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Abstract

Volume-wise labeling in 3D medical images is a time-consuming task that re-
quires expertise. As a result, there is growing interest in using semi-supervised
learning (SSL) techniques to train models with limited labeled data. However,
the challenges and practical applications extend beyond SSL to settings such as
unsupervised domain adaptation (UDA) and semi-supervised domain generaliza-
tion (SemiDG). This work aims to develop a generic SSL framework that can
handle all three settings. We identify two main obstacles to achieving this goal in
the existing SSL framework: 1) the weakness of capturing distribution-invariant
features; and 2) the tendency for unlabeled data to be overwhelmed by labeled
data, leading to over-fitting to the labeled data during training. To address these
issues, we propose an Aggregating & Decoupling framework. The aggregat-
ing part consists of a Diffusion encoder that constructs a common knowledge set
by extracting distribution-invariant features from aggregated information from
multiple distributions/domains. The decoupling part consists of three decoders
that decouple the training process with labeled and unlabeled data, thus avoiding
over-fitting to labeled data, specific domains and classes. We evaluate our proposed
framework on four benchmark datasets for SSL, Class-imbalanced SSL, UDA
and SemiDG. The results showcase notable improvements compared to state-of-
the-art methods across all four settings, indicating the potential of our framework
to tackle more challenging SSL scenarios. Code and models are available at:
https://github.com/xmed-lab/GenericSSL.

1 Introduction

Labeling volumetric medical images requires expertise and is a time-consuming process. Therefore,
the use of semi-supervised learning (SSL) is highly desirable for training models with limited labeled
data. Various SSL techniques [1, 2, 3, 4, 5, 6, 7] have been proposed, particularly in the field
of semi-supervised volumetric medical image segmentation (SSVMIS), to leverage both labeled
and unlabeled data. However, current SSVMIS methods [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
assume that the labeled and unlabeled data are from the same domain, implying they share the same
distribution. In practice, medical images are often collected from different clinical centers using
various scanners, resulting in significant domain shifts. These shifts arise due to differences in patient
populations, scanners, and scan acquisition settings. As a consequence, these SSVMIS methods have
limitations in real-world application scenarios and frequently encounter overfitting issues, leading to
suboptimal results.

To address this limitation, researchers have increasingly focused on Unsupervised Domain Adaptation
(UDA) techniques. These techniques leverage both labeled (source domain) and unlabeled data (target
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Figure 1: From (a), (b) to (c): generalizing SSL to UDA and SemiDG settings by sampling more
diverse data to form the training and testing sets.

domain) for training, but the data originate from different domains. Furthermore, Semi-supervised
Domain Generalization (SemiDG), a more stringent scenario, has garnered significant interest.
SemiDG utilizes labeled and unlabeled data from multiple domains during training and is evaluated
on an unseen domain. Currently, methods for these three scenarios are optimized separately, and
there is no existing approach that addresses all three scenarios within a unified framework. However,
given that all training stages involve labeled and unlabeled data, it is intuitive to explore a generic
SSL-based framework that can handle all settings and eliminate the need for complex task-specific
designs. Therefore, this paper aims to develop a generic framework that can handle existing challenges
in real-world scenarios, including:

• Scenario 1: SSL (Figure 1(a)): The sample data used for both training and testing are from the
same domain, representing the standard SSL setting.

• Scenario 2: UDA (Figure 1(b)): The sampled data originate from two domains, with the labels of
the target domain being inaccessible, representing the UDA setting.

• Scenario 3: SemiDG (Figure 1(c)): The sampled data encompasses multiple domains, with only a
limited number of them being labeled, representing the SemiDG setting.

Potential similarities can be found and summarized as follows: (1) in the training stage, both labeled
data and unlabeled data are used; (2) in the scenario of the real-world application domain, whether the
distribution shifts in SSL or the domain shifts in UDA and SemiDG can all be regarded as sampling
bias, i.e., the main difference is how we sample the data in Figure 1.

Now we wonder whether the existing SSVMIS methods are powerful enough to handle this general
task. Experimental results show that the existing SSL methods do not work well on UDA and
SemiDG settings, as shown in Table 3 & 4, and vice versa (Table 2). One of the main obstacles lies
in the severe over-fitting of these models, which is caused by the dominance of labeled data during
training. Specifically, the state-of-the-art SSVMIS methods are mainly based on two frameworks: (1)
Teacher-student framework [1], where a student model is first trained with the labeled data, and a
teacher model obtained from the EMA of the student model generates the pseudo label to re-train the
student model with labeled data, see Figure 2(a); (2) CPS (Cross Pseudo Supervision) [3] framework,
which leverages the consistency between two perturbed models and the pseudo label generated by
one of the networks will be used to train the other network, see Figure 2(b). The predicting modules
in these two main frameworks are trained with both labeled and unlabeled data; however, the labeled
data, with precise ground truths as supervision, converges more rapidly compared with the unlabeled
data. Thus, the training process will easily get overwhelmed by the supervised training task, as
shown in Figure 3. Another challenge lies in the fact that existing SSVMIS methods fail to address
the issue of distribution shifts, let alone domain shifts, resulting in a limitation in capturing features
that are invariant to changes in distribution.

2



𝑥!

𝑥"

𝑦

Teacher

Student 𝑥!

𝑥"
EMA

𝑦

𝑦

𝑦";$!
𝑓(𝜃!)

