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The supplementary document is organized as follows:

• §1: The derivation of the Guided Set Diffusion Models based on the DDPM [4] formulation.
• §2: Additional implementation details, including:

– Architectures and implementation details of the guidance networks.
– Architectures and implementation details of the denoising networks.
– Implementation details of the permutation loss Lperm(ϕ) for the guidance training.
– Implementation details of the diffusion models framework.

• §3: More details and analyses on the augmented matching criterion for the mean AP metric to
evaluate HD map reconstruction.

• §4: Extra experimental results including:
– Additional ablation studies on the design choices of the denoising networks.
– Additional qualitative results for floorplan and HD map reconstruction.

1 Derivation of Guided Set Diffusion Models (GS-DM)

In this section, we present more details of the derivation of the Guided Set Diffusion Models (GS-DM)
proposed in §3 of the main paper.

1.1 Forward process

We derive Eq. 7, 8, and 9 in Sec. 3 of the main paper by induction. The trivial case of t = 1 can
be easily verified. Let xi
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where ϵit is a standard Gaussian variable independent of ϵit−1. Since ϵit−1 and ϵit are independent,√
αtσ̄ϕ(x0, t− 1, i)ϵit−1 +

√
1− αtσϕ(x0, t, i)ϵ

i
t is a Gaussian random variable of zero mean and

a variance of αtσ̄
2
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2
ϕ(x0, t, i). Thus we have
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which correspond to Eq.8 and Eq.9 of the main paper, and we further obtain
q(xi

t|xi
0) = N (xi

t;
√
ᾱtx

i
0 + µ̄ϕ(x0, t, i), σ̄

2
ϕ(x0, t, i)I), (4)

which is the Eq.7 of the main paper.
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1.2 Reverse process

Assuming we are given the guidance networks µϕ and σϕ and the noise scales σts of the reverse
process, we follow a style similar to DDPM [4] to derive a sampling step in the reverse process. At
each sampling step in the reverse process, pθ(xi

t−1|xi
t), the Gaussian distribution to sample xi

t−1 from
is supposed to have the same mean as q(xi

t−1|xi
t,x0) defined by the forward process, which is also

Gaussian, to minimize their KL divergence. As the joint distribution of xi
t−1 and xi

t conditioned on
x0 is Gaussian, the mean of q(xi

t−1|xi
t,x0) can be easily derived with the following closed form [9,

Chapter 8.1.3]:
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As our formulation directly parameterizes σ̄ϕ, we further simplify Eq. 6 by defining σ̄ϕ(x0, t, i) :=√
1− ᾱtC(x0, i) where C(x0, i) is independent of the timestep t, thus implicitly defining

σϕ(x0, t, i) = σ̄ϕ(x0, T, i) = C(x0, i). Such a parameterization makes {σ̄ϕ(x0, t, i)}t simply
an interpolation between 0 and σ̄ϕ(x0, T, i) and further simplifies Eq. 6 as
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During inference, we replace µ̄ϕ(x0, t, i) and σ̄ϕ(x0, t, i) with µ̄ϕ(x̂0, t, i) and σ̄ϕ(x̂0, t, i) respec-
tively and replace ϵi with the denoising network ϵiθ to define the mean of sampling distribution
pθ(x

i
t−1|xi

t) and derive a sampling step in the reverse process as
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which is the Eq.10 of the main paper.

2 Additional implementation details

In this section, we complement §4 of the main paper by providing the complete implementation
details of PolyDiffuse for the two different tasks.

2.1 Guidance networks

The implementation details of the guidance networks are shared across the two tasks.

