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Abstract

We study the problem of designing mechanisms when agents’ valuation functions
are drawn from unknown and correlated prior distributions. In particular, we
are given a prior distribution D, and we are interested in designing a (truthful)
mechanism that has good performance for all “true distributions” that are close
to D in Total Variation (TV) distance. We show that DSIC and BIC mechanisms
in this setting are strongly robust with respect to TV distance, for any bounded
objective function O, extending a recent result of Brustle et al. ([BCD20], EC
2020). At the heart of our result is a fundamental duality property of total variation
distance. As direct applications of our result, we (i) demonstrate how to find
approximately revenue-optimal and approximately BIC mechanisms for weakly
dependent prior distributions; (ii) show how to find correlation-robust mechanisms
when only “noisy” versions of marginals are accessible, extending recent results
of Bei et. al. ([BGLT19], SODA 2019); (iii) prove that prophet-inequality type
guarantees are preserved for correlated priors, recovering a variant of a result of
Dütting and Kesselheim ([DK19], EC 2019); (iv) give a new necessary condition
for a correlated distribution to witness an infinite separation in revenue between
simple and optimal mechanisms, complementing recent results of Psomas et al.
([PSCW22], NeurIPS 2022); (v) give a new condition for simple mechanisms to
approximate revenue-optimal mechanisms for the case of a single agent whose type
is drawn from a correlated distribution that can be captured by a Markov Random
Field, complementing recent results of Cai and Oikonomou ([CO21], EC 2021).

1 Introduction

Mechanism design studies optimization in strategic settings. The designer’s task is to create a
mechanism that interacts with strategic agents, each with their own, private preferences over the
mechanism’s output. The inability to provide meaningful guarantees for important objectives — such
as revenue — when studying mechanism design problems through the lens of worst-case analysis,
has motivated the study of Bayesian mechanisms. In the Bayesian setting, there is a probability
distribution, typically known to the designer, from which agents’ private information — their types —
is drawn, and the designer seeks to maximize an objective function in expectation over the randomness
of the types, and, at the same time, incentivize the agents to report their type truthfully.

While we have greatly deepened our understanding of mechanism design under the Bayesian setting,
when taking this approach to practice, it is natural to ask what happens if the designer has only
partial information about the agents’ type distributions. In recent years, a growing literature studies
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the robustness of mechanisms with respect to inaccurate priors. The term “robustness” can mean
many things in this context, such as mechanism design using only sampling access from the under-
lying prior [CR14, HMR15, DHP16, MR16, CD17, GHZ19, GW21], or mechanism design using
only parametric knowledge of the underlying prior [AMDW13, Car17, GL18, BGLT19, GPTD23].
Arguably, the most ambitious line of work in this thread strives to, given a prior distribution D,
design a mechanism that provides good guarantees simultaneously for all “true distributions” D̂
that are close to D under some notion of statistical distance. Recent, compelling positive re-
sults [BS11, CD17, DK19, LLY19, BCD20] show that this endeavor is, in fact, possible.

In this work, we demonstrate that a large class of such robustness results can be obtained from a
fundamental duality property of total variation distance. We distill this key property into various
forms that are directly applicable to mechanism design, and then illustrate how they imply a variety of
robustness results for both Dominant Strategy Incentive Compatible (DSIC) and Bayesian Incentive
Compatible (BIC) mechanisms. In particular, we recover a litany of known results, such as the revenue
robustness of BIC mechanisms of [BCD20] and robustness of prophet inequalities of [DK19], as well
as prove several new results, such as a new necessary condition for a prior distribution to exhibit a
large gap between simple and optimal mechanisms (complementing recent results of [PSCW22]).

Our Contributions. We consider the problem of a designer that wants to design a mechanism that
maximizes a bounded objective function O, when allocating m items to n strategic agents. Agent i
has a private type ti ∈ Ti, drawn from a probability distribution Di, which specifies her value for
every subset of items S ⊆ [m]. We write D for the joint distribution over agents’ types.

We start in Section 3 by proving a simple, but crucial lemma, Lemma 2, about non-truthful mecha-
nisms in this setting. Lemma 2 states that the expected performance, with respect to the objective
O, of a (possibly non-truthful) mechanismM is stable with respect to small changes in total varia-
tion (TV) distance to the underlying prior distribution. This lemma follows from the argument for
Kantorovich-Rubinstein duality of TV distance [LPW09, Vil09].

Appropriate applications of Lemma 2 allow us to prove our first robustness result: DSIC mechanisms
are strongly robust. Specifically, given a mechanismM that is ex-post individually rational (ex-post
IR), DSIC, and an α approximation to the optimal mechanism for a distributionD (w.r.t. the objective
O), we construct an ex-post IR and DSIC mechanism M̂ that is agnostic to D̂ and α approximates,
under distribution D̂, the performance of the optimal mechanism for D̂ (w.r.t. O) minus a small error
which depends on the TV distance, dTV

(
D, D̂

)
, of D and D̂ (Theorem 1). Notably, D and D̂ need

not be product distributions, and if they have the same support, M̂ is the same mechanism asM.

