
A Consistency of Bounce562

In this section, we prove the consistency of the Bounce algorithm. The proof is based on Papenmeier563

et al. [48] and Eriksson and Poloczek [20].564

Theorem 1 (Bounce consistency). With the following definitions565

Def. 1. (xk)
∞
k=1 is a sequence of points of decreasing function values;566

Def. 2. x∗ ∈ argminx∈X is a minimizer of f in X ;567

and under the following assumptions:568

Ass. 1. D is finite;569

Ass. 2. f is observed without noise;570

Ass. 3. The range of f is bounded in X , i.e., ∃C ∈ R++ s.t. |f(x)| < C ∀x ∈ X ;571

Ass. 4. For at least one of the minimizers x∗
i the (partial) assignment corresponding to the continu-572

ous variables lies in a (continuous) region with positive measure;573

Ass. 5. One Bounce reached the input dimensionality D, the continuous elements of the initial574

points {xconti}
ninit
n=1 after each TR restart are chosen575

(a) uniformly at random for continuous variables; and576

(b) such that every realization of the combinatorial variables has positive probability;577

then the Bounce algorithm finds a global optimum with probability 1, as the number of samples N578

goes to∞.579

Proof. The range of f is bounded per Assumption 3, and Bounce only considers a function evalua-580

tion a ‘success’ if the improvement over the current best solution exceeds a certain constant thresh-581

old. Bounce can only have a finite number of ‘successful’ evaluations because the range of f is582

bounded per Assumption 3. For the sake of a contradiction, we suppose that Bounce does not obtain583

an optimal solution as its number of function evaluations N →∞. Thus, there must be a sequence584

of failures, such that the TRs in the current target space, i.e., the current subspace, will eventually585

reach its minimum base length. Recall that in such an event, Bounce increases the target dimension586

by splitting up the ‘bins’, thus creating a subspace of (b + 1)-times higher dimensionality. Then587

Bounce creates a new TR that again experiences a sequence of failures that lead to another split, and588

so on. This series of events repeats until the embedded subspace eventually equals the input space589

and thus has dimensionality D. See lines 12− 16 in Algorithm 1 in Sect. 3.590

Still supposing that Bounce does not find an optimum in the input space, there must be a sequence591

of failures such that the side length of the TR again falls below the set minimum base length, now592

forcing a restart of Bounce. Recall that at every restart, Bounce samples a fresh set of initial points593

uniformly at random from the input space; see line 18 in Algorithm 1. Therefore, with probability 1,594

a random sample will eventually be drawn from any subset Y ⊆ X with positive Lebesgue measure595

(ν(Y) > 0):596

1− lim
k→∞

(1− µ(Y))k = 1, (2)

where µ is the uniform probability measure of the sampling distribution that Bounce employs for597

initial data points upon restart [91].598

Let599

α = inf {t : ν [x ∈ X | f(x) < t] > 0}
denote the essential infimum of f on X with ν being the Lebesgue measure [91].600

Following Solis and Wets [91], we define the optimality region, i.e., the set of points whose function601

value is larger by at most ε than the essential infimum:602

Rε,M = {x ∈ X | f(x) < α+ ε}

with ε > 0 and M < 0. Because of Ass. 4, at least one optimal point lies in a region of positive603

measure that is continuous for the continuous variables. Therefore, we have that α = f(x∗). Note604

that this is also the case if the domain of f only consists of combinatorial variables (Ass. 5). Then,605

Rε,M = {x ∈ X | f(x) < f(x∗) + ε}.606
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Figure 7: Bounce the other algorithms on the synthetic Ackley53 benchmark function. Bounce
outperforms all other algorithms and quickly finds excellent solutions. BODi’s performance degrades
upon randomization.