Model architectures: In §4 of the main paper, we parameterize µ̄ϕ(x0, T, i) and σ̄ϕ(x0, T, i) with
two Transformers Transµ̄ϕ

(x0, i) and Transσ̄ϕ
(x0, i), and define µ̄ϕ(x0, t, i) and σ̄ϕ(x0, t, i) with
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Eq.14. The two Transformers are implemented with a DETR-style [1] Transformer decoder1: The
Transformer decoder contains two shared attention-based decoder layers and two separate linear
projection heads for µ̄ϕ and σ̄ϕ, respectively. Each decoder layer consists of an intra-element self-
attention layer and a global self-attention layer, whose outputs are fused by addition. Each vertex
in the input x0 becomes an input node of the Transformer decoder, and the node feature consists
of three positional encodings [14]: 1) positional encoding of the X-axis coordinate, 2) positional
encoding of the Y-axis coordinate, 3) positional encoding of the vertex index inside the element. The
sequence of each element starts with a special dummy node (similar to the SOS token in language
modeling), whose final encodings are used to compute the µ̄ϕ and σ̄ϕ of the element. The dimension
of the positional encoding is 128, and the hidden dimension of the Transformer decoder is 256.

Training details: The guidance training is summarized by Algorithm 1 of the main paper. We train
the Transformer decoder for 3125 iterations with batch size 32. Adam optimizer is employed with a
learning rate of 2e-4 and a weight decay rate of 1e-4.

2.2 Denoising networks

Since the implementations of the denoising networks are based on the corresponding state-of-the-art
task-specific models, we describe them separately.

Floorplan reconstruction: The denoising network for the floorplan reconstruction task refers
to RoomFormer [15] and its official implementation2. RoomFormer is a DETR-based [1] model
consisting of a ResNet50 [3] image backbone, a Transformer encoder to process and aggregate image
information, and a Transformer decoder with two-level learnable embeddings/cooridnates to predict
a set of polygon vertices from the image information. The Transformer has 6 encoder layers and 6
decoder layers with an embedding dimension of 256, and deformable-attention [16] is employed for
all cross-attention layers and the self-attention layers in the Transformer encoder.

We follow the same architecture as RoomFormer, and have discussed the key modifications to turn
the model into a denoising function (§4 of the main paper) and our improvements to lift up its
overall performance (§5 of the main paper). A minor modification omitted in the main paper is that
we add an intra-element attention layer to each Transformer decoder layer to increase the model
capacity, as we found the model converges obviously slower under the denoising formulation than
the regression/detection formulation of RoomFormer. In each decoder layer, the outputs of the
intra-element attention are added to the outputs of the original global attention. The intra-element
attention increases the number of overall parameters by ~5%, and the corresponding ablation study is
in §4.1 of this appendix, showing minor but recognizable improvements.

For training the denoising network, we keep the same setups as RoomFormer except that we increase
the number of training iterations (ablation study is in §5 of the main paper). Adam optimizer is
employed with a base learning rate of 2e-4 for all parameters, and the learning rate decays by a factor
of 0.1 for the last 20% iterations.

HD map reconstruction: The denoising network for the HD map reconstruction task refers to
MapTR [7] and its official implementation3. The overall design of MapTR is very similar to
RoomFormer, where the keys are the “hierarchical” or “two-level” query embeddings for DETR-style
Transformer and a loss based on “hierarchical bipartite matching”. We use the same model config file
provided in MapTR’s official codebase and convert the model into a denoising function as described
in §4 of the main paper. Similar to what we did to RoomFormer above, we add an intra-element
attention layer to each Transformer decoder layer to facilitate convergence.

We employ an Adam optimizer with a base learning rate of 6e-4 and a weight decay factor of 1e-4.
A cosine learning rate scheduler is used. To further facilitate convergence under the denoising
formulation, we load the ResNet image backbone and Transformer encoder from the pre-trained
MapTR, and set the initial learning rate of the image backbone to be 0.1 of the base learning rate.

When using MapTR as the proposal generator to produce the initial reconstruction for PolyDiffuse,
we only consider predicted instances with a confidence score higher than 0.5 as MapTR’s positive

1https://github.com/facebookresearch/detr/blob/main/models/transformer.py
2https://github.com/ywyue/RoomFormer
3https://github.com/hustvl/MapTR
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predictions. PolyDiffuse takes and updates the positive predictions of MapTR and keeps the remaining
low-confidence predictions unchanged. Only the positive predictions are visualized for the qualitative
results of MapTR and PolyDiffuse.

