
BayesDAG: Gradient-Based Posterior Inference for
Causal Discovery

Yashas Annadani
†∗1,3,4 Nick Pawlowski2 Joel Jennings2 Stefan Bauer3,4

Cheng Zhang2 Wenbo Gong*2

1 KTH Royal Institute of Technology, Stockholm 2 Microsoft Research
3 Helmholtz AI, Munich 4 TU Munich

Abstract

Bayesian causal discovery aims to infer the posterior distribution over causal
models from observed data, quantifying epistemic uncertainty and benefiting
downstream tasks. However, computational challenges arise due to joint inference
over combinatorial space of Directed Acyclic Graphs (DAGs) and nonlinear
functions. Despite recent progress towards efficient posterior inference over DAGs,
existing methods are either limited to variational inference on node permutation
matrices for linear causal models, leading to compromised inference accuracy, or
continuous relaxation of adjacency matrices constrained by a DAG regularizer,
which cannot ensure resulting graphs are DAGs. In this work, we introduce
a scalable Bayesian causal discovery framework based on a combination of
stochastic gradient Markov Chain Monte Carlo (SG-MCMC) and Variational
Inference (VI) that overcomes these limitations. Our approach directly samples
DAGs from the posterior without requiring any DAG regularization, simultaneously
draws function parameter samples and is applicable to both linear and nonlinear
causal models. To enable our approach, we derive a novel equivalence to the
permutation-based DAG learning, which opens up possibilities of using any
relaxed gradient estimator defined over permutations. To our knowledge, this
is the first framework applying gradient-based MCMC sampling for causal
discovery. Empirical evaluation on synthetic and real-world datasets demonstrate
our approach’s effectiveness compared to state-of-the-art baselines.

1 Introduction

The quest for discovering causal relationships in data-generating processes lies at the heart of
empirical sciences and decision-making [56, 59, 68]. Structural Causal Models (SCMs) [52] and
their associated Directed Acyclic Graphs (DAGs) provide a robust mathematical framework for
modeling such relationships. Knowledge of the underlying SCM and its corresponding DAG permits
predictions of unseen interventions and causal reasoning, thus making causal discovery – learning an
unknown SCM and its associated DAG from observed data – a subject of extensive research [54, 60].

In contrast to traditional methods that infer a single graph or its Markov equivalence class (MEC)
[14, 60], Bayesian causal discovery [21, 33, 65] aims to infer a posterior distribution over SCMs and
their DAGs from observed data. This approach encapsulates the epistemic uncertainty, degree of
confidence in every causal hypothesis, which is particularly valuable for real-world applications when
data is scarce. It is also beneficial for downstream tasks such as experimental design [2, 4, 49, 64].
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The central challenge in Bayesian causal discovery lies in inferring the posterior distribution over
the union of the exponentially growing (discrete) DAGs and (continuous) function parameters.
Prior works have used Markov Chain Monte Carlo (MCMC) to directly sample DAGs or bootstrap
traditional discovery methods [14, 49, 65], but these methods are typically limited to linear models
which admit closed-form marginalization over continuous parameters. Recent advances have begun
to utilize gradient information for more efficient inference. These approaches are either: (1) DAG
regularizer-based methods, e.g. DIBS [43], which use continuous relaxation of adjacency matrices
together with DAG regularizer [77]. But DIBS formulation fails to model edge co-dependencies and
suffer from inference quality due to its inference engine (Stein variational gradient descent) [27, 29].
Additionally, all DAG regularizer based methods cannot guarantee DAG generation; (2) permutation-
based DAG learning, which directly infers permutation matrices and guarantees to generate DAGs.
However, existing works focus on using only variational inference [11, 16], which may suffer from
inaccurate inference quality [28, 61, 66] and is sometimes restricted to only linear models [16].

In this work, we introduce BayesDAG, a gradient-based Bayesian causal discovery framework that
overcomes the above limitations. Our contributions are:

1. We prove that an augmented space of edge beliefs and node potentials (W ,p), similar to
NoCurl [72], permits equivalent Bayesian inference in DAG space without the need for any
regularizer. (Section 3.1)

2. We derive an equivalence relation from this augmented space to permutation-based DAG
learning which provides a general framework for gradient-based posterior inference. (Sec-
tion 3.2)

3. Based on this general framework, we propose a scalable Bayesian causal discovery that is
model-agnostic for linear and non-linear cases and also offers improved inference quality.
We instantiate our approach through two formulations: (1) a combination of SG-MCMC
and VI (2) SG-MCMC with a continuous relaxation. (Section 4)

4. We demonstrate the effectiveness of our approach in providing accurate Bayesian inference
quality and superior causal discovery performance with comprehensive empirical evaluations
on various datasets. We also demonstrate that our method can be easily scaled to 100
variables with nonlinear relationships. (Section 6)

2 Background

Causal Graph and Structural Causal Model Consider a data generation process with d variables
X ∈ Rd. The causal relationships among these variables is represented by a Structural Causal Model
(SCM) which consists of a set of structural equations [54] where each variable Xi is a function of its
direct causes XPai and an exogenous noise variable ϵi with distribution Pϵi :

Xi := fi(XPai , ϵi) (1)

These equations induce a causal graph G = (V ,E), comprising a node set V with |V | = d indexing
the variables X and a directed edge set E. If a directed edge eij ∈ E exists between a node pair
vi, vj ∈ V (i.e., vi → vj), we say that Xi causes Xj or Xi is the parent of Xj . We use the binary
adjacency matrix G ∈ {0, 1}d×d to represent the causal graph, where the entry Gij = 1 denotes
vi → vj . A standard assumption in causality is that the structural assignments are acyclic and the
induced causal graph is a DAG [9, 52], which we adopt in this work. We further assume that the SCM
is causally sufficient i.e. all variables are measurable and exogenous noise variables ϵi are mutually
independent. Throughout this work, we consider a special form of SCM called Gaussian additive
noise model (ANM):

Xi := fi(XPai) + ϵi where ϵi ∼ N (0, σ2
i ) (2)

If the functions are not linear or constant in any of its arguments, the Gaussian ANM is structurally
identifiable [34, 55].

Bayesian Causal Discovery Given a dataset D = {x(1), . . . ,x(N)} with i.i.d observations, un-
derlying graph G and SCM parameters Θ, they induce a unique joint distribution p(D,Θ,G) =
p(D|G,Θ)p(G,Θ) with the prior p(G,Θ) and likelihood p(D|G,Θ) [21]. Under finite data
and/or limited identifiability of SCM (e.g upto MEC), it is desirable to have accurate uncertainty

2



estimation for downstream decision making rather than inferring a single SCM and its graph (for e.g.
with a maximum likelihood estimate). Bayesian causal discovery therefore aims to infer the posterior
p(G,Θ|D) = p(D,Θ,G)/p(D). However, this posterior is intractable due to the super-exponential
growth of the possible DAGs G [58] and continuously valued model parameters Θ in nonlinear
functions. VI [75] or SG-MCMC [24, 45] are two types of methods developed to tackle general
Bayesian inference problems, but adaptations are required for Bayesian causal discovery.

NoCurl Characterization Inferring causal graphs is challenging due to the DAG constraint.
Previous works [22, 25, 40, 43, 71] directly infer adjacency matrix with the DAG regularizer [77].
However, it requires an annealing schedule, resulting in slow convergence, and no guarantees on
generating DAGs. Recently, [72] introduced NoCurl, a novel characterization of the weighted DAG
space. They define a potential pi ∈ R for each node i, grouped as potential vector p ∈ Rd . Further,
a gradient operator on p mapping it to a skew-symmetric matrix is introduced:

(gradp)(i, j) = pi − pj (3)

Based on the above operation, a mapping that directly maps from the augmented space (W ,p) to the
DAG space γ(·, ·) : Rd×d × Rd → Rd×d was proposed:

γ(W ,p) = W ⊙ ReLU(gradp) (4)

where ReLU(·) is the ReLU activation function and W is a skew-symmetric continuously weighted
matrix. This formulation is complete (Theorem 2.1 in [72]), as any continuously weighted DAG can
be represented by a (W ,p) pair and vice versa. NoCurl translates the learning of a single weighted
DAG to a corresponding (W ,p) pair. However, direct gradient-based optimization is challenging
due to a highly non-convex loss landscape, which leads to the reported failure in [72].

