
Birth of a Transformer: A Memory Viewpoint

Alberto Bietti∗
Flatiron Institute

Vivien Cabannes
FAIR, Meta

Diane Bouchacourt
FAIR, Meta

Hervé Jégou
FAIR, Meta

Léon Bottou
FAIR, Meta

Abstract

Large language models based on transformers have achieved great empirical suc-
cesses. However, as they are deployed more widely, there is a growing need to
better understand their internal mechanisms in order to make them more reliable.
These models appear to store vast amounts of knowledge from their training data,
and to adapt quickly to new information provided in their context or prompt. We
study how transformers balance these two types of knowledge by considering a
synthetic setup where tokens are generated from either global or context-specific
bigram distributions. By a careful empirical analysis of the training process on a
simplified two-layer transformer, we illustrate the fast learning of global bigrams
and the slower development of an “induction head” mechanism for the in-context
bigrams. We highlight the role of weight matrices as associative memories, provide
theoretical insights on how gradients enable their learning during training, and
study the role of data-distributional properties.

1 Introduction

As large language models (LLMs) are growing in usage and deployment, it is increasingly important
to open the black box and understand how they work. A better understanding can help with inter-
pretability of how these models make decisions, and will be crucial to improve these models and
mitigate their failure cases, such as hallucinations or reasoning errors.

An important ingredient in the success of recent LLMs is their ability to learn and reason from
information present in their context [6]. These “in-context” learning capabilities are often attributed
to the transformer architecture [52], in particular its self-attention blocks, which are able to carefully
select parts of the input sequence in order to infer plausible next tokens. Additionally, predictions
may require “global” knowledge, such as syntactic rules or general facts, which may not appear in
the context and thus needs to be stored in the model.

In order to better understand how transformers develop these capabilities during training, we introduce
a synthetic dataset that exhibits both aspects. It consists of sequences generated from a bigram
language model, but where some of the bigrams are specific to each sequence. Then, the model needs
to rely on in-context learning for good prediction on the sequence-specific bigrams, while the global
bigrams can be guessed from global statistics conditioned on the current token. While one-layer
transformers fail to reliably predict the in-context bigrams, we find that two-layer transformers
succeed by developing an induction head mechanism [16, 40], namely a “circuit” of two attention
heads that allows the transformer to predict b from a context [· · · , a, b, · · · , a], and which appears to
be ubiquitous in transformer language models [40, 54].

In order to obtain a fine-grained understanding of how this in-context mechanism emerges during
training, we further simplify the two-layer architecture by freezing some of the layers at random
initialization, including embeddings and value matrices. This focuses our study on attention and
feed-forward mechanisms, while avoiding the difficulty of learning representations, which may

∗Work done while at FAIR, Meta.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

require complex nonlinear dynamics [15, 33, 45]. This simplification also allows us to introduce a
natural model for individual weight matrices as associative memories, which store input-output or
key-value pairs of embeddings through their outer products. Random high-dimensional embeddings
are particularly well-suited to this viewpoint thanks to their near-orthogonality. We provide a detailed
empirical study of the training dynamics, by measuring how quickly each weight matrix learns
to behave as the desired associative memory, studying how this is affected by data-distributional
properties, and investigate the order in which layers are learned: the model first finds the right output
associations from the current token and from uniform attention patterns, then the attention heads learn
to focus on the correct key-value pairs. We then present theoretical insights on this top-down learning
process through population gradient dynamics. Despite its simplicity, our setup already provides
useful insights on the internal structure of transformer language models and its evolution throughout
training, paving the way for a better understanding of LLMs. We hope that our insights may lead
to future research and improvements for LLM practitioners, e.g., for optimization algorithms, data
pre-processing and selection, interpretability, fine-tuning, and model editing.

In summary, we make the following contributions:

• We introduce a new synthetic setup to study global vs in-context learning: sequences follow bigram
language models, where some bigrams change across sequences and others do not.

• We view the transformer’s weight matrices as associative memories that learn to store specific pairs
of embeddings, and use this to derive a simplified but more interpretable model for our task.

• We empirically study the training dynamics with careful probing: global bigrams are learned first,
then the induction head is formed by learning appropriate memories in a top-down fashion.

• We give theoretical insights on training dynamics, showing how a few top-down gradient steps on
the population loss can recover the desired associative memories by finding signal in noisy inputs.

Related work. After the success of transformer language models for in-context learning was
found [6], several works have studied how in-context learning may arise in various contexts [8, 38,
43, 48, 57]. Multiple recent papers have introduced synthetic tasks in order to better understand
and interpret transformers [9, 33, 39, 61]. Several works have attempted to understand internal
mechanisms in transformers that are responsible for certain behaviors, an area known as “mechanistic
interpretability” [16, 17, 35, 39, 40, 54]. Memory and neural networks have a long history of
connections [5, 18, 19, 21, 26, 27, 30, 34, 50, 55, 56]. The associative memories we consider bear
similarity to [29, 56], though we use continuous input/outputs. The reader may also be interested in
Fast Weight programmers [46, 47]. The use of random vectors for storing memories is related to [23].
Our approach to probing based on memory recall is related to techniques in [13, 17], though motivated
differently. [14, 32, 36] study statistical and approximation properties of transformers, highlighting
benefits of sparse attention patterns, but do not consider training dynamics. [25, 31, 49, 51] provide
theoretical analyses of learning dynamics in transformers and other attention models, but consider
different data setups and focus on single-layer architectures, while we focus on two-layer models and
take a different viewpoint based on associative memories.

