past action information based on the concept of
conditional independence by quantifying the amount of leaked past action information.

• We introduce a principled framework for a behavior cloning with Past Action Leakage Reg-
ularization (PALR), which prevents the imitator from overfitting to leaked past information.

• We provide experimental results on established benchmarks, demonstrating the effectiveness of
our method.

2 Related Work

Invariant representation learning Learning representation invariant to any unwanted factors
has been widely studied in various domains such as fair classification [22, 25, 37, 47], domain
adaptation [11, 13, 18, 49], and imitation learning [6, 44]. One of the dominant approaches in invariant
representation learning is adversarial learning [11, 13, 44, 47]. Adversarial learning algorithms

1The problem has many names: copycat problem [6, 44], inertia problem [7], latching effect [40]. Beyond the falsely
leaded action repeating behavior, we introduce the past action information leakage to separate the reason and the result.
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commonly train additional networks that predict the unwanted factors from the representations
while enforcing representations to make those prediction models fail. Consequently, they require
alternating optimization between the main and the additional models [13, 44, 47] or show numerical
instability [11]. To bypass those shortcomings of adversarial learning, several information-theoretic
approaches [18, 25] have been proposed. Based on Variational Auto-Encoders (VAE) [21], these
methods proposed end-to-end learning algorithms that jointly optimize all of their components
with numerical stability. However, these methods assume that the distribution of the representation
is Gaussian, which restricts the flexibility of the representation. Wen et al. [46] concentrated
on eliminating shortcuts in supervised learning by incorporating supplementary key information,
demonstrating its enhancement of behavior cloning with observation histories. Recent methods have
proposed to learn counterfactually or conditionally invariant representation, leveraging on kernel-
based conditional independence metric [31, 35]. These methods demonstrated promising empirical
results in synthetic domains, effectively mitigating the impact of nuisance correlations.

Information leakage in imitation learning There is a growing understanding of the importance
of addressing the correlation between expert actions and nuisance features, which are not essential
for control and may even hinder performance. [8, 29, 39] Especially, termed as causal confusion [8],
imitation learning exhibits a paradoxical phenomenon: having more information can lead to worse
performance. Aligning with such observation, recent works have also demonstrated that accessing
more information from the observation history leaks past action information so that the imitator may
learn an undesirable policy that simply repeats the same action in the past [6, 7, 40, 44, 45]. To
avoid learning degenerate solutions from the past action information, Wen et al. [44] proposed the
regularization method based on the conditional entropy of the previous action given the representation
of the history and the current action. However, their method involves a nested minimax optimization
along with an additional neural network, which complicates the training process. We closely
investigate their formulation in Section 4.2.1 to show their limitations as well as their connection to
our method. Wen et al. [44] also introduced the action predictability metric to quantify the dependence
between past action histories and imitator actions, relative to expert actions. However, this metric
is not based on conditional independence, which is central to our argument concerning the past
action leakage. Wen et al. [45] addressed this problem using a weighted behavior cloning method
that upweights “keyframe” samples, which are more likely to be predicted from the action histories.
Swamy et al. [40] showed that online interaction is both necessary and sufficient to resolve repeating
behavior. However, in many real-world applications [4, 12, 26, 27, 32, 38, 43], online interaction is
often infeasible due to safety, cost, and ethical considerations. In this work, we develop an offline
algorithm that can robustly handle the leakage of past action information.

3 Preliminaries

3.1 Conditional independence

For random variables X,Y which taking a value in X ,Y respectively, we write PX , PXY , and PX|Y
for the marginal distribution ofX , the joint distribution ofX and Y , and the conditional distribution of
X given Y , respectively. We say that random variables X and Y are conditionally independent given
a random variable Z or simply Z-conditionally independent if PXY |Z(x, y) = PX|Z(x)PY |Z(y) for
all x, y ∈ X × Y . Also, we say that X and Y are independent if PXY (x, y) = PX(x)PY (y) for all
x, y. We denote Z-conditional independence by X ⊥⊥ Y | Z, and independence by X ⊥⊥ Y .

Conditional Mutual Information (CMI) Mutual information (MI) is an information-theoretic
quantity to measure the dependency between two random variables. MI between random vari-
ables X and Y is defined as I(X;Y ) = DKL(PXY , PXPY ) = Ex,y∼PXY

[logPXY (x, y) −
logPX(x)PY (y)]. MI is always non-negative (i.e., I(X;Y ) ≥ 0), and it becomes zero if and
only if X ⊥⊥ Y . Conditional mutual information (CMI) is defined similarly, but with conditional
distributions. CMI between random variables X and Y given a random variable Z is defined as
I(X;Y | Z) = EPZ

[DKL(PXY |Z , PX|ZPY |Z)]. As in the case of MI, I(X;Y | Z) ≥ 0, and also
I(X;Y | Z) = 0 if and only if X ⊥⊥ Y | Z.
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Hilbert-Schmidt Conditional Independence Criterion (HSCIC) Hilbert-Schmidt Independence
Criterion (HSIC) [14] is a kernel-based measure that quantifies the dependency between two random
variables. Let HX and HY be reproducing kernel Hilbert spaces (RKHS) on X and Y with the
corresponding reproducing kernels kX and kY , respectively. The tensor product kX⊗kY of the kernels
is a binary function on X × Y defined by (kX ⊗ kY)((x1, y1), (x2, y2)) := kX (x1, x2)kY(y1, y2).
The RKHS on X ×Y with the kernel kX ⊗kY is called the tensor product RKHS of HX and HY , and
it is denoted by HX ⊗HY . HSIC between X and Y is defined to be the maximum mean discrepancy
(MMD) between PXY and PXPY under HX ⊗HY , i.e, the distance in the Hilbert space HX ⊗HY
between the so-called kernel mean embeddings of PXY and PXPY to that space:

HSIC(X,Y ) := MMD2(PXY , PXPY ;HX ⊗HY)

= ∥µPXY
− µPX

⊗ µPY
∥2HX⊗HY

where µPXY
is the kernel mean embedding of the distribution PXY to HX ⊗HY , i.e. µPXY

(x, y) :=
EPXY

[(kX ⊗ kY)((X,Y ), (x, y))], and µPX
, µPY

are defined similarly but using HX , HY instead.
The (µPX

⊗ µPY
) is simply the function in HX ⊗HY that maps (x, y) to µPX

(x)µPY
(y). When

kX ⊗ kY satisfies some condition (i.e., characteristic), HSIC(X,Y ) = 0 if and only if X ⊥⊥ Y [14].

HSCIC (Hilbert-Schmidt Conditional Independence Criterion) is an extension of HSIC that
quantifies the amount of conditional dependency between two random variables given another
random variable. In this paper, we follow the definition of HSCIC based on conditional mean
embedding [30], and use an estimator of HSCIC that draws samples from the joint distribution PXY Z

and performs vector-valued RKHS regression. The conditional mean embedding of X given Z is a
function in the RKHS HX that is parameterized by the value of Z. Given a value z of Z, it maps
x ∈ X to µPX|Z=z

(x) := EPX|Z=z
[kX (X,x)]. Then, HSCIC is a mapping from a value of Z to a

non-negative real defined as follows: for all z ∈ Z ,

HSCIC(X,Y |Z = z) := ∥µPXY |Z=z
− µPX|Z=z

⊗ µPY |Z=z
∥2HX⊗HY

When kX ⊗ kY satisfies the condition mentioned from above, X ⊥⊥ Y | Z if and only if
EPZ

[HSCIC(X,Y |Z)] = 0 [30]. We use an empirical estimator of the expectation here, denoted
by ĤSCIC(X,Y |Z). See Section A in the supplementary material for more details for definition of
HSCIC and its empirical estimator.

