
5 Supplementary Material

5.1 Basic model description

Here we give a general decription of the model. Specifics for each experiment (i.e. learning rates,
layer sizes, time constants etc.) are given in later sections.

5.1.1 Dendritic updates

Complete versions of the dendritic update rules (summarised in Eqns (2) & (3)) are given below. We
assume dendrites recieve and integrate synaptic inputs according to the following dynamics:

⌧ dpB(t)
dt = �pB(t) + p̄(z(t))

⌧ dgB(t)
dt = �gB(t) + �gB (wgBp(t))

)
Inference model (9)

⌧ dgA(t)
dt = �gA(t) + �gA(wgAg(t))

⌧ dpA(t)
dt = �pA(t) + �pA(wpAg(t))

)
Generative model. (10)

We discretise these dynamics in order to implement them computationally by making the common
assumption that neural dynamics are fast (⌧ ⇡ 0 ms) relative to the timescale of the synaptic inputs and
so the compartments are always at equilibrium, recovering Eqns (2) & (3). This is valid in our regime
where the environmental latent updates slowly compared to neural timescales. The notation we’re
using admits the possible presence of biases as well as the weights (though biases typically aren’t
used) by assuming a row of constant 1’s could be added to the synaptic inputs effectively absorbing a
bias into the weight matrix without loss of generality, for example wgBp(t) wgBp(t) + bgB .

5.1.2 Somatic updates

Somatic updates rules (Eqns (4) & (5)) and are repeated here for completeness:

p(t) = ✓(t)pB(t) + (1� ✓(t))pA(t)

g(t) = ✓(t)gB(t) + (1� ✓(t))gA(t). (11)

where ✓(t) is a 5 Hz global theta oscillation variable defined by the square wave function:

✓(t) =

⇢
1, if t/T mod 1  0.5
0, if t/T mod 1 > 0.5

(12)

5.1.3 Update ordering

For this hierarchical network of multicompartmental neurons we must specify the order in which we
perform these discrete updates to the different layers and the different compartments within these
layers. Strictly speaking, when the discretisation timestep dt is small this ordering is arbitrary, but we
include it here for completeness.

We update the layers from bottom to top: first we update the latent or “environment” and increment
the global clock (z(t+dt) z(t) & t+dt t). Next we update both dendritic compartments of the
sensory layer (pB(t+dt) pB(t) & pA(t+dt) pA(t) noting that it makes no difference in which
order these updates are done as they are independent. Then we update the somatic compartment of the
sensory layer (p(t + dt) p(t)). Next we work upwards to the hidden layer (gB(t + dt) gB(t)
& gA(t + dt) gA(t) followed by g(t + dt) g(t)) then, if present, the top-most “conjunctive
cells” are updated. This gives the following dendritic update rules which are only slightly – and in
the limit dt! 0, irrelevantly – different from the simplified update rules given in the main text:

pB(t + dt) = p̄(z(t + dt))

pA(t + dt) = �pA(wpAg(t))

gB(t + dt) = �gB (wgBp(t + dt))

gA(t + dt) = �gA(wgAg(t)) (13)

11

5.1.4 Learning rules

Learning rules are conceptually summarised by the equations given in the main text, Eqn (6). Here
we give the full equations which include some adjustments to account for the presence of non-linear
activation functions and temporal smoothing of the local prediction error learning signals. In our
multilayer network all sets of learnable weights follow an equivalent learning rule. For this reason
we choose give it here in its most general form: Consider the synaptic weight wij connecting from
the soma of presynaptic neuron j with activation f pre

j to one of the dendritic compartments of a
postsynaptic neuron i with activation f post

C,i = �(V post
C,i) (this could be the basal or apical compartment,

C 2 {A, B}). Weights are updated on each timestep by an amount:

�wij(t) = ⌘PIij(t) (14)

where PIij is (following terminology used in Urbanczik and Senn [43]) the “plasticity induction”
variable which is a low-pass filtered measure of the coincidence between the local prediction error and
the synaptic input. The prediction error measures how far the activation of the dendritic compartment,
f post

C,i , is from the somatic activation f post
i . In total, PIij is defined by the following dynamics:

⌧PI
dPIij
dt

= �PIij + [f post
i (t)� f post

C,i (t)]
| {z }

postsynaptic prediction error

· �0(V post
C,i (t)) · f pre

j (t)
| {z }

presynaptic input

(15)

If the prediction error and one of the presynaptic inputs are both consistently large (i.e. over a
time period O(⌧PI)) then the plasticity induction variable will therefore also be large and the weight
connecting the pre- and postsynaptic neurons will be strengthed (thus decreasing future prediction
errors). ⌧PI is taken to be the same as used in Urbanczik and Senn [43], 100 ms. Note for fast filtering
(⌧PI ! 0 ms) and linear activation functions this reduces to the simplified formulae given in the main
text, Eqn. (6).