2 Background

This section provides background on transformer architectures and induction head mechanisms.

Transformer architecture. Transformers [52] operate on sequences of embeddings by alternating
self-attention operations and token-wise feed-forward layers. We focus on decoder-only, auto-
regressive architectures with a causal attention mask, which are commonly used in large language
models trained for next-token prediction [6, 11, 41, 42]. We ignore normalization layers in order to
simplify the architecture, since its stability benefits are not as crucial in the small models we consider.
Given an input sequence of tokens z1:T ∈ [N]T of length T , where N is the vocabulary size, the
transformer operates as follows:

• Token embeddings: each discrete token is mapped to a d-dimensional embedding via an em-
bedding map WE ∈ Rd×N . We will denote the embeddings of tokens zt by xt := wE(zt),
where wE(j) is the j-th column of WE .

• Positional embeddings: the positional embeddings pt = wP (t) ∈ Rd are added to each token
embedding depending on its position in the sequence, leading to the following input embeddings:

xt := xt + pt = wE(zt) + wP (t). (1)

2

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · ·]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :
∑

k wU (k)wE(k)
⊤

Prediction

Figure 1: Induction head mechanism. Induction heads are a two-layer mechanism that can
predict b from a context [. . . , a, b, . . . , a]. The first layer is a previous token head, which attends
to the previous token based on positional embeddings (pt → pt−1) and copies it after a remapping
(wE(a) → w1(a) := W 1

OW
1
V wE(a)). The second layer is the induction head, which attends based

on the output of the previous token head (wE(a) → w1(a)) and outputs the attended token, remapped
to output embeddings (wE(b) → wU (b)). Boxes in the diagram represent different embeddings in
superposition on each token’s residual stream (we omit some irrelevant ones for clarity, e.g., positional
embeddings in upper layers), and attention and output associations are shown with the associative
memory viewpoint presented in Section 4.

• Attention blocks: given an input sequence x1:T ∈ Rd×T of embeddings, the causal attention
block computes, for WK ,WQ,WV ,WO ∈ Rd×d (key, query, value, output), and for each t,

x′
t := WOWV x1:tσ(x

⊤
1:tW

⊤
KWQxt) ∈ Rd, (2)

where σ takes the softmax of its elements, leading to an attention of the “values” WV xt with
weights proportional to exp((WKxs)

⊤(WQxt)). Note that the attention operation usually con-
siders multiple “heads” that each projects the input to a lower dimension. Here we stick to a
single head for simplicity, since it will be sufficient for our purposes. Rewriting (2) on each t
as x′

1:T = A(x1:T ;WK ,WQ,WV ,WO), the ℓ-th layer of the transformer applies attention with
layer-specific parameters along with a residual connection as follows:2

x1:T := x1:T +A(x1:T ;W
ℓ
K ,W ℓ

Q,W
ℓ
V ,W

ℓ
O)

• Feed-forward blocks: feed-forward blocks operate on individual token embeddings after each
attention block, typically by applying a one-hidden-layer MLP to each token, denoted F(·;WF),
with a residual connection: at layer ℓ, we have

xt := xt + F(xt;WF).

Our simplified setup will linear feed-forward layers: F(xt;WF) = WFxt.
• Unembedding: After the last transformer layer, the embeddings are mapped back to the vocabulary

space RN through a linear “unembedding” layer WU = [wU (1), . . . , wU (N)]⊤ ∈ RN×d, where
we refer to the wU (j) as “output embeddings”. The output of this layer is then fed into a cross-
entropy loss for predicting of zt+1 from each xt.

We will sometimes refer to the representations xt for a given token t throughout layers as its residual
stream [16], since they consist of sums of embeddings and layer outputs due to residual connections.

Induction head mechanism. Induction heads [16, 40] are a particular type of mechanism (or
“circuit”) in transformers that allows basic in-context prediction of the form [· · · , a, b, · · · , a] → b.
These were found to be ubiquitous in transformer language models, playing a key role in enabling
various forms of in-context learning. The basic mechanism consist of two attention heads in separate
layers (see Figure 1 for an illustration): (i) the first is a previous token head which attends to the
previous token using positional information and copies its embedding to the next token; (ii) the
second is the induction head itself, which attends using the output of the previous token head, and
outputs the original token. Our work focuses on this basic copy mechanism, but we note that richer
behaviors are possible, particularly when combining multiple such mechanisms (e.g., [54]).

2We omit layer indices for simplicity of notation, and use the assignment operator := instead.

3

 r s a b t s L a b t s L , a b t h b n t L & C L & C a b t h

Figure 2: Induction head behavior in attention maps observed on a 2-layer transformer trained
on two variants of our synthetic dataset. Each row shows the attention pattern for predicting the
next token. (left) The first layer head always attends to the previous token. (center) For fixed
triggers Q = {a, t}, the second layer head mainly attends to tokens following such triggers. (right)
For random triggers, the induction head mechanism is active for any repeated token (here the only
trigger is L). Red and green boxes highlight tokens following previous occurrences of the query, with
red boxes corresponding to “correct” output tokens ok following trigger tokens qk.