Although NoCurl appears suitable for our purpose, the failure in directly learning suggests non-trivial
optimizations. We hypothesize that this arises from the continuously weighted matrix W . In the
following, we introduce our proposed parametrization inspired by NoCurl to characterize the binary
DAG adjacency matrix.

3 Sampling the DAGs

In this section, we focus on the Bayesian inference over binary DAGs through a novel mapping,
τ(W ,p), a modification of NoCurl. We establish the validity of performing Bayesian inference
within (W ,p) space utilizing τ (Section 3.1). However, τ yields uninformative gradient during back-
propagation, a challenge we overcome by deriving an equivalent formulation based on permutation-
based DAG learning, thereby enabling the use of relaxed gradient estimators (Section 3.2).

3.1 Bayesian Inference in W,p Space

The NoCurl formulation (Equation (4)) focuses on learning a single weighted DAG, which is not
directly useful for our purpose. We need to address two key questions: (1) considering only binary
adjacency matrices without weights; (2) ensuring Bayesian inference in (W ,p) is valid.

We note that the proposed transformation in NoCurl γ (Equation (4) can be hard to optimize for
the following reasons: (i) ReLU(gradp) gives a fully connected DAG. The main purpose of W
matrix therefore is to disable the edges. Continuous W requires thresholding to properly disable
the edges, since it is hard for a continuous matrix to learn exactly 0 during the optimization; (ii)
ReLU(gradp) and W are both continuous valued matrices. Thus, learning of the edge weights
and DAG structure are not explicitly separated, resulting in complicated non-convex optimizations2.
Parameterizing the search space in terms of binary adjacency matrices significantly simplifies the
optimization complexity as the aforementioned issues are circumvented. Therefore, we introduce a
modification τ : {0, 1}d×d × Rd → {0, 1}d×d:

τ(W ,p) = W ⊙ Step(gradp) (5)

where we abuse the term W for binary matrices, and replace ReLU(·) with Step(·). W acts as mask
to disable the edge existence. Thus, due to the Step, τ can only output a binary adjacency matrix.

2See discussion below Eq. 3 in [72] for more details.
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Next, we show that performing Bayesian inference in such augmented (W ,p) space is valid, i.e.,
using the posterior p(W ,p|D) to replace p(G|D). This differs from NoCurl, which focuses on a
single graph rather than the validity for Bayesian inference, requiring a new theory for soundness.

Theorem 3.1 (Equivalence of inference in (W ,p) and binary DAG space). Assume graph G is a
binary adjacency matrix representing a DAG and node potential p does not contain the same values,
i.e. pi ̸= pj ∀i, j. Then, with the induced joint observational distribution p(D,G), dataset D, and a
corresponding prior p(G), we have

p(G|D) =

∫
pτ (p,W |D)1(G = τ(W ,p))dW dp (6)

if p(G) =
∫
pτ (p,W )1(G = τ(W ,p))dW dp, where pτ (W ,p) is the prior, 1(·) is the indicator

function, and pτ (p,W |D) is the posterior distribution over p,W .

Refer to Appendix B.1 for detailed proof.

This theorem guarantees that instead of performing inference directly in the constrained space
(i.e. DAG space), we can apply Bayesian inference in a less complex (W ,p) space where W ∈
{0, 1}d×d and p ∈ Rd without explicit constraints.

For inference of p, we adopt a sampling-based approach, which is asymptotically accurate [45].
In particular, we consider SG-MCMC (refer to Section 4), which avoids the expensive Metropolis-
Hastings acceptance step and scales to large datasets. We emphasize that any other suitable sampling
algorithms can be directly plugged in, thanks to the generality of the framework.

However, the mapping τ does not provide meaningful gradient information for p due to the piecewise
constant Step(·) function, which is required by SG-MCMC.

3.2 Equivalent Formulation

In this section, we address the above issue by deriving an equivalence to a permutation learning prob-
lem. This alternative formulation enables various techniques that can approximate the gradient of p.

Intuition The node potential p implicitly defines a topological ordering through the mapping
Step(grad(·)). In particular, grad(·) outputs a skew-symmetric adjacency matrix, where each entry
specifies the potential difference between nodes. Step(grad(·)) zeros out the negative potential
differences (i.e. pi ≤ pj), and only permits the edge direction from higher potential to the lower one
(i.e. pi > pj). This implicitly defines a sorting operation based on the descending node potentials,
which can be cast as a particular argmax problem [8, 37, 47, 50, 74] involving a permutation matrix.

Alternative formulation We define L ∈ {0, 1}d×d as a matrix with lower triangular part to be 1,
and vector o = [1, . . . , d]. We propose the following formulation:

G = W ⊙
[
σ(p)Lσ(p)T

]
where σ(p) = argmax

σ′∈Σd

pT (σ′o) (7)

Here, Σd represents the space of all d dimensional permutation matrices. The following theorem
states the equivalence of this formulation to Equation (5).

Theorem 3.2 (Equivalence to NoCurl formulation). Assuming the conditions in Theorem 3.1 are
satisfied. Then, for a given (W ,p), we have

G = W ⊙ Step(gradp) = W ⊙
[
σ(p)Lσ(p)T

]
where G is a DAG and σ(p) is defined in Equation (7).

Refer to Appendix B.2 for details.

This theorem translates our proposed operator Step(grad(p)) into finding a corresponding permuta-
tion matrix σ(p). Although this does not directly solve the uninformative gradient, it opens the door
for approximating this gradient with the tools from the differentiable permutation literature [8, 47, 50].
For simplicity, we adopt the Sinkhorn approach [47], but we emphasize that this equivalence is general
enough that any past or future approximation methods can be easily applied.
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Sinkhorn operator The Sinkhorn operator S(M) on a matrix M [1] is defined as a sequence of
row and column normalizations, each is called Sinkhorn iteration.

[47] showed that the non-differentiable argmax problem

σ = argmax
σ′∈Σd

⟨σ′,M⟩ (8)

can be relaxed through an entropy regularizer with its solution being expressed by S(·). In particular,
they showed that S(M/t) = argmaxσ′∈Bd

⟨σ′,M⟩+ th(σ′), where h(·) is the entropy function.
This regularized solution converges to the solution of Equation (8) when t→ 0, i.e. limt→0 S(M/t).
Since the Sinkhorn operator is differentiable, S(M/t) can be viewed as a differentiable approxima-
tion to Equation (8), which can be used to obtain the solution of Equation (7). Specifically, we have

argmax
σ′∈Σd

pT (σ′o) = argmax
σ′∈Σd

⟨σ′,poT ⟩ = lim
t→0
S(po

T

t
) (9)

In practice, we approximate it wth t > 0, resulting in a doubly stochastic matrix. To get the binary
permutation matrix, we apply the Hungarian algorithm [48]. During the backward pass, we use a
straight-through estimator [7] for p.

Some of the previous works [11, 16] have leveraged the Sinkhorn operator to model variational
distributions over permutation matrices. However, they start with a full rank M , which has been
reported to require over 1000 Sinkho rn iterations to converge [16]. However, our formulation, based
on explicit node potential poT , generates a rank-1 matrix, requiring much fewer Sinkhorn steps
(around 300) in practice, saving two-thirds of the computational cost.