5.1.5 Synaptic noise

We add synaptic noise to the dendritic activations. Each dendritic compartment maintains its own
independent noise variable, n(t), which is modelled as an Ornstein-Uhlenbeck process. The benefit
of modelling neural noise with an Ornstein-Uhlenbeck process is that it is timestep size independent.
The dynamics of the noise variable are given by:

n(t + dt) = n(t) +
dt

⌧
n(t) +

r
2�2dt

⌧
⇠(t) (16)

where ⇠(t) ⇠ N (0, 1) is a white noise process. These dynamics lead to a stationary distribution of
n(t) which is Gaussian with zero mean and variance �2. The decoherence timescale of the noise is ⌧ .
We fix ⌧ = 300 ms and � = 0.01 Hz in order that noise is relatively slow and weak. Noise is added
at each timestep to the activation of the dendrites, e.g. pB(t)! pB(t) + nB(t) where nB(t).

5.1.6 Measuring the prediction error

Figs. 2b & 3d show the prediction errors of the network layers decreasing throughout training. Here
we define how these errors. A consequence of our learning rule is that during wake, the apical
dendrites adjust to try minimise the discrepancy between the apical activation and the soma (which,
during wake, is equal to by the basal activation). During the sleep phase a short time later the basal
dendrites adjust to try minimise the discrepancy between the basal activation and the soma (which,
during sleep, is equal to apical activation). If learning is successful we would expect the apical and
basal activations to converge, thus we use the following measures of the prediction error to track
training performance in both layers of the network:

Ep(t) =
1

Np

X

i

|[pB(t)]i � [pA(t)]i|

Eg(t) =
1

Ng

X

i

|[gB(t)]i � [gA(t)]i|. (17)

These are then smoothed with a decaying exponential kernel of timescale 60 seconds to remove some
of the nosie and better display the learning signal.

12

5.2 Relationship to online Bayesian Inference

Bredenberg et al. [41] derived local synaptic learning rules for a similar hierarchical network per-
forming online latent inference starting from a loss function closely related to the evidence lower
bound (ELBO) of variational inference. Here we will not repeat their derivation, instead we intend
to highlight their starting point, the most important assumptions they made and the learning rules
they derived, finally pointing out how ours differ. The point is to demonstrate that the learning rules
we propose are not arbitrary but can actually be derived from a more principled approach to online
inference.

Bredenberg et al. [41] consider a network recieving input from a latent variable z. The network
has two layers, pt and gt. 3 The network is trained to perform online inference over a sequence of
observations from the environment, z0:T . To do this they start from the loss function

L = E✓,z

⇥
DKL(q̃w k p̃w)

⇤
(18)

where q̃w and p̃w are the following probability distributions over the layer variables pt and gt:

q̃w =
TY

t=0

(q(gt|pt; winf)p(pt|zt))
✓tpm(gt,pt|pt�1, ✓t; wgen)

1�✓t , (19)

p̃w =
TY

t=0

(p(gt|pt; winf)p(pt|zt))| {z }
inference model

1�✓tpm(gt,pt|pt�1, ✓t; wgen)| {z }
generative model

✓t (20)

and ✓t 2 {0, 1} is a binary variable (in their analysis they fix this to oscillate in fixed symmetric
phases, e.g. 000111000111...). The two probability distributions, q̃w & p̃w, which this loss function
attempts to make similar to one another, can be interpreted as the probabilites over the layer variables
pt and gt in two noisy neural networks4 connected as we drew in Fig. 1a: the first network alternates
between phases of inference, where information flows bottom up from the latents z to the hidden
layer g, and generation, the opposite (inference-generation-inference-generation...), the second
network alternates in exact counterphase (generation-inference-generation-inference...). This loss is
a generalisation of the widely used evidence lower bound (ELBO) which corresponds to the case
where ✓t = 1 for all t. ELBO loss functions seek to make the inference and generative distributions
over sensory and hidden variables similar. We will not delve further into the justifications for these
types of loss functions other than to state that they are widely used[1].