Let (x⋆
k)

∞
k=1 denote the sequence of best points that Bounce discovers with x⋆

k being the best point607

up to iteration k. This sequence satisfies Def. 1 by construction. Note that x⋆
k ∈ Rε,M implies that608

x⋆
k′ ∈ Rε,M for all k′ ≥ k + 1 [91] because observations are noise-free. Then,609

P [x⋆
k ∈ Rε,M ] = 1− P [x⋆

k ∈ X \Rε,M ]

≥ 1− (1− µ(Rε,M ))
k
,

and,610

1 ≥ lim
k→∞

P [x⋆
k ∈ Rε,M ] ≥ 1− lim

k→∞
(1− µ(Rε,M ))

k︸ ︷︷ ︸
=1, Eq. (2)

= 1,

i.e., x⋆
k eventually falls into the optimality region [91]. By letting ε→ 0, x⋆

k converges to the global611

optimum with probability 1 as k →∞.612

613

B Additional experiments614

We compare Bounce to the other algorithms on three additional benchmark problems: Ackley53615

and MaxSAT60 [18]. Moreover, we run two additional studies to further investigate the performance616

of Bounce. First, we run Bounce on a set of continuous problems from Papenmeier et al. [48]617

to showcase the performance and scalability of Bounce on purely continuous problems. We then618

present a “low-sequency” version of Bounce to showcase how such a version can outperform its619

competitors on the original benchmarks by introducing a bias towards low-sequency solutions.620

B.1 Bounce and other algorithms on additional benchmarks621

B.1.1 The synthetic Ackley53 benchmark function622

Ackley53 is a 53-dimensional function with 50 binary and 3 continuous variables. Wan et al. [61]623

discretized 50 continuous variables of the orginal Ackley function, requiring these variables to be624

either zero or one. This benchmark was designed such that the optimal value of 0.0 is at the ori-625

gin x = (0, . . . , 0). Here, we perturb the optimal assignment of combinatorial variables by flipping626

each binary variable with probability 1/2. Figure 7 summarizes the performances of the algorithms.627

Bounce outperforms all other algorithms and proves to be robust to the location of the optimum628

point. Casmopolitan is a distanced runner-up. BODi initially outperforms Casmopolitan on the629

published benchmark version but falls behind later.630

B.1.2 Contamination control631

The Contamination benchmark models a supply chain with 25 stages [32]. At each stage, a binary632

decision is made whether to quarantine food that has not yet been contaminated. Each such inter-633

vention is costly, and the goal is to minimize the number of contaminated products and prevention634

cost [6, 45]. Figure 8 shows the performances of the algorithms.635

Bounce, Casmopolitan, and BODi all produce solutions of comparable objective value. Bounce636

and Casmopolitan find better solutions than BODi initially, but after about 100 function evaluations,637

the solutions obtained by the three algorithms are typically on par.638
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Figure 8: Bounce and the other algorithms on the 25-dimensional contamination problem. Bounce
performs on par with Casmopolitan and BODi on both versions of the benchmark.

Figure 9: Bounce and other algorithms on the 60-dimensional weighted maximum satisfiability
problem. Bounce is the first to find an optimal solution (left). On the published version (right),
Bounce comes in second after BODi.

B.1.3 The MaxSAT60 benchmark639

MaxSAT60 is a 60-dimensional, weighted instance of the Maximum Satisfiability (MaxSAT) prob-640

lem. MaxSAT is a notoriously hard combinatorial problem that cannot be solved in polynomial time641

(unless P = NP). The goal is to find a binary assignment to the variables that satisfies clauses of max-642

imum total weight. For every i in [d], this benchmark has one clause of the form xi with a weight of643

1 and 638 clauses of the form ¬xi ∨ ¬xj with a weight of 61. Following [18, 45, 61], we normalize644

these weights to have zero mean and unit standard deviation. This normalization causes the one-645

variable clauses to have a negative weight, i.e., the function value improves if such a clause is not646

satisfied, which is atypical behavior for a MaxSAT problem. Since the clauses with two variables are647

satisfied for xi = xj = 0 and the clauses with one variable of negative weights are never satisfied for648

xi = 0, the normalized benchmark version has a global optimum at x∗ = (0, . . . , 0) by construction.649

The problem’s difficulty is finding an assignment for variables such that all two-variable clauses are650

satisfied and as many one-variable clauses as possible is not captured by normalized weights.651

Figure 9 summarizes the performances of the algorithms. The general version that attains the global652

optimum for a randomly selected binary assignment is shown on the left. The special case where653

the global optimum is set to the all-zero assignment is shown on the right.654

We observe that Bounce requires the smallest number of samples to find an optimal assignment in655

general, followed by BODi and Casmopolitan. Only in the special case where the optimum is the656

all-zero assignment, BODi ranks first, confirming the corresponding result in Deshwal et al. [18].657
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B.2 Parallel evaluations on continuous problems658

Figure 10: Bounce on continuous problems with different batch sizes.