𝑓(𝜃𝟐)
𝑦";$"

𝑦"

𝑥!

𝑥"

𝑦

𝑦";%

𝑦

𝑦";&

𝑦";%,&

Used for prediction

(b) CPS(a) Mean Teacher

(c) Ours

𝐸(𝜉) 𝐷(𝜉)

𝐷(𝜃)

𝐷(𝜓)

Labeled data flow Unlabeled data flow

Figure 2: Our proposed A&D framework differs in that
the labeled and unlabeled data flows are separate, and only
the unlabeled flow is used for predicting.

Figure 3: The training loss curves of UA-
MT and CLD on MMWHS dataset. The
overall losses (black) are dominated by
the supervised losses.

Based on the similarities and the main weaknesses of the mainstream SSVMIS methods, we argue
that a generic framework is possible if we can solve the over-fitting issue and design a powerful
methods to capture the distribution-invariant features. To tackle the above issues and design a generic
SSVMIS methods for the real-world application scenarios, this work proposes a novel Aggregating &
Decoupling (A&D) framework. Specifically, A&D consists of an Aggregating stage and a Decoupling
stage. In the Aggregating stage, based on the recent success of the diffusion model [19, 20], we
propose a Diff-VNet to aggregate the multi-domain features into one shared encoder to construct a
common knowledge set to improve the capacity of capturing the distribution-invariant features. To
solve the over-fitting issue, in the Decoupling stage, we decouple the decoding process to (1) a labeled
data training flow which mainly updates a Diff-VNet decoder and a difficulty-aware V-Net decoder
to generate high-quality pseudo labels; (2) an unlabeled data training flow which mainly updates
another vanilla V-Net decoder with the supervision of the pseudo labels. The denoising process
of the Diff-VNet decoder provides the domain-unbiased pseudo labels while the difficulty-aware
V-Net decoder class-unbiased pseudo labels. We also propose a re-parameterizing & smoothing
combination strategy to further improve the quality of the pseudo labels.

The key contributions of our work can be summarized as follows: (1) we unify the SSL, Class
Imbalanced SSL, UDA, and SemiDG for volumetric medical image segmentation with one generic
framework; (2) we state the over-fitting issues of the current SSL methods and propose to solve it by
an efficient data augmentation strategy and decoupling the decoders for labeled data and unlabeled,
respectively; (3) we introduce the Diffusion V-Net to learn the underlying feature distribution from
different domains to generalize the SSL methods to more realistic application scenarios; (4) The
proposed Aggregating & Decoupling framework achieves state-of-the-art on representative datasets
of SSL, class-imbalance SSL, UDA, and SemiDG tasks. Notably, our method achieves significant
improvements on the Synapse dataset (12.3 in Dice) and the MMWHS dataset in the MR to CT
setting (8.5 in Dice). Extensive ablation studies are conducted to validate the effectiveness of the
proposed methods.

2 Related Work

2.1 Semi-supervised Segmentation & the Class Imbalance Issue

Semi-supervised segmentation aims to explore tremendous unlabeled data with supervision from
limited labeled data. Recently, self-training-based methods [3, 4, 21] have become the mainstream

3



of this domain. Approaches with consistency regularization strategies [22, 3, 21] achieved good
performance by encouraging high similarity between the predictions of two perturbed networks for the
same input image, which highly improved the generalization ability. In the medical image domain, the
data limitation issue is more natural and serious. Existing approaches [23, 24, 10, 14, 13, 17, 16, 25]
to combat the limited data have achieved great success but are bottlenecked by the application
scenarios and cannot handle more challenging but practical settings such as UDA and SemiDG.

Class Imbalance Issue Class imbalance issue is a significant problem to extend the existing SSL-
based methods to more practical setting, since medical datasets have some classes with notably
higher instances in training samples than others. In natural image domain, different means are
proposed to solve this issue, including leveraging unlabeled data [26, 27, 28, 29, 30], re-balancing
data distributions in loss [31, 30, 32], debiased learning [6, 5] etc. In medical image domain, this issue
is more severe but only few work [15, 33, 25] noticed this problem. Incorporating the class-imbalance
awareness is crucial for the generalization of the SSL methods.

2.2 Unsupervised Domain Adaptation & Semi-supervised Domain Generalization

Domain adaptation (DA) aims to solve the domain shifts by jointly training the model with source
domain data and target domain data. Unsupervised Domain Adaptation (UDA) [34, 35, 36, 37] is the
most challenging and practical setting among all the DA setting, since no target labels are required.
In this context, UDA is becoming increasingly important in the medical image segmentation field,
and as a result, a myriad of UDA approaches have been developed for cross-domain medical image
segmentation by leveraging: generative adversarial-based methods [38, 39, 40, 41, 42, 43, 44, 45, 46],
semi-supervised learning techniques [47, 48, 49], and self-training as well as contrastive learning
techniques [50, 51], etc. Though with promising adaptation results, these methods highly rely on the
unlabeled target domain information, which hinders the generalizability.

Domain generalization (DG) is a more strict setting, where the difference with DA is that the model
does not use any information from the target domain. Unlike unsupervised domain adaptation,
semi-supervised domain generalization (SemiDG) does not assume access to labeled data from the
target domains. Existing SemiDG methods [52, 53] leverage various unusual strategies to solve
the domain shifts, e.g., meta-learning [52], Fourier Transformation [54], compositionality [55] etc.,
which are not general and have unsatisfactory performance on the tasks such as UDA and SSL.