4 Bayesian Causal Discovery via Sampling

In this section, we delve into two specific methodologies that are derived from the proposed framework.
The first one, which will be our main focus, combines SG-MCMC and VI in a Gibbs sampling manner.
The second one, which is based entirely on SG-MCMC with continuous relaxation, is also derived,
but we include its details in Appendix A due to its inferior empirical performance.

4.1 Model Formulation

We build upon the model formulation of [22], which combines the additive noise model with neural
networks to describe the functional relationship. Specifically, Xi := fi(XPai) + ϵi, where fi adheres
to the adjacency relation specified by G, i.e. ∂fi(x)/∂xj = 0 if no edge exists between nodes i and
j. We define fi as

fi(x) = ζi

 d∑
j=1

Gjilj(xj)

 , (10)

where ζi and li are neural networks with parameters Θ, and G serves as a mask disabling non-
parent values. To reduce the number of neural networks, we adopt a weight-sharing mechanism:
ζi(·) = ζ(ui, ·) and li(·) = l(ui, ·), with trainable node embeddings ui.

Likelihood of SCM The likelihood can be evaluated through the noise ϵ = x − f(x;Θ). [22]
showed that if G is a DAG, then the mapping from ϵ to x is invertible with a Jacobian determinant of
1. Thus, the observational data likelihood is:

p(x|G) = pϵ(x− f(x;Θ)) =

d∏
i=1

pϵi(xi − fi(xPaiG
)) (11)

Prior design We implicitly define the prior p(G) via p(p,W ). We propose the following for the
joint prior:

p(W ,p,Θ) ∝ N (Θ;0, I)N (p;0, αI)N (W ;0, I) exp(−λs∥τ(W ,p)∥2F )
where α controls the initialization scale of p and λs controls the sparseness of G.
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4.2 Bayesian Inference of W,p,Θ

The main challenge lies in the binary nature of W ∈ {0, 1}d×d, which requires a discrete sampler.
Although recent progress has been made [30, 62, 73, 76], these methods either involve expensive
Metropolis-Hasting (MH) steps or require strong assumptions on the target posterior when handling
batched gradients. To address this, we propose a combination of SG-MCMC for p,Θ and VI for
W . It should be noted that our framework can incorporate any suitable discrete sampler if needed.

Wp

Θ

x(i)

i = 1, . . . , N

Figure 1: Graphical
model of the inference
problem.

We employ a Gibbs sampling procedure [10], which iteratively applies
(1) sampling p,Θ ∼ p(p,Θ|D,W ) with SG-MCMC; (2) updating the
variational posterior qϕ(W |p,D) ≈ p(W |p,Θ,D).

We define the posterior p(p,Θ|D,W ) ∝ exp(−U(p,W ,Θ)), where
U(p,W ,Θ) = − log p(p,D,W ,Θ). SG-MCMC in continuous time
defines a specific form of Itô diffusion that maintains the target distribu-
tion invariant [45] without the expensive computation of the MH step. We
adopt the Euler-Maruyama discretization for simplicity. Other advanced
discretization can be easily incorporated [12, 57].

Preconditioning techniques have been shown to accelerate SG-MCMC
convergence [13, 28, 41, 69, 70]. We modify the sampler based on [28],
which is inspired by Adam [35]. Detailed update equations can be found
in Appendix C.

The following proposition specifies the gradients required by SG-MCMC:∇p,ΘU(p,W ,Θ).
Proposition 4.1. Assume the model is defined as above, then we have the following:

∇pU = −∇p log p(p)−∇p log p(D|Θ, τ(W ,p)) (12)

and
∇ΘU = −∇Θ log p(Θ)−∇Θ log p(D|Θ, τ(p,W )) (13)

Refer to Appendix B.5 for details.

Variational inference for W We use the variational posterior qϕ(W |p) to approximate the true
posterior p(W |p,Θ,D). Specifically, we select an independent Bernoulli distribution with logits
defined by the output of a neural network µϕ(p):

qϕ(W |p) =
∏
ij

Ber(µϕ(p)ij) (14)

To train qϕ, we derive the corresponding evidence lower bound (ELBO):

ELBO(ϕ) = Eqϕ(W |p) [log p(D,p,Θ|W )]−DKL [qϕ(W |p)∥p(W )]] . (15)

where DKL is the Kullback-Leibler divergence. The derivation is in Appendix B.6. Algorithm 1
summarizes this inference procedure.

SG-MCMC with continuous relaxation Furthermore, we explore an alternative formulation that
circumvents the need for variational inference. Instead, we employ SG-MCMC to sample W̃ , a
continuous relaxation of W , facilitating a fully sampling-based approach. For a detailed formulation,
please refer to Appendix A. We report its performance in Appendix E.3, which surprisingly is inferior
to SG-MCMC+VI. We hypothesize that coupling W ,p through µϕ is important since changes in
p results in changes of the permutation matrix σ(p), which should also influence W accordingly
during posterior inference. However, through sampling W̃ with few SG-MCMC steps, this change
cannot be immediately reflected, resulting in inferior performance. Thus, we focus only on the
performance of SG-MCMC+VI for our experiments.

Computational complexity Our proposed SG-MCMC+VI offers a notable improvement in compu-
tational cost compared to existing approaches, such as DIBS [43]. The computational complexity of
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Algorithm 1 BayesDAG SG-MCMC+VI Inference

Input: dataset D; prior p(p,W ), p(Θ); SG-MCMC sampler Sampler; sampler hyperparameters
Ψ; network µϕ(·); training iteration T .
Output: samples {Θ,p} and variational posterior qϕ
Initialize Θ(0),p(0), ϕ
for t = 1 . . . , T do

Sample W (t−1) ∼ qϕ(W |p(t−1))

Evaluate ∇p,ΘU (Equations (12) and (13)) with Θ(t−1),p(t−1),W (t−1)

Θ(t),p(t) = Sampler(∇p,ΘU ; Ψ)
if storing condition met then
{p,Θ} ← p(t),Θ(t)

end if
Maximize ELBO (Equation (15)) w.r.t. ϕ with p(t),Θ(t)

end for

our method is O(BNp +Npd
3), where B represents the batch size and Np is the number of parallel

SG-MCMC chains. This former term stems from the forward and backward passes, and the latter
comes from the Hungarian algorithm, which can be parallelized to further reduce computational cost.
In comparison, DIBS has a complexity of O(N2

pN +Npd
3) with N ≫ B being the full dataset size.

This is due to the kernel computation involving the entire dataset and the evaluation of the matrix
exponential in the DAG regularizer [77]. As a result, our approach provides linear scalability w.r.t.
Np with substantially smaller batch size B. Conversely, DIBS exhibits quadratic scaling in terms of
Np and lacks support for mini-batch gradients.

5 Related Work

Bayesian causal discovery literature has primarily focused on inference in linear models with closed-
form posteriors or marginalized parameters. Early works considered sampling directed acyclic
graphs (DAGs) for discrete [15, 46, 33] and Gaussian random variables [21, 65] using Markov
chain Monte Carlo (MCMC) in the DAG space. However, these approaches exhibit slow mixing
and convergence [18, 32], often requiring restrictions on number of parents [38]. Alternative exact
dynamic programming methods are limited to low-dimensional settings [36].

Recent advances in variational inference [75] have facilitated graph inference in DAG space, with
gradient-based methods employing the NOTEARS DAG penalty [77].[3] samples DAGs from autore-
gressive adjacency matrix distributions, while [43] utilizes Stein variational approach [42] for DAGs
and causal model parameters. [16] proposed a variational inference framework on node orderings
using the gumbel-sinkhorn gradient estimator [47]. [17, 51] employ the GFlowNet framework [6] for
inferring the DAG posterior. Most methods, except[43] are restricted to linear models, while [43] has
high computational costs and lacks DAG generation guarantees compared to our method.