To showcase the performance and scalability of Bounce, we run it on a set of continuous problems659

from Papenmeier et al. [48]. The 124-dimensional Mopta08 benchmark is a constrained vehicle660

optimization problem. We adopt the soft-constrained version from Eriksson et al. [21], Eriksson and661

Jankowiak [74]. The 388-dimensional soft-constrained SVM problem [74] concerns the classification662

performance with an SVR on the slice localization dataset. The 180-dimensional LassoDNA bench-663

mark [90] is a sparse regression problem on a real-world dataset, the 1000-dimensional LassoHard664

benchmark optimizes over a synthetic dataset. The 500-dimensional Branin2 and Hartmann6 prob-665

lems are versions of the 2- and 6-dimensional benchmark problems where additional dimensions666

with no effect on the function value were added.667

We set the number of function evaluations to max(2000, 500B) for a batch size of B and configure668

Bounce such that it reaches the input dimensionality after 500 function evaluations. Figure 10 shows669

the simple regret for the synthetic Branin2 and Hartmann6 problems, and the best function value670

obtained after a given number of batch evaluations for the remaining problems: Mopta08, SVM,671

LassoDNA, and LassoHard.672

We observe that Bounce always benefits from more parallel function evaluations. The difference673

between smaller batch sizes such as the difference between B = 1 and B = 3 or B = 3 and B = 10674

is more remarkable than the difference between larger batch sizes like B = 10 and B = 20. On675

SVM and LassoDNA, parallel function evaluations prove especially effective. Here, the optimization676

performance improves drastically. We conclude that a small number of parallel function evaluations677

already helps increase the optimization performance considerably.678

On the synthetic Branin2 and Hartmann6 problems, Bounce quickly converges to the global opti-679

mum. Here, we see that a larger number of parallel function evaluations also helps in converging to680

a better solution.681

B.3 Low-sequency version of Bounce682

We show how we can bias Bounce towards low-sequency solutions. We do this by removing the683

random signs (for binary and continuous variables) and the random offsets (for categorical and684

ordinal variables) from the Bounce embedding. We conduct this study to show a) that Bounce is685

able to outperform BODi on the unmodified versions of the benchmark problems if we introduce686

a similar bias towards low-sequency solutions, and b) that the random signs empirically show to687

remove biases towards low-sequency solutions. However, we want to emphasize that the results of688

this section are not representative of the performance of Bounce on arbitrary real-world problems.689

Nevertheless, if one knows that the problem at hand has a low-sequency structure, then Bounce can690

be configured to exploit this structure and outperform BODi.691

Figure 11 shows the results of the low-sequency version of Bounce on the original benchmarks from692

Section 4. We observe that Bounce outperforms BODi and the other algorithms on the unmodified693
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Figure 11: ‘Low-sequency’ version of Bounce on the original benchmarks from Section 4: with
a bias towards low-sequency solutions, Bounce outperforms BODi on the original versions of the
benchmark problems.

Figure 12: “Low-sequency” version of Bounce on the modified benchmarks from Section 4.

versions of the benchmark problems. This shows that Bounce can outperform BODi on the unmodi-694

fied version of the benchmarks if we introduce a similar bias towards low-sequency solutions.695

Figure 12 shows the results of the low-sequency version of Bounce on the flipped benchmarks from696

Section 4. The low-sequency version of Bounce is robust towards randomization of the optimal697

point.698

C Implementation details699

We implement Bounce in Python using the BoTorch [5] and GPyTorch [77] libraries. For the GP700

model, we use as similar construction as the CoCaBo kernel [53]. We model the continuous and701

combinatorial variables with two separate kernels where we use automatic relevance determination702

(ARD) for the continuous variables and the same lengthscale for the combinatorial variables. We703

also simply use a Matérn kernel for the combinatorial variables. Following Ru et al. [53], we use a704

mixture of the sum and the product kernel:705

k(x,x′) = λkcmb(xcmb,x
′
cmb)kcnt(xcnt,x

′
cnt) + (1− λ)(kcmb(xcmb,x

′
cmb) + kcnt(xcnt,x

′
cnt)),

where xcnt and xcmb are the continuous and combinatorial variables in x, respectively, and λ is706

between 0 and 1. The kernel for the continuous variables, kcnt is an ARD-Matérn kernel with707