Compared to these prior works, our work is the first to unify SSL, Imbalanced SSL, UDA, and
SemiDG settings. This extension not only amplifies the scope and versatility of SSL-based frame-
works in medical image segmentation but also stands in stark contrast to earlier approaches that
remained confined to singular domains such as SSL or UDA.

2.3 Diffusion Model

Denoising diffusion models [56, 19, 57, 58] have shown significant success in various generative
tasks [59, 60, 61, 62, 63], due to the powerful ability of modeling the underlying distribution of
the data, conceptually having a greater capacity to handle challenging tasks. Noticing this property,
there has been a rise in interest to incorporate them into segmentation tasks, including both natural
image segmentation [64, 65, 66], and medical image segmentation [67, 68, 20] Given the notable
achievements of diffusion models in these respective domains, leveraging such models to develop
generation-based perceptual models would prove to be a highly promising avenue to push the
boundaries of perceptual tasks to newer heights.

3 Method

3.1 Overview of the Aggregating & Decoupling Framework

In this section, we will introduce our Aggregating & Decoupling (A&D) framework, as shown in
Figure 4, which consists of an Aggregating stage and a Decoupling stage. The training pipeline is
illustrated in Algorithm 1.

The Aggregating stage aims to construct a common knowledge set across domains based on the
idea that all data share common underlying high-level knowledge, such as texture information.
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Figure 4: Overview of the proposed Aggregating & Decoupling framework. Blue and orange
regions denote the training process with labeled data and unlabeled data, respectively. We separate
the training of the decoders using labeled data and unlabeled data, and only use the decoder trained
with unlabeled data for prediction.

By aggregating information from multiple domains and jointly trained, the encoder can capture
the underlying domain-invariant features. To achieve this, we introduce a powerful yet efficient
Sampling-based Volumetric Data Augmentation (SVDA) strategy to enlarge the distribution diversity
and leverage the diffusion model to capture the invariant features of the diversified data.

In the decoding of the existing SSL methods, the decoders are simultaneously trained with both
labeled and unlabeled data, which leads to coupling and over-fitting issues and further hinder the
extending to the general SSL. The Decoupling stage aims to solve these issues by decoupling the
labeled and unlabeled data training flows. Concretely, for the labeled data flow, (1) a diffusion decoder
is mainly used to guide the diffusion encoder to learn the distribution-invariant representations through
the diffusion backward process, and thus produces the domain-unbiased pseudo labels; (2) a vanilla
V-Net decoder with the proposed difficulty-aware re-weighting strategy is mainly to avoid the model
over-fit to the easy and majority classes, and thus produces the class-unbiased pseudo labels. Then,
for the unlabeled data flow, the domain- and class-unbiased pseudo labels are ensembled through a
proposed Reparameterize & Smooth (RS) strategy to generate high quality pseudo labels. Finally, the
pseudo labels are used to supervise the training of an additional V-Net decoder for prediction only.

3.2 Aggregating Stage

Assume that the entire dataset comprises of NL labeled samples {(xli, yi)}
NL
i=1 and NU unlabeled

samples {xui }
NU
i=1, where xi ∈ RD×H×W is the input volume and yi ∈ RK×D×H×W is the ground-

truth annotation with K classes. The goal of the aggregating stage is to augment the data with SVDA
and encode the labeled (xl, y) and unlabeled data xu to high-level distribution-invariant features for
denoising labeled data flow hl;ξ difficulty-aware labeled data flow hl;ψ , and unlabeled data flow hu.

Sampling-based Volumetric Data Augmentation (SVDA) Instead of the time-consuming tra-
ditional data augmentation used in [69] which cascaded all the augmentations, SVDA build upon
an augmentation set and Naug operations are randomly sampled to apply to both the labeled and
unlabeled data. The augmentation set consists of 3D spatial-wise transforms (random crop, random
rotation, random scaling) and voxel-wise transforms (Gaussian blur, brightness, contrast, gamma).
Naug is empirically set to 3.
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Algorithm 1: Training Pipeline of A&D.

Input: Labeled samples {(xli, yi)}
NL
i=1, unlabeled samples {xui }

NU
i=1

Output: Diffusion encoder E(xl, xu; ξ) with V-Net decoder D(xu; θ) for inference

1 Initialization;
2 for batched data (xli, yi), x

u
i do

3 Add SVDA on xl and xu to obtain x̂l and x̂u;
4 Add t step noise on yi to obtain the noisy label yt by Eq. 1;
5 Train the diffusion model E(xl; ξ) and D(xl; ξ) with (x̂li, yt) by Eq. 2;
6 Train the diffusion encoder E(xl; ξ) and difficulty-aware decoder D(xl;ψ) by Eq. 6;
7 Generate domain-unbiased probability map pu;ξ with E(xl, xu; ξ)+D(xl; ξ) by DDIM [57];
8 Generate class-unbiased probability map pu;ψ with D(xl;ψ) with forward pass;
9 Ensemble the two maps and obtain the pseudo label yξ,ψ by Eq. 7;