3.2 Imitation learning from observation histories

We consider a Partially Observable Markov Decision Process (POMDP) [19] without reward, which
is defined as a tuple of ⟨S,Z,A, O, P, ρ0⟩. Here S, Z and A are an (underlying) state space, an
observation space and an action space, respectively. The next O : S → ∆Z specifies the conditional
probability O(z|s) of an observation z ∈ Z given a state s ∈ S. Finally, ρ0 ∈ ∆S defines the
probability ρ0(s0) that the process starts from s0 ∈ S , and P : S ×A → ∆S defines the probability
P (s′|s, a) of transitioning to state s′ when action a ∈ A is performed in state s ∈ S.

Assume a (stochastic) expert policy πE : S → ∆A that is defined as a conditional probability
πE(a|s) of the expert’s performing an action a ∈ A given a state s ∈ S . Also, assume that we have a
dataset D = {τ (1), . . . , τ (N)} of the expert trajectories where each τ = {(zt, at)}Tt=0 is sampled by

s0 ∼ ρ0, a
E
t ∼ πE(·|st), zt ∼ O(·|st), st+1 ∼ P (·|st, at) for t ∈ {0, 1, ..., T}.

That is, τ in the dataset is drawn from the following joint distribution of all observations and actions:

τ ∼ pD(z0:T , a
E
0:T ) =

∫
ρ0(s0)

∏T
t=0O(zt|st)πE(aEt |st)P (st+1|st, aEt )ds0:T+1.

In our study, we consider POMDP scenarios where an ideal imitator policy is able to match the
expert policy’s performance, even when the imitator’s actions are solely determined by observation
histories. Specifically, we focus on situations where the observation histories zt−w−1:t (for some
fixed 1 ≤ w ≤ T − 1) encompass all information about the true states st utilized by the expert policy.
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In this setting, our goal is to learn an imitator policy πI : Zw → ∆A that acts as closely to πE as
possible on the given dataset D. To achieve this goal, we consider the following joint distribution of
actions of both πI and πE :

p(aI0:T , a
E
0:T ) =∫
ρ0(s0)

T∏
t=0

O(zt|st)πI(aIt |zt−w+1:t)π
E(aEt |st)P (st+1|st, aEt )ds0:T+1dz0:T+1. (1)

4 Behavior Cloning with Past Action Leakage Regularization

In this section, we propose a framework that effectively mitigates the past action leakage problem
in IL. We first define the problem by formalizing the absence of leaked past-action information via
conditional independence (Section 4.1). Then, we compare several regularization-based approaches
that attempt to achieve the absence of such information in the context of offline IL (Section 4.2). These
approaches performs regularized BC where the regularizer is derived from a metric for measuring the
amount of conditional dependence among random variables. The choice of the metric differentiates
these approaches, and our comparison advocates the use of the HSCIC-based approach.

4.1 Past action leakage problem in imitation learning

When a policy takes an observation history as an input, the input history may include the information
about past actions unexpectedly. The inclusion of such information can have detrimental effects in
the context of offline imitation learning by confusing the imitator and making it fail to predict expert
actions accurately. Intuitively, the past action leakage problem in imitation learning refers to this
failure of the imitator due to the leakage of such harmful past action information.

To express this intuition formally, for each timestep t, let AE
t and AI

t denote random variables of
expert action and imitator action at timestep t. Note that for each 0 < t ≤ T , the joint distribution of
the three random variables AE

t−1, AE
t and AI

t is

p(aEt−1, a
E
t , a

I
t ) =

∫
p(aI0:T , a

E
0:T )da

E
0:t−2da

I
0:t−1da

E
t+1:T da

I
t+1:T

where p(aI0:T , a
E
0:T ) is the distribution in Eq. (1).

We formalize the absence of the leakage of harmful past-action information by conditional
independence between the imitator’s current actions and the expert’s previous actions:

AI
t ⊥⊥ AE

t−1 | AE
t for all 0 < t ≤ T . (2)

This conditional independence says that the imitator’s current action never depends on some infor-
mation that is only about the expert’s past action but not about the expert’s current action. This
past-specific information corresponds to harmful information in our intuitive explanation from above.

Ideally we would like to achieve conditional independence in Eq. (2), which ensures the absence
of leaked past-action information that was harmful to the imitator. However, in practice, we can
achieve it only approximately, so that we need a quantitative measure for conditional independence
or the lack of conditional independence between AE

t−1 and AE
t given AI

t . Such a measure is also
needed to design an offline IL algorithm that does not suffer from such leaked harmful past-action
information. In the following subsection, we consider two quantitative measures for the lack of
conditional independence, namely, (1) conditional mutual information (CMI) and (2) Hilbert-Schmidt
Conditional Independence Criterion (HSCIC).

4.2 Behavior cloning with past action leakage regularization

We aim to learn the representation φt of observation history zt−w+1:t that removes any unnecessary
information on the past action. To simplify the notation, let tw denote t − w + 1. Our method is
based on the following observation.
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Theorem 1. Let AI
t be the action from the imitator policy πI(at|φt) based on the representation φt

of observation history. Then, φt ⊥⊥ AE
t−1 | AE

t =⇒ AI
t ⊥⊥ AE

t−1 | AE
t .

Proof. See Section B in the supplementary material.

To this end, we formulate our objective of regularized BC framework as follows:

L(π, φ;D, α) := Lbc(π, φ;D) + α · Lreg(φ;D), (3)

where Lbc is an BC objective such that Lbc(π, φ;D) := E(ztw :t,aE
t )∼D,φt∼φ(ztw :t)

[
− log π(aEt |φt)

]
and Lreg is a past action leakage regularization objective. For notational simplicity, we abbreviate
the expectation with respect to (aEt−1, ztw:t, a

E
t ) ∼ D, φt ∼ φ(ztw:t) to Eφt

. In the following
subsections, we discuss candidates for Lreg.

4.2.1 Information-theoretic regularization

A straightforward way to address the conditional independence we discussed in Section 4.1 is
minimizing the CMI, which can be decomposed by its definition into two conditional entropy terms:

I(aEt−1;φt | aEt ) = H(aEt−1 | aEt )−H(aEt−1 | φt, a
E
t ).

It is important to note that H(aEt−1 | aEt ) is determined by the data distribution D and thus constant.
As a result, we can simply consider the minimization of −H(aEt−1 | φt, a

E
t ).

Lreg−Ent(φt; a
E
t−1, a

E
t ) := −H(aEt−1 | φt, a

E
t ) = E

[
log p(aEt−1 | φt, a

E
t )

]
. (4)

Interestingly, Eq. (4) coincides with the negative conditional entropy maximization objective in
FCA [44]. Since the direct computation of Eq. (4) requires to know the intractable distribution
p(aEt−1 | φt, a

E
t ), FCA trains an additional prediction model p̂(ât−1 | φt, at) to estimate the negative

entropy with −Ĥ(aEt−1 | φt, a
E
t ) := Eφt

[log p̂(aEt−1 | φt, a
E
t )]. However, this approach faces the

following challenges:

1. The estimated negative entropy −Ĥ lower bounds Eq. (4), while an upper bound would be
desirable for minimizing the objective. Consequently, it imposes nested (minimax) optimization;
minimizing with respect to φt after maximizing with respect to p̂.

2. It is required to train an additional neural network to model p̂, which consumes additional
computational cost.

3. Assuming that the family of variational distribution p̂ to be Gaussian, FCA tries to tighten the
lower bound estimation −Ĥ with respect to p̂ by minimizing reconstruction error of aEt−1. The
assumption restricts the flexibility of p̂ and thus the estimation can be inaccurate.