ν = 2.5, and the kernel for the combinatorial variables, kcmb is a Matérn kernel without ARD with708

ν = 2.5. The trade-off parameter λ is learned jointly with the other hyperparameters during the709

likelihood maximization.710
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We employ a Γ(1.5, 0.1) prior on the lengthscales of both kernels and a Γ(1.5, 0.5) prior on the711

signal variance. We further use a Γ(1.1, 0.1) prior on the noise variance.712

Motivated by Wan et al. [61] and Eriksson et al. [21], we use an initial trust region baselength of 40713

for the combinatorial variables, and 0.8 for the continuous variables. We maintain two separate TR714

shrinkage and expansion parameters (γcmb and γcnt) for the combinatorial and continuous variables,715

respectively such that each TR base length reaches its respective minimum of 1 and 2−7 after a716

given number of function evaluations. When Bounce finds a better or worse solution, we increase717

or decrease both TR base lengths.718

We use the author’s implementations for COMBO1, BODi2, and Casmopolitan3. We use the same719

settings as the authors for COMBO and BODi. For Casmopolitan, we use the same settings as the720

authors for benchmarks reported in Wan et al. [61] and set the initial trust region base length to 40721

otherwise.722

Due to its high-memory footprint, we ran BODi on NVidia A100 80GB GPUs for 300 GPU/h. We723

ran Bounce on NVidia A40 GPUs for 2,000 GPU/h. We ran the remaining methods for 20,000724

GPU/h on one core of Intel Xeon Gold 6130 CPUs with 60GB of memory.725

C.1 Optimization of the acquisition function726

We use different strategies to optimize the acquisition function depending on the type of variables727

present in a problem.728

Continuous problems. For purely continuous problems, we follow a similar approach as Eriksson729

et al. [21]. In particular, we use the lengthscales of the GP posterior to shape the TR. We use gradient730

descent to optimize the acquisition function within the TR bounds with 10 random restarts and 512731

raw samples. For a batch size of 1, we use analytical EI. For larger batch sizes, we use the BoTorch732

implementation of qEI [5, 66, 88].733

Binary problems. For all problems with a combinatorial search space, we use local search to734

optimize the acquisition function. Similar to [61], we use discrete TRs around the current best735

solution. The TR is defined as the set of all solutions that differ from the current best solution with736

a certain Hamming distance.737

When starting the optimization, we first create a set of min(5000,max(2000, 200 · di)) random738

solutions. The choice of the number of random solutions is based on Eriksson et al. [21]. For each739

candidate, we first draw Li indices uniformly at random from [di] without replacement, where Li740

is the TR length at the i-th iteration. We then sample di values ∈ {0, 1} and set the candidate at741

the sampled indices to the sampled values. All other values are set to the values of the current best742

solution. Note that this construction keeps each solution in the TR of the current best solution. We743

add all neighbors (i.e., points with a Hamming distance of 1) of the current best solution to the744

set of candidates. This is inspired by [18]. We find the 20 candidates with the highest acquisition745

function value and use local search to optimize the acquisition function within the TR bounds. At746

each local search step, we create all neighbors that do not coincide with the current best solution747

or would violate the TR bounds. We then move the current best solution to the neighbor with the748

highest acquisition function value. We repeat this process until the acquisition function value does749

not increase anymore. Finally, we return the best solution found during the local search.750

Categorical problems. We use the same approach as for purely binary problems, i.e., we first751

create a set of random solutions with the same size as for purely binary problems and start the local752

search on the 20 best initial candidates. We use one-hot encoding for categorical variables.753

Suppose the number of categorical variables of the problem is smaller or equal to the current TR754

length. In that case, we sample, for each candidate and each categorical variable, an index uniformly755

at random from [|vi|] where |vi| is the number of values of the i-th categorical variable. We then set756

the candidate at the sampled index to 1 and all other values to 0.757

If the number of categorical variables of the problem is larger than the current TR length Li, we first758

sample Li categorical variables uniformly at random from [di] without replacement. For each initial759