10 Train E(xu; ξ) and V-Net decoder D(xu; θ) with unlabeled data (x̂u, yξ,ψ) and by Eq. 8;
11 end

Diffusion for Capturing Invariant Features We follow Diff-UNet [20] to use diffusion model
for perception but modify it to a V-Net version and remove the additional image encoder. Given
the labeled volume data xl ∈ RD×W×H and its label y ∈ RD×W×H , we first convert the label to
the one-hot format y0 ∈ RK×D×W×H and add successive t step noise ϵ to obtain the noisy label
yt ∈ RK×D×W×H , which is the diffusion forward process:

yt =
√
ᾱty0 +

√
1− ᾱtϵ, ϵ ∈ N (0, 1) (1)

Then, the noisy label is concatenated with the image xl as the input of the Diff-VNet. Concretely,
the high-level features are different for different data flows. For the denoising flow, i.e., D(xl; ξ)
as decoder, the diffusion encoder takes concatenation concat([yt, xl]) and time step t as input to
generate the time-step-embedded multi-scale features hl;ξi ∈ Ri×F× D

2i
×W

2i
× H

2i where i is the stage
and F is the basic feature size. hl;ξi are further used by D(xl; ξ) to predict the clear label y0. For the
difficulty-aware training flow and the unlabeled data flow, i.e., D(xl;ψ) and D(xu; θ) as decoders,
the encoder only takes xl and xu as input to obtain the multi-scale features hl;ψi , hui , respectively.
Note that hl;ψi , hui are with same shapes with hl;ξi .

3.3 Decoupling Stage

The decoupling stage consists of four steps: supervised denoising training to generate domain-
unbiased pseudo labels, supervised difficulty-aware training to generate class-unbiased pseudo labels,
pseudo labeling to ensemble the two pseudo labels and unsupervised training to get the final predictor.

Supervised Denoising Training with the Diffusion Decoder D(xl; ξ) Taking hl;ξi as inputs,
D(xl; ξ) decodes the features to predict the clear label y0 as domain-unbiased pseudo label. The
objective function is defined as follow:

Ldeno =
1

NL

NL∑
i=0

LDiceCE(pl;ξi , yi) (2)

where LDiceCE(x, y) = 1
2 [LCE(x, y) + LDice(x, y)] is the combined dice and cross entropy loss.

Supervised Difficulty-aware Training with D(xl;ψ) To alleviate the common class imbalance
issue in SSVMIS, we design a Difficulty-aware Re-weighting Strategy (DRS) to force the model
to focus on the most difficult classes (i.e. the classes learned slower and with worse performances).
The difficulty is modeled in two ways with the probability map pl;ξ produced by diffusion decoder
D(xl; ξ): learning speed and performance. We use Population Stability Index [70] to measure the
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learning speed of each class after the eth iteration:

duk,e =

e∑
e−τ

min(△, 0)ln( λk,e
λk,e−1

), dlk,e =

e∑
e−τ

max(△, 0)ln( λk,e
λk,e−1

) (3)

where λk denotes the Dice score of pl;ξ of kth class in eth iteration and △ = λk,e − λk,e−1. duk,e
and dlk,e denote classes not learned and learned after eth iteration. τ is the number accumulation
iterations and set to 50 empirically. Then, we define the difficulty of kth class after eth iteration as:

dk,e =
duk,e
dlk,e

(4)

where the classes learned faster have smaller dk,e, the corresponding weights in the loss function will
be smaller to slow down the learn speed. We also accumulate 1− λk,e for τ iterations to obtain the
reversed dice weight wλk,e

and weight dk,e. In this case, classes with lower dice scores will have
larger weights in the loss function, which forces the model to pay more attention to these classes.
The overall difficulty-aware weight of kth class is defined as:

wdiffk = wλk,e
· (dk,e)α (5)

where α is empirically set to 1
5 in the experiments to alleviate outliers. The objective function of the

supervised difficulty-aware training is defined as follow:

Ldiff =
1

NL

1

K

NL∑
i=0

K∑
k=0

wdiffk LDiceCE(pl;ψi,k , yi,k) (6)

Pseudo Labeling with Reparameterize & Smooth (RS) Strategy The domain-unbiased pu;ξ
probability map is generated by iterating the diffusion model (E(xl, xu; ξ)+D(xl; ξ)) t times with
the Denoising Diffusion Implicit Models (DDIM) method [57]. The class-unbiased pu;ψ probability
map can be obtained by D(xl;ψ) with stopped gradient forward pass. We ensemble pu;ξ and pu;ψ
to generate high-quality pseudo labels. However, when combining these two maps, we found that
the denoised probability map pu;ψ is too sparse, i.e., with very high confidence of each class. This
property is benefit for the fully-supervised tasks, but in this situation, it will suppress pu;ψ and is
not robust to noise and error. Thus, we re-parameterize pu;ψ with the Gumbel-Softmax to add some
randomness and using Gaussian blur kernel to remove the noise brought by this operation. The final
pseudo label is:

yξ,ψ = argmax(Gumbel-Sofmax(pu;ξ) + Softmax(pu;ψ)) (7)

Unsupervised Training with D(xu; θ) Finally, we can use the pseudo label yξ,ψ to train D(xu; θ)
in an unsupervised manner. The objective function of the unsupervised training is defined as:

Lu =
1

NU

NU∑
i=0

LDiceCE(pu;θi , yξ,ψ) (8)

To better leverage the domain- and class-unbiased features, we also transmit with knowledge distilla-
tion strategy: θ = wema× θ+(1−wema)× (ξ+ψ)/2, wema = 0.99. The overall training function
of the A&G framework is:

L = Ldeno + Ldiff + µLu (9)
where µ is empirically set as 10 and follow [15] to use the epoch-dependent Gaussian ramp-up
strategy to gradually enlarge the ratio of unsupervised loss. In the inference stage, only the diffusion
encoder E(xl, xu; ξ) and D(xu; θ) are used to generate the predictions.