To avoid inaccurate estimation of the entropy, we can also decompose CMI into two MI terms by
the chain rule of MI as an alternative:

I(aEt−1;φt | aEt ) = I(aEt−1;φt, a
E
t )− I(aEt−1; a

E
t ),

Similar to H(aEt−1 | aEt ), I(aEt−1; a
E
t ) can be safely ignored in the regularization. As a result, the

regularization is about simply minimizing I(aEt−1;φt, a
E
t ) while ignoring the constant MI term.

Lreg−MI(φt; a
E
t−1, a

E
t ) := I(aEt−1;φt, a

E
t ). (5)

Since the direct computation of Eq. (5) requires to know densities of aEt−1, φt, a
E
t , one needs to

train sample-based MI estimators [3, 16, 28, 34]. Thanks to those estimators, the estimated MI
can be minimized without confining any distribution (to be Gaussian). However, this approach
still has issues similar to FCA such that (1) it lower bounds MI and consequently imposes (nested)
minimax optimization and (2) it introduces an additional neural network particularly sensitive to
hyperparameters.
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4.2.2 HSCIC regularization

To bypass those shortcomings in information-theoretic regularization, we consider HSCIC [30], a
kernel-based conditional independence metric for the past action leakage regularization.

Lreg−HSCIC(φt; a
E
t−1, a

E
t ) := HSCIC(φt, a

E
t−1|aEt ). (6)

Let HA,HΦ be RKHSs over A,Φ and kA, kΦ be their associated kernels, where Φ is the representa-
tion space induced by the encoder φ. Given n samples {(φt(i), a

E
t−1(i), a

E
t (i))}ni=1 from D and φ,

let Kφt
,KaE

t−1
,KaE

t
be the n× n kernel matrices where [Kφt

]i,j = kΦ(φt(i), φt(j)), [KaE
t−1

]i,j =

kA(a
E
t−1(i), a

E
t−1(j)), [KaE

t
]i,j = kA(a

E
t (i), a

E
t (j)). Then, HSCIC estimator for past action leakage

regularization can be defined as follows:

ĤSCIC(φt, a
E
t−1|aEt ) :=

1

n
trace

(
K⊤

aE
t
W(Kφt

⊙KaE
t−1

)W⊤KaE
t

− 2K⊤
aE
t
W(Kφt

W⊤KaE
t
⊙KaE

t−1
W⊤KaE

t
)

+ (K⊤
aE
t
WKφt

W⊤KaE
t
)⊙ (K⊤

aE
t
WKaE

t−1
W⊤KaE

t
)
)

(7)

where W = (KaE
t
+ nλI)−1, λ > 0 is a ridge regression coefficient, ⊙ is the element-wise matrix

multiplication.

Since Eq. (7) can be estimated using the samples from the joint distribution p(φt, a
E
t−1, a

E
t ), we

can directly plug-in HSCIC estimates into the regularization objective. By leveraging this estimator,
HSCIC regularization offers several advantages compared to the conditional entropy regularization
and MI regularization objectives discussed earlier:

1. Direct computation of the closed-form solution in Eq. (7) allows HSCIC regularization to bypass
any nested optimization.

2. HSCIC regularization does not employ any additional deep neural networks that require careful
hyperparameters.

3. Since HSCIC is a non-parametric measure, it does not impose any parametric assumption on the
data distribution and does not require any density estimation.

These advantages strongly imply that promoting conditional independence via the HSCIC estima-
tor will be more desirable compared to other estimators, thereby improving the overall effectiveness
of the regularization. Hence, we propose HSCIC regularization to address the past action leakage
problem, which we call PALR.

5 Experiment

In this section, we present the experimental results of our approach. Initially, we investigate the corre-
lation between the extent of past action information leakage and BC’s performance. Subsequently,
we compare our approach with several offline ILOH baseline methods across four continuous control
tasks from the MuJoCo simulator [41]: hopper, walker2d, halfcheetah, and ant, as well as one
pixel-based autonomous driving task from the CARLA simulator [9]: carla-lane 2.

Dataset For tasks from the MuJoCo simulator, we transformed them into POMDP scenarios for
ILOH by excluding specific state variables (such as velocity information). The remaining state
variables, like positional information and joint angles, were treated as observation variables at
individual timesteps3. We organized these observations into fixed-size stacks to configure each

2The D4RL benchmark also featured another task, carla-town, but none of the algorithms surpassed the random
policy’s performance, indicating a lack of meaningful imitation results. Further details can be found in Section D.2.

3Details about the composition of observation variables for each task are available in Section C.1.
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problem setting, denoted as [envname]-W[stacksize] with stack sizes w ∈ {2, 4}. For a task
from the CARLA simulator, we used pixel images as observations for ILOH. To extract features
from these observations, we employed a pretrained ResNet [15], keeping its parameters fixed during
training. In carla-lane task, we stacked the extracted features with a fixed stack size of w = 3 and
used it as input for the policy. All our experiments utilized expert demonstrations from the D4RL
benchmark dataset [10] to ensure the validity and reliability of our results.

Evaluation Metric For the performance evaluation of the learned policy, we measure the normalized
score that ranges from 0 to 100. To evaluate how much the past action information is leaked into
a policy π, we measure ĤSCIC(aIt ; a

E
t−1|aEt ) using the estimator (7) in the held-out dataset. To

estimate HSCIC estimator, we fix a ridge regression coefficient λ = 10−5 and all kernels are chosen
as Gaussian kernels with the bandwidth σ2 = 1.

5.1 Relationship between past action information leakage and performance
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Figure 1: Negative correlation between
HSCIC estimates and performance of BC
with 7 different dataset sizes.

To see if the problem of the past action information
leakage occurs, we conduct an empirical study using
BC from observation histories with stack size w = 2.
The objective of this experiment is to confirm the cor-
relation between the performance and the degree of
past action information leakage, similar to FCA [44].

Experimental setup To achieve multiple policies
at different levels, we train BC policies for 500K steps
with 5 different seeds and 7 different training dataset
size N ∈ {100K, 50K, 30K, 10K, 5K, 3K, 1K} (the
number of observation history-action pairs). Using
a held-out dataset composed of 2,000 samples, the
degree of past action information leakage is measured
by ĤSCIC(aIt ; a

E
t−1|aEt ) of each policy πI .

Results To compare ĤSCIC of fully trained BC in all tasks, we normalize ĤSCIC of each policy
using the maximum and minimum values in each task. Grouping trained policies by the dataset
size, we report the mean value of both the normalized score and the normalized HSCIC estimates
in Figure 1. It shows that there are clear negative correlations between the normalized HSCIC and
the normalized score in all environments. The result implies that BC from observation histories
tends to train a policy in which there is a negative correlation between the conditional dependence
related to its action and the performance. This insight suggests a potential opportunity for employing
regularization methods that enforce conditional independence.

5.2 Performance Evaluation

Experimental setup We evaluate the performance of our method and offline baseline methods
across 5 environments see effectiveness of our method. We train policies using 5 different algorithms,
including our method, for 500K, 1M training steps MuJoCo and CARLA tasks respectively with 5
different seeds.