We proceed to study the robustness of BIC mechanisms. As opposed to the DSIC case, the BIC
property is not maintained under small perturbations of a prior, or even by small changes in the
support of a distribution. Rather surprisingly, however, in Lemma 4 we show that a mechanism
M that is BIC w.r.t. a distribution D, is also approximately BIC w.r.t. a distribution D̂, where the
approximation depends on the distance between D and D̂. Combined with Lemma 2, we show our
main robustness result for BIC mechanisms (Theorem 2): a mechanismM that is BIC w.r.t. D is
approximately BIC w.r.t. D̂, and its performance for an objective function O is similar under D and
D̂, as long as D and D̂ have the same support. Compared to the corresponding robustness result
of [BCD20], Theorem 2 only holds if D and D̂ have the same support. Furthermore,M is not ε-BIC
(as in [BCD20]), but (ε, q)-BIC (see Section 2). On the other hand, our robustness results hold for
arbitrary objectives, not just revenue, and arbitrary distributions, not just product distributions.

In Section 4 we show numerous applications of our robustness framework. Specifically, we give five
applications. First, in Section 4.1, we extend our strong DSIC robustness to BIC mechanisms, albeit
only for the revenue objective and product distributions. That is, we show that given a distribution D
that is close to a product distributionDp, approximately optimal (w.r.t. revenue) and BIC mechanisms
for Dp can be transformed into approximately optimal and approximately-BIC mechanisms for D
(Theorem 3). En route, we prove a self-reduction, that constructs an ε′-BIC mechanism w.r.t. D,
given an (ε, q)-BIC mechanism w.r.t. D, that might be of independent interest.

In Section 4.2 we study the correlation-robust framework of [BGLT19] (first introduced in [Car17]).
At a high level, we are given the marginals of n dependent agents for a single item. The goal is to
design a mechanism that maximizes (among all feasible mechanisms) the minimum, over all possible
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joint distributions consistent with the given marginals, expected revenue. We extend our robustness
results to this setting (Theorem 4), and get implications for the max-min revenue performance of
sequential posted prices and the Lookahead auction when the given marginals are inaccurate.

In Section 4.3 we consider prophet inequalities. In the simplest version of this problem, we are shown
n non-negative numbers, t1, . . . , tn, one at a time, and upon arrival we need to decide (immediately
and irrevocably) whether we should accept ti, or keep going. tis are drawn independently from known
distributions Di. A celebrated result, known as the prophet inequality, states that a simple threshold
policy τ (“pick the first xi bigger than τ”) has expected reward at least half of a prophet, who knows
the values of all xis in advance (and can therefore get reward maxi ti). Prophet inequalities have
numerous applications in mechanism design, and are the main tool in the analysis of posted price
mechanisms. Observing that prophet inequalities correspond to sequential posted prices, which are
DSIC mechanisms, and applying Lemma 2 for the welfare objective, we get robustness of prophet
inequalities (Corollary 1); as a special case of our application we recover a variant of a result of
Dütting and Kesselheim [DK19] on the TV robustness of prophet inequalities.

Finally, in Section 4.4 we apply our robustness framework to study revenue gaps between simple
and optimal mechanisms. Here, [BCKW15, HN19] construct correlated distributions whose revenue
is infinite, but such that simple mechanisms (e.g., those with finite menus) cannot extract a lot of
revenue. Recently, Psomas et al. [PSCW22] provide (arguably, complex) conditions that a distribution
D should satisfy in order to witness such large gaps; our framework readily provides new, simple,
and necessary conditions (Corollary 2), complementing the results of [PSCW22]. On a similar
note, Cai and Oikonomou [CO21] escape the negative results of [BCKW15, HN19] by considering
distributions described by a Markov Random Field (MRF). Their revenue guarantees for simple
mechanisms are controlled by ∆, a parameter of the MRF, that is determined by how much the value
of an item can be influenced by values of other items. We show that a bound on the TV distance
to a product distribution also suffices to provide guarantees on the revenue of simple mechanisms
(Proposition 2). Furthermore, under conditions on the MRF, bounds on ∆ imply bounds on this
distance (Proposition 4), but the other direction is not necessarily true (Proposition 3); thus, getting
bounds on the TV distance of an MRF to a product distribution is a meaningful endeavor.

Related Work. A number of recent works study robustness in mechanism design; see [Car17]
for a survey. The paper (thematically and technically) closest to ours is [BCD20], which proves
the robustness of the revenue objective for BIC mechanisms under various notions of statistical
distance, including TV and Prokhorov, as well as Lévy and Kolmogorov for single parameter
settings. Specifically, given a distribution D, [BCD20] show how to construct a mechanism that
is (approximately) BIC, and performs well, when executed on any distribution D̂ that is close to
D. Here, we focus on TV distance, and recover their result for this case, slightly extending it
for the case of revenue, and significantly extending it under some minor assumptions. Dütting
and Kesselheim [DK19] study prophet inequalities with inaccurate priors. Specifically, given a
product distribution ×i∈[n]Di, [DK19] study policies that perform well when executed on a product
distribution ×i∈[n]D̂i, such that Di is close to D̂i for all i ∈ [n], under various statistical distances.
As an application of our robustness for DSIC mechanisms, we recover and extend to non-product
distributions their result for TV distance, for the special case of sequential posted prices.