4 Experiments

4.1 Datasets and Implementation Details

We evaluate our proposed A&D framework on four datasets for four tasks, i.e., LASeg dataset [72]
for SSL, Synapse dataset [73] for class imbalanced SSL, MMWHS dataset [74] for UDA, and M&Ms
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Table 1: Results on Synapse dataset with 20% labeled data for class imbalanced SSL task. ‘Common’
or ‘Imbalance’ indicates whether the methods consider the imbalance issue or not. Notably, our
method does not introduce many additional parameters compared with the existing SSL methods.
Results of 3-times repeated experiments are reported in ‘mean±std’ format. Best results are boldfaced.

Methods Avg. Avg. Dice of Each Class
Dice ASD Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG

G
en

er
al

V-Net (fully) 62.09±1.2 10.28±3.9 84.6 77.2 73.8 73.3 38.2 94.6 68.4 72.1 71.2 58.2 48.5 17.9 29.0

UA-MT [8] 20.26±2.2 71.67±7.4 48.2 31.7 22.2 0.0 0.0 81.2 29.1 23.3 27.5 0.0 0.0 0.0 0.0
URPC [10] 25.68±5.1 72.74±15.5 66.7 38.2 56.8 0.0 0.0 85.3 33.9 33.1 14.8 0.0 5.1 0.0 0.0

CPS [3] 33.55±3.7 41.21±9.1 62.8 55.2 45.4 35.9 0.0 91.1 31.3 41.9 49.2 8.8 14.5 0.0 0.0
SS-Net [17] 35.08±2.8 50.81±6.5 62.7 67.9 60.9 34.3 0.0 89.9 20.9 61.7 44.8 0.0 8.7 4.2 0.0

DST [6] 34.47±1.6 37.69±2.9 57.7 57.2 46.4 43.7 0.0 89.0 33.9 43.3 46.9 9.0 21.0 0.0 0.0
DePL [5] 36.27±0.9 36.02±0.8 62.8 61.0 48.2 54.8 0.0 90.2 36.0 42.5 48.2 10.7 17.0 0.0 0.0

Im
ba

la
nc

e

Adsh [71] 35.29±0.5 39.61±4.6 55.1 59.6 45.8 52.2 0.0 89.4 32.8 47.6 53.0 8.9 14.4 0.0 0.0
CReST [26] 38.33±3.4 22.85±9.0 62.1 64.7 53.8 43.8 8.1 85.9 27.2 54.4 47.7 14.4 13.0 18.7 4.6
SimiS [28] 40.07±0.6 32.98±0.5 62.3 69.4 50.7 61.4 0.0 87.0 33.0 59.0 57.2 29.2 11.8 0.0 0.0

Basak et al. [33] 33.24±0.6 43.78±2.5 57.4 53.8 48.5 46.9 0.0 87.8 28.7 42.3 45.4 6.3 15.0 0.0 0.0
CLD [15] 41.07±1.2 32.15±3.3 62.0 66.0 59.3 61.5 0.0 89.0 31.7 62.8 49.4 28.6 18.5 0.0 5.0
DHC [25] 48.61±0.9 10.71±2.6 62.8 69.5 59.2 66.0 13.2 85.2 36.9 67.9 61.5 37.0 30.9 31.4 10.6

A&D (ours) 60.88±0.7 2.52±0.4 85.2 66.9 67.0 52.7 62.9 89.6 52.1 83.0 74.9 41.8 43.4 44.8 27.2

Table 2: Results on two settings of LASeg
dataset for SSL task.

5% labeled data (labeled:unlabeled=4:76)

Method Metrics
Dice Jaccard 95HD ASD

V-Net (fully) 91.47 84.36 5.48 1.51
V-Net (5%) 52.55 39.60 47.05 9.87
UA-MT [8] 82.26 70.98 13.71 3.82
SASSNet [9] 81.60 69.63 16.16 3.58
DTC [11] 81.25 69.33 14.90 3.99
URPC [10] 82.48 71.35 14.65 3.65
MC-Net [12] 83.59 72.36 14.07 2.70
SS-Net [17]† 86.33 76.15 9.97 2.31
BCP [76]† 88.02 78.72 7.90 2.15
A&D (ours) 89.93 81.82 5.25 1.86

10% labeled data (labeled:unlabeled=8:72)

Method Metrics
Dice Jaccard 95HD ASD

V-Net (10%) 82.74 71.72 13.35 3.26
UA-MT [8] 87.79 78.39 8.68 2.12
SASSNet [9] 87.54 78.05 9.84 2.59
DTC [11] 87.51 78.17 8.23 2.36
URPC [10] 86.92 77.03 11.13 2.28
LMISA-3D [77]⋆ 86.06 76.53 12.99 2.41
vMFNet [55]⋆ 73.88 62.56 16.81 5.04
MC-Net [12] 87.62 78.25 10.03 1.82
SS-Net [17]† 88.55 79.62 7.49 1.90
BCP [76]† 89.62 81.31 6.81 1.76
A&D (ours) 90.31 82.40 5.55 1.64
† use test set for validation, we use labeled data instead.
⋆ SOTA methods tailored for UDA and SemiDG, respectively.

