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Abstract

We consider a collaborative learning setting where the goal of each agent is to
improve their own model by leveraging the expertise of collaborators, in addition
to their own training data. To facilitate the exchange of expertise among agents,
we propose a distillation-based method leveraging shared unlabeled auxiliary data,
which is pseudo-labeled by the collective. Central to our method is a trust weighting
scheme that serves to adaptively weigh the influence of each collaborator on the
pseudo-labels until a consensus on how to label the auxiliary data is reached. We
demonstrate empirically that our collaboration scheme is able to significantly boost
individual models’ performance in the target domain from which the auxiliary
data is sampled. At the same time, it can provably mitigate the negative impact
of bad models on the collective. By design, our method adeptly accommodates
heterogeneity in model architectures and substantially reduces communication
overhead compared to typical collaborative learning methods.

1 Introduction

This work considers a decentralized learning setting where each agent has access to a labeled dataset
and a local model. The agents may differ in the data distribution they have access to as well as the
quality of their local models. In addition, we assume a shared unlabeled datasetX∗ sampled from
a target distribution Q is available to all agents. The central question is how can agents effectively
exchange information to benefit from each other’s local expertise in order to improve their predictive
performance on the target domain Q?

Towards this goal, our work takes inspiration from social science on how a panel of human experts
collaborate on a task. Humans typically engage in discourse to exchange information, they share
their opinions, and based on how much they trust their peers, each individual will then adjust their
subjective belief towards the opinion of peers. When repeated, this process gives rise to a dynamic
process of consensus finding, as formalized by DeGroot [1]. Central to the consensus mechanism of
DeGroot is the concept of trust. It determines how much individual agents influence each other’s
opinion, and thus the influence of each agent on the final consensus.

Our proposed algorithm mimics this consensus-finding mechanism in the context of collaborative
learning, inspired by [2]. In particular, our consensus procedure is aimed at how to label the shared
dataset X∗. Therefore, we carefully design a strategy by which each agent determines the trust
towards others, given its local information, to optimally leverage each agent’s expertise to collectively
pseudo-labelX∗. This mechanism of knowledge distillation is then combined with techniques from
self-training [3] in order to transfer the shared knowledge from the pseudo-labels into the local models
in an iterative fashion.

Code available at https://github.com/fan1dy/collaboration-consensus
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Crucial to our approach is that instead of aiming for a consensus on model parameters, such as
typically done in federated learning, we leverage the abundance of unlabeled data to enforce consensus
in prediction space overX∗. A key benefit of information exchange in prediction space is a reduction
in communication complexity and the ability to control privacy leakage, but also the ability to
seamlessly cope with both data heterogeneity and model heterogeneity.

Problem setup. We consider a collaborative learning setup with N agents. Each agent i ∈ [N ]
holds local training data, sampled from a local data distribution Pi. We denote the local training
data as (Xi,yi), where the matrixXi composes of ni local datapoints and yi denotes the vector of
corresponding labels. The number ni needs not to be the same across agents. In addition, we assume
agents have access to a shared unlabeled datasetX∗ sampled from a target distribution Q. We use n∗
to denote the number of datapoints in X∗. The ultimate success measure we consider is each agent’s
prediction performance on the target distribution Q. We work under the assumption that sharing of
raw labeled data is not desirable due to privacy concerns, data ownership, or storage constraints and
we wish to keep communication at a minimum to avoid overheads. Our setting recovers the goal of
both decentralized and federated learning, with or without personalization [4], when Q is defined
as the prediction task on the mixture of all local data distributions. In addition, we allow agents to
differ in their model architectures. We do not require a coordination server but assume agents have
all-to-all communication available.

Contributions. The key contributions of our work can be summarized in the following aspects:

1. We propose a novel collaborative learning algorithm based on prediction-consensus, which
effectively addresses statistical and model heterogeneity in the learning process, and provably
mitigates the negative impact of low-quality participating agents.

2. Our algorithm is able to significantly reduce communication overhead and privacy-sensitive
information sharing in comparison to other collaborative learning methods while achieving
superior empirical performance.

3. We show theoretically that consensus can be reached via our algorithm and justify the condi-
tions for good consensus to be achieved.

2 Related work

In federated learning a central server coordinates local updates toward learning a global model.
Local nodes upload gradients or model parameters, instead of data itself, to maintain a certain level
of privacy. McMahan et al. [5] describe the classic FedAvg algorithm. Follow-up works mainly
focus on addressing challenges from non-i.i.d. local data [6, 7, 8] and robustness towards Byzantine
attacks. Apart from communicating gradients or model parameters, several works discuss alternatives
to allow for heterogeneous model architectures. These methods are based on variants of model
distillation [9, 10], reaching an agreement in the representations space [11] or output space [12].
Similar to our work, both assume access to a shared unlabeled dataset. However, we go beyond naive
averaging to determine agreement to account for heterogeneity in model or data quality.

In contrast to federated learning, the fully decentralized learning setting does not assume the existence
of a central server. Instead, decentralized schemes such as gossip averaging are used to aggregate
local information across agents [13, 14]. Despite the lack of a global state, such methods can provably
converge to the desired global solution, leading to a gradual consensus among individual models [4].
In this context, Dandi et al. [15], Le Bars et al. [16] optimizes the communication topology to adapt
to data heterogeneity but do not offer any collaborator selection mechanisms. Bellet et al. [13] allows
personalized models on each agent, but assumes prior information about task-relatedness, as opposed
to learned selection. Gossip algorithms typically assume a fixed gossip mixing matrix given by
e.g. physical connections of nodes [17, 18, 19]. These approaches fail to consider data-dependent
communication as with task similarities and node qualities. Several recent works have addressed this
issue by proposing alternative methods that consider these factors. Notably, Li et al. [20] directly
optimizes the mixing weights by minimizing the local validation loss per node, which requires
labeled validation sets. Sui et al. [21] uses the E-step of EM algorithm to estimate the importance of
other agents to one specific agent i, by evaluating the accuracy of other agents’ models on the local
data of agent i. This way of trust computation does not allow the algorithm to be applied to target
distributions that differ from the local distribution, differentiating it from our work. Moreover, for
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both Li et al. [20], Sui et al. [21] the aggregation is performed in the gradient space, therefore not
allowing heterogeneous models.

Our work relates to semi-supervised learning as it involves partially unlabeled data. Most relevant
are self-training methods [22] that first train a model using labeled data, then use the trained model
to give pseudo-labels to unlabeled data. The pseudo-labels can further be fed back to the training
loop to attain a better model. Wei et al. [23] shows that under expansion and separation assumptions,
self-training with input consistency regularization can achieve high accuracy with respect to ground-
truth labels. When more than one learner is involved, co-training [24] appears as an extension to
self-training, benefiting from the knowledge of learners from independent views in labeling a set of
unlabeled data. Diao et al. [25] incorporates SSL into federated learning. In a setting where agents
are with unlabeled data and the center server is with labeled data, experimental studies demonstrate
that the performance of a labeled server is significantly improved with unlabeled clients. Farina [26]
presented a collective learning framework for distributed SSL, where they combine predictions on a
shared dataset via weights evaluated from local models’ performances on local validation datasets.
While their algorithm bears similarities to ours, it is important to note that it is exclusively tailored to
scenarios in which the target domain matches the global distribution. In a similar spirit, we want to
leverage unlabeled data in a fully decentralized setting.

