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Figure 1: Visualization of the class imbalance SSL task in 2D and 3D views. The yellow arrows
denote minority classes detected.

A.1 More Details of Datasets and Implementation2

The hyper-parameters for different datasets are shown in Table 1.3

Table 1: Hyper-parameters for different datasets.

Datasets patch size learning rate batch size feature size F

LASeg 112× 112× 80 1e-3 4 16
Synapse 64× 128× 128 3e-2 4 32
MMWHS 128× 128× 128 1e-2 4 32
M&Ms 16× 128× 128 1e-2 16 32

The details of the datasets and the pre-processing operations are as follows.4

LASeg Dataset for SSL The Atrial Segmentation Challenge (LASeg) dataset [1] provides 1005

3D gadolinium-enhanced MR imaging scans (GE-MRIs) and LA segmentation masks for training6

and validation. Following previous work [2, 3], we split the 100 scans into 80 for training and 207

for evaluation. We use the processed datasets from [2] where all the scans were cropped centering8

at the heart region for better comparison of the segmentation performance of different methods and9

normalized as zero mean and unit variance.10

Synapse Dataset for Class Imbalanced SSL The Synapse [4] dataset has 13 foreground classes,11

including spleen (Sp), right kidney (RK), left kidney (LK), gallbladder (Ga), esophagus (Es), liver(Li),12

stomach(St), aorta (Ao), inferior vena cava (IVC), portal & splenic veins (PSV), pancreas (Pa), right13

adrenal gland (RAG), left adrenal gland (LAG) with one background and 30 axial contrast-enhanced14

abdominal CT scans. We randomly split them as 20,4 and 6 scans for training, validation, and testing,15

respectively.16

MMWHS Dataset for UDA Multi-Modality Whole Heart Segmentation Challenge 2017 dataset17

(MMWHS) [5] is a cardiac segmentation dataset including two modality images (MR and CT). Each18

modality contains 20 volumes collected from different sites, and no pair relationship exists between19

modalities. Following the previous work [6], we choose four classes of cardiac structures. They are20

the ascending aorta (AA), the left atrium blood cavity (LAC), the left ventricle blood cavity (LVC),21

and the myocardium of the left ventricle (MYO). For the pre-processing, follow [6], (1) all the scans22

were cropped centering at the heart region, with four cardiac substructures selected for segmentation;23

(2) for each 3D cropped image top 2% of its intensity histogram was cut off for alleviating artifacts;24

(3) each 3D image was then normalized to zero-mean, unit standard deviation. Prior arts [7, 6, 8]25

solve this task in a 2D manner. Thus, to make a fair comparison, we keep the test set the same with26

these works.27
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M&Ms Dataset for SemiDG The multi-center, multi-vendor & multi-disease cardiac image28

segmentation (M&Ms) dataset [9] contains 320 subjects, which are scanned at six clinical centers in29

three different countries by using four different magnetic resonance scanner vendors, i.e., Siemens,30

Philips, GE, and Canon. We consider the subjects scanned from different vendors are from different31

domains (95 in domain A, 125 in domain B, 50 in domain C, and another 50 in domain D). We32

use each three of them as the source domain for training and the rest as the unseen domain for33

testing. For the pre-processing, (1) all the scans were cropped centering at the heart region, with34

four cardiac substructures selected for segmentation; (2) for each 3D cropped image top 2% of its35

intensity histogram was cut off for alleviating artifacts; (3) each 3D image was then normalized to36

zero-mean, unit standard deviation. Since the data has very few slices on the z-axis (less than 16), the37

previous work used 2D-based solutions. In this work, since we aim to design a generic framework for38

volumetric medical image segmentation, we padded the z-axis to 16 to meet the minor requirement39

for our encoder with four down-sampling layers. This case can also be considered as the extreme40

case of 3D segmentation tasks.41
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Figure 2: Visualization of the RS process of the foreground class on LASeg dataset. The probability
map pu;ψ of the difficulty-aware decoder may have low confidence in the inner region (red box),
whereas the probability map pu;ξ of the diffusion decoder may have inaccurate boundaries but with
very high confidence (red arrows).

A.2 More Analyses42

Visualization of the Re-parameterize & Smooth (RS) As shown in Figure 2, the output probability43

map pu;ξ of diffusion with DDIM D(ξ) is with very high confidence with its prediction, however, the44

results are not stable since the unlabeled data is unseen during the training process of the diffusion45

decoder, especially for some problematic classes (MYO of MMWHS, Figure 3) with ambiguous46

boundaries and noise. Thus, if we sum it with the map pu;ψ generated by the V-Net decoder D(ψ),47

the error regions (e.g., upper right corner) with high confidence will surpass some correct regions48

of pu;ψ with lower confidence and further harm the quality of the final pseudo label. Moreover, in49

some cases, the two output probability maps have complementary properties (Figure 2), indicating50

the effectiveness of ensembling them for the high-quality pseudo labels.51

Ablation on the Effectiveness of Decoupling the Labeled and Unlabeled Data Training Flows52

Based on our final framework, we add an additional training process with labeled data on the53

decoder D(xu; θ) trained with unlabeled data to verify the effectiveness of the decoupling idea.54

Compared with the final A&D framework, when adding an additional labeled data training branch,55

the performance in terms of Dice drops from 90.03% to 86.94% on the MR to CT setting of the56

MMWHS dataset. The result indicates that when the predictor is trained with labeled and unlabeled57

data, it may get over-fitted to the easier labeled data flow, which verifies the effectiveness of the key58

idea of our decoupling stage.59
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Figure 3: Visualization of the RS process of the myocardium of the left ventricle (MYO) class which
is the class with worst performance on MR to CT setting of MMWHS dataset. In this case, the
probability map pu;ξ of the diffusion decoder contains more error regions due to the ambiguous
boundaries and noise but also with very high confidence.
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