Baseline methods We compare our method with 6 offline ILOH baseline methods: BC, KF [45],
PrimeNet [46] , RAP [6] 4, FCA [44], MINE [3]. While all of these are commonly based on BC, we
specify their differences as follows:

4For the sake of simplicity, here we refer to the baselines [6, 45] as KF (Keyframe-Focused visual imitation learning),
RAP (Residual Action Prediction) respectively, following the titles of their respective papers.
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Task w BC KF PrimeNet RAP FCA MINE PALR (Ours)

hopper 2 32.5± 2.9 32.0± 1.9 30.0± 1.6 20.2± 1.4 31.9± 2.5 25.0± 1.9 42.0± 2.4
4 47.7± 3.4 45.7± 1.0 45.3± 2.8 32.6± 2.6 36.9± 2.4 37.6± 3.1 58.4± 2.8

walker2d 2 53.0± 2.7 50.0± 2.3 48.5± 3.3 15.8± 2.0 63.1± 2.7 58.6± 5.5 79.8± 2.3
4 63.2± 6.3 77.4± 2.0 79.2± 3.3 25.4± 2.1 81.9± 3.3 68.7± 6.7 83.4± 5.4

halfcheetah 2 74.1± 2.3 64.3± 1.4 61.5± 1.9 63.9± 2.1 78.2± 2.8 76.3± 1.9 86.4± 1.1
4 68.4± 2.6 55.7± 4.1 45.5± 1.7 59.0± 2.7 69.9± 2.6 73.4± 2.4 79.1± 4.3

ant 2 56.3± 3.5 54.9± 1.7 51.7± 2.4 44.1± 1.2 51.1± 2.2 53.9± 1.9 59.6± 3.0
4 64.4± 1.8 48.6± 3.8 58.2± 1.9 48.6± 2.6 57.7± 1.3 56.6± 1.8 64.6± 2.5

carla-lane 3 52.5± 6.2 66.6± 2.1 58.2± 2.2 25.3± 5.4 57.1± 3.1 60.1± 4.1 72.9± 2.6

Table 1: Performance evaluation of baseline and regularization methods. The normalized scores
averaged over the final 50 evaluations during training and we report mean and standard error over 5
different seeds. The rightmost three algorithms are incorporated into our regularization framework.
The method with the highest mean score and its competitive methods (within standard error) are
highlighted in bold in each problem setting.

• BC : the standard BC algorithm from observation history, which optimizes an objective without
any regularization term (α = 0).

• KF [45] : the weighted BC algorithm that assigns higher weights to keyframes, which contain
actions that are highly predictable from their corresponding action histories.

• PrimeNet [46] : a supervised learning method designed to prevent undesirable shortcuts by
leveraging additional key inputs.

• RAP [6] : it employs a dual-stream of policy representation that learns from both observation history
and individual observations, maximizing a lower bound that enforces conditional dependence
between the representation and expert action, given the past action.

• FCA [44] : it maximizes the conditional entropy that corresponds to Eq. (4) with adversarial
training, which is an instance of our regularized BC framework.

• MINE [3] : it minimizes the MI estimate corresponding to Eq. (5) using MINE estimator [3],
which is one of the representative sample-based neural estimators for MI. It is also an instance of
our regularized BC framework.

Our method regularizes HSCIC with its estimator defined as Eq. (7), where Gaussian kernel with
fixed bandwidth σ2 = 1 are used for all kernels of φt, a

E
t−1, a

E
t and a ridge regression coefficient

λ = 10−5. Across all regularization methods, we searched for the optimal α according to the best
mean normalized score. Further implementation details can be found in Section C.

Results Table 1 summarizes the results of performance evaluation for each problem settings. Our
method significantly outperforms other baselines in 7 settings out of 9 and shows competitive perfor-
mance in the rest 2 settings. In particular, our method shows strong performance in carla-lane,
highlighting its effectiveness in enhancing performance within high-dimensional offline ILOH scenar-
ios. We observe that RAP shows the least competitive performance across all tasks. This is because
they do not have any penalization of the dependence between the imitator action and expert action
in their objective function. However, we also observe that FCA and MINE fail to show consistent
improvement over BC in most tasks except walker2d. This is because the lower bound estimators
of their regularization objectives are not sufficiently accurate even at the cost of their inefficient
alternating optimization. On the other hand, our method consistently outperforms BC, which clearly
indicates the effect of promoting the conditional independence as we discussed in Section 4.1.

To better understand the degenerate performance of FCA and MINE, we evaluate
ĤSCIC(aIt ; a

E
t−1|aEt ) of each regularization method during training using the held-out dataset in

Figure 2a. In contrast to our method, the result clearly demonstrates that FCA and MINE commonly
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Figure 2: Investigating past action leakage regularization methods on D4RL dataset.

fail to promote conditional independence throughout the learning process, elucidating their underper-
formance. To further investigate, we measure the HSCIC and conditional MI estimates of the finalized
imitator policies across 8 MuJoCo settings (refer to Section D.5). In essence, our method adeptly
mitigates the leakage of past action information, surpassing the efficacy of alternative approaches.

Regularization coefficient In this experiment, we aim to ascertain how the selection of coefficient
α influences the performance of our method. We evaluate the asymptotic performance of our method
with varying values of α ∈ {0, 100, 101, 102, 103, 104, 105, 106} on the walker2d-W2 problem
setting, which shows the largest performance gap between PALR and BC among our problem settings.
As depicted in Figure 2b, the converged regularization loss Lreg−HSCIC progressively decreases as α
increases. Notably, the α that minimizes the regularization loss is not necessarily equal to the optimal
hyperparameter that maximizes performance. We observe that the selection of α is important, as it
adjusts the trade-off between robustness to the leakage and alignment with expert data.

6 Conclusion and Future Work

Grounded in the classical notion of conditional independence, we proposed a principled regularization
framework for BC that mitigates past action information leakage problem. Within our framework, we
have explored multiple choices of conditional independence metric and compared their estimators.
Finally, we identified that our method with HSCIC estimator is the most favorable regularization of BC
over other choices in terms of robustness to the leaked information of past action. In an extensive set
of experiments on D4RL datasets, we empirically showed that our method significantly outperforms
baseline methods. We also observed in our experiments that all the comparing methods including
ours were sensitive to the choice of α. Without assuming any interaction with the environment, it is
challenging to find the optimal α only with the given offline dataset. We believe that the discovery of
optimal α in offline manner would be an interesting research topic, which we leave as future work.
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A Details of HSCIC and Its Empirical Estimation

A.1 Definitions

Definition 1. (Reproducing kernel Hilbert space)
Let HX be a Hilbert space of functions f : X → R functions which the metric is defined by inner
product ⟨·, ·⟩HX . A symmetric function kX : X × X → R , which is called a reproducing kernel of
HX , that satisfies

1. ∀x ∈ X kX (x, ·) ∈ HX

2. ∀x ∈ X ,∀f ∈ HX ⟨f, kX (x, ·)⟩HX = f(x) (called reproducing property)

A space HX is called a reproducing kernel Hilbert spaces (RKHS) corresponding a reproducing
kernel kX .

Definition 2. (Kernel Mean Embedding)
Given a distribution PX on X , assume

∫
X

√
kX (x, x)dPX(x) < ∞. We define the kernel mean

embedding µPX
of PX as µPX

(·) =
∫
X kX (x, ·)dPX(x).

Definition 3. (Maximum Mean Discrepancy)
Given distributions P,Q on X and suppose kernel mean embeddings of P,Q exist on H, denote
µP , µQ. Then, the maximum mean discrepancy (MMD) between PX , QY is defined as follows:

MMD(P,Q;H) = ∥µP − µQ∥H

Definition 4. (Hilbert-Schmidt Norm and Operator)
Let F ,G be Hilbert spaces. Define (fi)i∈I , (gj)j∈J to be orthonormal basis for F ,G respectively.
Define two linear operators L : G → F ,M : G → F .