1https://github.com/QUVA-Lab/combo, unspecified license, last access: 2023-05-04
2https://github.com/aryandeshwal/bodi, no license provided, last access: 2023-05-04
3https://github.com/xingchenwan/casmo, MIT license, last access: 2023-05-04
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candidate and each sampled categorical variable, we sample an index uniformly at random, at which760

we set the categorical variable to 1 and all other values to 0. The values for the variables that were761

not sampled are set to the values of the current best solution.762

As for the binary case, we add all neighbors of the current best solution to the set of candidates and763

we sample the 20 candidates with the highest acquisition function value.764

We then use local search to optimize the acquisition function within the TR bounds while neighbors765

are created by changing the index of one categorical variable. Again, we repeat until convergence766

and return the best solution found during the local search.767

Ordinal problems. The construction for ordinal problems is similar to the one for categorical768

problems.769

Suppose the number of ordinal variables of the problem is smaller or equal to the current TR length.770

In that case, we sample an ordinal value uniformly at random to set the ordinal variable for each771

candidate and each ordinal variable. Otherwise, we choose as many ordinal variables as each candi-772

date’s current TR length and sample an ordinal value uniformly at random to set the ordinal variable.773

We add all neighbors of the current best solution, all solutions where the distance to the current best774

solution is 1 for one ordinal variable, to the set of candidates. We then sample the 20 candidates775

with the highest acquisition function value and use local search to optimize the acquisition function776

within the TR bounds. In the local search, increment or decrement the value of a single ordinal777

variable.778

Mixed problems. Mixed problems are effectively handled by treating every variable type sepa-779

rately. Again, we create a set of initial random solutions where the values for the different variable780

types are sampled according to the approaches described above. Note that this can lead to solutions781

lying outside of the TR bounds. We simply remove these solutions and find the 20 best candidates782

only across the solutions within the TR bounds.783

When optimizing the acquisition function, we differentiate between continuous and combinatorial784

variables. We optimize the continuous variables by gradient descent with the same settings as purely785

continuous problems. When optimizing, we fix the values for the combinatorial values.786

We use local search to optimize the acquisition function for the combinatorial variables. In this step,787

we fix the values for the continuous variables and only optimize the combinatorial variables. We788

create the neighbors by creating neighbors within Hamming distance of 1 for each combinatorial789

variable type and then combining these neighbors. Again, we repeat the local search until conver-790

gence.791

We do five interleaved steps, starting with the continuous variables and ending with the combinatorial792

variables.793

D Additional analysis of BODi and COMBO794

D.1 Analysis of BODi795

Binary problems. BODi [18] is based on the idea of using a dictionary of reference points A =796

(a1, . . . ,am) to encode a candidate point z. In particular, the i-th entry of the m-dimensional797

embedding ϕA(z) is obtained by computing the Hamming-distance between z and ai. Notably, the798

dimensionality of the embedding m is chosen to be 128 in their experiments [18], which is larger799

than the dimensionality of the benchmark functions themselves.800

The dictionary elements ai are chosen such that they represent a wide range of sequencies where the801

sequency of a binary string is defined as the number of times the string changes from 0 to 1 and vice802

versa. Deshwal et al. [18] propose two approaches to generate the dictionary elements: (i) by using803

binary wavelets, and (ii) by first drawing a Bernoulli parameter θi ∼ U(0, 1) for each i ∈ [m] and804

then drawing a binary string ai from the distribution B(θi). The latter approach is their preferred805

method.806

We will now show that the probability of a point of sequence zero (i.e., ai = 0 or ai = 1) to807

be sampled is higher than for arbitrary points. We hypothesize that BODi benefits from containing808

such a point with high probability if the optimal point is also of sequency zero (cf. Section 4.6).809

Since BODi’s performance degrades when randomizing the optimal point, we further hypothesize810
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Figure 13: Probabilities of BODi to contain a zero-sequency solution for different choices of the
dictionary size m and the function dimensionality D.

that BODi’s performance on problems with a zero- or low-sequency solution is not representative of811

problems with an arbitrary solution.812

Deshwal et al. [18] choose to have 128 dictionary elements. Given a Bernoulli parameter θi, the813

probability that the i-th dictionary point ai is a point of sequency zero is given by θDi + (1− θi)
D:814