A related, but different, approach is to assume sample access to the underlying distribution [CR14,
HMR15, DHP16, MR16, CD17, GHZ19, GW21]. In this line of work, the goal is bound the number
of samples necessary to design a near-optimal mechanism, or, given a fixed number of samples,
design the best mechanism possible. Robustness results of the former style, i.e., the current paper
or [BCD20], sometimes imply sample complexity results, e.g., by arguing that using the samples,
one can learn a distribution that is close to the real distribution, and then applying robustness
results [BCD20]. We conjecture that similar results can be shown using our robustness framework,
combined with estimation in TV distance [HJW15, DG85]. Another line of work [AMDW13, Car17,
GL18, BGLT19, GPTD23] assumes partial knowledge of the true prior distribution, e.g., its mean or
the marginals of a correlated distribution. The goal is to find the mechanism that (approximately)
maximizes the worst-case performance with respect to the missing details (e.g., the CDF consistent
with the mean or the joint distribution that respects the given marginals). Our results have implications
for such settings as well. Finally, certain works consider the robustness of pathological examples in
mechanism design, e.g., constructions of distributions that have infinite revenue gaps between simple
and optimal mechanisms [BCKW15, HN19]. For example, [PSW19] uses the lens of smoothed

3



analysis ([ST04]) to reason about the robustness of the [HN19] constructions. Our framework
has implications about these constructions; specifically, we give a new necessary condition for a
distribution to be “pathological,” complementing a recent result of [PSCW22].

From a probability theory perspective, we heavily use coupling techniques. Couplings are a general
proof technique in probability theory with several historically notable uses [Doe38, Sko56, Kan60,
Str65, Dud68, Wic70, Dob70] (also see [Vil09, Kal21]). Given two marginal distributions, the basic
idea of coupling is to construct a consistent joint distribution on a common probability space in
order to deduce certain relationships between the marginals. The key coupling used in this work —
Dobrushin’s optimal coupling — minimizes the probability that two random variables with given
marginal distributions are different, and has been historically utilized to develop sharper results on
Markov chain ergodicity, cf. [Dob70, Dob71, Gri75]. It turns out that this optimal coupling also
defines total variation distance, cf. [LPW09, Vil09]. Such distances exhibit Kantorovich-Rubinstein
duality and are characterized by the maximal difference of expected values with respect to the given
marginal distributions [Kan60, LPW09, Vil09]. In this work, we distill how optimal couplings and
duality for total variation can be used in yet another setting: mechanism design.

2 Preliminaries

We examine the problem of a central designer who seeks to create a mechanism that maximizes an
objective function given some prior knowledge of the universe. Consider a set [n] ≜ {1, . . . , n} of
selfish agents and a finite set [m] ≜ {1, . . . ,m} of items. Each agent i ∈ [n] has a type ti belonging
to a set Ti of possible types. We assume that, for all i ∈ [n], there exists a special type ⊥ ∈ Ti,
interpreted as the option of not participating in the designer’s mechanism. Let T = T1 × · · · × Tn.
We use X to denote the set of all possible allocations of the items. (In particular, the sets X and Ti
are typically standard Borel spaces, e.g., finite-dimensional Euclidean spaces. Hence, our analysis
with couplings and total variation distance in the sequel do not require measure theoretic arguments.)

The goal of the designer is to construct a mechanismM = (x, p) which consists of (1) an allocation
rule x : T 7→ ∆(X ), which maps reported types (t1, . . . , tn) ∈ T to a distribution over allocations,
and (2) a payment function p : T 7→ [−H,H]n which maps reported types to (bounded) payments
for each agent, for some fixed constant H > 0. We say that a mechanismM = (x, p) is defined
on types T if the domain of x and p is T . We writeM(t) = (x(t), p(t)) for the outcome, i.e., the
allocation and payments, of mechanismM on input t ∈ T .

Each agent i has a valuation function vi : Ti × X 7→ [0, H], which specifies their value for an
allocation, given their type. We assume that agents are quasi-linear, i.e., the utility of agent i, with
type ti, for an allocation A and a payment pi is equal to vi(ti, A) − pi. We overload notation and
write ti(M(ti, t−i)) for the utility of agent i with type ti ∈ Ti for the outcome of the mechanismM
on input (ti, t−i). We use F for the set of possible outcomes of a mechanismM. We assume that
there exists a probability distribution D supported on T from which agents’ types are drawn.

Mechanism Design Considerations. When faced with a mechanismM, each agent i reports a
type bi ∈ Ti to the mechanism. We aim to design mechanisms that (approximately) incentivize
agents to report their true types, so we typically have that bi = ti, for all i ∈ [n]. Given a mechanism
M, we write uMi (ti ← t′i, t−i) for the difference in utility of agent i when she reports t′i ∈ Ti
instead of her true type ti ∈ Ti, and all other agents report according to t−i ∈ T−i. That is,
uMi (ti ← t′i, t−i) = ti (M(ti, t−i))− ti (M(t′i, t−i)).

We consider four, increasingly weaker, notions of incentive compatibility. First, we say that a
mechanismM is Dominant Strategy Incentive Compatible (henceforth, DSIC) if an agent is better
off reporting her true type, no matter what other agents report, i.e., for all i ∈ [n], every type
ti ∈ Ti, possible misreport t′i ∈ Ti, and types t−i ∈ T−i for the remaining agents, it holds that
uMi (ti ← t′i, t−i) ≥ 0. Second, a mechanismM is Bayesian Incentive Compatible (henceforth BIC)
with respect to a distribution D, if an agent is better off reporting her true type in expectation over
the other agents’ reports, i.e. if for all i ∈ [n], every type ti ∈ Ti and possible misreport t′i ∈ Ti, it
holds that Et−i∼D−i|ti

[
uMi (ti ← t′i, t−i)

]
≥ 0. Third, a mechanismM is ε-BIC w.r.t. D if for all

i ∈ [n], and all ti, t′i ∈ Ti, it holds that Et−i∼D−i|ti
[
uMi (ti ← t′i, t−i)

]
≥ −ε. Fourth, a mechanism

M is (ε, q)-BIC w.r.t. D if it is ε-BIC with probability at least 1− q, i.e., if for all i ∈ [n], and all
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ti, t
′
i ∈ Ti, Prti∼Di

[
Et−i∼D−i|ti

[
uMi (ti ← t′i, t−i)

]
≥ −ε

]
≥ 1− q. An (ε, 0)-BIC mechanism is

simply ε-BIC, and a 0-BIC is simply BIC.