1. The Hilbert-Schmidt norm of the operator L is defined as:

∥L∥2HS =
∑
j∈J

∥Lgj∥2F

=
∑
j∈J

∑
i∈I

|⟨Lgj , fi⟩F |2

2. The operator L is called Hilbert-Schmidt Operator when ∥L∥2HS is finite.

Definition 5. (Cross-covariance Operator)
Given RKHS F ,G with kernels k, l, feature maps ϕ, ψ respectively. Define the uncentered covariance
operator C̃XY : G → F and the cross-covariance operator CXY : G → F as follows:

⟨C̃XY , A⟩HS = Ex,y⟨ϕ(x)⊗ ψ(y), A⟩HS

CXY := C̃XY − µX ⊗ µY

Definition 6. (Hilbert-Schmidt Independence Criterion)
The Hilbert-Schmidt Independence Criterion (HSIC) is defined as Hilbert-Schmidt norm of the
cross-covariance operator CXY , i.e., HSIC(PXY ;F ,G) := ∥CXY ∥2HS. Equivalently, we can define
HSIC as MMD between PXY and PXPY with the product kernel, i.e.

HSIC(PXY ;F ,G) = MMD2(PXY , PXPY ;Hκ),

where κ((x, y), (x′, y′)) = k(x, x′)l(y, y′).

Definition 7. (Conditional Mean Embedding)
Assuming a random variable X satisfies

∫
X

√
k(x, x)dP < ∞. Define the conditional mean

embedding of X given Z as µPX|Z (·) := EX|Z [kX (X, ·)|Z].
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Note that µPX|Z is a random variable. In the main text of our paper, we denote the realization of
µPX|Z with Z = z as µPX|Z=z

.

Definition 8. (Hilbert-Schmidt Conditional Independence Criterion)
Define the Hilbert-Schmidt Conditional Independence Criterion (HSCIC) between X and Y given
Z to be

HSCIC(X,Y |Z) = ∥µPXY |Z − µPX|Z ⊗ µPY |Z∥
2
HX⊗HY

.

A.2 Empirical estimation

We start to explain from decoupling the conditional mean embedding into their deterministic function
and conditional random variable.

Lemma 1. (Decomposition of conditional mean embedding, Theorem 4.1 of [30])
There exists a deterministic function FPX|Z : Z → HX , which satisfies µPX|Z = FPX|Z ◦ Z.

By this lemma, we can decompose conditional mean embeddings and HSCIC into some de-
terministic function and conditioned random variable Z, i.e., µPX|Z = FPX|Z ◦ Z, µPY |Z =
FPY |Z ◦ Z, µPXY |Z = FPXY |Z ◦ Z,HSCIC(X,Y |Z) = FHSCICX,Y |Z ◦ Z respectively. By us-
ing vector-valued RKHS regression with a regularization parameter λ > 0 and the representer
theorem [23], we can obtain closed-form estimates of FPX|Z , FPY |Z , FPXY |Z as follows (see [30] for
more details):

WZ :=(KZ + nλI)−1

F̂PX|Z (z) =k⊤
Z (z)WZkX(·)

F̂PY |Z (z) =k⊤
Z (z)WZkY (·)

F̂PXY |Z (z) =k⊤
Z (z)WZ(kX(·)⊙ kY (·))

where kX(·) := (kX (x1, ·), ..., kX (xn, ·))⊤,kY (·) := (kY(y1, ·), ..., kY(yn, ·))⊤, kZ(·) :=
(kZ(z1, ·), ..., kZ(zn, ·))⊤, [KZ ]ij := kZ(zi, zj) and ⊙ is the element-wise multiplication opera-
tor of matrices. By plugging-in conditional mean embedding estimators, we can obtain a closed-form
estimator of FHSCICX,Y |Z as follows:

F̂HSCICX,Y |Z (z) :=∥F̂PXY |Z (z)− F̂PX|Z (z)⊗ F̂PY |Z (z)∥
2
HX⊗HY

=k⊤
Z (z)WZ(KX ⊙KY )W

⊤
ZkZ(z)

− 2k⊤
Z (z)WZ(KXW⊤

ZkZ(z)⊙KY W
⊤
ZkZ(z))

+ (k⊤
Z (z)WZKXW⊤

ZkZ(z))(k
⊤
Z (z)WZKY W

⊤
ZkZ(z))

ĤSCIC(X,Y |Z) = 1

n

n∑
i=1

F̂HSCICX,Y |Z (zi)

=
1

n
trace

(
K⊤

ZWZ(KX ⊙KY )W
⊤
ZKZ

− 2K⊤
ZWZ(KXW⊤

ZKZ ⊙KY W
⊤
ZKZ)

+ (K⊤
ZWZKXW⊤

ZKZ)⊙ (K⊤
ZWZKY W

⊤
ZKZ)

)
(8)

where [KX ]ij := kX (xi, xj), [KY ]ij := kY(yi, yj).
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B Proof of Theorem 1

... ...

Figure 3: Graphical model of behavior cloning with observation histories.

Proof. By the chain rule of MI, following equalities hold:

I(φt; a
E
t−1 | aEt ) = I(aEt−1;φt, a

E
t )− I(aEt−1; a

E
t )

I(aIt ; a
E
t−1 | aEt ) = I(aEt−1; a

I
t , a

E
t )− I(aEt−1; a

E
t )

Thus, I(φt; a
E
t−1 | aEt ) ≥ I(aIt ; a

E
t−1 | aEt ) if and only if I(aEt−1;φt, a

E
t ) ≥ I(aEt−1; a

I
t , a

E
t ).

By the chain rule of MI,

I(aEt−1;φt, a
I
t , a

E
t ) = I(aEt−1;φt, a

E
t ) +

���������:0

I(aEt−1; a
I
t | φt, a

E
t )

= I(aEt−1; a
I
t , a

E
t ) + I(aEt−1;φt | aIt , aEt )

≥ I(aEt−1; a
I
t , a

E
t )

Thus, I(φt; a
E
t−1 | aEt ) ≥ I(aIt ; a

E
t−1 | aEt ) ∀t ≥ 0.

Directly regularizing the imitator policy to enforce conditional independence may cause harmful
results of training. This is because any policy that ensures the conditional independence does not
necessarily yield optimal behavior. For instance, constant actions or actions sampled from uniform
random distribution are independent of other random variables and thus satisfy Eq. (2), although
they are not optimal in general. Based on Theorem 1, we adjust the representation of policy to inject
the conditional independence. The effectiveness of our approach is compared with direct action
regularization through an empirical study. The results are provided in Table 9 of Section D.1.
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C Implementation Details

This section provides detailed specifications and implementation settings.

C.1 Observation specification

Based on the observation specification from Open AI Gym documentation5, we take a partial
observation in each task by excluding certain variables (e.g. velocity information) in the original state
variables. We mark the variables we used in our observation as ⃝ and not used are represented as ×
in the observation column of the corresponding table.