3 Synthetic Setup

In this section, we introduce our synthetic data setup, which allows us to carefully study how the
induction head mechanism develops during training, and how transformers learn to use information
from the context vs simple associations from the training data.

Bigram data model. Our model for sequences consists of a generic bigram language model (i.e.,
Markov chain), but where the transitions for a few trigger tokens denoted qk are modified in each
sequence to always be followed by some output tokens ok. Let K be the number of trigger tokens,
and fix the following distributions over the vocabulary [N]: πb(·|i), πu, πo(·|i) and πq, for i ∈ [N].
πb(·|i) are the global bigram conditionals, πu the global unigram distribution, while πo is used
to sample output tokens at each sequence. The triggers are either fixed to some predefined set of
tokens Q, or sampled from πq . Each sequence zn1:T is generated as follows:

• (optional) Sample q1, . . . , qK ∼ πq , i.i.d. without replacement (random triggers)
• Sample ok ∼ πo(·|qk), i.i.d. with replacement.
• Sample zn1 ∼ πu and znt |znt−1 ∼ pn(·|znt−1) for t = 2, . . . , T , where

pn(j|i) =
{
πb(j|i), if i /∈ {qk}k
1{j = ok}, if i = qk.

Experimental setup and initial experiment. Our experiments take πu and πb to be unigram and
bigram character-level distributions estimated from the tiny Shakespeare dataset, with vocabulary
size N = 65. We generally sample triggers from πq = πu or fix them to the K most frequent tokens.
We sample uniform outputs ok in most cases, but also experiment with πo = πb in Section 5.

As a preliminary experiment, we train a two-layer vanilla transformer with single-head attention layers
and MLP feed-forward layers, following the training setup described in Section 5. On our synthetic
data, with fixed (resp. random) triggers and uniform outputs, the model achieves over 99% accuracy
(resp. 95%) on output tokens after the first occurrence, versus around 55% for one layer. This gap
may be related to the difficulty of modeling three-way interactions with a single attention layer [44].
We visualize attention maps on test sequences in Figure 2, which shows that the model has learned
an induction head mechanism. The sequence in the middle figure has (qk, ok) ∈ {(a, b), (t, s)}. For
fixed triggers, the induction head is only active for the triggers used in training, which suggests the
presence of a “memory” in the attention layer. For random triggers, it is active on every repeated
token, so that the model then needs to disambiguate between in-context and global predictions. For
instance, the model may choose to use the retrieved token when it is unlikely to be sampled from the
global bigram distribution, something which we found to often be the case in practice.

4 The Associative Memory Viewpoint

In this section, we present our associative memory view on transformers: with nearly orthogonal
embeddings, the weight matrices behave as associative memories which store pairs of embeddings as

4

a weighted sum of their outer products. We then introduce a simplified transformer model with fixed
random embeddings that will yield a precise understanding of learning dynamics using this viewpoint.

4.1 Weight matrices as associative memories

While intermediate representations in the transformer consist of high-dimensional vectors in residual
streams, they are often “collapsed” down to scalar measurements by testing against other representa-
tions, using operations of the form v⊤j Wui for some matrix W . For instance, ui and vj could be key
and query vectors in an attention head, or input and output embeddings for predicting the next token.
If (ui)i and (vj)j are orthonormal (or nearly-orthonormal) sets of embeddings, a natural way to store
desired input-output associations i, j is through the following associative memory:

W =
∑

i,j

αijvju
⊤
i , (3)

so that the scores v⊤j Wui ≈ αij may be used to assess the relevance of the (i, j) pair, e.g., as part of
a softmax operation in attention or next token prediction.

Random embeddings. A simple way to ensure that embeddings (ui)i and (vj)j are nearly-
orthonormal is to set them to be random high-dimensional vectors, such as Gaussian vectors with
variance 1/d in d dimensions. Indeed, these are known to satisfy [23, 53]

u⊤
i ui ≈ 1 and u⊤

i uj ≈ O

(
1√
d

)
,

so that (3) is a reasonable way to define an associative memory, without requiring an explicit activation
function as employed in end-to-end memory networks [50]. We may also easily create a “remapping”
of an existing embedding ui by multiplying it by a random matrix W0 ∈ Rd×d with Gaussian
entries of variance 1/d, which is commonly used for initializing neural network parameters. The
new remapped embedding W0ui is near-unit norm, and is near-orthogonal to ui in addition to
the other uj . Note that this fact implies that attention scores at initialization are near-uniform. See
Appendix A for more details.