One of the key conceptual steps taken by Bredenberg et al. [41] (and now us) is to note that processes
of performing inference and generation can locally occur simultaneously as long as they are recieved
into distinct dendritic compartments. Which dendrite then gates into the soma (i.e. Eqn 4) then
dictates the global state (wake or sleep) of the network. It also means, as they show, that the loss
can be approximately optimized using local learning rules by comparing the dendritic compartment
activation to that of the soma. The learning rules they derive, again translated into our notation, are as
follows (note for simplicity we assume all activations are linear since non-linearities add only one
additional multiplicative term into their update equations, see equations (14), (15) and (16) in [41]):

dwgB

dt
/ (1� ✓t)(gt � gB,t)p

T
t (21)

dwpA

dt
/ ✓t(pt � pA,t)g

T
t (22)

dwgA

dt
/ ✓t(1� kt)(gt � gA,t�1)g

T
t�1 (23)

where kt = (1� �(✓t � ✓t�1))✓t is a term which is 1 if and only if ✓t = 1 and ✓t�1 = 0 therefore it
briefly turns off learning upon switching from sleep to wake.

Reader may like to compare these learning rules to our own as given in the main text Eqns (6). Our
learning rules differ from theirs in the following way:

3For convenience we have translated their variables into our notation (g $ r,p $ s,✓ $ �, w $ ✓) so it is
easier to compare.

4Note there isn’t actually two networks being trained. Instead they use a mathematical trick, deriving from
the symmetry in the alternating phase of the theta cycle, to do away with the need to sample from both networks
meaning they can deriving local learning rules which can train a single network, e.g. q̃m, on its own. This single
network, like ours, contains both inference and generative models, represented by the two terms in equation (19)

13

• We relax their discrete time assumption, opting for a continuous time formulation (pt ! p(t)
etc.).

• We note that the terms in the equations proportional to ✓t or 1� ✓t which actively turn on
or off learning depending on whether ✓t = 0 or 1 are unnecessary since the prediction error
term natural falls to zero anyway. For example, in Eqn. (22) when ✓t = 0 the network is in
sleep and so pt = pA,t. In this case the prediction error is zero by definition and learning
ceases even without the preceeding ✓t term.

• We disregard the 1 � kt term. Empirically this does not seem to damage our model and
theoretically its impact should only be small in our continuous time formulation where the
network is only switching from sleep to wake for a negligible proportion of the time.

• Upon provisional theoretical and experimental justification we liken ✓ the theta component
of the hippocampal local field potential and set it to 5 Hz.

Ultimately these changes are surface level. Our learning rules can – and should – be understood
as a close approximation to those derived by Bredenberg et al. [41]. Consequently it is appropriate
to consider our hippocampal model as learning to perform approximately optimal online Bayesian
inference.

5.3 Experiment 1: An artifical latent learning task

Nz = 5 independent, autocorrelated, random latent variables are sampled from a Gaussian process
with a squared exponential covariance function of width 1 second, samples of these are shown in
Fig. 2a and Fig. S2. The sensory layer is large (Np = 50) relative to the compressed hidden
layer (Ng = Nz = 5) and recieves a random mixture of the latents into the basal compartments
as described in the text. All activation functions are linear, no layers have biases, all learning
rates are set to ⌘ = 0.01, and the discretisation timestep was dt = 25 ms. Weights are initialised
randomly [wgB]ij ⇠ N (0, 1/

p
Np), [wpA]ij ⇠ N (0, 1/

p
Ng), [wgA]ij ⇠ N (0, 0.1/

p
Ng) where

the smaller initialisation on the recurrent weights, wgA , was chosen to prevent unstable dynamics.

Before learning – since weights are initialised randomly – basal and apical voltages in the sensory
layer are unmatched when tested for a period in wake mode (Fig. S1a). When tested for a period in
sleep mode, the small initialisation of the recurrent weights means the hidden layer cannot sustain
activity (Fig. S1b, top) which decays and decorrelates rapidly in contrast to the true latents (Fig. S1c).
Compare this to after learning where, during wake, basal and apical voltages in the sensory layer are
closely matched implying accurate autoencoding through the compressed hidden layer. During sleep,
the hidden layer generates sustained activity statistically similar to the true latents (they do not match
because during sleep the true latents are not driving the network, even during wake we would only
expect our network to represent the true latents in its latent space up to a linear rotation), i.e. its is
functioning as a generative model. Note the only source of randomness driving stochasticity and
activity in the network is the noise in the dendritic updates themselves.