P(“zero sequency” | θi) =
m∏
i=1

θDi + (1− θi)
D

Then, since θi follows a uniform distribution, the overall probability for a point of zero sequency is
given by815

P(“zero sequency”) = 1−
m∏
i=1

∫ 1

0

(
1− θDi − (1− θi)

D
)
p(θi)︸ ︷︷ ︸
=1

dθi

︸ ︷︷ ︸
prob. of m times not zero sequency

= 1−
m∏
i=1

(
θi −

θD+1
i

D + 1
+

(1− θi)
D+1

D + 1

)∣∣∣∣∣
θi=1

= 1−
(
1− 2

D + 1

)m

,

i.e., the probability of at least one dictionary element being of sequency zero is 1 −
(
1− 2

D+1

)m
.816

The probability of BODi’s dictionary to contain a zero-sequency point increases with the number of817

dictionary elements m and decreases with the function dimensionality D (see Figure 13).818

For instance, for the 60-dimensional MaxSAT60 benchmark, the probability that at least one dictio-819

nary element is of sequency zero is 1−
(
1− 2

60+1

)128
≈ 0.986 (see Figure 13).820

Note that there is at least one point z∗ with a probability of ≤ 1/2d to be drawn. The probability of821

the dictionary containing that z∗ is less than or equal 1−
(
1− 1

2d

)m
which is already less than 0.01822

for d = 14 and m = 128. In Section 4, we have shown that randomizing the optimal point structure823

leads to performance degradation for BODi. We hypothesize this is due to the reduced probability of824

the dictionary containing the optimal point after randomization.825

Categorical problems. We calculate the probability that BODi contains a vector in its dictionary826

where all elements are the same. For categorical problems, BODi first samples a vector θ from the827

τmax-simplex ∆τmax for each vector ai in the dictionary, with τmax being the maximum number of828

categories across all categorical variables of a problem. We assume that all variables have the same829

number of categories as is the case for the benchmarks in Deshwal et al. [18]. Let τ be the number830

of categories of the variables. For each element in ai, BODi then draws a value from the categorical831
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Figure 14: Probabilities of BODi’s dictionary to contain at least one categorical point where each
category has the same value. The probability increases with the number of dictionary elements m
but decreases with the number of categories τ and the number of problem dimensions D.

distribution with probabilities θ. While line 7 in Algorithm 5 in Deshwal et al. [18] might suggest832

that the elements in θ are shuffled for every element in ai, we observe that θ remains fixed based833

on the implementation provided by the authors4. The random resampling of elements from θ is834

probably only used for benchmarks where the number of realizations differs between categorical835

variables.836

Then, for a fixed θ, the probability that all D elements in ai for any i are equal to some fixed value837

t ∈ {1, . . . , τ} is given by θdt . The probability that, for any of the m dictionary elements, all D838

elements in ai are equal to some fixed value t ∈ {1, . . . , τ} is given by839

P(“all one specific category”) = 1−
m∏
i=1

∫
(1− θDt )p(θt)dθt. (3)

We note that θ follows a Dirichlet distribution with α = 1 [85]. Then, θt is marginally Beta(1, τ−1)-840

distributed [85]. With that, Eq. (3) becomes841

P(“all one specific category”) = 1−
m∏
i=1

Eθt∼Beta(1,τ−1)

[
1− θDt

]
= 1−

m∏
i=1

1− Eθt∼Beta(1,τ−1)

[
θDt
]

now, by using the formula E[xD] =
∏D−1

r=0
α+r

α+β+r for the D-th raw moment of a Beta(α, β) distri-
bution [85]842

= 1−

(
1−

D−1∏
r=0

1 + r

τ + r

)m

= 1−
(
1− 1

τ
· 2

τ + 1
· . . . · D

τ +D − 1

)m

= 1−
(
1− D! τ !

(τ +D − 1)!