2.3 Permutation loss

Directly computing the Lperm(ϕ) as defined in Eq.14 of the main paper requires finding x∗
0 =

argmaxx′
0∈P!(x0)\{x0} LTriplet(xt,x0,x

′
0) and x∗

t = argmaxx′
t∈P!(xt)\{xt} LTriplet(x0,xt,x

′
t),

where the size of P !(x0) and P !(xt) is N !. This enumeration over all N ! permutations of x0 and xt

immediately becomes computationally prohibitive when N gets large.

To reduce the computational cost and make Eq.14 practically feasible, we propose to approximate
Lperm(ϕ) with element-level triplet losses. Concretely, we first enumerate all pairs of elements xi

0

and xj
t for i, j = 1, . . . , N to compute a N×N distance matrix D. The entry D(i, j) is the minimum

distance between two elements xi
0 and xj

t , considering all possible vertex-level permutations (i.e.,
two variants for a polyline, and 2(Ni − 1) variants for a polygon with Ni vertices, similar to the
“point-level matching” in MapTR [7]). We then replace the sample-level triplet loss in Lperm(ϕ) with
N element-level triplet losses, and define the computationally feasible proxy loss L̂perm(ϕ) as:
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i
t,x

j
t ) = max (0, α+D(i, i)−D(i, j)) . (11)

α is the soft margin hyperparameter of the hinge-style triplet loss [5, 10] and we set α = 0.1. All
coordinate values are re-scaled into [−1, 1]. In this way, we reduce the computational cost from
O(N !) to O(N2M), where M = maxNi=1 Ni is the maximum number of vertices of an element of
x0. In practical implementation, the guidance training (Algorithm 1 of the main paper) uses L̂perm(ϕ)
rather than Lperm(ϕ).

2.4 Diffusion models framework

Karras et al.[6] (EDM) presents a general diffusion model framework, where DDPM [4] and SDE-
based DM formulations from Song et al.[12] can all be viewed as specializations of the proposed
framework. We borrow its official codebase4 to implement our GS-DM as it provides a general
and clean base implementation suitable for all DM-based formulations. We then describe how we
adapt the GS-DM into the EDM-based framework and list the relevant hyperparameter settings.
This subsection follows the notations in Karras et al., where y is the data sample, n is the sampled
Gaussian noise, x is the noisy sample, σ is the noise level (equivalent to the timestep), while cskip(σ),
cin(σ), cout(σ), and cnoise(σ) are the preconditioning factors [6, Section 5]. Similar to the notations of
our main paper, we let yi and xi denote the ith element of y and x, respectively. The sensor condition
is omitted for notation simplicity.

To adapt our GS-DM into the EDM framework, we first set σdata = 1.0 for EDM [6, Table 1], and
then adapt the preconditioning equation [6, Section 5, Eq.7] based on §3 of our main paper:

Dθ(x
i;σ,y) = cskip(σ) x

i+ cout(σ) F
i
θ

({
cin(σ) x

i + (1− cin(σ)) µ̄ϕ(y, σ, i)
}
; cnoise(σ)

)
, (12)

where the per-element noise injection is defined as xi = yi+nσ̄ϕ(y, σ, i), and noise n ∼ N (0, σ2I).
Dθ(x

i;σ,y) is the reconstructed yi. Fθ is the denoising network taking all elements of a noisy
sample x, and F i

θ is the output of the ith element. With the above modifications, we implement
our GS-DM with the general EDM framework. We then describe the concrete hyperparameter
settings [6, Table 1] for our two tasks. Please refer to Karras et al. for detailed explanations of each
hyperparameter.

Floorplan reconstruction: For the guidance training, we set the Pmean = 1.0 and Pstd = 4.0 to
ensure sufficient coverage of the forward process. For the denoising training, we set the Pmean = −0.5
and Pstd = 1.5. For inference (sampling), we set σmax = 5.0 and σmin = 0.01. Instead of the 2nd

4https://github.com/NVlabs/edm
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G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching G.T. CD matching +OAD matching

Figure 1: Illustration of the matching results with MapTR [7] predictions. CD matching: the
original Chamfer distance (CD) matching criterion with a threshold of 1.0m. +OAD matching:
the original CD criterion with a threshold of 1.0m, augmented with the order-aware angle distance
(OAD) criterion with a threshold of 10◦. The matched instances (i.e., true positives) are marked in
red except for the two endpoints.

order Heun ODE solver adopted by the original EDM, we simply employ the 1st order Euler solver
for sampling, which is equivalent to DDIM [11]. All other hyperparameters are kept unchanged. All
other dataset-specific settings are the same as previous works [2, 13, 15].