Finally, Mendler-Dünner et al. [2] have previously formalized collective prediction as a dynamic
consensus finding procedure. They demonstrated that such an approach can lead to significant gains
over naive model averaging. We extend their approach from test-time prediction to collaborative
model training.

3 Method description

Our proposed method is designed to take advantage of shared unlabeled data in the context of
collaborative learning through knowledge distillation. Therefore, it emulates human opinion dynamics
to collectively pseudo-label the shared auxiliary data. These labels are then incorporated in the local
model update steps towards collectively improving the performance on the data distribution from
which the shared data is sampled.

3.1 Collective pseudo-labeling

To describe the pseudo labeling step, let us use fθi
to denote the local model of agent i ∈ [N ]

parameterized by θi. We write ŷi = fθi
(X∗) to denote the predictions of agent i on the auxiliary

data X∗. Agents share these predictions with their peers. Naturally, the individual models may differ
in these predictions and it is a priori unclear which model is most accurate, as ground truth labels
of the auxiliary data are not available. To combine the predictions into pseudo-labels forX∗, each
agent locally decides how to weigh other agents’ predictions by estimating their respective expertise
on the target task. We refer to these weights as trust scores and we use wij to denote the trust of
agent i towards the predictions of agent j. It’s worth noting that the trust between agents is not
necessarily mutual, i.e., can be asymmetrical: agent i can trust agent j without agent j necessarily
trusting agent i back. We useW to denote the matrix of trust scores. Given the trust scores, agent i
uses the following pseudo labels for the auxiliary data:

ψi =
∑
j

wij ŷj . (1)

Trust scores are determined locally by each agent based on query access to other agents’ predictions
and they are refined iteratively throughout training as models are being updated. The adaptive weight
computation will be detailed in Section 4.

3.2 Collaborative learning from pseudo labels

In the second step, the proxy labels for the auxiliary data are used to augment local model training.
Therefore, in each step, the local optimization problem is augmented by a disagreement loss, and the
new objective is given by

L(fθi
(Xi),yi) + λdist(fθi

(X∗),ψi) (2)
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Algorithm 1 Pseudo code of our proposed algorithm

Input: For each agent i ∈ [N ] we are given a local model θ(0)i , a labeled local dataset (Xi,yi),
and unlabeled shared dataX∗.

for t = 1, ..., T do
Each node i ∈ [N ] broadcasts their soft labels ŷ(t−1)

i = f
θ
(t−1)
i

(X∗) to all other nodes
in parallel for each agent i do

• Calculate pairwise trust score w(t)
ij (j ∈ [N ]), based on the received soft decisions

using methods provided in Section 4
• Get pseudo-labels onX∗ from collaborators: ψ(t)

i =
∑

j w
(t)
ij ŷ

(t−1)
j

• Do local training with collaborative disagreement loss

θ
(t)
i ∈ argmin

θ
L(fθ(Xi),yi) + λdist(fθ(X

∗),ψ
(t)
i ) (3)

end for

where fθi(X) denotes the vector of agent i’s predictions on the dataset X , L is the local training
loss and dist(·) is a disagreement measure. We choose l2 distance for the disagreement measure in
the regression case and cross-entropy for the classification case. λ > 0 is a trade-off hyperparameter
that weighs the local loss and the cost of disagreement. This objective adheres to a conventional
semi-supervised learning approach, however, we generate pseudo-labels in a trust-based collective
manner.

To iteratively refine the local models in the spirit of self-training, the pseudo labeling step and the
local training step are performed in an alternating fashion as described in Algorithm 1. Starting from
pre-trained models θ(0)i , in each round t ∈ {1, .., T} model predictions on the auxiliary data are
shared and then each agent aggregates them into a set of pseudo labels to augment local data and
perform an update step.

Our algorithm is motivated conceptually by co-training [24] where it was demonstrated that unlabeled
data can be used to augment labeled data to boost model performance. Moreover, learning from
collective pseudo-labels offers several additional benefits. Firstly, aggregation is performed in the
prediction space, eliminating the need for all agents to have identical model architectures. Secondly,
the communication cost of transmitting predictions is significantly lower than that of sharing model
weights, and the same pseudo-labels ψi can be reused for multiple local epochs to further reduce the
communication burden.

3.3 Convergence analysis

We study under what conditions Algorithm 1 will reach a consensus among agents on how to label
the auxiliary data. For the analysis, we focus on the over-parameterized regime 1 and we make the
following assumption on the local data distributions:
Assumption 1. There is no concept shift between the local data distributions and the target domain
Q from which the shared data is sampled, i.e., Pi(Y |X=x) = Q(Y |X=x) for all i ∈ [N ].
Together with over-parameterization the assumption implies that the minimizer of the objective
specified in (2) can always reach zero loss. Further, this allows us to model the update of agents’
predictions on X∗ as a Markov process where the state transition matrix corresponds to the trust
matrixW (t). Therefore, it is convenient to write the update of the predictions onX∗ performed by
the algorithm in matrix form, as Ψ(t) = [ŷ

(t)
1 , .., ŷ

(t)
N ]. Adopting this notation we have for t ≥ 1

Ψ(t) =W (t)Ψ(t−1) =W (t)W (t−1)...W (1)Ψ(0) . (4)

The following result provides sufficient conditions under which consensus will be reached by our
algorithm.

1We say a model is over-parameterized if its training error can reach zero. Over-parameterization is a
reasonable assumption in the deep learning regime.
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Theorem 1 (Consensus on predictions). Assume all agents’ models are over-parameterized and the
data distributions satisfy Assumption 1. Then, for t → ∞ Algorithm 1 converges to a consensus
among the local models on the predictions onX∗, that is,

ψ
(t)
i = ψ

(t)
j ∀i ̸= j, (5)

as long asW (t) is row-stochastic and positive for any t ≥ 0.

The proof is given in Appendix B and the main insight is that as long as W is row-stochastic and
positive (that is

∑
j wij = 1 for any row i, and wij > 0), the product of any W (t)’s is stochastic,

irreducible, and aperiodic, and this leads to the differences between rows in Ψ(t) vanishing in time.
Together with no concept shift, over-parameterization is important to guarantee that models can fit
the consensus predictions on the unlabeled data while at the same time minimizing local losses. In
contrast, in the under-parameterized setting, consensus and local loss minimization cannot necessarily
be achieved at the same time.

3.4 Information sharing in prediction space

A key feature of our method is that agents do not share model parameters, but they communicate by
exchanging prediction queries. If Algorithm 1 achieves a consensus this means that agents arrive at
solutions where they agree on predictions onX∗, but this does not imply that they have learned the
same model, or that they agree on predictions outside X∗. To illustrate this, we provide a simple
example where local data are generated using cubic regression with additive i.i.d. noise in the output,
as shown in Fig. 1. In this example, uniform weights are the ideal solution. We apply this optimal
uniform trust, as the main purpose here is to illustrate the difference between information sharing in
prediction space and parameter space. Each agent fits a polynomial regression of degree 4, which
leads to over-parameterization of the model to fit the data. Full details of our example are given in
Appendix A.1. We refer to the work of [2] for a similar setting with under-parameterized models.
Here we note the most interesting observations in the over-parameterized regime.