In contrast, quasi-Bayesian methods, such as DAG bootstrap [20], demonstrate competitive per-
formance. DAG bootstrap resamples data and estimates a single DAG using PC [60], GES [14],
or similar algorithms, weighting the obtained DAGs by their unnormalized posterior probabilities.
Recent neural network-based works employ variational inference to learn DAG distributions and
point estimates for nonlinear model parameters [11, 22].

6 Experiments

In this section, we aim to study empirically the following aspects: (1) posterior inference quality of
BayesDAG as compared to the true posterior when the causal model is identifiable only upto Markov
Equivalence Class (MEC); (2) posterior inference quality of BayesDAG in high dimensional nonlinear
causal models (3) ablation studies of BayesDAG and (4) performance in semi-synthetic and real
world applications. The experiment details are included in Appendix D.

Baselines. We mainly compare BayesDAG with the following baselines: Bootstrap GES
(BGES) [14, 20], BCD Nets [16], Differentiable DAG Sampling (DDS [11]) and DIBS [43].
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Figure 2: Posterior inference on linear synthetic
datasets with d = 5. Metrics are computed against
the true posterior. ↓ denotes lower is better.

6.1 Evaluation on Synthetic Data

Synthetic data. We evaluate our method on
synthetic data, where ground truth graphs are
known. Following previous work, we generate
data by randomly sampling DAGs from Erdos-
Rènyi (ER) [19] or Scale-Free (SF) [5] graphs
with per node degree 2 and drawing at random
ground truth parameters for linear or nonlinear
models. For d = 5, we use N = 500 training,
while for higher dimensions, we use N = 5000.
We assess performance on 30 random datasets
for each setting.

Metrics For d = 5 linear models, we compare
the approximate and true posterior over DAGs
using Maximum Mean Discrepancy (MMD)
and also evaluate the expected CPDAG Struc-
tural Hamming Distance (SHD). For higher-
dimensional nonlinear models with intractable
posterior, we compute the expected SHD (E-
SHD), expected orientation F1 score (Edge F1) and negative log-likelihood of the held-out data
(NLL). Our synthetic data generation and evaluation protocol follows prior work [3, 22, 43]. All
the experimental details, including how we use cross-validation to select hyperparameters is in
Appendix D.

6.1.1 Comparison with True Posterior

Capturing equivalence classes and quantifying epistemic uncertainty are crucial in Bayesian causal
discovery. We benchmark our method against the true posterior using a 5-variable linear SCM with
unequal noise variance (identifiable upto MEC [53]). The true posterior over graphs p(G | D)
can be computed using the BGe score [23, 39]. Results in Figure 2 show that our method out-
performs DIBS and DDS in both ER and SF settings. Compared to BCD, we perform bet-
ter in terms of MMD in ER but worse in SF. We find that BGES performs very well in low-
dimensional linear settings, but suffers significantly in more realistic nonlinear settings (see below).

Table 1: E-SHD (with 95% CI) for ER graphs in
higher dimensional nonlinear causal models. DIBS
becomes computationally prohibitive for d > 50.

d = 70 d = 100
BGES 355.77 ± 18.02 563.02 ± 27.21
BCD 217.05 ± 9.58 362.66 ± 29.18
DIBS N/A N/A
BaDAG 143.70 ± 11.61 295.92 ± 24.67

6.1.2 Evaluation in Higher Dimensions

We evaluate our method on high dimensional
scenarios with nonlinear relations. Our ap-
proach is the first to attempt full posterior in-
ference in nonlinear models using permutation-
based methods. Results for d = 30 variables
in Figure 3 demonstrate that BayesDAG signifi-
cantly outperforms other permutation-based ap-
proaches and DIBS in most of the metrics. For
d = 50, BayesDAG performs comparably to
DIBS in ER but a little worse in SF. However, our method achieves better NLL on held-out data
compared to most baselines including DIBS for d = 30, 50, ER and SF settings. Only DDS gives
better NLL for d = 30 ER setting, but this doesn’t translate well to other metrics and settings. We
additionally evaluate on d ∈ {70, 100} variables (Table 1). We find that our method consistently out-
performs the baselines with d = 70 and in terms of E-SHD with d = 100. Full results are presented
in Appendix E.2. Competitive performance for d > 50 in nonlinear settings further demonstrates
the applicability and computational efficiency of the proposed approach. In contrast, the only fully
Bayesian nonlinear method, DIBS, is not computationally efficient to run for d > 50.
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ős
-R

én
yi

E-SHD (↓)

0.2

0.4

0.6
Edge F1 (↑)

40

50

60
NLL (↓)

100

200

300
E-SHD (↓)

0.00

0.25

0.50

0.75

Edge F1 (↑)

40

60

80

100
NLL (↓)

BGES
BCD

DIB
S

BaD
AG

(d = 30)

50

100

Sc
al

e-
Fr

ee

BGES
DDS

BCD
DIB

S

BaD
AG

(d = 30)

0.2

0.4

0.6

0.8

BGES
DDS

BCD
DIB

S

BaD
AG

(d = 30)

40

50

BGES
BCD

DIB
S

BaD
AG

(d = 50)

50

100

150

200

BGES
DDS

BCD
DIB

S

BaD
AG

(d = 50)

0.0

0.2

0.4

0.6

BGES
DDS

BCD
DIB

S

BaD
AG

(d = 50)

60

70

80

90

Figure 3: Posterior inference of both graph and functional parameters on synthetic datasets of
nonlinear causal models with d = 30 and d = 50 variables. BayesDAG gives best results across most
metrics and outperforms other permutation based approaches (BCD and DDS). We found DDS to
perform significantly worse in terms of E-SHD and thus has been omitted for clarity. ↓ denotes lower
is better and ↑ denotes higher is better.

6.2 Ablation Studies

We conduct ablation studies on our method using the nonlinear ER d = 30 dataset.

Initialized p scale Figure 4a investigates the influence of the initialized scale of p. We found that
the performance is the best with α = 0.01 or 10−5, and deteriorates with increasing scales. This
is because with larger initialization scale, the absolute value of the p is large. Longer SG-MCMC
updates are needed to reverse the node potential order, which hinders the exploration of possible
permutations, resulting in the convergence to poor local optima.

Number of SG-MCMC chains We examine the impact of the number of parallel SG-MCMC
chains in Figure 4b. We observe that it does not have a significant impact on the performance,
especially with respect to the E-SHD and Edge F1 metrics.

Injected noise level for SG-MCMC In Figures 4c and 4d, we study the performance differences
arising from various injected noise levels for p and Θ in the SG-MCMC algorithm (i.e. s of the
SG-MCMC formulation in Appendix C). Interestingly, the noise level of p does not impact the
performance as much as the level of Θ. Injecting noise helps improve the performance, but a smaller
noise level should be chosen for Θ to avoid divergence from optima.

6.3 Application 1: Evaluation on Semi-Synthetic Data

We evaluate our method on the SynTReN simulator [67]. This simulator creates synthetic tran-
scriptional regulatory networks and produces simulated gene expression data that approximates real
experimental data. We use five different simulated datasets provided by [40] with N = 500 samples
each. Table 2 presents the results of all the methods. We find that our method recovers the true
network much better in terms of E-SHD as well as Edge F1 compared to baselines.