HD map reconstruction: The settings of Pmean and Pstd for guidance and denoising training are the
same as the floorplan reconstruction task. We set cskip(σ) = 0 and cout(σ) = 1 so that the denoising
network directly estimates the sample y, as we found this choice stabilizes the denoising training on
the HD map construction task. For inference (sampling), we set σmax = 5.0 and σmin = 0.1, and use
the Euler solver. All other hyperparameters are kept unchanged. All other dataset-specific settings
are the same as previous works [7].

3 The augmented matching criterion for HD map reconstruction

In §5.2 of the main paper, we augment the Chamfer-distance (CD) matching criterion for the mean
AP (mAP) metric used in previous works [7, 8] with an order-aware angle distance (OAD) to better
evaluate the structural regularity and directional correctness of the results. This section first discusses
the limitations of the original Chamfer-distance matching criterion and then provides complete
implementation details of the order-aware angle distance.
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3.1 The limitations of the Chamfer-distance matching criterion

Figure 1 shows examples of the Chamfer-distance (CD) matching (threshold is 1.0m). Since CD
considers each vertex separately, it mostly evaluates the global location of the instance and ignores
the structural/directional information of the prediction. In the figure, some predictions with obviously
wrong shapes are considered true positives under the CD matching criterion, while the augmented
OAD matching criterion can effectively reject these bad shapes and align better with human judgment.

3.2 Implementation details

The computation of the order-aware angle distance is based on an optimal vertex-level matching
between a predicted element (instance) and a ground truth (G.T.) element, similar to the “point-level
matching” in the loss computation of MapTR [7]. Concretely, we enumerate through all equivalent
representations of a G.T. map element and compute the average vertex-level L1 distance between
the G.T. vertices and the predicted vertices. The variant with the smallest average vertex-level L1
distance forms the optimal matching with the predicted element. There are two equivalent variants
for a polyline and 2(Ni − 1) equivalent variants for a polygon with Ni vertices. After obtaining
the optimal one-to-one vertex-level matching, we trace along the vertices of the G.T. and predicted
elements to compute their average angle distance.

With the augmented OAD matching criterion, we change the three-level thresholds of the original CD-
based AP from {0.5m, 1.0m, 1.5m} into {(0.5m, 5◦), (1.0m, 10◦), (1.5m, 15◦)}. However, com-
pared to polylines (i.e., road dividers and boundaries), we noticed that the angle direction of polygons
(pedestrian crossings) is much more challenging to recover. With an OAD threshold of 5◦, MapTR’s
average precision for the pedestrian crossing class (APp) is zero. Therefore, we loosen the OAD thresh-
olds for the pedestrian crossing class by a factor of 2 (i.e., {(0.5m, 10◦), (1.0m, 20◦), (1.5m, 30◦)})
while not changing the thresholds for the other two classes.

4 Additional experimental results

This section provides additional experimental results, including extra ablation studies and qualitative
comparisons.

Table 1: Ablation study for the intra-element attention layer on the floorplan reconstruction task.
Note that PolyDiffuse uses the RoomFormer from the first row to produce the initial reconstruction.

Evaluation Level → Room Corner Angle

Method Intra-element-attn Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

RoomFormer ✗ 96.3 96.2 96.2 89.7 86.7 88.2 85.4 82.5 83.9
RoomFormer ✓ 96.9 96.4 96.6 90.3 87.0 88.6 84.9 81.9 83.4
PolyDiffuse(Ours) ✗ 98.4 97.8 98.1 92.4 89.0 90.7 90.2 87.0 88.6
PolyDiffuse(Ours) ✓ 98.7 98.1 98.4 92.8 89.3 91.0 90.8 87.4 89.1

Table 2: Ablation study for the intra-element attention layer on the HD map reconstruction task.
Note that PolyDiffuse uses the MapTR from the first row to produce the initial reconstruction.