(a) (b) (c) (d) (e)

Figure 1: Local data distributions are shown in (a), and the initial fit on local data is shown in (b). (c)
and (d) are predictions onX∗ after 5 rounds and 20 rounds of our algorithm update respectively. (e)
is the comparison of model fits in a larger range ((d) is zoom-in of the rectangular area of (e))

First, we observe that for T ≥ 20 the three agents reach a consensus on the predictions of X∗.
However, the model parameters are not the same across the agents, as depicted in the rightmost panel.
Further, considering the properties of the algorithm across rounds and the predictions in different
regions of the input space in more detail, the following desirable behaviors are observed:

a) In the region where agent i has more data, it fits the local data more accurately and it moves
pseudo-labels closer to its own predictions.

b) In the region where agent i has no or little data, agent i only updates its model parameters to
fit the pseudo-labels.

c) When local loss minimization and prediction consensus can be achieved at the same time,
agents can arrive at models with a perfect agreement in the target prediction space.

4 Design of trust weights

In Section 3.3 we have shown that our algorithm is guaranteed to reach consensus onX∗ under weak
assumptions on the trust matrixW (t). In this section, we discuss how to designW (t) to encourage
that the achieved consensus leads to a high-quality labeling ofX∗.
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Therefore, we focus on multi-class classification. We let fθi(x) denote the class probabilities obtained
using model θi for a datapoint x. We choose the cross-entropy measure H(·, ·) to define the agreement
loss function dist(·, ·) in (3). If X = [x1, ..,xn]

⊤, then fθ(X) = [fθ(x1), .., fθ(xn)]
⊤ ∈ Rn×C ,

where n is the number of samples inX and C is the number of classes.

4.1 Trust evaluation through self-confidence

The quality of the local models could differ due to various factors, such as the amount of labeled data
available during training, due to the expressivity of the local model, the training algorithm, or due
to the relevance of the local data for the target task of labeling Q. Thus, a desirable property of the
consensus solution is that malicious agents, or agents with low-quality models contribute less to the
pseudo-labeling than agents with better models.

Hadjicostis and Dominguez-Garcia [27] differentiate between malicious and non-malicious agents
and they discuss the concept of trustworthy consensus, where only non-malicious agents contribute to
the consensus. In contrast to prior work, we do not aim for trustworthy agents to contribute equally.
Instead, we specifically want consensus to come from potentially unequal contribution of all agents,
weighted according to their relevance. We allow for the trust matrix to be asymmetric. All agents
determine trust from information given locally to the respective agent, which differs across agents.
Central to any such strategy is that the capabilities of models on Q can be estimated appropriately. In
the following, we discuss a strategy of how to determine trust from local data and prediction queries
to other models.

As no label information onX∗ is available to evaluate trust, it is natural to use agents’ own predictions
onX∗ as a local reference point. Then, each agent distributes their trust towards other agents based
on the alignment of their predictions. We use weighted pairwise cosine similarity as a measure of
alignment which motivates the following trust weight calculation:

w
(t)
ij =

γ
(t)
ij∑
j γ

(t)
ij

with γ
(t)
ij =

1

n∗

∑
x∈X∗

β
(t)
i (x)

〈
f
θ
(t−1)
i

(x), f
θ
(t−1)
j

(x)
〉

∥f
θ
(t−1)
i

(x)∥2∥fθ(t−1)
j

(x)∥2
. (6)

The inclusion of the weighting factor β(t)
i (x) and how to choose it will be discussed in Section 4.2.

Self-confident trust. Naturally, pairwise cosine similarity leads to a trust matrix that has diagonal
entries being the highest value among each row. We call this property self-confident, as each agent
trusts itself the most. We now demonstrate that this property is not particularly restrictive. Even if
constraining trust matrix to be self-confident, it is still possible to design such a matrix that facilitates
any consensus. The proof is given in Appendix D.
Proposition 2. For any given consensus distribution π, it is always possible to find a trust matrixW
that leads to it, which is both row stochastic and self-confident.

A second nice property our trust calculation has is that for an appropriate choice of β(t)
i the proposed

calculation of trust scores in (6) leads to scores that become more evenly distributed over time as
agents gradually reach consensus.

Claim 3. Given Assumption 1 holds and that all agents are over-parameterized. Assume β(t)
i is

chosen such that the trust matrixW (t) is row-stochastic and positive for all t ≥ 0. Then, for the trust
calculation in (6), we haveW (t) loses self-confidence over time and finally converges to a uniform
matrix:

tr(W (t)) ≤ tr(W (t−1)) and W (t) t→∞−→ 11⊤ 1

N
(7)

The proof is provided in Appendix C. This claim characterizes the behavior of our dynamic trust
scheme: while initially all agents distribute trust towards helpful collaborators and try to achieve a
consensus onX∗. Once consensus is reached, we will have ŷ(t)

i = ŷ
(t)
j for any i, j, andW (t) will

become a matrix with uniform weights. This means no individual agent has increasingly high weight
or the ability to manipulate the labeling.

Now that we know that a self-confident matrix can lead to the desired consensus, what other properties
should our trust matrix have?
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4.2 Robustness to low-quality nodes

If agents possess low-quality local data, we aim to minimize their influence on the labeling of the
auxiliary data throughout the algorithm. Proposition 4 gives a sufficient condition for such a desired
consensus: if there exists only one node with low-quality data, as long as it receives the lowest trust
from other regular nodes, and the sum of trust it receives is the smallest compared to the others, it
will remain to have lowest importance in the consensus.

Proposition 4. Given Assumption 1, the trust matrix is row stochastic and positive, and all agents
hold over-parameterized models. Let b be the only node with low-quality data and τ be the timestep
that consensus is reached. If the following desirable properties hold for t < τ :

i) b receives the lowest trust from others than itself, i.e., w(t)
jb = mini w

(t)
ji for j ̸= b.

ii) b-th column has the lowest column sum:
∑

j w
(t)
jb < mini ̸=b

∑
j w

(t)
ji .

Then node b will have the lowest importance in the consensus.

The proof is given in Appendix E, where we also provide desired properties in the presence of
multiple nodes with low-quality data, under some extra assumptions. Proposition 4 emphasizes the
desired trust weights during training before consensus is reached.
When nodes with weak model architectures (such as under-parameterized models) are involved,
achieving consensus is not assured. If such a consensus solution does exist, it will be constrained by
the underfitting of weak nodes. Consequently, this solution would not serve as a stationary solution
concerning the local training loss of a strong node. Nevertheless, we conjecture that these desired
properties can still enhance training by mitigating the impact of the weak nodes.

4.3 Confidence weighting

In the following paragraph, we discuss the choice of the weights β(t)
i in (6). Specifically, we

incorporate confidence weighting into the pairwise cosine similarity calculation to emulate the
construction of a transition matrix based on a known consensus distribution.