6.4 Application 2: Evaluation on Real Data

We also evaluate on a real dataset which measures the expression level of different proteins and
phospholipids in human cells (called the Sachs Protein Cells Dataset) [59]. The data corresponds to a
network of protein-protein interactions of 11 different proteins with 17 edges in total among them.
There are 853 observational samples in total, from which we bootstrap 800 samples of 5 different
datasets. It is to be noted that this data does not necessarily adhere to the additive noise and DAG
assumptions, thereby having significant model misspecification. Results in Table 2 demonstrate that
our method performs well as compared to the baselines even with model misspecification, proving
the suitability of the proposed framework for real-world settings.
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Table 2: Results (with 95% confidence intervals) on Syntren (semi-synthetic) and Sachs Protein Cells
(real-world) datasets. For Syntren, results are averaged over 5 different datasets. For Sachs, results
are averaged over 5 different restarts. ↓ denotes lower is better and ↑ denotes higher is better.

Syntren (d = 20) Sachs Protein Cells (d = 11)
E-SHD (↓) Edge F1 (↑) E-SHD (↓) Edge F1 (↑)

BGES 66.18 ± 9.47 0.21 ± 0.05 16.61 ± 0.44 0.22 ± 0.02
DDS 134.37 ± 4.58 0.13 ± 0.02 34.90 ± 0.73 0.21 ± 0.02
BCD 38.38 ± 7.12 0.15 ± 0.07 17.05 ± 1.93 0.20 ± 0.08
DIBS 46.43 ± 4.12 0.16 ± 0.02 22.3 ± 0.31 0.20 ± 0.01
BaDAG 34.21 ± 2.82 0.20 ± 0.02 18.92 ± 1.0 0.26 ± 0.04
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Figure 4: Ablation study of posterior inference quality of BayesDAG on d = 30 ER synthetic dataset.

7 Discussion

In this work, we propose BayesDAG, a novel, scalable Bayesian causal discovery framework that
employs SG-MCMC (and VI) to infer causal models. We establish the validity of performing Bayesian
inference in the augmented (W ,p) space and demonstrate its connection to permutation-based DAG
learning. Furthermore, we provide two instantiations of the proposed framework that offers direct
DAG sampling and model-agnosticism to linear and nonlinear relations. We demonstrate superior
inference accuracy and scalability on various datasets. Future work can address some limitations:
(1) designing better variational networks µϕ to capture the complex distributions of W compared to
the simple independent Bernoulli distribution; (2) improving the performance of SG-MCMC with
continuous relaxation (Appendix A), which currently does not align with its theoretical advantages
compared to the SG-MCMC+VI counterpart.
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Appendix – BayesDAG: Gradient-Based Posterior Inference for Causal
Discovery

A Joint Inference with SG-MCMC

W̃ W

p

Θ

x(i)

i = 1, . . . , N

Figure 5: Graphical model with latent
variable W̃ .

In this section, we propose an alternative formulation that
enables a joint inference framework for p,W ,Θ using
SG-MCMC, thereby avoiding the need for variational in-
ference for W .

We adopt a continuous relaxation of W , similar to [43],
by introducing a latent variable W̃ . The graphical model
is illustrated in Figure 5. We can define

p(W |W̃ ) =
∏
i,j

p(Wij |W̃ij) (16)

with p(Wij = 1|W̃ij) = σ(W̃ij) where σ(·) is the sig-
moid function. In other words, W̃ ij defines the existence
logits of Wij.

With the introduction of W̃ , the original posterior expectations of p(p,W ,Θ|D), e.g. during
evaluation, can be translated using the following proposition.
Proposition A.1 (Equivalence of posterior expectation). Under the generative model Figure 5, we
have

Ep(p,W ,Θ|D) [f(G = τ(p,W ),Θ)] = Ep(p,W̃ ,Θ)

[
Ep(W |W̃ ) [f(G,Θ)p(D,Θ|p,W )]

Ep(W |W̃ ) [p(D,Θ|p,W )]

]
(17)

where f is the target quantity.

This proof is in Appendix B.3.

With this proposition, instead of sampling W , use SG-MCMC to draw W̃ samples. Similar to
Section 4.2, to use SG-MCMC for p, W̃ ,Θ, we need their gradient information. The following
proposition specifies the required gradients.
Proposition A.2. With the generative model defined as Figure 5, we have

∇p,Θ,W̃U(p, W̃ ,Θ) =−∇p log p(p)−∇Θ log p(Θ)

−∇W̃ log p(W̃ )−∇p,Θ,W̃ logEp(W |W̃ )[p(D|W ,p,Θ)] (18)

The proof is in Appendix B.4.

With these gradients, we can directly plug in existing SG-MCMC samplers to draw samples for p, W̃ ,
and Θ in joint inference (Algorithm 2).

B Theory

B.1 Proof of Theorem 3.1

For completeness, we recite the theorem here.
Theorem 3.1 (Equivalence of inference in (W ,p) and binary DAG space). Assume graph G is a
binary adjacency matrix representing a DAG and node potential p does not contain the same values,
i.e. pi ̸= pj ∀i, j. Then, with the induced joint observational distribution p(D,G), dataset D and a
corresponding prior p(G), we have

p(G|D) =

∫
pτ (p,W |D)1(G = τ(W ,p))dW dp (19)

if p(G) =
∫
pτ (p,W )1(G = τ(W ,p))dW dp, where pτ (W ,p) is the prior, 1(·) is the indicator

function and pτ (p,W |D) is the posterior distribution over p,W .
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Algorithm 2 Joint inference

Input: dataset D, prior p(p, W̃ ,Θ), SG-MCMC sampler update Sampler(·); sampler hyperpa-
rameter Ψ; training steps T .
Output: posterior samples {p, W̃ ,Θ}
Initialize p0, W̃0,Θ0

for t = 1, . . . , T do
Evaluate gradient ∇pt−1,W̃t−1,Θt−1

U based on Equation (18).

Update samples pt, W̃t,Θt = Sampler(∇pt−1,W̃t−1,Θt−1
U ; Ψ)

if storing condition met then
{p, W̃ ,Θ} ← pt, W̃t,Θt

end if
end for

To prove this theorem, we first prove the following lemma stating the equivalence of τ (Equation (5))
to binary DAG space.
Lemma B.1 (Equivalence of τ to DAG space). Consider d random variables, a node potential vector
p ∈ Rd and a binary matrix W ∈ {0, 1}d×d. Then the following holds:

(a) For any W ∈ {0, 1}d×d, p ∈ Rd, G = τ(W ,p) is a DAG.

(b) For any DAG G ∈ D, where D is the space of all DAGs, there exists a corresponding (W ,p)
such that τ(W ,p) = G.

Proof. The main proof directly follows the theorem 2.1 in [72]. For (a), we show the output
from τ(W ,p) must be a DAG. By leveraging the Lemma 3.4 in [72], we can easily obtain that
Step(gradp) emits a binary adjacency matrix representing a DAG. The only difference is that we
replace the ReLU(·) with Step(·) but the conclusion can be directly generalized.

For (b), we show that for any DAG G, there exists a (W ,p) pair s.t. τ(W ,p) = G. To see this,
we can observe that p implicitly defines a topological order in the mapping τ . For any pi > pj , we
have j → i after the mapping Step(gradp). Thus, by leveraging Theorem 3.7 in [72], we obtain that
there exists a potential vector p ∈ Rd for any DAG G such that

(gradp)(i, j) > 0 when Gij = 1

Thus, we can choose W in the following way:

W =

{
Wij = 0 if Gij = 0

Wij = 1 if Gij = 1

Next, let’s prove the Theorem 3.1.

Proof of Theorem 3.1. From Lemma B.1, we see that the mapping is complete. Namely, the (W ,p)
space can represent the entire DAG space. Next, we show that performing Bayesian inference in
(W ,p) space can also correspond to the inference in DAG space.

Assume we have the prior pτ (W ,p). Then through mapping τ , we implicitly define a prior over the
DAG G in the following:

pτ (G) =

∫
pτ (W ,p)1(G = τ(W ,p))dW dp (20)

This basically states that the corresponding prior over G is an accumulation of the corresponding
probability associated with (W ,p) pairs.