Finally, a mechanismM is ex-post Individually Rational (henceforth ex-post IR) if for every agent i ∈
[n], every type ti ∈ Ti and types t−i ∈ T−i for the remaining agents, it holds that ti (M(ti, t−i)) ≥ 0.

The Designer’s Objective. The designer has an objective function O(., .) : T × F 7→ [a, b] that
takes as input agents’ (reported) types t ∈ T and mechanism outcomesM(t) ∈ F (noting that the
mechanism’s outcome might be a randomized allocation) and outputs a real number in the interval
[a, b]. Let V = b − a. The task of the designer is to find an ex-post IR and truthful mechanism
(under one of the aforementioned notions of truthfulness) that maximizes this objective function
in expectation over the randomness of D. We denote the optimal value of the objective O under
distribution D by OPTO(D). We specify in context whether this is with respect to DSIC, or BIC, or
ε-BIC mechanisms. A mechanismMα

D is an α approximation to the optimal mechanism under D,
with respect to O, if Et∼D [O(t,Mα

D(t))] ≥ aOPTO(D).
Some of our results hold for arbitrary, bounded objectives O. Two objectives of specific interest to us
will be welfare and revenue. The welfare objective, denoted by V al(.), is simply the sum of agents’
valuations of an outcome, i.e. V al(t,M(t)) =

∑
i∈[n] vi(ti, xi(t)), where xi(t) is the allocation

of agent i in the outcomeM(t). The revenue objective, denoted by Rev(.), is the sum of agents’
payments, i.e. Rev(t,M(t)) =

∑
i∈[n] pi(t), where pi(t) is the payment of agent i in the outcome

M(t). We often overload notation and write Rev(M,D) for the expected revenue of mechanism
M under distribution D, i.e. Rev(M,D) = Et∼D [Rev(t,M(t))]. To maintain consistency with
the (vast) literature on mechanism design we further denote the optimal revenue as Rev(D), and the
optimal welfare as V al(D), under distribution D.

Statistical Distance. Throughout the paper, we are interested in how mechanisms behave under
different distributions that are not “too far” from each other. Our notion of distance in this paper is
total variation distance.
Definition 1 (Total Variation Distance). The total variation (TV) distance between any two probability
distributions P and Q on a sample space Ω is defined as

dTV (P,Q) ≜ sup
E⊆Ω
|P (E)−Q(E)| ,

where the supremum is over all Borel measurable subsets E ⊆ Ω, and P (E) (resp. Q(E)) denotes
the probability of the event E with respect to the distribution P (resp. Q).

We note that Ω is either discrete or a measurable subset of a finite-dimensional Euclidean space in
our analysis, and hence, it is always a standard Borel space. For any probability distributions P and
Q on Ω, let Π(P,Q) be the (non-empty) set of all couplings of P and Q, i.e., all joint probability
distributions γ = PX,Y of two random variables X,Y ∈ Ω such that the marginal distributions
are PX = P and PY = Q, respectively. The following definition will be of utility in the sequel
[Dob70, LPW09].
Definition 2 (Optimal Coupling). For any two probability distributions P and Q on Ω, we define the
optimal coupling of P and Q as the joint distribution γ∗ = argminγ∈Π(P,Q) E(X,Y )∼γ [1{X ̸= Y }]
of two random variables (X,Y ) that has marginal distributions P and Q of X and Y , respectively,
and minimizes the probability that X is different to Y .

We note that such an optimal coupling always exists [Dob70, Vil09]. The next lemma presents
several useful characterizations of TV distance including an optimal coupling representation (which
demonstrates how TV distance is a Wasserstein distance with respect to the discrete metric [Vil09]);
see [Mak19, Section 2.2.1] and [PW22, Theorem 7.7] for a compilation of other characterizations.
Lemma 1 (Equivalent Characterizations of TV Distance [Str65, Dob70, LPW09, Vil09]). For any
two probability distributions P and Q on Ω, we have

dTV (P,Q) =
1

2
∥P −Q∥1

= min
γ∈Π(P,Q)

Pr(X,Y )∼γ [X ̸= Y ]

= max
f :Ω→[− 1

2 ,
1
2 ]
EX∼P [f(X)]− EY∼Q [f(Y )] ,
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where ∥P −Q∥1 is the L1-distance between P and Q, the second equality is the optimal coupling
characterization which minimizes Pr(X,Y )∼γ [X ̸= Y ] = E(X,Y )∼γ [1{X ̸= Y }] over all couplings
γ of P and Q, and the third equality is the Kantorovich-Rubinstein dual characterization which takes
the maximum over all (measurable) functions f : Ω→ R bounded by supt∈Ω |f(t)| ≤ 1

2 .