5.4 Experiment 2: Learnable path integration with a hidden ring attractor

An agent randomly moves around a 1 m 1D circular track. The trajectory, x(t), is sampled using the
RatInABox[55] simulation package. This means that velocity is model as an Ornstein-Uhlenbeck
process (see Eqn. (16)) with a decoherence timescale of ⌧ = 0.7 seconds and a standard deviation
of � = 0.5 ms�1. There are Np = Ng = 100 neurons in both layers. The HPC dendritic activation
function is linear (�pA(x) = x) whilst both MEC dendritic compartments have rectified tanh
activation functions (�gB (x) = �gA(x) = max(0, tanh(x))). Note the choice of activation function
means MEC neurons have firing rate O(1 Hz). All learning rates are set to ⌘ = 0.01, the discretisation
timestep was dt = 25 ms and only pA & gB have learnable biases.

We model Ni = Np = 100 inputs which are tuned to the position of the agent according to the
following Gaussian tuning curves (these roughly model place cells):

[�(t)]i = exp


�

(x(t)� xi)

2�2

�
. (24)

where xi are centres of the Gaussians evenly spaced along the track. These then linearly drive the
basal dendritic compartments of the sensory neurons:

pB(t) = B�(x(t)) (25)

14

Test in sleep (θ(t)=0)

Be
fo

re
 tr

ai
ni

ng

gi(t) zi(t)

Af
te

r t
ra

in
in

g

Auto-correlations

Lag / s 4

pi,B(t) pi,A(t)
Test in wake (θ(t)=1)

0 1

Time, t /
min

0 1

0 1

Time, t /
min

0 1

4

a b c

d e f

Figure S1: Extended results from the artificial latent learning task. a Basal and apical voltages in
the sensory layer before learning during a one minute sample in wake mode. b Samples of activity
in the hidden layer and true latents before training during a one minute sample in sleep mode. c

Autocorrelations, averaged over the units, for activity in panel b. d,e & f As in a, b & c but after
training.

where, in the results shown in the main paper, Bij = �ij is the identity matrix such that each sensory
neuron inherits a unimodel-tuning curve from one and only one of the inputs, i.e. what was stated in
Eqn. (8). We show in the supplementary figure S2 that this choice is not particularly critical and the
network can learn to perform path integration with random sensory drive ([B]ij ⇠ N (0, 1/

p
Np)).

Velocity inputs are connected as follows: two neurons encode the rectified leftward and rightward
velocity of the agent, normalised by the standard deviation �. Note, this means they have firing rates
O(1 Hz).

vL(t) = max(0,�ẋ(t)/�)

vR(t) = max(0, ẋ(t)/�) (26)

Two sets of conjunctive cells (Ng = 100 in each set) sum inputs from the left and right velocity
neurons and the hidden units as follows:

[gvL(t)]i = �gv

�
vL(t)� vR(t) +

X

j

[wgvL]ij [g(t)]j
�

[gvR(t)]i = �gv

�
vR(t)� vL(t) +

X

j

[wgvR]ij [g(t)]j
�

(27)

where �gv(x) = max(0, x� 1) is a ReLU function thresholded at x = 1. In the main paper we set
[wgvL]ij = [wgvR]ij = �ij so each conjunctive cell is connected to one and only one hidden unit
(something we relax in Fig. S2c). The consequence of this connectivity is that a gvL neuron is above
threshold (and therefore active) if and only if the agent is moving to the leftand the hidden unit it is
connected to is active. Rightward motion silences gvL neurons. Similarly, a gvR neurons is active
if and only if the agent is moving to the right and the hidden unit it is connected to is active. This
conjunctive, logic-AND-gate-like tuning to both MEC and velocity is why these neurons are called
“conjunctive” cells.

To order the MEC neurons after learning, and thus reveal the ring attractor, we calculate their receptive
fields as a function of agent position, g(x), as though the network is in inference mode (so top-down
recurrent connections and drive from the conjunctive cells do not play a role). Then we permute the
ordering i0 i such that the maxima of the receptive feilds move from left to right along the track
as the neuron count increases, arg maxx[g(x)]j0 > arg maxx[g(x)]i08i0, j0 > i0. The effect of this
ordering procedure is shown in Fig. S2, panel a (left hand side, top two panels).