Table 3: Results on two settings of MMWHS
dataset for UDA task.

MR to CT

Method Dice ASD
AA LAC LVC MYO Average Average

Supervised Training 92.7 91.1 91.9 87.8 90.9 2.2
PnP-AdaNet [38] 74.0 68.9 61.9 50.8 63.9 12.8
AdaOutput [37] 65.2 76.6 54.4 43.6 59.9 9.6
CycleGAN [34] 73.8 75.7 52.3 28.7 57.6 10.8
CyCADA [36] 72.9 77.0 62.4 45.3 64.4 9.4
SIFA [41] 81.3 79.5 73.8 61.6 74.1 7.0
DSFN [42] 84.7 76.9 79.1 62.4 75.8 N/A
DSAN [43] 79.9 84.8 82.8 66.5 78.5 5.9
LMISA-3D [77] 84.5 82.8 88.6 70.1 81.5 2.3
A&D (ours) 93.2 89.5 91.7 86.2 90.1 1.7

CT to MR

Method Dice ASD
AA LAC LVC MYO Average Average

Supervised Training 82.8 80.5 92.4 78.8 83.6 2.9
PnP-AdaNet [38] 43.7 68.9 61.9 50.8 63.9 8.9
AdaOutput [37] 60.8 39.8 71.5 35.5 51.9 5.7
CycleGAN [34] 64.3 30.7 65.0 43.0 50.7 6.6
CyCADA [36] 60.5 44.0 77.6 47.9 57.5 7.9
SIFA [41] 65.3 62.3 78.9 47.3 63.4 5.7
DSAN [43] 71.3 66.2 76.2 52.1 66.5 5.4
LMISA-3D [77] 60.7 72.4 86.2 64.1 70.8 3.6
SS-Net [17]⋆ 62.1 58.4 68.9 51.4 60.2 5.9
BCP [76]⋆ 63.6 63.7 70.9 58.0 64.1 4.5
A&D (ours) 62.8 87.4 61.3 74.1 71.4 7.9
⋆ SOTA methods on semi-supervised segmentation.

dataset [75] for SemiDG. For more details, please refer to the Appendix. We implement the proposed
framework with PyTorch, using a single NVIDIA A100 GPU. The network parameters are optimized
by SGD with Nesterov and momentum of 0.9. We employ a “poly” decay strategy follow [69]. For
more implementation details, e.g., data preprocessing, learning rates, batch sizes, etc., please refer to
the Appendix. We evaluate the prediction of the network with two metrics, including Dice and the
average surface distance (ASD). For the LASeg dataset, we employ additional metrics, Jaccard and
HD95, following [8]. Final segmentation results are obtained using a sliding window strategy.

4.2 Experiment results

Our proposed A&D framework achieves state-of-the-art on all the four settings, i.e., SSL (Table 2),
imbalanced SSL (Table 1), UDA (Table 3), and SemiDG (Table 4). In particular, our method achieves

8



Table 4: Results on two settings of M&Ms dataset for SemiDG task.

Method 2% Labeled data 5% Labeled data
Domain A Domain B Domain C Domain D Average Domain A Domain B Domain C Domain D Average

nnUNet [69] 52.87 64.63 72.97 73.27 65.94 65.30 79.73 78.06 81.25 76.09
SDNet+Aug [53] 54.48 67.81 76.46 74.35 68.28 71.21 77.31 81.40 79.95 77.47
LDDG [78] 59.47 56.16 68.21 68.56 63.16 66.22 69.49 73.40 75.66 71.29
SAML [79] 56.31 56.32 75.70 69.94 64.57 67.11 76.35 77.43 78.64 74.88
BCP [76]⋆ 71.57 76.20 76.87 77.94 75.65 73.66 79.04 77.01 78.49 77.05
DGNet [52] 66.01 72.72 77.54 75.14 72.85 72.40 80.30 82.51 83.77 79.75
vMFNet [55] 73.13 77.01 81.57 82.02 78.43 77.06 82.29 84.01 85.13 82.12
A&D (ours) 79.62 82.26 80.03 83.31 81.31 81.71 85.44 82.18 83.9 83.31
⋆ SOTA method on semi-supervised segmentation.
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Figure 5: Ablation study on different architectures. (e) is the final framework

significant improvements over the existing state-of-the-art approach on the Synapse dataset with 20%
labeled data and the MMWHS dataset in the MR to CT setting, demonstrating a substantial increase
of 12.3 in Dice score for the Synapse dataset and 8.5 for the MMWHS dataset.

4.3 Analyses

Table 5: Ablation study on the MMWHS
MR to CT setting of different architec-
tures with respect to those in Figure 5.

Arch. a b c d e

Dice 76.14 50.53 82.19 45.63 90.14

Architecture Analysis As shown in Figure 5, we test dif-
ferent architectures for the framework, the corresponding
results are in Table 5. When using three separate networks
(a)(b), the performance drop significantly, the reason is
that this structure can not learn the domain-invariant fea-
tures. Using pure V-Net (c) or diffusion-based networks
(d) also leads to inferior results, especially for the pure
diffusion model, it is hard to train due to the limited labeled data, high-quality pseudo labels are hard
to obtain, which further hinder the training of the unsupervised branch.