Learning associative memories. We now show that learning associations of input-output embed-
dings via gradient descent leads to a weighted associative memory of a form similar to (3).
Lemma 1 (Gradients and associative memories). Let p be a data distribution over input-output tokens,
and consider the following loss, where the input and output embeddings WE and WU are fixed:

L(W) = E(z,y)∼p[ℓ(y,WUWwE(z))], (4)

with ℓ the cross-entropy loss. The gradients of the population loss L then take the form

∇WL(W) =

N∑

k=1

Ez[(p̂W (y = k|z)− p(y = k|z))wU (k)wE(z)
⊤], (5)

where p̂W (y=k|x) = σ(WUWwE(z))k are the model’s predicted probabilities. Running gradient
descent (with or without weight decay) from initialization W0 then leads to estimates of the following
form, for some α0 and αij that vary with the number of iterations:

Ŵ = α0W0 +
∑

i,j

αijwU (j)wE(i)
⊤. (6)

Note that (4) is a convex problem in W , thus with appropriate step-size and large enough number of
steps (with no weight decay) we can expect gradient descent to be close to the global minimum. At
the optimum, if the embeddings are nearly orthogonal, then (5) implies p̂W (y = k|z) ≈ p(y = k|z).
We remark that if W0 is a Gaussian random matrix, as if often the case for neural network layers, the
first term in (6) plays a minor role: testing W0 against an input-output pair (i, j) with αij ̸= 0 will
concentrate around zero when d is large, while the (i, j) term in the sum will concentrate around αij .
We also note that the gradient updates described above correspond to a so-called maximal feature
learning regime similar to µP updates in intermediate layers of deep networks [58, 59].

5

Handling superposition. In Lemma 1, we assumed that inputs to the matrix W are embeddings
of a single token. Yet, in transformer models, the inputs to weight matrices are often sums, or
superpositions of embeddings. For instance, the initial representations of each token are sums of
token and positional embeddings, and representations at later layers are sums of the outputs of
each previous block, due to residual connections. Outputs of attention layers are also weighted
sums of potentially many embeddings, at least initially when attention patterns are spread out. By
linearity, associative memories of the form (6) simply operate individually on each embedding of a
superposition, and return a new superposition (up to additional noise due to near-orthogonality). In
practice, we will see that learned memories often focus on a single embedding and filter out the rest as
noise when irrelevant (see also Section 6). We note that linearity can also be limiting, since it makes
it difficult to map sets to specific output embeddings: u{i,j} := ui+uj needs to map to Wui+Wuj ,
and thus cannot map to a new embedding v{i,j}. Such mappings of sets thus require non-linear
associative memories, for instance by leveraging a sparse decoding of which elements are actually
present (e.g., using compressed sensing), or by using MLPs with non-linear activations [15, 30].

4.2 A simplified two-layer transformer architecture

We consider a simpler two-layer transformer which is more interpretable with the memory viewpoint,
and will help us analyze learning dynamics both empirically and theoretically.

• We freeze input, output and positional embeddings (WE ,WU ,WP) to their random initialization
throughout training. This brings us to the Gaussian random vector setup presented above.

• We fix W 1
Q = W 2

Q = Id, so that W 1
K and W 2

K play the role of both key and query matrices. This
changes the gradient dynamics, but simplifies the model by avoiding the redundancy in (2). The
pre-softmax attention scores then take the form x⊤

q W
ℓ
Kxk, with xq (resp. xk) the query (resp. key)

embeddings, which now directly resembles an associative memory lookup.
• We freeze W 1

V , W 1
O, and W 2

V to random initialization. These play the role of remapping attended
tokens into new tokens, since for random W and large d, Wx is nearly orthogonal to x and to any
other random embeddings independent of x.

• We train W 2
O, since the outputs of the induction head need to be mapped back into appropriate

output embeddings in order to predict the output tokens ok correctly.
• We use a single linear feedforward layer after the second attention block, with weight matrix WF .

This is plausibly the layer responsible for learning the global bigram distributions.

We remark that while this model freezes some parameters at initialization, it is richer than a “lazy”
or neural tangent kernel approximation [10, 22, 24] since the model is still highly non-linear in its
parameters and, as we will see, induces rich non-linear learning dynamics.

Solving the bigram problem with associative memories. We now show how the above architecture
can solve the synthetic bigram problem from Section 3 with well-chosen weight matrices. While this
is only a hypothetical model, we show in Section 5 that it is surprisingly faithful to the learned model.

Recall that due to residual connections, the inputs to the weight matrices typically consist of superpo-
sitions of various embeddings including token embeddings, positional embeddings, or “remapped”
versions thereof. These may be viewed as sets, as illustrated in Figure 1, and associative memories
can easily ignore certain elements of the set, e.g., ignore token embeddings by only focusing on
positional embeddings. The induction head mechanism can be obtained by setting:

W 1
K =

T∑

t=2

ptp
⊤
t−1, W 2

K =
∑

k∈Q

wE(k)(W
1
OW

1
V wE(k))

⊤, W 2
O =

N∑

k=1

wU (k)(W
2
V wE(k))

⊤,

(7)
where Q is the set of triggers when they are fixed, or the support of πq when they are random. In
words, the first attention layer matches a token to the previous tokens using positional embeddings.
The second layer matches the trigger token to a remapping of itself by W 1

OW
1
V , and the output

matches a remapping of the input token by W 2
V to the corresponding output token. We remark that

one can easily make the attention patterns more peaked on the correct associations by rescaling W 1
K

and W 2
K . The global bigram statistics can be encoded in the feed-forward layer as follows:

WF =

N∑

i=1

N∑

j=1

log πb(j|i)wU (j)wE(i)
⊤. (8)

6

The question remains of how the model could trade-off predictions from the induction head and from
the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,
we may simply remove all i ∈ Q from the summation in (8), so that the model exclusively relies
on the attention head for all triggers (indeed, the output of W 2

O is in the span of output embeddings,
which are nearly orthogonal to the row space of WF). When the triggers can vary across different
sequences, choosing between the induction head and the feed-forward layer is more ambiguous as
it depends on context, and WF may try to learn more complex mappings that also use the outputs
of W 2

O. In practice, we observe that the model often prefers the induction head, unless its output
agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.