15

Fig S2a repeats the same path integration test as was shown in the main text Fig. 3 except now we
additionally visualise the receptive fields of HPC and MEC (after learning) and show timeseries of
both HPC and MEC neurons during the test. Once MEC neurons are reordered by their maxima
the ring attractor activity bump can be seen moving up at down the manifold of neurons, even after
the sensory lesion. Note again how some MEC neurons have “died” and do not engage in the ring
attractor dynamics, forcing the ring attractor manifold to live on the remain subset of MEC neurons.

5.4.1 Position decoding

To quantify the performance of path integration we train a decoder to estimate agent position directly
from the HPC population vector. The decoder is trained on positon and activity data from the final 10
minutes of training, after learning had plateaued. The decoder we use is a Gaussian process regressor
with a squared exponential kernel, the length scale of which is optimised during fitting. The decoder
works well as can be seen in the path integration plots where, before the sensory lesion, the decoded
position correctly and accurately tracks the true position.

5.4.2 Robustness of path integration to weight initialisations, plasticity lesions and noise

Since a central claim of our work is that the network can learn, from random initialisations, the
correct connectivity required to perform path integration, it is important to question where and why
weights in our model are not randomly initialised and plastic.

Sensory weights The weights from the Gaussian tuned inputs to the HPC sensory neurons, B in
Eqn. (25), must be non-plastic to prevent the network from rapidly converging on a trivial solution
where all input weights fall to zero killing all activity in the network and trivially minimising the local
predition errors. They do not, however, need to be the identity function as we chose. Fig. S2 panel b
repeats the standard path integration experiment but with a network where [B]ij ⇠ N (0, 1/

p
Np),

path integration is still learned without any problem. Ultimately this is not particularly surprising
since the mapping from the spatially-tuned sensory inputs, �, to the ring attractor in the orginal
formulation was already mixed once by the randomly initialised weights from HPC to MEC (wgB).
This just adds one additional layer of mixing.

MEC to conjunctive cells We show in Fig. S2 panel c, that path integration is still learned even
when the MEC to conjunctive cell weights are initialised randomly, [wgvL]ij ⇠ N (0, 1/

p
Ng),

[wgvR]ij ⇠ N (0, 1/
p

Ng). We leave it to future work to investigate this result more thoroughly
but comment that it is a notable relaxation on assumptions made in previous models [35, 27] that
fine-tuned connectivity from MEC to the conjunctive cells is assumed a priori for path integration
(connectivity which would presumably have to be genetically encoded, which seems unlikely). We
suspect part of the reason our path integration is robust with respect to the setting of these weights
is down to the ability for MEC to construct its own inputs from HPC. This might means the exact
form of the activity bump inside the ring attractor can be tailored to fit the specific connectivity to
the conjunctive cells – which is perhaps randomly determined during development – in a particular
network.

Plasticity lesions Path integration, as explored in section 3.2, requires fine tuning the recurrent
weights in the hidden layer (wgA) and consequently fails when this plasticity is turned off (Fig. S3a).
Intriguingly however, we find that path integration does not strictly require plasticity between HPC
and MEC (as shown in Fig. S3b, echoing results in [35]). However, when such plasticity is removed,
the apical input to HPC coming from MEC is unmatched to the sensory input HPC recieves from
the environment. As such, any downstream system reading out position from the HPC code would
only be able to do so during sleep or wake and not both. This is somewhat restrictive for a system
hoping to use the hippocampal formation for online inference and planning. Hence, a primary role of
interlayer plasticity between HPC and MEC in our model is to "translate" the environment-agnostic
MEC code into the the environment-specific HPC code. This idea is discussed further in section 3.3.