Let us start by outlining an idealized trust calculation that effectively down-weighs agents with low
quality data. We first construct an intermediate transition matrix Φ from pairwise cosine similarities
of the agents’ predictions onX∗ (with row normalization). For the low-quality node b, we will have
ϕjb being the lowest value in the j-th row, for any j ̸= b. According to Proposition 4, in order to
have low importance of low-quality workers in the consensus, we need to set the overall trust that b
receives to be the lowest among all the nodes. To achieve this, we need to assign the trust of regular
workers towards the low-quality workers to a very small value, as it is difficult to alter self-confidence.
If the consensus importance weight is known, one can easily calculate the corresponding trust matrix

wjb = ϕjb min

(
1,
π(b)

π(j)

ϕbj
ϕjb

)
,

which is a classical result from Metropolis chains [28] (also see Appendix D). We will havewjb < ϕjb
for j ̸= b, as π(b)

π(j) should be sufficiently small.

Practical scheme. Since the consensus importance weight is unknown, we cannot attain the ideal
trust matrix. Therefore, we propose an alternative weighting scheme that achieves similar effects:
we up-weight the similarity in the region where agent j has more confidence, i.e., where agent j’s
class probability assignments have lower entropy. By doing this, we encourage that the trust weights
become more concentrated on themselves and helpful workers, and less concentrated on low-quality
workers. We incorporate this into the trust weight calculation (6) by choosing

β
(t)
i (x) =

1

H(f
θ
(t−1)
i

(x))

where H denotes the entropy. We offer further intuition as well as justification of this weighting
scheme in Appendix F. Moreover, we empirically demonstrate how our choice of trust matrix leads
to a low column sum for bad nodes in Section 5.2.
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(a) Local data distributions (b) Dynamic Trust (c) Naive Trust

Figure 2: Decision boundary comparison between our dynamic trust update and naive trust update

(a) Cifar10 (b) FedISIC-2019

Figure 3: Class distributions among clients

Figure 4: Learned trust matrix during training
with diagonal entries masked and column sum
reported in the lowest bar. (left) Agents 2&9
have bad data. (right) Agents 5-9 have weak
models.

5 Experiments

We start with a synthetic example to visualize the decision boundary achieved by our algorithm and
then demonstrate its performance on real data in a heterogeneous collaborative learning setting.

5.1 Decision boundary visualization

Four classes are generated via multivariate Gaussian following P c ∼ N (µc,Σ), where µ0 =
(−2, 2)⊤, µ1 = (2, 2)⊤, µ2 = (−2,−2)⊤, µ3 = (2,−2)⊤. Σ = I2×2. Four clients have local data
sampled from a mixture of P c’s. For clients 0-3, we randomly flip 10% of the labels, and for client
3, we flip all labels. The unlabeled data X∗ are sampled equally from P c’s. The data distribution
is shown in Fig. 2a. The base model used in each node is a multi-layer perceptron of 3 layers with
5, 10, and 4 neurons respectively. We now compare Algorithm 1 with dynamic trust weight to with
naive trust weight. When a client with low-quality data is involved, i.e. client 3 in the toy example,
our trust update scheme gives a better decision boundary to good agents after collaboration, as blind
trust towards low-quality clients will impair the effectiveness of pseudo labeling.

5.2 Deep learning experiments

Datasets and model architectures. We consider a more challenging setting, where local data
distributions are non-i.i.d. Two different statistical heterogeneities are considered: (1) Synthetic
heterogeneity. We utilize the classic Cifar10 and Cifar100 datasets [29] and create 10 clients
from each dataset. To distribute classes among clients, we use a Dirichlet distribution2 with α =
1. Unless specified otherwise, we employ ResNet20 [30] without pretraining. (2) Real-world
data heterogeneity. A real-world dermoscopic lesion image dataset from the ISIC 2019 challenge
[31, 32, 33] is included here. The same client splits are used as in [34], based on the imaging
acquisition system employed in six different hospitals. The dataset includes eight classes of lesions to
classify, with the class distribution among the clients displayed in Fig. 3b. Following [34], we choose
pretrained EfficientNet [35] as the base model, and use balanced accuracy as the evaluation metric.
For every dataset, we constructX∗ from equally contributed samples by every agent.

Comparison against baseline methods. We compare our methods with several baseline methods,
including FedAvg [5], FedProx [7], SCAFFOLD [8] (SCA), FedDyn [36], local training without
collaboration (LT), and training with naive trust (Naive). Note with naive trust we are realizing soft
majority voting, which represents the baseline method proposed from [12]. We adhere to the same

2The Dirichlet distributed samples are constructed using the codes from https://github.com/TsingZ0/
PFL-Non-IID
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FedAvg FedProx SCA FedDyn LT Naive Ours-S Ours-D

Cifar10 0.542 0.517 0.578 0.578 0.475 0.618 0.604 0.612
Regular Cifar100 0.261 0.240 0.317 0.310 0.178 0.311 0.319 0.308

Fed-ISIC 0.279 0.261 0.213 0.243 0.248 0.290 0.302 0.291

Low- Cifar10 0.541 0.530 0.570 0.575 0.470 0.596 0.605 0.608
Quality Cifar100 0.254 0.240 0.289 0.308 0.171 0.285 0.300 0.306
Data Fed-ISIC 0.229 0.242 0.221 0.243 0.217 0.247 0.249 0.269

Table 1: Our methods compare to baseline methods. Blue denotes the algorithm with top 1 accuracy
and green denotes the method with 2nd best accuracy. “Ours - S" denotes the static version where the
trust score is kept constant after first-time calculation (after 5 rounds of local training) and “Ours - D"
denotes the dynamic version where the trust score is updated per global round.

architecture setting, where the standard federated learning algorithms can be applied. To initiate
the process, we allow each client to perform local training for 5 global rounds, with the objective
of obtaining a sufficiently refined model that can be used for trust evaluation. From the 6th training
round, the clients start collaboration. Over a total of 50 global rounds, each consisting of 5 local
epochs, we report the averaged accuracy results from three repeated experiments in Table 1. The
evaluation metric is calculated on the datasetX∗. λ is fixed as 0.5 in all experiments.

When all nodes share the same data quality and degree of statistical heterogeneity (denoted by
“regular” in the table), our methods align closely with consensus through naive averaging, which is
optimal in this case. When all nodes share the same degree of statistical heterogeneity but differ in
data quality, exemplified by randomly selecting two nodes (indexed as 2 and 9) for a complete flip
of local training labels, our dynamic trust update shows better overall performances3, proving the
effectiveness of our approach in limiting the detrimental influences from nodes with low-quality data.
We further plotted out the learned trust matrix in the dynamic update mode during one of the middle
training rounds in the left plot of Fig. 4. Clearly, our algorithm is able to give low trust weights to the
nodes with low-quality data, and the 2nd and 9th columns have the lowest column sum.