Similarly, we can define a corresponding posterior pτ (G|D):

pτ (G|D) =

∫
pτ (W ,p|D)1(G = τ(W ,p))dW dp (21)

16



Now, let’s show that this posterior pτ (G|D) = p(G|D) if prior matches, i.e. p(G) = pτ (G). From
Bayes’s rule, we can easily write down

pτ (W ,p|D) =
p(D|G = τ(W ,p))p(p,W )∑

G′∈D p(D,G′)
(22)

Then, by substituting Equation (22) into Equation (21), we have

pτ (G|D) =

∫
p(D|G)pτ (W ,p)∑

G′∈D p(D,G′)
1(G = τ(W ,p))dW dp

=

∫
p(D|G)pτ (W ,p)1(G = τ)dW dp∑

G′∈D p(D,G′)
(23)

=
p(D|G)

∫
pτ (W ,p)1(G = τ)dW dp∑

G′∈D p(D,G′)
(24)

=
p(D|G)pτ (G)∑

G′∈D p(D|G′)pτ (G′)

= p(G|D) (25)

where Equation (23) is from the fact that
∑

G′∈D p(D,G′) is independent of (W ,p) due to marginal-
ization. Equation (24) is obtained because p(D|G) is also independent of (W ,p) due to (1)
1(G = τ(W ,p)) and (2) p(D|G) is a constant when fixing G. Equation (25) is obtained by
applying Bayes’s rule and pτ (G) = p(G).

B.2 Proof of Theorem 3.2

Theorem 3.2 (Equivalence of NoCurl formulation). Assuming the conditions in Theorem 3.1 are
satisfied. Then, for a given (W ,p), we have

G = W ⊙ Step(gradp) = W ⊙
[
σ∗(p)Lσ∗(p)T

]
where G is a DAG and σ∗(p) is defined in Equation (7).

To prove this theorem, we need to first prove the following lemma.
Lemma B.2. For any permutation matrix M ∈ Σd, we have

grad(Mp) = MT grad(p)M

where grad is the operator defined in Equation (3).

Proof. By definition of grad(·), we have

grad(Mp) = (Mp)i − (Mp)j

= 1(i)TMp− 1(j)TMp

= Mi,:p−Mj,:p

where 1(i) is a one-hot vector with ith entry 1, and Mi,: is the ith row of matrix M . The above is
equivalent to computing the grad with new labels obtained by permuting p with M . Therefore, we
can see that grad(Mp) can be computed by permuting the original grad(p) by matrix M .

grad(Mp) = MT grad(p)M

Proof of Theorem 3.2. Since W plays the same role in both formulations, we focus on the equiva-
lence of Step(grad(·)).
Define a sorted p̃ = σp, where σ ∈ Σd, such that for i < j, we have p̃i > p̃j . Namely, σ is a
permutation matrix. Thus, we have

grad(p) = grad(σT p̃).
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By Lemma B.2, we have
grad(σT p̃) = σ grad(p̃)σT .

Since p̃ is an ordered vector. Therefore, grad(p̃) is a skew-symmetric matrix with a positive lower
half part.

Therefore, we have

Step(grad(p)) = Step(σ grad(p̃)σT ) = σ Step(grad(p̃))σT = σLσT

This is true because σ is just a permutation matrix that does not alter the sign of grad(p̃).

Since σ is a permutation matrix that sort p value in a ascending order, from Lemma 1 in [8], we have

σ = argmax
σ′∈Σd

pT (σ′o)

B.3 Proof of Proposition A.1

Proof.

Ep(p,W ,Θ|D) [f(G = τ(p,W ),Θ)]

=

∫
p(p,W ,Θ, W̃ |D)f(G,Θ)dpdW dΘdW̃

=

∫
p(p, W̃ ,Θ|D)p(W |p,Θ, W̃ ,D)f(G,Θ)dpdW dΘdW̃

=Ep(p,W̃ ,Θ|D)

[∫
p(D|p,Θ,W )p(p)p(W̃ )p(W |W̃ )p(Θ|p,W )f(G,Θ)dW∫

p(D|p,Θ,W )p(p)p(W̃ )p(W |W̃ )p(Θ|p,W )dW

]

=Ep(p,W̃ ,Θ)

[
Ep(W |W̃ ) [f(G,Θ)p(D,Θ|p,W )]

Ep(W |W̃ ) [p(D,Θ|p,W )]

]

B.4 Proof of Proposition A.2

Proof.

∇pU(p, W̃ ,Θ) = −∇p log p(p, W̃ ,Θ,D)

= −∇p log p(p)−∇p log p(W̃ ,Θ,D|p)

= −∇p log p(p)−
∇p

∫
p(D|W ,p,Θ)p(Θ|p,W )p(W |W̃ )p(W̃ )dW∫

p(D|W ,p,Θ)p(Θ|p,W )p(W |W̃ )p(W̃ )dW

= −∇p log p(p)−
∇pEp(W |W̃ ) [p(D|W ,p,Θ)]

Ep(W |W̃ ) [p(D|W ,p,Θ)]

= −∇p log p(p)−∇p logEp(W |W̃ ) [p(D|W ,p,Θ)]

Other gradient ∇W̃U and ∇ΘU can be derived using the similar approach, which concludes the
proof.

B.5 Proof of Proposition 4.1

Proof of Proposition 4.1. By definition, we have easily have

∇pU = −∇p log p(p,W ,Θ,D)

= −∇p log p(p,W )−∇p log p(D,Θ|τ(W ,p))

= −∇p log p(p,W )−∇p log p(D|Θ, τ(W ,p)) +∇p log p(Θ|τ(p,W ))︸ ︷︷ ︸
0
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Similarly, we have

∇ΘU = −∇Θ log p(p,W ,Θ,D)

= −∇Θ log p(D|Θ, τ(W ,p))−∇Θ log p(Θ|p,W )−∇Θ log p(p,W )︸ ︷︷ ︸
0

= −∇Θ log p(D|Θ, τ(W ,p))−∇Θ log p(Θ)

B.6 Derivation of ELBO

log p(p,Θ,D) = log

∫
p(p,Θ,D,W )dW

= log

∫
qϕ(W |p)
qϕ(W |p)

p(p,Θ,D,W )dW

≥
∫

qϕ(W |p) log p(p,Θ,D|W )dW +

∫
qϕ(W |p) log

p(W )

qϕ(W |p)
dW (26)

= Eqϕ(W |p) [log p(p,Θ,D|W )]−DKL [qϕ(W |p)∥p(W )]

where the Equation (26) is obtained by Jensen’s inequality.

C SG-MCMC Update

Assume we want to draw samples p ∼ p(p|D,W ,Θ) ∝ exp(−U(p,W ,Θ)) with U(p,W ,Θ) =
− log p(p,W ,Θ), we can compute U by

U(p,W ,Θ) = −
N∑

n=1

log p(xn|G = τ(W ,p),Θ)− log p(p,W ,Θ) (27)

In practice, we typically use mini-batches S instead of the entire dataset D. Therefore, an approxi-
mation is

Ũ(p,W ,Θ) = −|D||S|
∑
n∈S

log p(xn|G = τ(W ,p),Θ)− log p(p,W ,Θ) (28)

where |S| and |D| are the minibatch and dataset sizes, respectively.