Beyond the simplified architecture. While our simplified architecture already captures the relevant
aspects for the bigram model, it lacks some of the components that appear in standard transformers,
such as non-linear MLPs, trained embeddings, layer normalization, and joint learning of a factoriza-
tion W⊤

KWQ (potentially with low rank matrices WK ,WQ ∈ Rdh×d with dh < d as in multi-head
attention), instead of a single matrix WK . In practice, transformers also involve many more layers,
as well as multiple heads at each self-attention layer. In Appendix D, we discuss how our memory
viewpoint naturally extends to such architectural components, and we illustrate in Appendix E that
they empirically lead to similar observations. Nonetheless, we focus on our simpler architecture in the
main paper due to simplicity of exposition and better interpretability thanks to a clear identifiability
of the role of each matrix, which is lost in models with more heads and layers.

5 Empirical Study

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in
Section 3, for the simplified architecture defined in Section 4.2. See Appendix E for additional results.
Our code is available at https://github.com/albietz/transformer-birth.

Experimental setup. We train our models using mini-batch SGD with momentum, where each
batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use
a fixed learning rate and weight decay. Hyperparameters are given in Appendix E. Unless otherwise
noted, we use d = 128, random triggers with πq = πu and uniform output tokens. The reported
accuracies and losses are computed over each fresh batch before it is used for optimization, and
are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions
of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while
“global loss” refers to average loss on non-trigger tokens.

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether
individual matrices have learned the desired associative memories: for a desired target memory W∗ =∑

(i,j)∈M vju
⊤
i , the corresponding recall metric is computed from the empirical estimate Ŵ as

R(Ŵ ,W∗) =
1

|M|
∑

(i,j)∈M
1{argmax

j′
v⊤j′Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on

smaller time windows. For the final feed-forward layer, we measure the average KL divergence
between the predicted softmax distribution using only WF and the global bigram distribution πb:

dKL(WF , πb) :=
1

N

N∑

k=1

dKL(σ(WUWFwE(k)), πb(·|k)). (10)

Emergence of the induction head via top-down learning. We begin our study by only training
to minimize the loss on trigger-output token predictions after their first occurrence. This should
be predictable with 100% accuracy using the two-layer induction head mechanism according to
Section 4. We also remove the feed-forward layer, in order to focus on the learning of attention
matrices W 1

K , W 2
K and W 2

O in isolation.

Figure 3 studies the effect of freezing different layers until iteration 300 on the training dynamics.
By looking at memory recall probes, we see that training key-query matrices does not lead to any

7

https://github.com/albietz/transformer-birth

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

in
-c

on
te

xt
 a

cc
ur

ac
y

freeze W2
O

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
freeze W1

K and W2
K

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
freeze W2

K

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
freeze W1

K

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

m
em

or
y

re
ca

ll

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Wo2
Wk2
Wk1 (t<64)
Wk1

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

learning unless W 2
O is learned first, and that W 2

O can learn the correct associations even when trained
by itself with key-value matrices at random initialization. Recall that the attention weights are
essentially uniform when WK are at random initialization, so that training W 2

O alone resembles a
bag-of-words models that aggregates representations throughout the sequence. While such a model
has poor prediction accuracy, it is nevertheless sufficient to recover the correct associations in W 2

O (a
similar observation was made in [49] in a different setup).

Then, these associations enable learning key-query matrices that focus the attention on relevant
tokens, by storing relevant key-query pairs in the form of associative memories, which eventually
recovers the desired induction head behavior and leads to near-perfect accuracy. The two rightmost
plots suggest that the second layer is learned before the first, in the sense that W 2

K is easier to learn
when W 1

K is frozen compared to the reverse, yet learning them together seems beneficial, possibly
due to helpful feedback loops [1]. We also observe that W 1

K fits previous token associations for early
positions much faster than later positions (purple vs gray line). This is likely due to the fact that it
should be enough for the previous token head to attend to the first appearance of each trigger qk,
which is typically early in the sequence, so that most of the gradient will focus on early positions.

Overall, this provides a fine-grained understanding of the learning dynamics of induction heads.
In Section 6, we analyze how a few gradient steps in a top-down fashion may suffice to recover
appropriate associative memories in high dimension and with enough data. See Appendix E for
additional experiments, including on the role of dimensionality.

Global vs in-context learning. Figure 4(left/right) shows that when training all layers jointly, the
global bigram statistics tend to be learned more quickly than the induction head, as seen from the
quick drop in loss and KL in early iterations. The W 2

O probe also seems to improve quickly initially,
but only leads to mild improvements to in-context predictions. The full learning of the in-context
mechanism takes longer, likely due to slower dynamics of the key-query matrices. We also observe a
tension between W 2

O and WF later in training, leading to slight degradations of our probe metrics.
This may be due to the fact that the input to WF now contains additional signal from the induction
head which may be leveraged for better predictions, in particular for disambiguation in the case of
random triggers, so that our guess of memories in Section 4.2 may no longer be accurate.