Figure 5: Target accuracy comparison
with 2 different model architectures with
error bars (hatch pattern denotes fully
connected NN is used). From top to bot-
tom: Cifar10, Cifar100, FedISIC

Adaptability to varying model architectures. We allo-
cate a more expressive model architecture to the first half
of the nodes and a less expressive one to the other half.
The former comprises ResNet20 and EfficientNet, which
were the models of choice in the previous experiments.
For the latter, we employ a linear model (i.e., one-layer
fully connected neural network) with a flattened image
tensor as input and the output is of size equivalent to
the number of classes. It is worth noting that if agents
with strong and weak model architectures (as in cases of
under-parameterization) coexist, consensus might not oc-
cur, as suggested by our empirical findings illustrated in
Fig. 5. Nevertheless, our trust-based collaborator selection
mechanism consistently outperforms local training and
simple averaging. The trust weight matrix learned during
Cifar100 training is depicted in the right plot of Fig. 4,
revealing the presence of asymmetric trust. Specifically,
the last 5 nodes exhibit a higher level of trust towards the
first 5 nodes, while the opposite is not true. The trust al-
location is desired in identifying the helpers. We further
refer to Appendix A.2 for more empirical evidence from
a toy polynomial regression example on the presence of
strong and weak architectures.

Reduced communication costs. Gradient aggregation-
based methods incur a significant communication burden
proportional to the number of model parameters (O(N ×
|params|)), which is particularly heavy given the over-parameterized nature of modern deep learning.

3Here we report average accuracy of regular workers, excluding workers with low-quality data
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Figure 6: Algorithm performances on Cifar100 for different algorithm configurations. (left) effect of
varying number of local epochs on final performance; (right) algorithm performance as a function of
the number of training rounds for 5 local epochs each

In contrast to existing approaches, our proposed method significantly reduces the communication
burden by enabling each node to transmit only their predictions on the shared dataset. This results in
communication overhead O(N2 × n⋆ × C). It is clear that this value does not scale up with more
complex models, and is much smaller than the model size. Moreover, our methods maintain their high
performance even when the number of local epochs increases. On the other hand, FedAvg loses its
effectiveness with less frequent synchronization, i.e. more local epochs between global aggregation
rounds, as shown in the left panel of Fig. 6.

6 Conclusions and extensions

In the context of decentralized learning, we leverage the collective knowledge of individual nodes to
improve the accuracy of predictions with respect to a target distribution. Our proposed trust update
scheme, based on self-confidence, ensures robustness against nodes with low-quality data. By achiev-
ing consensus in the prediction space, our method effectively handles diverse model architectures
within local clients, while maintaining a low communication overhead, thereby exhibiting important
practical potential. Despite coming from a different perspective, our trust-based collaborative pseudo-
labeling method may provide some inspiration in the semi-supervised learning community. Notably,
our algorithm is intrinsically compatible with personalization, in terms of allowing some concept
shift across clients. We leave this for future work.

Robustness. We have designed our algorithm with the assumption that all agents communicate hon-
estly, meaning that no Byzantine workers intentionally provide incorrect information. Nevertheless,
our method exhibits some resilience against a common Byzantine attack, known as the label flip
(referred to as "low-quality workers" in our paper). For instance, even with 2 out of 10 workers having
100% flipped labels, our algorithm maintains good performance. If there are malicious workers
deliberately providing incorrect information, the nodes may refuse to reach a consensus, instead of
reaching a detrimental bad consensus, assuming a reasonable λ is chosen. Consider the scenario in
which a detrimental consensus is reached with malicious nodes involved; in this case, the consensus
loss and local loss for regular nodes will not decrease in the same direction, making the consensus
solution non-stationary. Notably, the "personal" component of our loss function adds an element of
robustness against malicious nodes.

Privacy Concerns. While previous works show that training data can be reconstructed from model
parameters [37] or gradients [38], our algorithm requires less privacy-sensitive information sharing,
which is predictions on a shared dataset. While we are aware that model predictions can still leak
private information on training data due to memorization [39], there is a trade-off between the gain
from collaboration and the amount of information that users are willing to share. As the number of
outer rounds increases, we observe a notable improvement in accuracy within the context of X∗.
However, this enhanced accuracy comes at the cost of disclosing more information, a relationship
that is depicted in Fig. 6. An interesting extension would be to apply differential privacy to further
guarantee privacy.
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Appendix

A Polynomial regression examples

A.1 Example in Section 3.4

The true underlying function is chosen as f(x) = 0.5x3 + 0.3x2 − 5x+ 4. There are three agents in
total, each of whom has 50 data points. The local data points are generated using normal distributions:
x1 ∼ N (−2, 1), x2 ∼ N (0, 1) and x3 ∼ N (2, 1). To introduce noise in the labels, each agent
adds a normally distributed error term with zero mean and unit variance, i.e. yi = f(xi) + ε with
ε ∼ N (0, 1).

A set of 50 equally spaced data points in the range of −4 to 4, denoted asX∗, is used in the analysis.
The algorithm is applied using fixed trust weights with 1/3 in each entry and λ is chosen as 1.

A.2 Example with strong and weak architectures

The true underlying function is chosen as f(x) = 0.5x3 + 0.3x2 − 5x+ 4. There are four agents in
total, each of whom has 50 data points. The local data points are generated using normal distributions:
x1 ∼ N (−2, 1), x2 ∼ N (0, 1), x3 ∼ N (2, 1) and x4 ∼ N (3, 1). To introduce noise in the labels,
each agent adds a normally distributed error term with zero mean and unit variance, i.e. yi = f(xi)+ε
with ε ∼ N (0, 1).

A set of 50 equally spaced data points in the range of −4 to 6, denoted asX∗, is used in the analysis.
The algorithm is applied using dynamic trust weights and λ is chosen as 1. For the first three agents,
a polynomial model with a maximum degree of four is fit, while for the fourth agent, a polynomial
model with a maximum degree of one is fit, signifying a weak node.

We see that after 50 rounds of model training using our proposed algorithm with dynamic trust, agent
4’s model is still underfitting due to its limited expressiveness. Agents 1-3 end up agreeing with each
other and giving good predictions in the union of their local regions. While with naive trust weights,
we see that the strong agents also get influenced in the region where they could perform well, as the
underfitted model has a stronger impact through collective pseudo-labeling.

(a) (b) (c) (d)

Figure 7: (a) local data distributions in each agent; (b) local model fit without collaboration; (c)
model fits after 50 rounds of our algorithm with dynamic trust update; (d) model fits after 50 rounds
with naive trust update

B Proof of Theorem 1

The proof is rooted in the results from the work of Wolfowitz [40], we recommend readers to check
the original paper for more detailed references. Note, for the following texts, when we say a matrix
W has certain properties, it is equivalent to saying a Markov chain induced by transition matrixW
has certain properties.
Definition A (Irreducible Markov chains). A Markov chain induced by transition matrix W is
irreducible if for all i, j, there exists some n such thatW n

ij > 0. Equivalently, the graph corresponding
toW is strongly connected.
Definition B (Strongly connected graph). A graph is said to be strongly connected if every vertex is
reachable from every other vertex.
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Definition C (Aperiodic Markov chains). A Markov chain induced by transition matrix W is
aperiodic if every state has a self-loop. By self-loop, we mean that there is a nonzero probability of
remaining in that state, i.e. wii > 0 for every i.
Assumption 2. W (t)’s are row-stochastic and positive , i.e.

∑
j wij = 1 for any row i, and wij > 0.

Claim 5. Given Assumption 2, the matrix product of any n elements of {W (t)} are SIA (SIA stands
for stochastic, irreducible and aperiodic) for n ≥ 1.