)m

We discussed in Section 4.3 that the PestControl benchmark obtains a good solution at x = 5.843

One could assume that BODi performs well on this benchmark because its dictionary has a high844

probability to contain this point. However, we observe that the probability is effectively zero for845

τ = 5, m = 128, and D = 25 (see Figure 14), which are the choices for the PestControl846

benchmark in Deshwal et al. [18]. This raises the question of (i) whether our hypothesis is wrong,847

and (ii) what the reason for BODi’s performance degradation on the PestControl benchmark is.848

We show that BODi’s reference implementation differs from the algorithmic description in an impor-849

tant detail, causing BODi to be considerably more likely to sample category 5 on PestControl (or850

the “last” category for arbitrary benchmarks) than any other category.851

4See https://github.com/aryandeshwal/bodi/blob/aa507d34a96407b647bf808375b5e162ddf10664/
bodi/categorical_dictionary_kernel.py#L18
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Figure 15: Histograms over the number of dictionary element entries set to each category for 20,000
repetitions of the sampling of dictionary elements for the PestControl benchmark. For each of the
five categories and each value on the x-axis, the figure shows how often the number of entries in a
dictionary element equals the value on the x-axis for the given category. For example, the count for
x = 0 and category 5 is zero, indicating that all of the 20,000 dictionary points had at least one entry
‘5’. There is a considerably higher chance for a dictionary element entry to be set to category 5 than
to any of the other categories.

In Figure 15, we show five histograms over the number of dictionary elements set to each category.852

The values on the x-axis give the number of elements in a 25-dimensional categorical vector being853

set to a specific category. One would expect that the histograms have a similar shape regardless of854

the category. However, for category 5, we see that more elements are set to this category than for the855

other categories: The probability of k elements being set to category 5 is almost twice as high as the856

probability of being set to another category for k ≥ 3. In contrast, the probability that no element in857

the vector belongs to category 5 is virtually zero. This behavior is beneficial for the PestControl858

benchmark, which obtained the best value found during our experiments for x∗ = (5, 5, . . . , 5, 1)859

(see Section 4). While we see that the probability of each dictionary entry being set to category 5 is860

very low, we assume that we sample sufficiently many dictionary elements within a small Hamming861

distance to the optimizer such that BODi’s GP is able to use this information to find the optimizer.862

The reason for the oversampling of the last category lies in a rounding issue in the sampling of863

dictionary elements. In particular, for a given dictionary element ai and a corresponding vector θ864

with |θ| = τ , for each i ∈ {1, . . . , τ − 1}, Deshwal et al. [18] set ⌊Dθi⌋ elements to category i.865

The remaining D −
∑τ−1

i=1 ⌊Dθi⌋ elements are then set to category τ . This causes the last category866

to be overrepresented in the dictionary elements. For the choices of the PestControl benchmark,867

D = 25 and τ = 5, the first four categories had a probability of ≈ 0.1805 while the last one868

had a probability of ≈ 0.278 for 108 simulations5. We assume that the higher probability of the869

last category is the reason for the performance difference between the modified and the unmodified870

version of the PestControl benchmark.871

D.2 COMBO on categorical problems872

On the categorical PestControl benchmark, we could observe a similar behavior for COMBO [45]873

as for BODi.874

5The 95% confidence intervals for categories 1–5 are (0.1799, 0.1807), (0.1802, 0.1810), (0.1803, 0.1811),
(0.1801, 0.1809), (0.2775, 0.2783). Pairwise Wilcoxon signed-rank tests between categories 1–4 and category
5 gives p values of 0 (W ≈ 4.7 · 1010 each).
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Figure 16: Histograms over the number of dictionary element entries set to each category for 20,000
repetitions of the sampling of dictionary elements for the PestControl benchmark. The histogram
shows how many element entries of a 25-dimensional dictionary element are set to each of the five
categories. There is a considerably higher chance for a dictionary element entry to be set to category
1 or 5 than to one of the other categories.

In Figure 16, we show the histograms over the number of dictionary elements set to each category875

for both the modified and the unmodified version of the PestControl benchmark. We see that the876

first and the last categories on both versions of the benchmark are overrepresented. As discussed877

in Section 4, this benchmark attains its best value for x∗ = (5, 5, . . . , 5, 1). Therefore, it seems878

unexpected that COMBO sets so many entries to category 1 for the unmodified benchmark version.879

For the modified benchmark version, this is entirely unexpected as the optimizer has a random880

structure. Here, one would expect the histogram to be uniform.881

We argue that this behavior is at least partially caused by implementation error in the construction882

of the adjacency matrix and the Laplacian for categorical problems6. This error causes categorical883

variables to be modeled like ordinal variables. According to Oh et al. [45], categorical variables are884

modeled as a complete graph (see Figure 17).885

a0

a1

a2

a3

a4

Figure 17: A categorical variable with five categories is modeled is modeled as a complete graph.