[28] uses the preconditioning technique on stochastic gradient Hamiltonian Monte Carlo(SG-HMC),
similar to the preconditioning technique in [41]. In particular, they use a moving-average approxima-
tion of diagonal Fisher information to adjust the momentum. The transition dynamics at step t with
EM discretization is

B =
1

2
l

Vt = β2Vt−1 + (1− β2)∇pŨ(p,W ,Θ)⊙∇pŨ(p,W ,Θ)

gt =
1√

1 +
√
Vt

rt = β1rt−1 − lgt∇pŨ(p,W ,Θ) + l
∂gt
∂pt

+ s

√
2l(

1− β1

l
−B)η

pt = pt−1 + lgtrt (29)

where l2 is the learning rate; (β1, β2) controls the preconditioning decay rate, η is the Gaussian noise
with 0 mean and unit variance, and s is the hyperparameter controlling the level of injected noise to
SG-MCMC. Throughout the paper, we use (β1, β2) = (0.9, 0.99) for all experiments.
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D Experimental Settings

D.1 Baselines

For all the experimental settings, we compare with the following baselines:

• Bootstrap GES (BGES) [20, 14] is a bootstrap based quasi-Bayesian approach for linear
Gaussian models which first resamples with replacement data points at random and then
estimates a linear SCM using the GES algorithm [14] for each bootstrap set. GES is a score
based approach to learn a point estimate of a linear Gaussian SCM. For all the experimental
settings, we use 50 bootstrap sets.

• Differentiable DAG Sampling (DDS) is a VI based approach to learn distribution over DAGs
and a point estimate over the nonlinear functional parameters. DDS performs inference on
the node permutation matrices, thus directly generating DAGs. Gumbel-sinkhorn [47] is
used for obtaining valid gradients and Hungarian algorithm is used for the straight-through
gradient estimator [7]. In the author provided implementation, for evaluation, a single
permutation matrix is sampled and the logits of the edge beliefs are directly thresholded. In
this work, in order to make the comaprison fair to Bayesian learning methods, we directly
sample the binary adjacency matrix based on the edge logits.

• BCD Nets [16] is a VI based fully Bayesian structure learning approach for linear causal
models. BCD performs inference on both the node permutations through the Gumbel-
sinkhorn [47] operator as well as the model parameters through a VI distribution. Both DDS
and BCD nets operate directly on full rank initializations to the Gumbel-sinkhorn operator,
unlike our rank-1 initialization, which saves computations in practice.

• DIBS [43] uses SVGD [42] with the DAG regularizer [77] and bilinear embeddings to
perform inference over both linear and nonlinear causal models. As our data generation
process involves SCM with unequal noise variance, we extend DIBS framework with an
inference over noise variance using SVGD, similar to the original paper.

While DIBS and DDS can handle nonlinear parameterization, approaches like BGES and BCD, which
are primarily designed for linear models still give competitive results when applied on nonlinear data.
Given that there are limited number of baselines in the nonlinear case, and DIBS being the only fully
Bayesian nonlinear baseline, we compare with BGES and BCD for all settings despite their model
misspecification.

D.2 Evaluation Metrics

For higher dimensional settings with nonlinear models, the true posterior is intractable. While in
general it is hard to evaluate the posterior inference quality in high dimensions, prior work has
suggested to evaluate on proxy metrics which we adopt in this work as well [43, 22, 4]. In particular,
we evaluate the following metrics:

• E-SHD: Structural Hamming Distance (SHD) measures the hamming distance between
graphs. In particular, it is a measure of number of edges that are to be added, removed
or reversed to get the ground truth from the estimated graph. Since we have a posterior
distribution q(G) over graphs, we measure the expected SHD:

E-SHD := EG∼q(G)[SHD(G,GGT )] ≈ 1

Ne

Ne∑
i=1

[SHD(G(i),GGT )] ,with G(i) ∼ q(G)

where GGT is the ground-truth causal graph.
• Edge F1: It is F1 score of each edge being present or absent in comparison to the true edge

set, averaged over all edges.
• NLL: We also measure the negative log-likelihood of the held-out data, which is also

typically used as a proxy metric on evaluating the posterior inference quality [26, 44, 63].

The first two metrics measure the goodness of the graph posterior while the NLL measures the
goodness of the joint posterior over the entire causal model.
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For d = 5 with linear models (unequal noise variance, identifiable upto MEC [53, 34]), we evaluate
the following metrics:

• MMD True Posterior: Since the true posterior is tractable, we compare the approximation
with the ground truth using a Maximum Mean Discrepancy (MMD) metric [31]. If P :=
p(G |D) is the marginalized true posterior over graphs and Q is the approximated posterior
over graphs, then the MMD between these two distributions is defined as:

MMD2(P,Q) = EG∼P[k(G,G)] + EG∼Q[k(G,G)]− 2EG∼P,G′∼Q[k(G,G′)]

where k(G,G′) = 1− H(G,G′)
d2 is the Hamming kernel, and H is the Hamming distance

between G and G′. This requires just the samples from the true posterior and the model.
For calculating the true posterior which involves marginalization of the model parameters,
appropriate prior over these parameters are required. This is ensured by using BGe score [23,
39] which places a Gaussian Wishart prior on the parameters. This leads to closed form
marginal likelihood which is distribution equivalent, i.e. all graphs within the MEC will have
the same likelihood. In addition, due to the low dimensonality (d = 5), we can enumerate
all possible DAGs and compute the normalizing constant p(D). We refer to [23] for details.
This metric has been used in prior work [3].

• E-CPDAG SHD: An MEC can be represented by a Completed Partially Directed Acyclic
Graph (CPDAG) [54] which contains both directed edges and arcs (undirected edges). When
causal relations between certain set of variables can be established, a directed edge is present.
If there is an association between a certain set of variables for which causal direction is not
identifiable, an undirected edge is present. For any graph, it has a corresponding CPDAG
associated to the MEC which it belongs to. Since the ground truth graph is identifiable only
upto MEC, we compare the (structural) Hamming distance between the graph posterior and
the CPDAG of the ground truth. This is done by computing the E-CPDAG SHD:

E-CPDAG SHD := EG∼q(G)[SHD(GCPDAG,G
GT
CPDAG)] ≈

1

Ne

Ne∑
i=1

[SHD(G
(i)
CPDAG,G

GT
CPDAG)]

with G(i) ∼ q(G) and GGT
CPDAG is the ground-truth CPDAG.

D.3 Synthetic Data

As knowledge of ground truth graph is not possible in many real world settings, it is standard across
causal discovery to benchmark in synthetic data settings. Following prior work, we generate synthetic
data by first sampling a DAG at random from either Erdos-Rènyi (ER) [19] or Scale-Free (SF) [5]
family. For d = 5, we ensure that the graphs have d edges in expectation and 2d edges for d > 5. The
ground truth parameters for linear functions are drawn at random from a fixed range of [0.5, 1.5]. For
nonlinear models, the nonlinear functions are defined by randomly initialized Multi-Layer Perceptrons
(MLP) with a single hidden layer of 5 nodes and ReLU nonlinearity. The variance of the exogenous
Gaussian noise variable is drawn from an Inverse Gamma prior with concentration α = 1.5 and rate
β = 1. For d = 5 linear case, we sample at random N = 500 samples from the SCM for training and
N = 100 for held-out evaluation. For higher dimensional settings, we consider N = 5000 random
samples for training and N = 1000 samples for held-out evaluation. For all settings, we evaluate on
30 random datasets.

D.4 Hyperparameter Selection

In this section, we will give the details our how to select the hyperparameters for our method and all
the baseline models.