Proof. According to the assumption that all W (t)’s are positive, and thus we have any product of
W (t)’s being positive in each entry, which is equivalent to the graph introduced by the product
being fully connected. Being fully connected implies being strongly connected. According to
Definitions A B, irreducibility follows.
By the product being positive, we also have its diagonal entries being all positive. According to
Definition C, aperiodicity follows.
The product of row-stochastic matrices remains row-stochastic: forA andB row stochastic, we have
the productAB remains row-stochastic.∑

j

(
∑
k

aikbkj) =
∑
k

aik(
∑
j

bkj) = 1, ∀i

Thus, we have any product ofW (t)’s being irreducible, aperiodic and stochastic (SIA).

Theorem 6 (Rewrite of Wolfowitz [40]). LetA1, ..., Ak be square row stochastic matrices of the
same order and any product of the A’s (of whatever length) is SIA. When k → ∞, the product ofA1,
...,Ak gets reduced to a matrix with identity rows.

Following Assumptions 12, we have ψ(t) =W (t)ψ(t−1) holds for all t ≥ 1. From Claim 5, we have
any products of W (t)’s being SIA. From Theorem 6, we have the product W (t)W (t−1) . . .W (1)

gets reduced to a matrix with identical rows when t goes to infinity. That implies, ψ∞ has identical
rows. The statement is thus proved.

C Proof of Claim 3

Definition D (Row differences). Define how different the rows ofW are by

δ(W ) = max
j

max
i1,i2

|wi1j − wi2j | (8)

For identical rows, δ(W ) = 0

Definition E (Scrambling matrix). W is a scrambling matrix if

λ(W ) := 1−min
i1,i2

∑
j

min(wi1j , wi2j) < 1 (9)

In plain words, Definition E says that if for every pair of rows i1 and i2 in a matrixW , there exists a
column j (which may depend on i1 and i2) such that wi1j > 0 and wi2j > 0, thenW is a scrambling
matrix. It is easy to verify that a positive matrix is always a scrambling matrix.
Lemma 1 (Adaptation of Lemma 2 from Wolfowitz [40]). For any t,

δ(W (t)W (t−1) . . .W (1)) ≤
t∏

i=1

λ(W (i)) (10)

Lemma 1 states that multiplying with scrambling matrices will make the row differences smaller.
tr(W (t)) =

∑
i w

(t)
ii represents the sum of self-confidences of all nodes. As everyW (t) is positive,

we have all W (t)’s scrambling. Thus, the differences between rows of W (t)W (t−1)..W (1) get
smaller when t gets bigger.

As ψ(t)
i =

∑
j [W

(t)W (t−1)..W (1)]ijψ
(t−1)
j , we have the predictions onX∗ given by all nodes get

similar over time. According to our calculation ofW (t) in Equation (6), which is based on cosine
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similarity between predictions, it follows that an agent’s trust towards the others gets larger over time.
That is,

∑
j w

(t+1)
ij ≥

∑
j w

(t)
ij . Since each row sums up to 1, we have w(t+1)

ii ≤ w
(t)
ii , for all i.

According to Theorem 1, we have ψ(t)
i = ψ

(t)
j as t → ∞, for any i and j. According to the

calculation ofW , we haveW (t) with equal entries when t reaches infinity.

D Proof of Proposition 2

Recall stationary distribution (π ∈ R1×N ) of a Markov chain being

lim
t→∞

W (t) . . .W (1) → [π⊤ . . .π⊤]⊤ (11)

The proof follows from the construction of Metropolis chains given a stationary distribution. We will
first give an example of how Metropolis chains work.
Example 2 (Metropolis chains [28]). Given stationary distribution π = [0.3, 0.3, 0.3, 0.1], how
could we construct a transition matrix that leads to the stationary distribution?

Suppose Φ is a symmetric matrix, one can construct a Metropolis chain P as follows:

p(x, y) =

ϕ(x, y)min
(
1, π(y)π(x)

)
y ̸= x

1−
∑

z ̸=x ϕ(x, z)min
(
1, π(z)π(x)

)
y = x

(12)

Choose Φ =

1/3 1/4 1/4 1/6
1/4 1/3 1/4 1/6
1/4 1/4 1/3 1/6
1/6 1/6 1/6 1/2

, we could get P =

4/9 1/4 1/4 1/18
1/4 4/9 1/4 1/18
1/4 1/4 4/9 1/18
1/6 1/6 1/6 1/2

.

It can be verified that π is the stationary distribution of Markov chain with transition matrix P . If Φ
is not symmetric, we modify π(y)

π(x) to π(y)
π(x)

ϕ(y,x)
ϕ(x,y) , and the results remain unchanged.

Following Example 2, choose Φ to be any self-confident doubly stochastic matrix. For all x, choose
P as calculated from (12), we have

p(x, x) = 1−
∑
z ̸=x

ϕ(x, z)min

(
1,
π(z)

π(x)

)
≥ 1−

∑
z ̸=x

ϕ(x, z) = ϕ(x, x) (13)

we see that probability distribution among each row gets more concentrated on the diagonal entries in
P than Φ. As Φ already has high diagonal values, the claim follows.

E Proof of Proposition 4

Proposition 4 states sufficient conditions forW (t)’s to have such that a low-quality node b is assigned
lowest importance in π, i.e. πb = mini πi. From Equation (11), π comes from the product of trust
matrices. We start from a product of two such matrices.
Proposition 7. For row-stochastic and positive matricesA andB, and C = AB, if in bothA and
B,

i) j-th column has the lowest column sum,

ii) (i, j)-th entry being the lowest value in i-th row for i ̸= j

then we have j-th column remains the the lowest column sum in matrix C and (i, j)-th entry being
the lowest value in i-th row of C for i ̸= j,

Proof. Let C = AB, the column sum of column j of C can be expressed as:∑
i

cij =
∑
i

∑
k

aikbkj

=
∑
k

(
∑
i

aik)bkj
(14)
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for t ̸= j, the column sum of C is ∑
i

cit =
∑
i

∑
k

aikbkt

=
∑
k

(
∑
i

aik)bkt
(15)

We first show that j-th column remains the lowest column sum in C. For t ̸= j:∑
i

cit −
∑
i

cij =
∑
k

(
∑
i

aik)(bkt − bkj)

=
∑
k ̸=j

(
∑
i

aik)(bkt − bkj) + (
∑
i

aij)(bjt − bjj)

(i)
>
∑
k ̸=j

(
∑
i

aij)(bkt − bkj) + (
∑
i

aij)(bjt − bjj)

= (
∑
i

aij)

∑
k ̸=j

(bkt − bkj) + (bjt − bjj)


=
∑
i

aij

(∑
k

bkt −
∑
k

bkj

)
(ii)
> 0

(16)

(i) holds because for k ̸= j, bkt − bkj > 0 and
∑

i aij <
∑

i aik
(ii) holds because the j-th column has the lowest column sum in B

We then show that (i, j)-th entry remains the lowest value in i-th row of C for i ̸= j. For t ̸= j, we
have

cit − cij =
∑
k

aikbkt −
∑
k

aikbkj

=
∑
k ̸=j

aik(bkt − bkj) + aij(bjt − bjj)

(iii)
>
∑
k ̸=j

aij(bkt − bkj) + aij(bjt − bjj)

=aij

∑
k ̸=j

(bkt − bkj) + (bjt − bjj)


=aij

(∑
k

bkt −
∑
k

bkj

)
(iv)
> 0

(17)

(iii) holds since bkt − bkj > 0 and aik > aij for i, k ̸= j.