However, we find the adjacency matrix for the first category of a categorical variable with five886

categories is constructed as887 
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 ,

6https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/
COMBO/experiments/test_functions/multiple_categorical.py#L137, last access: 2023-04-26

25

https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/COMBO/experiments/test_functions/multiple_categorical.py#L137
https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/COMBO/experiments/test_functions/multiple_categorical.py#L137


which is the adjacency matrix for a path graph with five vertices. We assume that the search space has888

boundaries due to treating categorical variables as ordinal variables. Due to the high dimensionality889

of the search space, COMBO visits the boundaries of the search space more often than the interior.890

E Extended related work891

Kim et al. [80] use a random projection matrix to optimize combinatorial problems in a continuous892

embedded subspace. When evaluating a point, their approach first projects the continuous candidate893

point to the high-dimensional search space and then rounds to the next feasible combinatorial solu-894

tion. Deshwal et al. [71] build up on COMBO [45] by establishing a closed-form expression for the895

diffusion kernel and proposing kernels tailored for mixed spaces.896

Monte-Carlo Tree Search. Recent approaches employed Monte-Carlo Tree Search (MCTS) to897

reduce the complexity of the problem. Wang et al. [95] use MCTS to learn a partitioning of the898

continuous search space to focus the search on promising regions in the search space. Song et al.899

[92] use a similar approach but instead of learning promising regions in the search space, they900

assume an axis-aligned active subspace and use MCTS to select important variables.901

Non-linear embeddings. Linear embeddings and random linear embeddings [37, 42, 48, 64, 70]902

only require little or no training data to construct the embedding but assume a linear subspace. Non-903

linear embeddings allow to learn more complex embeddings but often require more training data. Lu904

et al. [82] and Maus et al. [83] use variational autoencoders (VAEs) to learn a non-linear embedding905

of highly-structured input spaces. Tripp et al. [93] also use a VAE to learn a non-linear subspace of a906

combinatorial search space. By using a re-weighting scheme that puts more emphasis on promising907

points in the search space, they tailor the embedding toward optimization problems.908

Other combinatorial problems. Deshwal et al. [72] propose two algorithms for permutation909

spaces which occur in problems such as compiler optimization [29] and pose a special challenge910

due to the superexponential explosion of solutions.911
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[90] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. LassoBench: A High-983

Dimensional Hyperparameter Optimization Benchmark Suite for Lasso. In First Conference984

on Automated Machine Learning (Main Track), 2022.985

27



[91] Francisco J. Solis and Roger J-B. Wets. Minimization by Random Search Techniques. Mathe-986

matics of Operations Research, 6(1):19–30, 1981.987

[92] Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte Carlo Tree Search based Vari-988

able Selection for High Dimensional Bayesian Optimization. Advances in Neural Information989

Processing Systems (NeurIPS), 35, 2022.990

[93] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimiza-991

tion in the latent space of deep generative models via weighted retraining. Advances in Neural992

Information Processing Systems (NeurIPS), 33:11259–11272, 2020.993

[61] Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A. Osborne. Think994

Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed995

Search Spaces. In Proceedings of the 38th International Conference on Machine Learning,996

volume 139 of Proceedings of Machine Learning Research, pages 10663–10674. PMLR, 18–997

24 Jul 2021.998

[95] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning Search Space Partition for999

Black-box Optimization using Monte Carlo Tree Search. Advances in Neural Information1000

Processing Systems (NeurIPS), 33:19511–19522, 2020.1001

[64] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian1002

Optimization in a Billion Dimensions via Random Embeddings. Journal of Artificial Intelli-1003

gence Research (JAIR), 55:361–387, 2016.1004

[66] James T Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparame-1005

terization trick for acquisition functions. NeurIPS Workshop on Bayesian Optimization, 2017.1006

28