5.5 Experiment 3 details: Remapping

To investigate remapping we first train our network to path integrate as described in the main paper.
The only difference is that we fix the weights from HPC to MEC to the identity matrix ([wgB]ij = �ij

16

MEC (before reordering)

MEC (after reordering)

HPC

Ratemaps Time series

HPC

Time / s 0 30

Po
si

tio
n

/ m

0

1

HPC

Po
sit

io
n

/ m

0

1

0

Po
sit

io
n

/ m

1

Ne
ur

on
s

1

Np

Ne
ur

on
s

1

Ng

Ne
ur

on
s

1

Ng

Position / m 0 1

Position / m 0 1

a

b

c

HPC receives a random mixture of Gaussian inputs

MEC to conjunctive cell weights are random, not the identity

MEC ring attractor visible after reordering

sensory lesion

Position:
True
Decoded

Figure S2: Path integration is performed by a ring attractor in MEC revealed once the neurons are
reordered by receptive field peak position. The network learns to path integrate robustly, regardless of
the choice of random initialisations. a The same path integration test as in the main text is performed
here: The top three rows show receptive fields (left) and timeseries activity (right) for the MEC (top
two) and HPC layers (third) layers. MEC receptive fields and activity at first appears random. It is
only after reordering the neurons by the peak position of their receptive fields that we see the ring
attractor manifold. The bottom row shows the decoded position (red) and the true position (purple),
demonstrating accurate path integration. b Like panel a except, instead of unimodel Gaussian inputs,
the HPC neurons recieve a random-sum-of-Gaussian inputs. Nonetheless the network still learns to
path integrate (right). c Like panel a – with HPC neurons returned to their original Gaussian receptive
fields – except in this experiment the hidden units (MEC, g) are connected to the conjunctive cells
randomly, not one-to-one. The network still learns to path integrate.

17

Position:
True
Decoded

<latexit sha1_base64="gct5g8zqrX17W11jq23PzlPoHnw=">AAAB7nicbVBNS8NAEJ34WetXrXjyEiyCp5AI9eNW8eKxgv2ANoTNdtMu3WzC7kYpoVdPXryIKCLe/D3e/Ddu0gpqfTDweG+GmXl+zKhUtv1pzM0vLC4tF1aKq2vrG5ulrXJTRonApIEjFom2jyRhlJOGooqRdiwICn1GWv7wPPNb10RIGvErNYqJG6I+pwHFSGmpdeOlfe9s7JUqtnWaoWo6lp1jllRq5bfbx+rOXd0rfXR7EU5CwhVmSMqOY8fKTZFQFDMyLnYTSWKEh6hPOppyFBLppvm5Y3NfKz0ziIQursxc/TmRolDKUejrzhCpgfzrZeJ/XidRwYmbUh4ninA8WRQkzFSRmf1u9qggWLGRJggLqm818QAJhJVOqJiHMH15lnyH0Dy0nCPLvtRp2DBBAXZhDw7AgWOowQXUoQEYhnAPT/BsxMaD8WK8TlrnjOnMNvyC8f4FkAaSnA==</latexit>wgA
a

Time / s 30

Po
si

tio
n

on
 tr

ac
k

/ m

0
0

1

Po
si

tio
n

on
 tr

ac
k

/ m

1

Np

Ne
ur

on
s

(H
PC

)

Time / s 30

Po
si

tio
n

on
 tr

ac
k

/ m

0
0

1

Po
si

tio
n

on
 tr

ac
k

/ m

1

Np

Ne
ur

on
s

(H
PC

)

Time / s 30

Po
si

tio
n

on
 tr

ac
k

/ m

0
0

1

1

Np

Ne
ur

on
s

(H
PC

)

Time / s 30

Po
si

tio
n

on
 tr

ac
k

/ m

0
0

1

1

Np

Ne
ur

on
s

(H
PC

)

b

c d

Figure S3: Network response to removal of plasticity and additional noise. The standard path
integration experiment is perform and hippocampal activity (as well as true and decoded position) is
shown in four modified conditions. a Plasticity on the recurrent synapses (wgA) is turned off and the
network no longer learns to path integrate. b Plasticity on all weights between HPC and MEC (wgB

& wpA) is turned off. The network still learns to path integrate but inputs to HPC from MEC are not
matched to those from the sensory input. c Synaptic noise on all synapses is increased by a factor of
10. The bump attractor is now noisier than Fig. 3e but path integration is still accurate. d Synaptic
noise on all synapses is increased by a factor of 100 at which point learning fails.

and ⌘ = 0 on these weights) during this phase of training, this results in MEC neurons with receptive
fields equal to those of the HPC neurons (except also passed through a rectified-tanh activation
function), Fig 4b left column.