3 Robustness of Mechanisms Under Total Variation Distance

In this section, we prove our robustness results for DSIC and BIC mechanisms. Missing proofs
throughout the section are deferred to Appendix A.

At the heart of our approach lies the following lemma, which shows that, even for correlated prior
distributions, assuming truthful bidding, a mechanism’s performance with respect to an arbitrary
objective function O is stable under small perturbations to the prior.
Lemma 2. Let P and Q be two arbitrary probability distributions supported on T and letM be any
mechanism. Assuming truthful bidding, for all objective functions O(., .) ∈ [a, b], letting V = b− a,
it holds that Et∼P [O(t,M(t))]− Et′∼Q [O(t′,M(t′))] ≤ V dTV(P,Q).

We note thatM in the statement of Lemma 2 may not be DSIC or BIC, for neither P nor Q.

Proof of Lemma 2. The objective function is lower bounded by a and upper bounded by b; thus, we
have that for any t, t′ ∈ T , O(t,M(t))−O(t′,M(t′)) ≤ V 1{t ̸= t′}. Since this inequality holds
for all t, t′ ∈ T , it also holds after taking an expectation with respect to any coupling γ of P and Q,
and specifically for the optimal coupling γ∗ between P and Q (see Definition 2):

E(t,t′)∼γ∗ [O(t,M(t))−O(t′,M(t′))] ≤ V E(t,t′)∼γ∗ [1{t ̸= t′}] . (1)

Using the second form of Lemma 1, the RHS of (1) is equal to V dTV (P,Q). For the LHS of (1), using
linearity of expectation, the fact thatO(t,M(t)) does not depend on t′, and the fact thatO(t′,M(t′))
does not depend on t, we have that E(t,t′)∼γ∗ [O(t,M(t))−O(t′,M(t′))] = Et∼P [O(t,M(t))]−
Et′∼Q [O(t′,M(t′))]. Putting everything together, we get the desired inequality.

In the remainder of this section, we show that this lemma can be used to prove strong robustness
results for DSIC and BIC mechanisms.

3.1 DSIC Mechanisms

Our main robustness result for DSIC mechanisms is stated as follows.
Theorem 1 (Robustness for DSIC). Let D and D̂ be two arbitrary distributions supported on T ,
respectively, such that dTV

(
D, D̂

)
≤ δ, and let O(., .) ∈ [a, b] be an objective function. LetMα

D
be an ex-post IR, DSIC, and α-approximate mechanism (under D), with respect to the optimal (under
D) ex-post IR and DSIC mechanism for O. Then, letting V = b− a, it holds that

Et∼D̂ [O(t,Mα
D(t))] ≥ αOPTO(D̂)− (1 + α)V δ,

where OPTO(D̂) is the performance of the optimal (for O) DSIC mechanism.

Proof. We apply Lemma 2 twice. First, choosing P = D, Q = D̂, andM =Mα
D, Lemma 2 implies

Et∼D [O(t,Mα
D(t))]− Et′∼D̂ [O(t′,Mα

D(t
′))] ≤ V dTV

(
D, D̂

)
≤ V δ.

Now, letM∗
D̂

be the optimal (under D̂) ex-post IR and DSIC mechanism for O. Using the definition
ofMα

D, and re-arranging we have

Et′∼D̂ [O(t′,Mα
D(t

′))] ≥ Et∼D [O(t,Mα
D(t))]− V δ

≥ αEt∼D [O(t,M∗
D(t))]− V δ

≥ αEt∼D

[
O(t,M∗

D̂(t))
]
− V δ,
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where the last inequality is because M∗
D̂

is feasible (i.e. ex-post IR and DSIC) for D. Sec-

ond, choosing P = D̂, Q = D, and M = M∗
D̂

, by Lemma 2, plus re-arranging, we have that

Et′∼D

[
O(t′,M∗

D̂
(t′))

]
≥ Et∼D̂

[
O(t,M∗

D̂
(t))
]
− V δ Combining these inequalities we have:

Et∼D̂ [O(t,Mα
D(t))] ≥ αEt∼D̂

[
O(t,M∗

D̂(t))
]
− (1 + α)V δ.

Intuitively, Theorem 1 states that, if a mechanism is approximately optimal for D, then it is also
approximately optimal for all D̂ that are close in total variation distance, paying a small additive
error. Note that neither D nor D̂ needs to be a product distribution. That is, if D and D̂ have the same
support, a DSIC mechanismMα

D performs approximately-optimally under D̂. Finally, notice that in
the above theorem, we assume that the D and D̂ share the same support; in Appendix A.1 we relax
this assumption, and show how to modify the mechanismMα

D, in a way that is agnostic to D̂, and
provide exactly the same guarantee.

3.2 Bayesian Incentive Robustness

In this section, we study BIC mechanisms. As opposed to DSIC mechanisms, arguing about whether
a BIC mechanism remains BIC after perturbing the prior distribution is a lot more involved. Our
goal in this section is to prove that the BIC property degrades gracefully as a function of the TV
distance, even for arbitrary objectives, albeit, with two small technical caveats (compared to the
DSIC robustness): (1) D and D̂ must share the same support, and (2) the incentive guarantees of
our mechanisms also degrade. The second requirement is necessary; in Section 4.1 we show how to
bypass the first requirement for the revenue objective, recovering a slightly stronger version of a TV
robustness result of Brustle et al. [BCD20].