C.1.1 Hopper

Index Description Unit Observation

0 z-coordinate of the top position (m) ⃝
1 angle of the top angle (rad) ⃝
2 angle of the thigh joint angle (rad) ⃝
3 angle of the leg joint angle (rad) ⃝
4 angle of the foot joint angle (rad) ⃝
5 velocity of the x-coordinate of the top velocity (m/s) ×
6 velocity of the z-coordinate of the top velocity (m/s) ×
7 angular velocity of the angle of the top angular velocity (rad/s) ×
8 angular velocity of the thigh hinge angular velocity (rad/s) ×
9 angular velocity of the leg hinge angular velocity (rad/s) ×

10 angular velocity of the foot hinge angular velocity (rad/s) ×

Table 2: Composition of observation variables (hopper)

C.1.2 Walker2d

Index Description Unit Observation

0 z-coordinate of the top position (m) ⃝
1 angle of the top angle (rad) ⃝
2 angle of the thigh joint angle (rad) ⃝
3 angle of the leg joint angle (rad) ⃝
4 angle of the foot joint angle (rad) ⃝
5 angle of the left thigh joint angle (rad) ⃝
6 angle of the left leg joint angle (rad) ⃝
7 angle of the left foot joint angle (rad) ⃝
8 velocity of the x-coordinate of the top velocity (m/s) ×
9 velocity of the z-coordinate of the top velocity (m/s) ×

10 angular velocity of the angle of the top angular velocity (rad/s) ×
11 angular velocity of the thigh hinge angular velocity (rad/s) ×
12 angular velocity of the leg hinge angular velocity (rad/s) ×
13 angular velocity of the foot hinge angular velocity (rad/s) ×
14 angular velocity of the thigh hinge angular velocity (rad/s) ×
15 angular velocity of the leg hinge angular velocity (rad/s) ×
16 angular velocity of the foot hinge angular velocity (rad/s) ×

Table 3: Composition of observation variables (walker2d)

5https://www.gymlibrary.dev/environments/mujoco/
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C.1.3 HalfCheetah

Open AI Gym documentation does not match with the XML file of halfcheetah6, we denote both
descriptions on the following tables.

Index Description Unit Observation

0 z-coordinate of the front tip position (m) ⃝
1 angle of the front tip angle (rad) ⃝
2 angle of the second rotor angle (rad) ⃝
3 angle of the second rotor angle (rad) ⃝
4 velocity of the tip along the x-axis velocity (m/s) ×
5 velocity of the tip along the y-axis velocity (m/s) ×
6 angular velocity of the front tip angular velocity (rad/s) ×
7 angular velocity of the second rotor angular velocity (rad/s) ×
8 x-coordinate of the front tip position (m) ⃝
9 y-coordinate of the front tip position (m) ⃝

10 angle of the front tip angle (rad) ⃝
11 angle of the second rotor angle (rad) ⃝
12 angle of the second rotor angle (rad) ⃝
13 velocity of the tip along the x-axis velocity (m/s) ×
14 velocity of the tip along the y-axis velocity (m/s) ×
15 angular velocity of the front tip angular velocity (rad/s) ×
16 angular velocity of the second rotor angular velocity (rad/s) ×

Table 4: Composition of observation variables (halfcheetah) on Gym Documentation.

Index Description Unit Observation

0 z-coordinate of the root position (m) ⃝
1 y-coordinate of the root position (m) ⃝
2 angle of the back thigh angle (rad) ⃝
3 angle of the back shin angle (rad) ⃝
4 angle of the back foot angle (rad) ×
5 angle of the front thigh angle (rad) ×
6 angle of the front shin angle (rad) ×
7 angle of the front foot angle (rad) ×
8 velocity of the root along the x-axis velocity (m/s) ⃝
9 velocity of the root along the z-axis velocity (m/s) ⃝
10 velocity of the root along the y-axis velocity (m/s) ⃝
11 angular velocity of the back thigh angular velocity (rad/s) ⃝
12 angular velocity of the back shin angular velocity (rad/s) ⃝
13 angular velocity of the back foot angular velocity (rad/s) ×
14 angular velocity of the front thigh angular velocity (rad/s) ×
15 angular velocity of the front shin angular velocity (rad/s) ×
16 angular velocity of the front foot angular velocity (rad/s) ×

Table 5: Composition of observation variables (halfcheetah) on the XML file.

6https://github.com/openai/gym/blob/master/gym/envs/mujoco/assets/half_cheetah.xml
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C.1.4 Ant

Num Description Unit Observation

0 z-coordinate of the torso (centre) position (m) ⃝
1 x-orientation of the torso (centre) angle (rad) ⃝
2 y-orientation of the torso (centre) angle (rad) ⃝
3 z-orientation of the torso (centre) angle (rad) ⃝
4 w-orientation of the torso (centre) angle (rad) ⃝
5 angle between torso and first link on front left angle (rad) ⃝
6 angle between the two links on the front left angle (rad) ⃝
7 angle between torso and first link on front right angle (rad) ⃝
8 angle between the two links on the front right angle (rad) ⃝
9 angle between torso and first link on back left angle (rad) ⃝
10 angle between the two links on the back left angle (rad) ⃝
11 angle between torso and first link on back right angle (rad) ⃝
12 angle between the two links on the back right angle (rad) ⃝
13 x-coordinate velocity of the torso velocity (m/s) ×
14 y-coordinate velocity of the torso velocity (m/s) ×
15 z-coordinate velocity of the torso velocity (m/s) ×
16 x-coordinate angular velocity of the torso angular velocity (rad/s) ×
17 y-coordinate angular velocity of the torso angular velocity (rad/s) ×
18 z-coordinate angular velocity of the torso angular velocity (rad/s) ×
19 angular velocity of angle between torso and front left link angular velocity (rad/s) ×
20 angular velocity of the angle between front left links angular velocity (rad/s) ×
21 angular velocity of angle between torso and front right link angular velocity (rad/s) ×
22 angular velocity of the angle between front right links angular velocity (rad/s) ×
23 angular velocity of angle between torso and back left link angular velocity (rad/s) ×
24 angular velocity of the angle between back left links angular velocity (rad/s) ×
25 angular velocity of angle between torso and back right link angular velocity (rad/s) ×
26 angular velocity of the angle between back right links angular velocity (rad/s) ×

27-110 contact forces applied to the center of mass of each of the links force / torque ×

Table 6: Composition of observation variables (ant)

C.2 Dataset preprocessing

MuJoCo Tasks We utilized the expert dataset provided in D4RL benchmark that has a suffix
-expert-v2. For all experiment, we configured partial observations from the original data based on
Section C.1. These observations are standardized with statistics from the entire dataset. Each dataset
in D4RL benchmark has a total of 1M transitions. Given the size of the training data D, we take
the first D samples. Among the last 100K samples in the entire dataset, we also sampled heldout
data which are not included in the training data. Given a stacksize w ∈ {2, 4}, we configure each
transition as (observation history, action, past action) tuple. For the main performance evaluation
experiment (Table 1), we use 30K transitions for training.

CARLA Tasks We extract features from observation images using the pretrained network
ResNet34 [15] and consider these features as policy inputs during training. For the performance eval-
uation (Table 1, 10), we utilize 1K and 100K transitions for carla-lane, carla-town respectively.

C.3 Hyperparameter selection

This section outlines the settings of the hyperparameters for each method. To ensure a fair comparison,
we aim to maintain consistent network architecture and policy-related hyperparameters, whenever
feasible. For all baselines and our method, we employ a policy architecture consisting of fully-
connected layers with [128, 64, 128] hidden units. The layer with 64 units is treated as a policy
representation, denoted as φ.
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KF [45] We used a softmax function as a weighting function of the weighted BC in MuJoCo tasks
and a step function in CARLA tasks, aligning with the the original paper’s experiments. We adopt
the action prediction network for the additional network. Additionally, we tuned hyperparameters for
the the softmax temperature in MuJoCo tasks, analogous to α. In CARLA tasks, we used the same
hyperparameters (threshold=0.1, weight=5) consistent with the original paper [45].

PrimeNet [46] We treat observation histories as raw inputs and individual last observations as key
inputs, consistent with the approach used in the original experiments. The architecture of the prime
network is implemented as the same with the policy.