In the second phase we begin by randomly permuting the centres of the Gaussian sensory inputs in
Eqn. (24). This “sensory shuffle” simulates the sort of hippocampal remapping event which typically
occurs when an agent enters into a new environment. The activations of all neuronal layers are reset
to zero. A second phase of learning then begins, this time only the weights from HPC to MEC (wgB)
and from MEC to HPC (wpA) are plastic (⌘ = 0.01) while the recurrent weights within MEC and the
weights from the conjuctive cells to MEC (collectively, wgA) are frozen (⌘ = 0).

We found that MEC neurons regroup after the shuffle, reestablishing the pairwise correlational
structure they had before remapping with, perhaps, a phase shift (Fig. 4b). Once the ring attractor
manifold has reappeared in this way the ability to path integrate returns (Fig. 4c). We find these
results are clearest when wgB was fixed to the identity during the initial learning phase as desribed
above. Although we don’t investigate this finding thoroughly we suspect it is because the network
has an easier time learning the ring attractor since the MEC inputs are already unimodal. With
the identity mapping, a tidy activity bump already on the MEC cells before the rest of the ring
attractor connectivity is learned, providing a good starting point. Note this matches the standard
set up for studies of path integration in, for example, Vafidis et al. [35]). This, perhaps, leads to a
ring attractor which is more deeply embedded into the MEC recurrent connectivity structure and
which can therefore more easily reestablish itself after a remapping. Nonetheless we discover that
MEC is able to relearn a significant portion of the bump attractor structure during the second phase
of learning even when this was not the case and wgB was randomly intialised (wgB ⇠ N (0, 1/Np))
and plastic during the initial learning, this is shown in Fig. S4. Note how, in contrast to the receptive
field shown in Fig. 4b, the MEC neurons are now multimodal and additional bands of correlational
structure (in addition to a global phase shift) appear after relearning. We leave it to future work to
investigate this further.

18

0
1

100

i

0 1 0 1

<latexit sha1_base64="PHNdedsjpnFq9r4ltiwmndlCg8s=">AAAB+HicbVDLSgMxFM3UV62PjrrTTbAIdTNk+nRZcOPCRQv2AW0pmTTThmYeJBmxDv0CP8GNC0Xc+gv+gTv/wk8wnSr4OhA4nHMv9+Q4IWdSIfRmpJaWV1bX0uuZjc2t7ay5s9uSQSQIbZKAB6LjYEk582lTMcVpJxQUew6nbWdyOvfbl1RIFvgXahrSvodHPnMZwUpLAzPb87AaSzceDVj+6ng2MHPIKherFRtBZJXsarFQ1qRSqKByCdoWSpCrmY33l/P9m/rAfO0NAxJ51FeEYym7NgpVP8ZCMcLpLNOLJA0xmeAR7WrqY4/KfpwEn8EjrQyhGwj9fAUT9ftGjD0pp56jJ5OYv725+J/XjZR70o+ZH0aK+mRxyI04VAGctwCHTFCi+FQTTATTWSEZY4GJ0l1lkhIWP4V/yVcJrYJlVyzU0G0gsEAaHIBDkAc2qIIaOAN10AQEROAW3IMH49q4Mx6Np8Voyvjc2QM/YDx/AGYiloQ=</latexit>

gi(x)

Position, x / m

MEC

Figure S4: Regrouping of the MEC neurons after sensory remapping but relaxing the constraint that
HPC to MEC weights are fixed to the identity matrix during initial learning. This results in MEC
neurons with multimodal receptive fields and more complex regrouping dynamics after remapping.

19

	Introduction
	Related work

	A biologically plausible generative model trained with rapidly switching wake-sleep cycles and local learning rules
	Basic model summary
	Theta oscillations gate the direction of information flow through the network
	Hebbian-style learning rules train synapses to minimise local prediction errors
	Velocity inputs into the hidden layer

	Results
	Validation on an artifical latent learning task
	Learnable path integration with a hidden ring attractor
	Remapping: transfer of structural knowledge between environments

	Discussion
	Supplementary Material
	Basic model description
	Dendritic updates
	Somatic updates
	Update ordering
	Learning rules
	Synaptic noise
	Measuring the prediction error

	Relationship to online Bayesian Inference
	Experiment 1: An artifical latent learning task
	Experiment 2: Learnable path integration with a hidden ring attractor
	Position decoding
	Robustness of path integration to weight initialisations, plasticity lesions and noise

	Experiment 3 details: Remapping