First, we need the following Markov-like technical lemma that when two joint distributions PX,Y ,
QX,Y are close in TV distance, then, with high probability, the conditional distributions PY |X=x,
QY |X=x are also close in TV distance.
Lemma 3. Let PX,Y , QX,Y be two probability distributions for the (possibly multivariate) random
variables X and Y . Let PY |X=x (resp. QY |X=x) be the probability distribution of PX,Y (resp.
QX,Y ) conditioned on X = x , and let QX be the marginal probability distribution of X as dictated

by QX,Y . Then, for all q ∈ [0, 1], Prx∼QX

[
dTV

(
PY |X=x, QY |X=x

)
>

2 dTV(PX,Y ,QX,Y )
q

]
≤ q.

Next, we prove that a BIC mechanism for D is (ε, q)-BIC for D̂, assuming that D and D̂ have the
same support and small TV distance.

Lemma 4. Let D and D̂ be two probability distributions supported on T , with dTV

(
D, D̂

)
≤ δ.

IfM is an ex-post IR and BIC mechanism w.r.t. D then it is also an ex-post IR and ( 8Hδq , q)-BIC

mechanism w.r.t. D̂, for all q ∈ [0, 1].

To prove the above lemma we leverage Lemma 3. We know that with high probability the perception
of each agent over the distributions of the rest of the agents is very close under D and D̂. That is why,
if agent i cannot gain by misreporting under D, then with high probability, she cannot significantly
increase her utility by misreporting under D̂.

As a direct implication of Lemma 2 and Lemma 4 we get our main robustness result for BIC.

Theorem 2 (Robustness for BIC). Let D and D̂ be two arbitrary distributions supported on T , such
that dTV

(
D, D̂

)
≤ δ, and let O(., .) ∈ [a, b] be an objective function. LetMD be a mechanism

that is ex-post IR and BIC w.r.t. D. ThenMD is also ex-post IR and
(

8Hδ
q , q

)
-BIC w.r.t. D̂, for all

q ∈ [0, 1]. Also, letting V = b− a, it holds that Et∼D̂ [O(t,MD(t))] ≥ Et∼D [O(t,MD(t))]− V δ.

Comparing to the corresponding result of Brustle et al. [BCD20], Theorem 2 only holds if D and
D̂ have the same support. Also, the guarantee on incentives is weaker: MD is not ε-BIC (as
in [BCD20]), but (ε, q)-BIC. However, our robustness results holds for arbitrary objectives, not just
revenue, and arbitrary distributions, not just product distributions.
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On Tightness of Robustness Results. Regarding Lemma 2, it is known that EX∼P [f(X)] −
EX∼Q[f(X)] ≤ dTV(P,Q) for all functions f bounded by 1/2 (see Lemma 1), and equality holds
for the function f∗(x) = 1/2 if P (x) ≥ Q(x) and f∗(x) = −1/2 otherwise. We can use this to
show that equality holds for Lemma 2 when the objective function and the mechanism, combined,
look like this function, i.e., f∗(x) = O(x,M(x)) (with appropriate re-scaling when V is not 1).
This yields a sufficient condition for tightness of Lemma 2.

Regarding Theorem 1, it is straightforward to construct a tight example for the case of revenue and
welfare. For instance, for the case of a single agent, letting T = [0, V ], consider the case that the
distribution P is a point mass at V , and distribution Q takes the value V with probability 1− δ, and
zero otherwise. The TV distance between P and Q is δ. Consider the simple mechanismM that
posts a price of V . Its revenue/welfare under P is V , and its revenue/welfare under Q is (1− δ)V .
The main issue with generalizing to arbitrary objectives is that a worst-case arbitrary objective can do
something uninteresting, e.g., take the value c no matter what, where naturally our result is not tight.

Regarding Theorem 2, tightness of the revenue objective follows from the aforementioned tightness
of Theorem 1 for revenue. Tightness for the BIC guarantee follows from the following example.
Consider the single item case where two identical bidders have valuation 1 with probability 0.5 and
valuation 2 with probability 0.5 independently from each other. Now consider the mechanism where
the first bidder always takes the item if he bids 2 and pays 1.5. When he bids 1 and the second
bidder bids 1, he again takes the item and and now pays 1. Finally, if the first bidder bids 1 and the
second bidder bids 2, then the second bidder takes the item and pays 2. For the specific distribution
we selected, it is easy to check that this mechanism is BIC. Now assume that the second bidder’s
distribution changes to having valuation 1 with probability 0.5+ε and 2 with probability 0.5−ε. The
TV distance between the two distributions is exactly ε. However our mechanism is no longer BIC.
Whenever the first bidder’s valuation is 2, if he reports truthfully, he will always get 0.5 utility. If he
instead reports 1, he will make 0.5 + ε utility (on expectation). Taking into account this observation,
we can see that our mechanism is now ε-BIC.

4 Applications

In this section, we show a number of applications of Lemma 2, and Theorems 1 and 2.

4.1 BIC Mechanisms

We start by showing applications of our robustness results for the revenue objective of BIC mecha-
nisms. Our goal is to extend our DSIC robustness result (Theorem 1) to BIC mechanisms. That is,
we’d like, given an approximately optimal BIC mechanism for a distribution D, to get an approxi-
mately optimal and approximately BIC mechanism for distribution D̂. We will achieve this goal for
the revenue objective and product distributions; missing proofs can be found in Appendix B.