Matching Criterion → Chamfer distance + Ordered angle distance

Method Intra-element-attn APp APd APb mAP APp APd APb mAP

MapTR ✗ 55.8 60.9 61.1 59.3 46.1 43.4 41.9 43.8
MapTR ✓ 56.5 59.9 60.2 58.8 48.6 44.8 41.6 45.0
PolyDiffuse(Ours) ✗ 56.9 59.2 60.6 58.9 50.8 48.3 44.9 48.0
PolyDiffuse(Ours) ✓ 58.2 59.7 61.3 59.7 52.0 49.5 45.4 49.0
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4.1 Additional ablation studies

Table 1 presents the ablation study of the intra-element attention with the floorplan reconstruction
task. Comparing the first and second rows, adding intra-element attention to RoomFormer slightly
improves the room and corner results but deteriorates the angle-level performance. Table 2 provides
a similar comparison for the HD map reconstruction task. Augmenting MapTR with intra-element
attention worsens the mAP with the CD matching criterion while slightly improving the mAP with the
OAD-augmented matching criterion. These comparisons provide a potential empirical explanation
for the architecture choice of RoomFormer and MapTR – they only employ global attention layers
without extra attention layers at the element or instance level.

On the contrary, as indicated by the third and fourth rows of both Table 1 and Table 2, applying intra-
element attention consistently boosts PolyDiffuse across all metrics, although the improvements are
not huge. A potential explanation here is that the denoising task of PolyDiffuse is more challenging
than the regression/detection task of RoomFormer and MapTR, thus benefiting from extra modeling
capacities.

4.2 A toy experiment with standard DM

In Figure 2, we provide a toy experiment to support what we motivated in §1 of the main paper,
which demonstrates how standard DM easily fails even with a single data sample. Note that we have
clarified the definition of standard DM in §5.3 of the main paper. In this experiment, the data contains
a single toy sample with 6 rectangular shapes, so there are permutation-equivalent representations.
After sufficient training, we draw four samples using the image-conditioned denoising process. The
DDIM sampler is used with 10 sampling steps, so the randomness only comes from the initial noise.
As the figure shows, only the third sample gets the correct reconstruction result. With the challenges
of set ambiguity, a standard conditional DM has trouble overfitting a single data sample and easily
gets wrong outputs when the initial noise is inappropriate.

Toy input image

There are 6 elements, 
and the G.T. has 6! = 720 
permutation-equivalent 
representations

Sampling results of Standard DM (DDIM sampler, 10 steps)

Sample 1 Sample 2

Sample 3 Sample 4

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

Figure 2: A simple toy experiment of using a standard DM to fit a single data sample with 6 elements.
Four sampling results with different initial noises are shown. The DDIM sampler is used with 10
denoising steps. Only one of the four samples (i.e., Sample 3) gets the correct final result due to the
challenges induced by the set ambiguity, as explained in the main paper.

4.3 More qualitative examples

We provide additional qualitative results to compare PolyDiffuse against the state-of-the-art floorplan
and HD map reconstruction methods, respectively. Note that the state-of-the-art method (i.e., Room-
Former or MapTR) produces the initial reconstruction for PolyDiffuse. Figure 3 to Figure 5 are for
the floorplan reconstruction task, while Figure 6 to Figure 8 are for the HD map reconstruction task.

Since the likelihood-based refinement is not employed in the qualitative examples of this subsection,
PolyDiffuse cannot discover missing instances that are not covered by the proposal generator (i.e.,
RoomFormer and MapTR in the qualitative results). However, the visual comparisons clearly
demonstrate that PolyDiffuse significantly improves the structural regularity of the reconstructed
polygonal shapes.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 3: Additional qualitative results for the floorplan reconstruction task.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 4: Additional qualitative results for the floorplan reconstruction task.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 5: Additional qualitative results for the floorplan reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 6: Additional qualitative results of the HD map reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 7: Additional qualitative results of the HD map reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 8: Additional qualitative results of the HD map reconstruction task.
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