RAP [6] RAP incorporates two streams of policy representation: (1) one stream derived from
observation history (referred to as the memory extraction stream) and (2) the other originating from a
single observation (referred to as the policy stream). For the memory extraction stream, we use an
architecture of [128, 64, 300] hidden units that outputs predictions of a residual of expert actions.
The layer with 64 units is employed as a representation. For the policy stream, we similarly utilize an
architecture of [128, 64(+64), 128] which outputs a policy action. The middle units indicate that the
policy utilizes both the single observation representation and the memory-extracted representation
(with a stop-gradient layer) as inputs.

A summary of hyperparameters is provided in Table 7. The first 3 rows of the table display the
hyperparameters universally applied across all methods. The next 4 rows detail hyperparameters
for methods that incorporate additional neural networks. The last 2 rows of the table present
hyperparameters specific to our method, encompassing hyperparameters for HSCIC estimates.

Hyperparameter KF PrimeNet RAP FCA MINE PALR (Ours)
Policy distribution Tanh Normal
Batch size 1024
BC learning rate 3e-4
Additional network

hidden units [128,128] [128,64,128] [128,64,300] [300] [100,100] -
num of inner updates 1 1 1 5 5 -
learning rate 3e-4 3e-4 3e-4 1e-4 1e-4 -

IB coefficient - - - 0.01 - -
Kernel bandwidth σ2 - - - - - 1.
Ridge coefficient λ - - - - - 1e-5

Table 7: The summary of hyperparameters.

Optimal α As discussed in Section 5.2, we train 5 policies incorporating different regularization
coefficients α within the set {0.01, 0.1, 1, 10, 100} for MuJoCo tasks and {0.001, 0.1, 10, 1000} for
CARLA task. We then select the best α for each problem setting. Table 8 shows the chosen values of
α for each method and each problem setting, as utilized in the experimental results of the paper.

Problem Setting KF FCA MINE Ours
hopper-W2 0.01 0.1 1 10
hopper-W4 0.01 0.1 0.01 10
walker2d-W2 0.01 0.1 1 100
walker2d-W4 0.1 0.1 1 100
halfcheetah-W2 0.01 0.1 1 10
halfcheetah-W4 0.1 0.1 0.1 10
ant-W2 1 0.1 0.01 10
ant-W4 0.01 1 0.01 10
carla-lane-W3 - 0.001 10 1000

Table 8: The summary of the best regularization coefficient α.
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D Additional Experiments

D.1 Direct regularization on imitator action

To investigate the effectiveness of representation regularization, we compare our method to the one
that directly regularizes action in MuJoCo settings. The objective function of the direct method is
defined as follows:

LPALR−ACT(π;D, α) := Lbc(π;D) + α · EaI
t∼π(·|ztw :t),(ztw :t,aE

t−1,a
E
t )∼D[ĤSCIC(aIt , a

E
t−1|aEt )].

We optimize the imitator policy π with the objective by using the reparameterization trick [21]. The
method is also trained with different regularization coefficients α ∈ {0.01, 0.1, 1, 10, 100} and we
select the best α of each method. Table 9 summarizes the results. Our representation regularization
method (PALR) is more successful in 6 out of the 8 problem settings when compared to direct
action regularization. In ant-W2, ant-W4 problem settings, neither method demonstrates significant
effectiveness when compared to BC method.

Task w BC PALR (ours) PALR-ACT

hopper 2 32.47 ± 2.85 42.01 ± 2.44 31.60 ± 2.81
4 47.65 ± 3.43 58.39 ± 2.76 46.14 ± 0.90

walker2d 2 53.04 ± 2.69 79.83 ± 2.29 58.50 ± 4.25
4 63.15 ± 6.28 83.42 ± 5.43 77.41 ± 2.37

halfcheetah 2 74.08 ± 2.33 86.44 ± 1.09 76.32 ± 1.30
4 68.35 ± 2.60 79.05 ± 4.28 75.93 ± 2.59

ant 2 56.25 ± 3.45 59.57 ± 3.03 58.32 ± 1.23
4 64.39 ± 1.77 64.64 ± 2.53 65.00 ± 2.46

Table 9: Performance comparison of BC, our method (PALR) and direct action regularization version
of PALR (PALR-ACT). The normalized scores averaged over the final 50 evaluations during training
and we report mean and standard error over 5 different seeds. The method with the highest mean
score and its competitive methods (within standard error) are highlighted in bold in each setting.

D.2 Experiment on carla-town

D4RL benchmark provides two CARLA tasks: carla-lane, carla-town. As shown in Table 10,
all algorithms fail to show meaningful imitation results, as none of them exceed random performance
levels. This outcome is likely due to the dataset containing numerous instances of the same obser-
vations paired with different actions (59,984 observation-action pairs out of 100K pairs in total).
Consequently, we have omitted the experiment results for carla-town from Table 1.

Task w BC KF PrimeNet RAP FCA MINE PALR (Ours)

carla-lane 3 52.5± 6.2 66.6± 2.1 58.2± 2.2 25.3± 5.4 57.1± 3.1 60.1± 4.1 72.9± 2.6
carla-town 3 −3.1± 1.1 −6.9± 0.3−8.8± 0.5−6.1± 1.0 −7.0± 2.1 1.0± 0.8 −1.5± 0.8

Table 10: Performance evaluation of baseline and regularization methods on CARLA datasets
provided by D4RL benchmark.
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D.3 Comparison with VIB (Variational Information Bottleneck)

To highlight the leakage of past action information is not trivially prevented by general representation
regularization methods, we compare our approach with VIB [1], a representative method. We train
BC with VIB with two different β values, specifically, β ∈ {10−3, 10−5}, 5 seeds for each problem
setting. whereas our method demonstrates significant improvements in 6 out of 8 problem settings.

Task w BC PALR (Ours) VIB (β = 10−3 ) VIB (β = 10−5)

hopper 2 32.47 ± 2.85 42.01 ± 2.44 30.57 ± 1.61 27.89 ± 1.55
4 47.65 ± 3.43 58.39 ± 2.76 51.20 ± 2.18 46.59 ± 2.26

walker2d 2 53.04 ± 2.69 79.83 ± 2.29 44.28 ± 2.32 35.98 ± 4.69
4 63.15 ± 6.28 83.42 ± 5.43 67.78 ± 2.67 65.99 ± 1.97

halfcheetah 2 74.08 ± 2.33 86.44 ± 1.09 73.76 ± 2.401 75.43 ± 1.77
4 68.35 ± 2.60 79.05 ± 4.28 67.89 ± 1.52 73.67 ± 2.86

ant 2 56.25 ± 3.45 59.57 ± 3.03 59.54 ± 1.65 55.29 ± 4.27
4 64.39 ± 1.77 64.64 ± 2.53 61.63 ± 2.77 61.25 ± 2.88

Table 11: Performance comparison of BC, our method (PALR) and BC with VIB (Variational
Information Bottleneck). The normalized scores averaged over the final 50 evaluations during
training and we report mean and standard error over 5 different seeds. The method with the highest
mean score and its competitive methods (within standard error) are highlighted in bold in each setting.

D.4 Effectiveness on DT (Decision Transformer) policy

To assess the efficacy of our method in regularizing policies with complex network architectures,
we conducted additional experiments employing the Decision Transformer (DT) [5], one of the
prominent offline RL methods. Given that reward information is absent in the offline IL dataset, we
inserted a reward input of 0 into DT’s structure to retain its original configuration. Our regularization
approach, termed DT-PALR, was applied to the last hidden state of DT. We evaluated both the
standard DT and DT-PALR across 3 POMDP versions of MuJoCo tasks, consistent with the scenarios
outlined in Table 1.