We employ a cross-validation-like procedure for hyperparameter tuning in BayesDAG and DIBS to
optimize MMD true posterior (for d = 5 linear setting) and E−SHD value (for nonlinear setting).
For each ER and SF dataset with varying dimensions, we initially generate five tuning datasets. After
determining the optimal hyperparameters, we fix them and evaluate the models on 30 test datasets.
For DDS, we adopt the hyperparameters provided in the original paper [11]. BCD and BGES do not
necessitate hyperparameter tuning since BCD already incorporates the correct prior graph for ER and
SF datasets. For semi-synthetic Syntren and real world Sachs protein cells datasets, we assume the
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BayesDAG
λs Scale p Scale Θ Sparse Init.

linear ER d = 5 50 0.001 0.001 False
linear SF d = 5 50 0.01 0.001 False
nonlinear ER d = 20 300 0.01 0.01 False
nonlinear SF d = 20 200 0.1 0.1 False
nonlinear ER d = 30 500 1 0.01 False
nonlinear SF d = 30 300 0.01 0.01 False
nonlinear ER d = 50 500 0.01 0.01 True
nonlinear SF d = 50 300 0.1 0.01 False
nonlinear ER d = 70 700 0.1 0.01 True
nonlinear SF d = 70 300 0.01 0.01 False
nonlinear ER d = 100 700 0.1 0.01 False
nonlinear SF d = 100 700 0.1 0.01 False
SynTren 300 0.1 0.01 False
Sachs Protein Cells 1200 0.1 0.01 False

Table 3: The hyperparameter selection for BayesDAG for each setting.

DIBS
α h latent hθ hσ

linear ER d = 5 0.02 5 1000 1
linear SF d = 5 0.02 15 500 1
nonlinear ER d = 20 0.02 5 1500 10
nonlinear SF d = 20 0.2 5 1500 10
nonlinear ER d = 30 0.2 5 500 1
nonlinear SF d = 30 0.2 5 1000 1
nonlinear ER d = 50 0.2 5 500 10
nonlinear SF d = 50 0.2 5 1500 1
SynTren 0.2 5 500 10
Sachs Protein Cells 0.2 5 500 10

Table 4: The hyperparameter selection for DIBS for each setting.

number of edges in the ground truth graphs are known and we tune our hyperparameters to produce
roughly correct number of edges. BCD and DIBS also assume access to the ground truth edge number
and use the graph prior to enforce the number of edges.

Network structure We use one hidden layer MLP with hidden size of max(4 ∗ d, 64) for the
nonlinear functional relations, where d is the dimensionalilty of dataset. We use LeakyReLU as the
activation function. We also enable the LayerNorm and residual connections in the network. In
particular, for variational network µϕ in BayesDAG, we apply the LayerNorm on p before inputting
it to the network. We use 2 hidden layer MLP with size 48, LayerNorm and residual connections
for µϕ.

Sparse initialization for BayesDAG For BayesDAG, we additionally allow sparse initialization
by sampling a sparse W from the µϕ. This can be achieved by substracting a constant 1 from the
existing logits (i.e. the output from µϕ).

Other hyperparameters For BayesDAG, we run 10 parallel SG-MCMC chains for p and Θ. We
implement an adaptive sinkhorn iteration where the iteration automatically stops when the sum of
rows and columns are closed to 1 within the threshold 0.001 (upto a maximum of 3000 iterations).
Typically, we found this to require only around 300 iterations. We set the sinkhorn temperature t
to be 0.2. For the reparametrization of W matrix with Gumbel-softmax trick, we use temperature
0.2. During evaluation, we use 100 SG-MCMC particles extracted from the particle buffer. We use
0.0003 for SG-MCMC learning rate l and batch size 512. We run 700 epochs to make sure the model
is fully converged.
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Table 5: Walltime results (in minutes, rounded to the nearest minute) of the runtime of different
approaches on a single 40GB A100 NVIDIA GPU. The N/A fields indicate that the corresponding
method cannot be run within the memory constraints of a single GPU.

d=30 d=50 d=70 d=100
BaDAG (Ours)(Bayesian, Nonlinear) 171 238 261 448
DIBS (Bayesian, Nonlinear) 187 350 N/A N/A
BGES (Quasi-Bayesian, Linear) 2 3 6 11
BCD (Bayesian, Linear) 252 328 418 600
DDS (Quasi-Bayesian, Nonlinear) 92 130 174 N/A
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Figure 6: Posterior inference of both graph and functional parameters on synthetic datasets of
nonlinear causal models with d = 20 variables. BayesDAG gives best results across all metrics. ↓
denotes lower is better and ↑ denotes higher is better. For the sake of clarity, DDS has been omitted
for E-SHD due to its significantly inferior performance on this metric.

For DIBS, we can only use 20 SVGD particles for evaluation due to the quadratic scaling with
the number of particles. We use 0.1 for Gumbel-softmax temperature. We run 10000 epochs for
convergence. The learning rate is selected as 0.01.

Table 3 shows the hyperparameter selection for BayesDAG. Table 4 shows the hyperparameter
selection for DIBS.

E Additional Results

E.1 Walltime Comparison

Table 5 presents walltime comparison of different methods. Our method converges faster while being
scalable w.r.t. DIBS, the nonlinear Bayesian causal discovery baseline. Other methods like BGES
and DDS, while faster, perform much worse in terms of uncertainty quantification. In addition BGES
is limited to linear model and DDS is not a fully Bayesian method.

E.2 Performance with higher dimensional datasets

Full results for all the metrics for settings d = 20, d = 70 and d = 100 for nonlinear settings are
presented in Figure 6, Figure 7 and Figure 8.
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Figure 7: Posterior inference of both graph and functional parameters on synthetic datasets of
nonlinear causal models with d = 70 variables. BayesDAG gives best results across most metrics.
↓ denotes lower is better and ↑ denotes higher is better. As DIBS and DDS are computationally
prohibitive to run for this setting, it has been omitted. BCD has been omitted for NLL as we observed
that it performs significantly worse.
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Figure 8: Posterior inference of both graph and functional parameters on synthetic datasets of
nonlinear causal models with d = 100 variables. BayesDAG gives best results across E-SHD,
comparable across NLL but slightly worse for Edge F1. ↓ denotes lower is better and ↑ denotes
higher is better. As DIBS and DDS are computationally prohibitive to run for this setting, it has been
omitted. BCD has been omitted for NLL as we observed that it performs significantly worse.
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Figure 9: Performance comparison of SG-MCMC+VI v.s. fully SG-MCMC with W̃ for d = 10
variables.

E.3 Performance of SG-MCMC with Continuous Relaxation

We compare the performance of SG-MCMC+VI and SG-MCMC with W̃ on d = 10 ER and SF
graph settings. Figure 9 shows the performance comparison. We can observe that SG-MCMC+VI
generally outperforms its counterpart in most of the metrics. We hypothesize that this is because
VI network µϕ couples p and W . This coupling effect is crucial since the changes in p results in
the change of permutation matrix, where the W can immediately respond to this change through
µϕ. On the other hand, W̃ can only respond to this change through running SG-MCMC steps on
W̃ with fixed p. In theory, this is the most flexible approach since this coupling do not requires
parametric form like µϕ. However in practice, we cannot run many SG-MCMC steps with fixed p for
convergence, which results in the inferior performance.

F Code and License

For the baselines, we use the code from the following repositories:

• BGES: We use the code from [2] from the repository
https://github.com/agrawalraj/active_learning (No license included).

• DDS: We use the code from the official repository
https://github.com/sharpenb/Differentiable-DAG-Sampling (No license included).

• BCD: We use the code from the official repository https://github.com/ermongroup/BCD-Nets
(No license included).

• DIBS: We use the code from the official repository https://github.com/larslorch/dibs (MIT
license).

Additionally for the Syntren [67] and Sachs Protein Cells [59] datasets, we use the data provided
with repository https://github.com/kurowasan/GraN-DAG (MIT license).

G Broader Impact Statement

This work is concerned with understanding cause and effects from data, which has potential applica-
tions in empirical sciences, economics and machine perception. Understanding causal relationships
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can improve fairness in decision making, understand biases which might be present in the data and
answering causal queries. As such, we envision this line of work to not have any significant negative
impact.
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