Table 6: Ablation study of the components in our
framework on 20% labeled Synapse setting (IBSSL),
MMWHS MR to CT setting (UDA) and 2% labeled
2% labeled M&Ms setting (SemiDG).

Methods A&D w/o SVDA w/o Diffusion w/o DRS w/o RS

IBSSL 60.9 55.3 56.7 52.0 58.7
UDA 90.1 84.6 79.2 85.8 87.0

SemiDG 80.6 77.9 74.9 78.2 78.6

Ablation on the components We analyze
the effectiveness of different components in
our method. According to the results in Ta-
ble 6, on MMWHS MR to CT setting (UDA),
when removing the diffusion model, perfor-
mance decreases the most, which indicated
the importance ability of the diffusion model
for capturing the distribution-invariant fea-
tures. The result of removing the SVDA also
indicates that when the data is not diverse enough, the diffusion model cannot capture effective
underlying features. On Synapse dataset for IBSSL, the results are slightly different with those in
the UDA setting, the DRS plays more important role than the Diffusion. In 5% M&Ms dataset for
SemiDG, the results are quite aligned with results in the UDA setting.

Table 7: Ablation study of the noise step t and the number
of sampled augmentations on MMWHS CT to MR setting.

Time step 100 500 1000 Aug # 2 3 4

Dice 69.7 70.2 71.4 Dice 68.9 71.4 70.2

Hyper-parameter Selection We eval-
uate the performance of our method un-
der different time step t of the diffusion
model and the number of sampled aug-
mentations, as shown in Table 7.
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Figure 6: Visualization of the UDA task in 2D and 3D views.

Visualization We also present the visualization results to further analyze our method. As shown in
Figure 6, for the UDA task, our framework can generate smoother volumetric objects. Our framework
also has detect minority classes, as can be seen in Appendix, which indicates the effectiveness of
incorporating the class-imbalance awareness with the proposed difficulty-aware re-weighing strategy.

Limitations The diffusion process introduces additional training costs; however, the inference
efficiency remains unaffected as only the decoder trained using unlabeled data is utilized during infer-
ence. Moreover, the failure cases are mainly in the M&Ms dataset for SemiDG setting. Specifically,
our method usually fails on the first and the last slices along the depth axis. Due to the restricted
depth dimension (less than 10), the 2D slices and the corresponding masks vary significantly. In such
a case, it is hard for our volumetric framework to capture depth-wise information for the first or last
slice with only one neighboring slice as a reference, and thus leads to false positive results.

5 Conclusion

In this paper, we propose a generic framework for semi-supervised learning in volumetric medical
image segmentation, called Aggregating & Decoupling. This framework addresses four related
settings, namely SSL, class imbalanced SSL, UDA, and SemiDG. Specifically, the aggregating part
of our framework utilizes a Diffusion encoder to construct a “common knowledge set” by extracting
distribution-invariant features from aggregated information across multiple distributions/domains.
On the other hand, the decoupling part involves three decoders that facilitate the training process by
decoupling labeled and unlabeled data, thus mitigating overfitting to labeled data, specific domains,
and classes. Experimental results validate the effectiveness of our proposed method under four
settings.

The significance of this work lies in its ability to encourage semi-supervised medical image segmen-
tation methods to address more complex real-world application scenarios, rather than just developing
frameworks in ideal experimental environments. Furthermore, we have consolidated all four settings
within a single codebase, enabling the execution of any task using a single bash file by merely
adjusting the arguments. We believe that this consolidated codebase will be convenient for further
research and beneficial for the community.
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Figure 7: Visualization of the class imbalance SSL task in 2D and 3D views. The yellow arrows
denote minority classes detected.

A.1 More Details of Datasets and Implementation

The hyper-parameters for different datasets are shown in Table 8.

Table 8: Hyper-parameters for different datasets.

Datasets patch size learning rate batch size feature size F

LASeg 112× 112× 80 1e-2 4 32
Synapse 64× 128× 128 3e-2 4 32
MMWHS 128× 128× 128 5e-3 2 32
M&Ms 32× 128× 128 1e-2 4 32

The details of the datasets and the pre-processing operations are as follows.

LASeg Dataset for SSL The Atrial Segmentation Challenge (LASeg) dataset [72] provides 100
3D gadolinium-enhanced MR imaging scans (GE-MRIs) and LA segmentation masks for training
and validation. Following previous work [8, 17], we split the 100 scans into 80 for training and 20
for evaluation. We use the processed datasets from [8] where all the scans were cropped centering
at the heart region for better comparison of the segmentation performance of different methods and
normalized as zero mean and unit variance. In the training stage, SS-Net [17] and BCP [76] use test
set for validation to select the best model, which is unreasonable. We use labeled data instead and
achieve better performances.

Synapse Dataset for Class Imbalanced SSL The Synapse [73] dataset has 13 foreground classes,
including spleen (Sp), right kidney (RK), left kidney (LK), gallbladder (Ga), esophagus (Es), liver(Li),
stomach(St), aorta (Ao), inferior vena cava (IVC), portal & splenic veins (PSV), pancreas (Pa), right
adrenal gland (RAG), left adrenal gland (LAG) with one background and 30 axial contrast-enhanced
abdominal CT scans. We randomly split them as 20,4 and 6 scans for training, validation, and testing,
respectively. Following DHC [25], we run the experiments 3 times with different random seeds.