Towards our main result for this section, we prove the following lemma, which might be of inde-
pendent interest. Intuitively, the lemma shows that one can turn an (ε, q)-BIC mechanism into a
O(ε+ nqH)-BIC mechanism, paying a small loss in revenue.
Lemma 5. For any product distribution D = ×i∈[n]Di, given a mechanismM that is ex-post IR
and (ε, q)-BIC w.r.t. D, we can design a mechanism M̂ that is ex-post IR and O(ε+ nqH)-BIC w.r.t.
D, such that Rev(M̂,D) ≥ Rev(M,D)− nqV .

Our main theorem for this stage is stated as follows.
Theorem 3. Let D be a probability distribution supported on T , and let Dp be a product distribution
such that dTV (D,Dp) ≤ δ. LetMα

Dp be an ex-post IR, BIC, and α-approximate mechanism (under
Dp), with respect to the revenue optimal (under Dp) ex-post IR and BIC mechanism. Then,Mα

Dp is
ex-post IR and ( 8Hδq , q)-BIC with respect to D, for all q ∈ (0, 1]. Furthermore, Rev(Mα

Dp ,D) ≥

αOPT (D)−O
(
(1 + α)V

√
n
√
δ
)

.

In order to get the full benefits of Theorem 3, one needs the product distribution Dp that is the
closest (in TV distance) to the original distribution D. Let ε be this optimal distance. The following
proposition shows that, for every distribution D, the distance of D to the product of its marginals is
bounded by (n+ 1)ε, and therefore, Theorem 3 holds for every distribution D for δ = (n+ 1)ε.
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Proposition 1. Let D = ×i∈[n]Di be a product distribution supported on ×i∈[n]Ti, and let D̂ be a
joint distribution supported on ×i∈[n]Ti, whose marginal over Ti is exactly Di. Then, if there exists a

product distribution Dp such that dTV
(
D̂,Dp

)
≤ ε, it holds that dTV

(
D, D̂

)
≤ (n+ 1)ε.

4.2 Marginal Robustness

As a second application, we consider the setting of Bei et al. [BGLT19]. In this problem, we
want to sell one item to n dependent agents, and we only know the marginal distribution of
each agent i. Overloading notation, let ti ∈ Ti ⊆ R+ be the valuation of agent i for the item.
There is a distribution D, supported on ×i∈[n]Ti, from which agents’ valuations are sampled
from. For the sake of simplicity, we only argue about discrete distributions; however, our re-
sults easily extend to the continuous case. Let Di be the marginal distribution of agent i, i.e.,
Prti∼Di

[ti = vi] =
∑
v−i∈T−i

Prt∼D [t = (vi, v−i)]. The designer knows marginal distributions Di
for each i but notD. Given a set of marginal distributions (D1, · · · ,Dn) let Π(D1, · · · ,Dn) be the set
of all distributions consistent with such marginals, i.e. Π(D1, · · · ,Dn) = {D′|Prti∼Di [ti = vi] =∑
v−i∈T−i

Prt∼D′ [t = (vi, v−i)] ,∀i ∈ [n],∀ti ∈ Ti}. Our goal is to find a mechanism M such
thatM = argmaxM′ minD′∈Π(D1,··· ,Dn) Et∼D′ [O(t,M′(t))] whereM′ is taken over all possible
ex-post IR and DSIC mechanisms. We can prove the following theorem.
Theorem 4. Given a set of marginals (D1, · · · ,Dn) and a DSIC and ex-post IR mechanismMα such
that minD∈Π(D1,··· ,Dn) Et∼D [O(t,Mα(t))] ≥ αmaxM′ minD∈Π(D1,··· ,Dn) Et∼D [O(t,M′(t))],
then for any set of marginals (D′

1, · · · ,D′
n) such that for all i ∈ [n], dTV (Di,D′

i) ≤ ε, it holds that
minD′∈Π(D′

1,··· ,D′
n)

Et∼D′ [O(t,Mα(t))] ≥ αmaxM′ minD′∈Π(D′
1,··· ,D′

n)
Et∼D′ [O(t,M′(t))] −

(1 + α)nεV .

The input to our problem is a set of marginals; however, we do not sample from these marginals to
compute our objective. Instead, these marginals are used in order to derive a new distribution from
which we will sample. Therefore, we cannot immediately “black box” the results we have shown
until now. To prove Theorem 4 we first relate, and bound the “distance” between Π(D1, · · · ,Dn) and
Π(D′

1, · · · ,D′
n). Then, we need to re-prove arguments equivalent to the ones used for our robustness

results so far, while taking into consideration the minmax nature of the problem. We postpone the
formal proof of Theorem 4 to Appendix C.

[BGLT19] show that Sequential Posted Prices Mechanisms are a 4.78-approximation and there
exists a Lookahead Auction that is a 2-approximation with respect to revenue for the above problem.
Using Theorem 4, we can readily get implications for the robustness of those two auctions.

4.3 Prophet Inequalities

Here, we study the prophet inequality problem. Recall that in this problem, agents arrive over time;
in the i-th step, we need to (immediately and irrevocably) decide on the allocation of agent i, whose
type ti is drawn from a marginal distribution Di. Our goal is to design a prophet inequality: a policy
that competes with the optimal in hindsight welfare maximizing allocation. It is known that, in fairly
general domains, one can achieve this goal using posted prices, i.e., set a price pj for each item j,
and let users pick their utility-maximizing subset of items [SC84, FGL14, RS17, KW19, ANSS19,
DKL20, DFKL20]; see [Luc17] for a survey. Using Lemma 2 for the welfare objective we prove
robustness for prophet inequalities, noting that posted price mechanisms are ex-post IR and DSIC.