(iv) holds because
∑

k bkt >
∑

k bkj

For time-inhomogenous trust matrix, Assumptions 1 2 ensure the Markov chain update: ψ(t)
i =∑

j w
(t)
ij ψ

(t−1)
j , which is followed by consensus as proven in Theorem 1. We see that b-th column

remains the lowest column sum in the productW (τ)W (τ−1)...W (1), by iteratively applying Propo-
sition 7. For t ≥ τ , multiplying consensus with any row stochastic preserves the consensus. Thus,
the b-th column will remain to be the smallest column in the consensus. For the time-homogenous
case, as long asW holds the same properties, one can easily verify that the same result still holds.
Thus, Proposition 4 is proved.
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Extend to more than one node with low-quality data. For more than one low-quality node, what
are the desired properties (sufficient conditions) for the transition (trust) matrices to have? It turns out
that apart from the two conditions in a single low-quality node case, we need an extra assumption.

Proposition 8. Given Assumptions 1 2 and that all agents are over-parameterized, let R be the set of
indices of regular nodes, and B be the set of indices of low-quality nodes, if for t ≤ τ ,W (t) satisfies
the following conditions:

i) any regular node’s column sum is larger than any low-quality node’s: minr∈R
∑

i w
(t)
ir >

maxb∈B
∑

i w
(t)
ib ;

ii) the gap between the sum of trust from regular nodes towards any regular node r and low-
quality node b is larger than the gap between low-quality node b’s self-confidence and its
trust towards the regular node:

∑
n∈R(w

(t)
nr − w

(t)
nb ) > (w

(t)
bb − w

(t)
br ),

iii) any node’s trust towards a regular node is bigger or equal than its trust towards a low-
quality node other than itself: for any r ∈ R and any b ∈ B, we have w(t)

nr ≥ w
(t)
nb holds as

long as n ̸= b.

And after t > τ , W (t) = 11⊤ 1
N . Then we have nodes in B having a lower importance in the

consensus than nodes in R.

Proof. First, let us look at the multiplication of two such matrices when 1 < t < τ , for any r ∈ R
and b ∈ B, we have conditions (1)(2)(3) remain to be true for the product W (t)W (t−1). We will
verify them one by one in the following part:

Verification of condition (1): any regular node’s column sum is larger than any low-quality node’s in
W (t)W (t−1). For any r ∈ R and any b ∈ B, we have∑

i

∑
n

w
(t)
in w

(t−1)
nr −

∑
i

∑
n

w
(t)
in w

(t−1)
nb

=
∑
n

(
∑
i

w
(t)
in )
(
w(t−1)

nr − w
(t−1)
nb

)
=
∑
n∈R

(
∑
i

w
(t)
in )
(
w(t−1)

nr − w
(t−1)
nb

)
+

∑
n∈B\{b}

(
∑
i

w
(t)
in )
(
w(t−1)

nr − w
(t−1)
nb

)
+(
∑
i

w
(t)
ib )
(
w

(t−1)
br − w

(t−1)
bb

)
(i)
>
∑
n∈R

(
∑
i

w
(t)
ib )
(
w(t−1)

nr − w
(t−1)
nb

)
+
∑
i

w
(t)
ib

(
w

(t−1)
br − w

(t−1)
bb

)
+

∑
n∈B\{b}

(
∑
i

w
(t)
in )
(
w(t−1)

nr − w
(t−1)
nb

)

=(
∑
i

w
(t)
ib )

(∑
n∈R

w(t−1)
nr −

∑
n∈R

w
(t−1)
nb + w

(t−1)
br − w

(t−1)
bb

)
+

∑
n∈B\{b}

(
∑
i

w
(t)
in )
(
w(t−1)

nr − w
(t−1)
nb

)
(ii)
> 0

(i) holds because
∑

i w
(t)
in for any n ∈ R is larger than

∑
i w

(t)
ib for any b ∈ B, which follows from

condition (1), and w(t)
nr − w

(t)
nb > 0, which follows from condition (3).

(ii) holds following the conditions (2) and (3). From (2),
∑

n∈R w
(t−1)
nr −

∑
n∈R w

(t−1)
nb +w

(t−1)
br −

w
(t−1)
bb > 0, and from (3), w(t−1)

nr ≥ w
(t−1)
nb for n ̸= b
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Verification of condition (2):∑
n∈R

(∑
p

w(t)
npw

(t−1)
pr −

∑
p

w(t)
npw

(t−1)
pb

)
−

(∑
p

w
(t)
bp w

(t−1)
pb −

∑
p

w
(t)
bp w

(t−1)
pr

)

=
∑
p

(∑
n∈R

w(t)
np + w

(t)
bp

)
w(t−1)

pr −
∑
p

(∑
n∈R

w(t)
np + w

(t)
bp

)
w

(t−1)
pb

=
∑
p

(∑
n∈R

w(t)
np + w

(t)
bp

)(
w(t−1)

pr − w
(t−1)
pb

)
=
∑
p∈R

(∑
n∈R

w(t)
np + w

(t)
bp

)(
w(t−1)

pr − w
(t−1)
pb

)
+

∑
p∈B\{b}

(∑
n∈R

w(t)
np + w

(t)
bp

)(
w(t−1)

pr − w
(t−1)
pb

)

+

(∑
n∈R

w
(t)
nb + w

(t)
bb

)(
w

(t−1)
br − w

(t−1)
bb

)
(iii)

≥
∑
p∈R

(∑
n∈R

w
(t)
nb + w

(t)
bb

)(
w(t−1)

pr − w
(t−1)
pb

)
+

(∑
n∈R

w
(t)
nb + w

(t)
bb

)(
w

(t−1)
br − w

(t−1)
bb

)

+
∑

p∈B\{b}

(∑
n∈R

w(t)
np + w

(t)
bp

)(
w(t−1)

pr − w
(t−1)
pb

)

=

(∑
n∈R

w
(t)
nb + w

(t)
bb

)∑
p∈R

w(t−1)
pr −

∑
p∈R

w
(t−1)
pb + w

(t−1)
br − w

(t−1)
bb


+

∑
p∈B\{b}

(∑
n∈R

w(t)
np + w

(t)
bp

)(
w(t−1)

pr − w
(t−1)
pb

)
(iv)

≥ 0

(iii) holds because for p a regular node, we have
∑

n∈R w
(t)
np + w

(t)
bp >

∑
n∈R w

(t)
nb + w

(t)
bb , which

follows from condition (2), and w(t−1)
pr − w

(t−1)
pb ≥ 0 for p ̸= b, following from condition (3).

(iv) holds because of conditions (2) and (3).