MMWHS Dataset for UDA Multi-Modality Whole Heart Segmentation Challenge 2017 dataset
(MMWHS) [74] is a cardiac segmentation dataset including two modality images (MR and CT). Each
modality contains 20 volumes collected from different sites, and no pair relationship exists between
modalities. Following the previous work [41], we choose four classes of cardiac structures. They are
the ascending aorta (AA), the left atrium blood cavity (LAC), the left ventricle blood cavity (LVC),
and the myocardium of the left ventricle (MYO). For the pre-processing, follow [41], (1) all the scans
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were cropped centering at the heart region, with four cardiac substructures selected for segmentation;
(2) for each 3D cropped image top 2% of its intensity histogram was cut off for alleviating artifacts;
(3) each 3D image was then normalized to [0, 1]. To make a fair comparison, we keep the test set the
same with prior arts [38, 41, 44].

M&Ms Dataset for SemiDG The multi-center, multi-vendor & multi-disease cardiac image
segmentation (M&Ms) dataset [75] contains 320 subjects, which are scanned at six clinical centers in
three different countries by using four different magnetic resonance scanner vendors, i.e., Siemens,
Philips, GE, and Canon. We consider the subjects scanned from different vendors are from different
domains (95 in domain A, 125 in domain B, 50 in domain C, and another 50 in domain D). We use
each three of them as the source domain for training and the rest as the unseen domain for testing.
For the pre-processing, (1) all the scans were cropped with four cardiac substructures selected for
segmentation; (2) for each 3D cropped image top and bottom 0.5% of its intensity histogram was cut
off for alleviating artifacts; (3) each 3D image was then normalized to [0, 1]. Since the data has very
few slices on the z-axis (less than 16), the previous work used 2D-based solutions. In this work, since
we aim to design a generic framework for volumetric medical image segmentation, we stacked the
z-axis to 32 to meet the minor requirement for our encoder with four down-sampling layers. This
dataset can also be considered as the extreme case of 3D segmentation tasks.

Table 9: Comparison of computational costs of state-of-the-art methods on different settings with the
performances in terms of Dice score.

Methods Param.(M) Inference time (s/iter) SSL UDA

SS-Net [17] 75.672 21.20 88.55 78.2
CLD [15] 75.554 39.58 85.37 75.4
vMFNet [55] 20.423 4.89 73.88 72.3
EPL [54] 80.939 5.52 76.49 71.9
A&D (ours) 57.894 3.69 90.31 90.1
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Figure 8: Visualization of the RS process of the foreground class on LASeg dataset. The probability
map pu;ψ of the difficulty-aware decoder may have low confidence in the inner region (red box),
whereas the probability map pu;ξ of the diffusion decoder may have inaccurate boundaries but with
very high confidence (red arrows).

A.2 More Analyses

Comparison of Computational Costs We compared the parameters and the inference time of our
method with the most SOTA methods in different settings: SS-Net [17] on LASeg dataset for SSL,
CLD [15] on Synapse dataset for IBSSL, and vMFNet [55] as well as EPL [54] on M&Ms dataset
for SemiDG, as shown in Table 9. From the table we can observe that our method has the fewest
parameters except for vMFNet. Although vMFNet has only 20 M parameters, their performances
(73.88% and 72.3%) on SSL and UDA tasks are significantly lower than ours (89.40% and 90.0%).
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Figure 9: Visualization of the RS process of the myocardium of the left ventricle (MYO) class which
is the class with worst performance on MR to CT setting of MMWHS dataset. In this case, the
probability map pu;ξ of the diffusion decoder contains more error regions due to the ambiguous
boundaries and noise but also with very high confidence.

As for the inference time, we can observe that our A&D is the fastest. This can be attributed to
our effective aggregating and decoupling strategies, enabling our method to exclusively utilize the
unlabeled branch for inference.

Visualization of the Re-parameterize & Smooth (RS) As shown in Figure 8, the output probability
map pu;ξ of diffusion with DDIM D(ξ) is with very high confidence with its prediction, however, the
results are not stable since the unlabeled data is unseen during the training process of the diffusion
decoder, especially for some problematic classes (MYO of MMWHS, Figure 9) with ambiguous
boundaries and noise. Thus, if we sum it with the map pu;ψ generated by the V-Net decoder D(ψ),
the error regions (e.g., upper right corner) with high confidence will surpass some correct regions
of pu;ψ with lower confidence and further harm the quality of the final pseudo label. Moreover, in
some cases, the two output probability maps have complementary properties (Figure 8), indicating
the effectiveness of ensembling them for the high-quality pseudo labels.

Ablation on the Effectiveness of Decoupling the Labeled and Unlabeled Data Training Flows
Based on our final framework, we add an additional training process with labeled data on the
decoder D(xu; θ) trained with unlabeled data to verify the effectiveness of the decoupling idea.
Compared with the final A&D framework, when adding an additional labeled data training branch,
the performance in terms of Dice drops from 90.03% to 86.94% on the MR to CT setting of the
MMWHS dataset. The result indicates that when the predictor is trained with labeled and unlabeled
data, it may get over-fitted to the easier labeled data flow, which verifies the effectiveness of the key
idea of our decoupling stage.
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