Role of the data distribution. We can see in Figure 4(left) that changes to the data distribution
can have a significant effect on the speed of learning the in-context mechanism. We observe that
the following may slow down in-context learning: (i) a smaller number of triggers K, (ii) using
only rare fixed triggers, and (iii) using random triggers instead of fixed triggers. By inspecting the
individual memory probes (see Figure 5 in Appendix E), we hypothesize that (i) and (ii) are due
to slow learning of W 2

O, while (iii) is more related to slow learning of key-query matrices. This is
reasonable since (i-ii) reduce the number of overall output tokens in the data, while (iii) increases the
number of possible trigger tokens that should be stored in W 2

K , thus increasing the data requirements
in order to learn the full associative memory. We also show in Figure 4(center) that changing the
output token distribution to bigram distributions at training time reduces the in-context accuracy

8

0 100 200 300 400 500
iteration

0

1

2

3

4

5

lo
ss

in-context vs global loss
K=1, fix q frequent
K=5, fix q rare
K=1, random q
K=5, random q

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

in
-c

on
te

xt
 a

cc
ur

ac
y

out of distribution

unif (train unif)
bigram (train unif)
unif (train bigram)
bigram (train bigram)

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

m
em

or
y

re
ca

ll

Wo2 recall
Wk2 recall
Wk1 recall (t<64)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

KL
(W

F,
b)

attention and feed-forward probes

Wf KL

Figure 4: Global vs in-context learning and data-distributional effects. (left) Loss on global
(dashed) vs in-context (solid) tokens throughout training, for fixed or random trigger tokens qk. The
red curves fixes the trigger q1 to the most frequent token, while the fixed triggers in blue curves
are less common. (center) In-context accuracy with different training and test distributions πo for
output tokens. Uniform leads to better generalization than global bigrams πb. (right) Probe metrics
throughout training: W 2

O and WF eventually compete and deviate from our natural estimates.

when using out-of-distribution output tokens, while training on uniform outputs performs well on
both distributions. This highlights that using a more diverse training distribution can lead to models
with better generalization accuracy, with little additional training cost.

Additional experiments. In Appendix E, we provide additional experimental results for varying
dimensionality, more complex architectures and training methods, as well as more fine-grained
visualizations of the memory associations.

6 Theoretical Insights on Learning Dynamics

In this section, we provide theoretical insights on how gradients near initialization may allow the
emergence of induction heads, and how this behavior is affected by data-distributional properties.

Finding signal in noisy inputs. In Lemma 1, we showed how gradient dynamics on a simple
classification task with fixed embeddings of the inputs and outputs lead to associative memories.
We now show that when inputs consist of superpositions of multiple embeddings, as is the case in
the transformer residual streams, gradients may learn associative memories that filter out irrelevant
components of these superpositions, focusing on useful signal instead.
Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) ∈
Rd × [N], and consider the following classification problem, with fixed output embeddings WU :

L(W) = E(x,y)∼p[ℓ(y,WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[
p̂W (k|x)
p(y=k) x],

∇WL(W) =

N∑

k=1

p(y = k)wU (k)(µ̂k − µk)
⊤.

The key takeaway from this lemma is that with enough data (here infinite data), the associative
memory arising from gradients can learn to filter out noise from inputs, since it only depends on
its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are
predictive of a label k, and thus can lead to the right associations.

An illustrative example. To gain more intuition about this result, consider the following example:
we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random
position t ∈ [T], which we would like to ignore. Further assume that y is uniformly distributed
with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with
step-size η starting from an initialization W0 = 0 (so that p̂W0

(k|x) = 1/N):

W1 =
η

N

N∑

k=1

wU (k)(µk − µ̄)⊤,

9

with µ̄ = E[x]. We show in Appendix B that when d is large enough to ensure near-orthonormal
embeddings, we have

wU (k)
⊤W1(wE(y) + pt) ≈

η

N
1{k = y}+O

(
1

N2

)
,

so that for large enough N and T , we obtain a near-perfect classifier that ignores the positional
embedding, after just one gradient step (but a highly idealized one). Understanding how this translates
to the finite dimension and finite sample regime is an important theoretical question that we leave
for future work (see [7] for an initial step in that direction). We note that data models related to the
above have been useful to study gradient dynamics of neural networks on continuous data [2, 25, 28].
Using a single gradient step to learn representations has also been fruitful in other contexts [3, 12].

Learning the induction head with gradients. We may extend the arguments above to show how a
few gradient steps can learn the induction head mechanism. We show the following in Appendix B.3.

Theorem 3 (Learning induction head via three gradient steps, informal). In a simplified setup, the
induction head mechanism as constructed in (7) can be learned via sequential gradient steps on the
population loss from random initialization, on W 2

O, then W 2
K , followed by W 1

K .

To show this result, we use Lemma 2 in a similar manner to the illustrative example above to show
how training W 2

O by itself at initialization, i.e., when the attention patterns are near-uniform, can
recover the desired associative memory. This is possible because when predicting an output token at
later occurrences of a trigger, the same output token is guaranteed to be present in the context, while
other tokens need not appear more relative to other sequences. See also Figure 9 in Appendix E for
numerical experiments verifying this for finite data and dimension. Once W 2

O has learned the correct
associations, we show that the gradient with respect to the key-value matrix W 2

K at zero initialization
can leverage the correctness of W 2

O to find the right associative memory that focuses the attention on
correct triggers. Finally, by linearizing the second-layer attention around W 2

K = 0, we show how
gradients w.r.t. W 1

K may learn correct associations for the previous token head.