The results are presented in Table 12. With the exception of the halfcheetah task, it becomes
evident that DT’s performance lags behind that of BC, as demonstrated in Table 1. This divergence
might be attributed to DT’s utilization of a larger network size, rendering it more susceptible to
capturing spurious causal relationships in tasks where access to complete states and rewards is
restricted. Encouragingly, our results indicate a substantial enhancement in the performance of DT for
the hopper and walker2d tasks when subjected to the DT-PALR method. This observation strongly
suggests the adaptability of our approach to intricate architectures.

Method hopper walker2d halfcheetah

DT 20.68 ± 5.25 23.93 ± 4.13 94.10 ± 3.54
DT-PALR 26.09 ± 6.59 32.58 ± 5.63 96.05 ± 3.60

Table 12: Effectiveness of PALR on Decision Transformer (DT) architecture. We train DT over 3
MuJoCo tasks based on our observation configurations and apply PALR to the last hidden state.
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D.5 Quantitative analysis on past action information leakage

We comprehensively evaluate HSCIC scores across 8 MuJoCo problem settings in Table 13. The
results demonstrate that our method consistently reduces the conditional dependence. Notably, our
method achieves lowest HSCIC scores in entire problem settings. Moreover, to show a more robust
assessment of conditional dependence, we also estimate conditional mutual information (CMI).
(see Table 14) As we described in Section 4.2.1, CMI can be decomposed into two MI terms,
I(aEt−1;φt, a

E
t ) and I(aEt−1; a

E
t ), we estimate them using MINE [3] respectively. The table shows

that our approach consistently presents lower CMI estimates compared to BC across 6 out of 8
problem settings.

Task w BC RAP FCA MINE PALR (Ours)

hopper 2 1.783 ×10−2 1.779 ×10−2(↓) 1.805 ×10−2(↑) 1.802 ×10−2(↑) 1.742 ×10−2(↓)
4 1.634 ×10−2 1.617 ×10−2(↓) 1.629 ×10−2(↓) 1.650 ×10−2(↑) 1.587 ×10−2(↓)

walker2d 2 5.442 ×10−2 5.523 ×10−2(↑) 5.415 ×10−2(↓) 5.482 ×10−2(↑) 5.362 ×10−2(↓)
4 5.279 ×10−2 5.350 ×10−2(↑) 5.248 ×10−2(↓) 5.298 ×10−2(↑) 5.182 ×10−2(↓)

halfcheetah 2 4.010 ×10−2 4.044 ×10−2(↑) 4.112 ×10−2(↑) 4.082 ×10−2(↑) 3.984 ×10−2(↓)
4 4.019 ×10−2 4.052 ×10−2(↑) 4.092 ×10−2(↑) 4.069 ×10−2(↑) 3.968 ×10−2(↓)

ant 2 6.014 ×10−2 6.164 ×10−2(↑) 6.182 ×10−2(↑) 6.178 ×10−2(↑) 6.008 ×10−2(↓)
4 5.938 ×10−2 6.187 ×10−2(↑) 6.093 ×10−2(↑) 6.103 ×10−2(↑) 5.932 ×10−2(↓)

Table 13: ĤSCIC(aIt , a
E
t−1|aEt ) evaluation results of regularization methods and baselines. HSCIC

scores are measured on held-out datasets and averaged over the final 50 evaluations during training
and statistics are calculated with 5 seeds. (↓), (↑) marks whether the averaged HSCIC score of each
method is lower than HSCIC score of BC or not.

Task w BC RAP FCA MINE PALR (Ours)

hopper 2 0.1825 0.1826 (↑) 0.1949 (↑) 0.1891 (↑) 0.1821 (↓)
4 0.1489 0.1381 (↓) 0.1481 (↓) 0.1558 (↑) 0.1422 (↓)

walker2d 2 0.2685 0.2655 (↓) 0.2798 (↑) 0.2745 (↑) 0.2705 (↑)
4 0.2491 0.2353 (↓) 0.2522 (↑) 0.2461 (↓) 0.2411 (↓)

halfcheetah 2 0.1562 0.1496 (↓) 0.1612 (↑) 0.1519 (↓) 0.1509 (↓)
4 0.1396 0.1530 (↑) 0.1551 (↑) 0.1484 (↑) 0.1502 (↑)

ant 2 0.1579 0.1623 (↑) 0.1743 (↑) 0.1567 (↓) 0.1374 (↓)
4 0.1585 0.1653 (↑) 0.1642 (↑) 0.1708 (↑) 0.1450 (↓)

Table 14: Î(aIt ; a
E
t−1|aEt ) evaluation results of regularization methods and baselines. Since the

conditional MI can be decomposed into two MI terms as described in Section 4.1.1, we estimate two
terms with MINE estimator respectively. We use the policy of the last iteration for each method to
generate policy actions. (↓), (↑) indicates whether the averaged CMI score of each method is lower
than the score of BC or not.
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D.6 Details on the leakage-performance correlation

We first clarify the relationship between the number of training data and HSCIC scores in Section 5.1.
To clarify, we plot the correlation into Figure 4. The correlation indicates that when the training data is
insufficient, the problem of past action information leakage becomes more severe. This phenomenon
can be attributed to the higher risk of overfitting in cases with smaller training instances, which can
lead to the capture of false causal relationships within the training data. These findings align with
similar results reported in [8] (see Figure 4 in [8]).
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Figure 4: Relationship between the number of training data and the normalized HSCIC score.

Furthermore, to provide more insights for understanding Figure 1, we plot all points that indicate
the normalized HSCIC and the normalized score of each BC policy in Figure 5. In addition, we
calculate the sample Pearson’s correlation coefficients using every point of each task (the first 4
columns) and all tasks (the last column) on Table 15.
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Figure 5: Scatterplot that shows a correlation between HSCIC estimates and performance. Each
small point indicates HSCIC and the performance of each policy, and the diamond point (⋄) indicates
the mean point of each group (which consists of policies trained with the same dataset size).
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hopper walker2d halfcheetah ant Total

-0.8358 -0.8163 -0.8564 -0.9273 -0.8130

Table 15: Sample Pearson’s correlation coefficients between the normalized HSCIC and the normal-
ized score.

E Broader Impacts

This work primarily addresses the reduction of the pervasive past action leakage effect in imitation
learning with observation histories. Notably, our findings suggest potential vulnerabilities that may
be exploited by adversarial actors. For instance, malicious attackers could introduce the conditional
dependencies into the system, leading to potentially catastrophic outcomes, such as repeating the
same actions. This will produce potentially irreversible consequences on the system, especially
for security-critic tasks such as autonomous driving and medical devices, or industrial automation.
Therefore, understanding and mitigating this risk is crucial for the safe and efficient operation of such
systems.

F Limitations

While our approach is easily applicable to real-world tasks, the range of experiments in this paper is
limited to robotics simulation. A broader scope of experiments, including more realistic observation
settings like image-based or noise-inclusive observations, could provide a stronger argument for
the effectiveness and real-world applicability of our method. Additionally, our method assumes
that control-relevant information is sufficiently captured in the observation histories. However, this
assumption might not hold in some real-world scenarios where key control information is missing and
not retrievable from the observation histories. In such cases, the learning model requires additional
information, inductive bias or expert knowledge to function effectively.

G Computation Resources

For our experiments, we used a cluster system with 20 nodes that have the following system specs:

• CPU: Intel i7-9700K CPU (3.60GHz)

• GPU: TITAN Xp (VRAM 12 GB)

H Licenses

Our code has been developed based on publicly available code repositories released under MIT
licenses. The code used to generate our experimental results also follows to the MIT license. For
more detailed information, see the README.md and LICENSE files included in our code files.
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