Verification of (3): for n ̸= b, we want to show the trust towards a regular node r is bigger than
towards a low-quality node b, that is

∑
p w

(t)
npw

(t)
pr >

∑
p w

(t)
npw

(t)
pb

∑
p

w(t)
npw

(t)
pr −

∑
p

w(t)
npw

(t)
pb

=
∑
p∈R

w(t)
np

(
w(t)

pr − w
(t)
pb

)
+

∑
p∈B\{b}

w(t)
np

(
w(t)

pr − w
(t)
pb

)
+ w

(t)
nb

(
w

(t)
br − w

(t)
bb

)
(v)

≥
∑
p∈R

w
(t)
nb

(
w(t)

pr − w
(t)
pb

)
+ w

(t)
nb

(
w

(t)
br − w

(t)
bb

)
+

∑
p∈B\{b}

w(t)
np

(
w(t)

pr − w
(t)
pb

)

=w
(t)
nb

∑
p∈R

w(t)
pr −

∑
p∈R

w
(t)
pb + w

(t)
br − w

(t)
bb

++
∑

p∈B\{b}

w(t)
np

(
w(t)

pr − w
(t)
pb

)
(vi)

≥ 0

(v) holds because for n ̸= b, we have w(t)
np ≥ w

(t)
nb , following from condition (3), and w(t)

pr −w
(t)
pb ≥ 0

for p ̸= b.
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(vi) holds following from conditions (2) and (3).

It follows that in the productW (τ)W (τ−1)...W (1), a low-quality node will still have a lower column
sum than any regular node. Because conditions (1)(2)(3) holds for any product ofW (t)’s as long as
each of theW (t) share the conditions listed by (1)(2)(3).

After t > τ , multiplying with a naive weight matrix does not change the column sum order, we will
have all low-quality nodes have lower importance in the consensus than the regular nodes.

F Reasoning for confidence weighting factor β
(t)
i

In this section, we justify our choice of β(t)
i (x) in Section 4.3, i.e. we show via adding such a term,

we are able to downweight a regular node’s trust towards a bad node.
Φ(t) is a row-normalized pairwise cosine similarity matrix, with (i, j)-th entry before row normaliza-
tion as

1

n⋆

∑
x′∈X∗

〈
f
θ
(t−1)
i

(x′), f
θ
(t−1)
j

(x′)
〉

∥f
θ
(t−1)
i

(x′)∥2∥fθ(t−1)
j

(x′)∥2
(18)

After adding a β(t)
i (x) = 1/H(f

θ
(t−1)
i

(x)), we haveW (t) with (i, j)-th entry before row normalization
as

1

n⋆

∑
x′∈X∗

1

H(f
θ
(t−1)
i

(x′))

〈
f
θ
(t−1)
i

(x′), f
θ
(t−1)
j

(x′)
〉

∥f
θ
(t−1)
i

(x′)∥2∥fθ(t−1)
j

(x′)∥2
(19)

We want to show that the weighting scheme down-weights a regular node i’s trust towards a low-
quality node b, that is

ϕ
(t)
ib > w

(t)
ib

As the comparison is made with respect to the same time step t, we drop the t notation from now
on. Let {a0, .., aN−1} be the cosine similarity between a regular agent i and others inside agent i’s
confident region, and {b0, .., bN−1} be the cosine similarity between i and others outside agent i’s
confident region. By confident region, we mean region with low entropy in class probabilities, i.e.
the model is more sure about the prediction. Further, we make the following assumptions:

a) for x′ in agent i’s confident region, we have low entropy of predicted class probabili-
ties: H(f

θ
(t−1)
i

(x′)) = 1/c1; while for x′ outside agent i’s confident region, we have
H(f

θ
(t−1)
i

(x′)) = 1/c2. We further assume 0 < c2 < c1.

b) inside a regular node i’s confident region, i has a better judgment of the alignment score
produced by cosine similarity, such that the cosine similarity with low quality b is weighted
lower inside:

ab∑
j aj

<
bb∑
j bj

(20)

to claim wib < ϕib, we need to show

c1ab + c2bb∑
j(c1aj + c2bj)

<
ab + bb∑
j(aj + bj)

(21)

Proof. Re-arrange Equation 20, we get

bb
∑
j

aj > ab
∑
j

bj (22)

Multiply with c2 − c1 on both sides, we have

(c2 − c1)bb
∑
j

aj < (c2 − c1)ab
∑
j

bj (23)
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c2bb
∑
j

aj + c1ab
∑
j

bj < c1bb
∑
j

aj + c2ab
∑
j

bj (24)

Now add c1ab
∑

j aj + c2bb
∑

j bj to both sides, we have

c1ab
∑
j

aj + c2bb
∑
j

aj + c1ab
∑
j

bj + c2bb
∑
j

bj <

c1ab
∑
j

aj + c1bb
∑
j

aj + c2ab
∑
j

bj + c2bb
∑
j

bj
(25)

Combining the terms we have

(c1ab + c2bb)

∑
j

(aj + bj)

 <

∑
j

(c1aj + c2bj)

 (ab + bb) (26)

following which, we directly have

c1ab + c2bb∑
j(c1aj + c2bj)

<
ab + bb∑
j (aj + bj)

(27)

G Complementary details

G.1 Details regarding model training

All the model training was done using a single GPU (NVIDIA Tesla V100). For each local iteration,
we load local data and shared unlabeled data with batch size 64 and 256 separately. We empirically
observed that a larger batch size for unlabeled data is necessary for the training to work well. The
optimizer used is Adam with a learning rate 5e-3. For Cifar10 and Cifar100, as the base model is not
pretrained, we do 50 global rounds with 5 local training epochs for each agent per global round. For
Fed-ISIC-2019 dataset, as the base model is pretrained EfficientNet, we do 20 global rounds. For the
first 5 global rounds, we set λ = 0 to arrive at good local models, such that every agent can evaluate
trust more fairly. After that, λ is fixed as 0.5. Dynamic trust is computed after each global round,
while static trust denotes the utilization of the initially calculated trust value throughout the whole
experiment.

For Cifar10 and Cifar100, we use 5% of the whole dataset to constitute X∗, where each class has
equal representation. For the rest, we spread them into 10 clients using Dirichlet distribution with
α = 1. For Fed-ISIC-2019 dataset, we follow the original splits as in du Terrail et al. [34], and we let
each client contribute 50 data samples to constituteX∗.

We employ a fixed λ for all our experiments. To select λ, we randomly sample 10% of the full
Cifar10 dataset, which we then split into local training data (95%) andX∗ (5%). The local training
data is then spread into 10 clients using Dirichlet distribution with α = 1. The test global accuracy
and value of λ is plotted out in Fig. 8. We thus choose λ = 0.5 for all our experiments, and it is
always able to give stable performances according to our experiments.

Figure 8: λ versus algorithm performance
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G.2 Limitations of the work

The main limitation of this work is the requirement of an extra shared unlabelled dataset, like in other
knowledge distillation-based decentralized learning works. Moreover, each agent needs to calculate
their trust towards all other nodes locally. The extra computational complexity is O(N2 × n⋆ × C)
per global round, where N stands for the number of agents, n⋆ stands for the size of the shared
dataset and C denotes the number of classes. The computation can be heavy if the number of clients
gets large. But as we focus on cross-silo setting, N usually does not tend to be a big number.
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