Corollary 1. For a posted price mechanismM, and distributions D , D̂ such that dTV
(
D, D̂

)
≤ δ,

it holds that V al(M,D) ≥ V al(M, D̂)− V δ.

Using Corollary 1 for D = ×i∈[n]Di and D̂ = ×i∈[n]D̂i that are product distributions, we can get the
TV robustness result of Dütting and Kesselheim [DK19] for sequential posted prices as a special case,
noting that (1) if dTV

(
Di, D̂i

)
≤ ε, then dTV

(
D, D̂

)
≤ nε, and (2) if valuations are normalized to

[0, 1] (as in [DK19]), V = n.

4.4 Gaps between Simple and Optimal Mechanisms

Here, we show applications of our robustness results to the study of simple and approximately optimal
mechanisms. Missing proofs are deferred to Appendix D.
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Motivated by numerous negative results for revenue optimal auctions (see [Das15] for a sur-
vey), a major research thread in mechanism design studies the performance of simple mecha-
nisms [CHK07, CHMS10, CMS15, Yao15, RW15, CM16, CDW16, CZ17, KW19, BILW20]. Two
canonical mechanisms that are considered simple in this literature are: (1) the mechanism that sells
each item separately (and optimally), and (2) the mechanism that optimally sells all items as a grand
bundle; let SRev(D) and BRev(D) be the expected revenue of these mechanisms, respectively,
under prior D. On the flip side, product distributions are known to witness simple mechanisms
that are approximately optimal. For instance, Babaioff et. al. [BILW20] prove that for a single
agent and a product distribution Dp, max{SRev(Dp), BRev(Dp)} ≥ 1

6Rev(D
p), even though

the individual approximation factors for SRev(Dp) and BRev(Dp) are O(1/ log(m)) and 1/m,
respectively [HN13, LY13]. Note that in the single-agent context, by product distribution, we mean
with respect to items. The following observation is an immediate implication of Theorem 1.
Observation 1. Let SM be a family of mechanisms, such that Et∼D̂p

[
O(t,SMD̂p(t))

]
≥

αOPTO(D̂p) for some objective O, where SMD̂p is a mechanism in SM parameterized by
the product distribution D̂p. Then, for any (possibly non-product) distribution D that is close
to some product distributions Dp, and specifically, dTV (D,Dp) ≤ αOPTO(D)

2(1+α)V , we have that
Et∼D [O(t,SMDp(t))] ≥ α

2OPTO(D).

A construction of Hart and Nisan [HN13] shows that there exists a non-product distribution D such
that SRev(D) ≤ 2m, BRev(D) ≤ 2m but Rev(D) → ∞. Recently, [PSCW22] show necessary
and sufficient conditions for a distribution D to exhibit such infinite gaps between the revenue of
simple and optimal mechanisms. Unfortunately, these conditions are rather complex (namely, they are
conditions on the existence of infinite sequences of points with certain properties). Here, leveraging
Observation 1 for the revenue objective, we complement results of [PSCW22] by giving a new, simple
necessary condition that a “pathological” construction must satisfy:

Corollary 2. For a single agent and any distribution D such that Rev(D)
BRev(D) ≥ 2m it must be the case

that for any product distributionDp, dTV (D,Dp) ≥ Rev(D)
4V . Furthermore, if Rev(D)

SRev(D) ∈ Ω(log(m))

it must be the case that for any product distribution Dp, dTV (D,Dp) ≥ Rev(D)
4V .

As a final application of our framework, we give new positive results on simple mechanisms.
Proposition 2. Let D be a distribution supported on T , and let Dp be a product distribution such
that dTV (D,Dp) < δ. Then, we have max{SRev(D), Brev(D)} ≥ 1

6 Rev(D)−
7
6Hδ.

Proposition 2 implies that the better of bundling and selling each item separately for a distribution
D is a good approximation to Rev(D), as long as D is close to a product distribution. Cai and
Oikonomou [CO21] prove that the same mechanism is a good approximation for dependent distribu-
tions that can be captured by a Markov Random Field (MRF); see Appendix D for basic definitions
regarding MRFs. The approximation ratio of [CO21] is controlled by ∆, a parameter of the MRF that
is determined by how much the value of an item can be influenced by the values of the other items.
Specifically, [CO21] prove that max{SRev(D), BRev(D)} ≥ 1

12e4∆Rev(D). In Proposition 3, we
prove that there exist distributions such that the object of interest for Proposition 2, i.e., the distance
to a product distribution, is arbitrarily small, while the objective of interest for [CO21], the parameter
∆, is arbitrarily large. At the same time, in Proposition 4 we show that when the MRF parameter ∆
is bounded, we can bound the distance of a distribution D to a product distribution, for distributions
that can be represented by MRFs that only have pairwise edges.
Proposition 3. For any 0 < k < 1/2, there exists a distribution D produced by an MRF with
parameter ∆ and a product distribution Dp such that dTV (D,Dp) ≤ 2k2 and ∆ ≥ 1

4 log
(
1
k

)
.

Proposition 4. Let D be a distribution produced by an MRF with only pairwise edges. Then, there
exists a product distribution Dp such that dTV (D,Dp) ≤ min{

√
m∆/4,

√
1− e−m∆/2}, where m

is the number of items.
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