7 Discussion

In this paper, we studied the question of how transformers develop in-context learning abilities,
using a simplified setup that allows a fine-grained understanding the model and its training dynamics.
While our model already captures rich phenomena at play in the bigram task we consider, more
elaborate models are likely needed to understand transformers trained on more complex tasks like
language modeling. This includes learning embeddings that are more adapted to the data and more
structured (e.g., word embeddings [37, 31], or grokking [33, 39]), factorized key-query and value-
output matrices that may induce additional regularization effects [20], and non-linear feedforward
layers, which may provide richer associative memories between sets of embeddings. Understanding
how transformers leverage such aspects to learn in richer settings is an important next step.

Acknowledgments and Disclosure of Funding

The authors thank Sainbayar Sukhbaatar and Shubham Toshniwal for helpful discussions.

References
[1] Z. Allen-Zhu and Y. Li. Backward feature correction: How deep learning performs deep

learning. arXiv preprint arXiv:2001.04413, 2020.

[2] Z. Allen-Zhu and Y. Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

[3] J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics
of feature learning: How one gradient step improves the representation. Advances in Neural
Information Processing Systems (NeurIPS), 2022.

10

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[5] T. Bricken and C. Pehlevan. Attention approximates sparse distributed memory. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[7] V. Cabannes, E. Dohmatob, and A. Bietti. Scaling laws for associative memories. arXiv preprint
arXiv:2310.02984, 2023.

[8] S. Chan, A. Santoro, A. Lampinen, J. Wang, A. Singh, P. Richemond, J. McClelland, and F. Hill.
Data distributional properties drive emergent in-context learning in transformers. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

[9] F. Charton. What is my math transformer doing?–three results on interpretability and general-
ization. arXiv preprint arXiv:2211.00170, 2022.

[10] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[11] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[12] A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with
gradient descent. In Conference on Learning Theory (COLT), 2022.

[13] G. Dar, M. Geva, A. Gupta, and J. Berant. Analyzing transformers in embedding space. arXiv
preprint arXiv:2209.02535, 2022.

[14] B. L. Edelman, S. Goel, S. Kakade, and C. Zhang. Inductive biases and variable creation
in self-attention mechanisms. In Proceedings of the International Conference on Machine
Learning (ICML), 2022.

[15] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,
R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg,
and C. Olah. Toy models of superposition. Transformer Circuits Thread, 2022.

[16] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish,
and C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021.

[17] M. Geva, J. Bastings, K. Filippova, and A. Globerson. Dissecting recall of factual associations
in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

[18] M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value
memories. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2021.

[19] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

[20] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit
regularization in matrix factorization. Advances in Neural Information Processing Systems
(NIPS), 2017.

[21] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

11

[22] J. Hron, Y. Bahri, J. Sohl-Dickstein, and R. Novak. Infinite attention: Nngp and ntk for deep
attention networks. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

[23] A. Iscen, T. Furon, V. Gripon, M. Rabbat, and H. Jégou. Memory vectors for similarity search
in high-dimensional spaces. IEEE transactions on big data, 4(1):65–77, 2017.

[24] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[25] S. Jelassi, M. Sander, and Y. Li. Vision transformers provably learn spatial structure. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[26] Y. Jiang and C. Pehlevan. Associative memory in iterated overparameterized sigmoid au-
toencoders. In Proceedings of the International Conference on Machine Learning (ICML),
2020.

[27] A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.
Advances in Neural Information Processing Systems (NIPS), 2015.

[28] S. Karp, E. Winston, Y. Li, and A. Singh. Local signal adaptivity: Provable feature learning in
neural networks beyond kernels. Advances in Neural Information Processing Systems (NeurIPS),
2021.

[29] T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.

[30] D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. Advances in
Neural Information Processing Systems (NIPS), 2016.

[31] Y. Li, Y. Li, and A. Risteski. How do transformers learn topic structure: Towards a mechanistic
understanding. In Proceedings of the International Conference on Machine Learning (ICML),
2023.

[32] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to
automata. In Proceedings of the International Conference on Learning Representations (ICLR),
2023.

[33] Z. Liu, O. Kitouni, N. S. Nolte, E. Michaud, M. Tegmark, and M. Williams. Towards un-
derstanding grokking: An effective theory of representation learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[34] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the hopfield associative
memory. IEEE transactions on Information Theory, 33(4):461–482, 1987.

[35] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in
gpt. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[36] W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2022.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. In Proceedings of the International Conference on Learning Representations
(ICLR), 2013.

[38] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer.
Rethinking the role of demonstrations: What makes in-context learning work? In Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2022.

[39] N. Nanda, L. Chan, T. Liberum, J. Smith, and J. Steinhardt. Progress measures for grokking
via mechanistic interpretability. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

12

[40] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston,
A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. In-context learning and induction heads. Transformer Circuits
Thread, 2022.

[41] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. Technical report, OpenAI, 2019.

[42] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, et al. Scaling language models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446, 2021.

[43] Y. Razeghi, R. L. Logan IV, M. Gardner, and S. Singh. Impact of pretraining term frequencies
on few-shot reasoning. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2022.

[44] C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[45] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[46] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers.
In Proceedings of the International Conference on Machine Learning (ICML), 2021.

[47] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

[48] S. Shin, S.-W. Lee, H. Ahn, S. Kim, H. Kim, B. Kim, K. Cho, G. Lee, W. Park, J.-W. Ha, et al.
On the effect of pretraining corpora on in-context learning by a large-scale language model. In
North American Chapter of the Association for Computational Linguistics (NAACL), 2022.

[49] C. Snell, R. Zhong, D. Klein, and J. Steinhardt. Approximating how single head attention learns.
arXiv preprint arXiv:2103.07601, 2021.

[50] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. Advances in
Neural Information Processing Systems (NIPS), 2015.

[51] Y. Tian, Y. Wang, B. Chen, and S. Du. Scan and snap: Understanding training dynamics
and token composition in 1-layer transformer. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NIPS), 2017.

[53] R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

[54] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild:
a circuit for indirect object identification in gpt-2 small. In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

[55] J. Weston, S. Chopra, and A. Bordes. Memory networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[56] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative
memory. Nature, 222(5197):960–962, 1969.

[57] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context learning as
implicit bayesian inference. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

13

[58] G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In Proceedings of the International Conference on Machine Learning (ICML), 2021.

[59] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen,
and J. Gao. Tensor programs v: Tuning large neural networks via zero-shot hyperparameter
transfer. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[60] B. Zhang and R. Sennrich. Root mean square layer normalization. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[61] Y. Zhang, A. Backurs, S. Bubeck, R. Eldan, S. Gunasekar, and T. Wagner. Unveiling transform-
ers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301, 2022.

14

A Associative Memories with Random Vectors

In this section, we provide basic properties of associative memories based on outer products of
random Gaussian embeddings, as described in Section 4.

We consider embeddings uk ∈ Rd with i.i.d. Gaussian N (0, 1
d) entries.

We recall a few facts:

• (Norm) We have u⊤
i ui ≈ 1. This is standard from the concentration of random vectors in high

dimension (see, e.g., [53, Theorem 3.1.1]).

• (Near-orthogonality) For i ̸= j, we have u⊤
i uj = O(1/

√
d). To see this, denoting ui =

d−1/2(ũik)k, where ũik are the unnormalized entries of ui, note that we have

√
du⊤

i uj =
1√
d

d∑

k=1

ũikũjk → N (0, 1),

by the central limit theorem, since for each k, the quantities ũikũjk are zero-mean, unit-variance,
i.i.d. random variables.

• (Remapping: norm) If W is a Gaussian random matrix with i.i.d. N (0, 1
d) entries, then for any

fixed x we have ∥Wx∥ ≈ ∥x∥. This follows from Johnson-Lindenstrauss (see, e.g., [53, Lemma
5.3.2 and Exercise 5.3.3]). In particular, if x is a normalized Gaussian embedding as above,
then ∥Wx∥ ≈ 1.

• (Remapping: near-orthogonality) Consider a random vector x = 1√
d
x̃ and a random matrix W =

1√
d
W̃ , where the entries of x̃ and W̃ are i.i.d. N (0, 1). Then x and Wx are nearly orthogonal. To

see this, note that E[x⊤Wx] = E[x⊤ E[W]x] = 0, and the variance is

E(x⊤Wx)2 = E
∑

i,j

x2
iW

2
ijx

2
j =

1

d3
E
∑

i

x̃4
i W̃

2
ii + E

∑

i̸=j

x̃2
i x̃

2
jW̃

2
ij

=
1

d3

(
dM4M2 +

d(d− 1)

2
M3

2

)
= O

(
1

d

)
,

where M2 and M4 denote the second and fourth moments of the standard Gaussian, respectively.
Then, Chebyshev’s inequality implies that |x⊤Wx| = O(1/

√
d) with high probability.

Ensuring appropriate memory lookups then requires such properties to hold for many embeddings
and pairs of embeddings, with errors that are small enough to ensure correct associations. This may
be achieved with careful union bounds or more powerful concentration results. We do not attempt
to do this in a precise manner in this paper, and will generally assume d large enough to satisfy the
desired associative memory behaviors, noting that a precise analysis is an important direction for
future work (see [7] for a first step in this direction).

B Theoretical Insights on Gradient Dynamics

In this section, we provide additional details on the theoretical insights from Section 6, including
details on the illustrative example (Section B.1), derivations of gradients w.r.t. key-query matri-
ces at initialization (Section B.2), as well as a study of how the induction head mechanism may
develop in a simplified setup, using a sequence of single layer-wise gradient steps in a top-down
manner (Section B.3).

B.1 Details on illustrative example

Consider the example discussed in Section 6: we would like to predict y from x = wE(y) + pt,
where pt is a positional embedding at a random position t ∈ [T], which we would like to ignore.
Further assume that y is uniformly distributed (p(y = k) = 1/N) and consider the matrix obtained
after one population gradient step with step-size η starting from an initialization W0 = 0 (so

15

that p̂W0(k|x) = 1/N):

W1 =
η

N

N∑

k=1

wU (k)(µk − µ̄)⊤, (11)

with µ̄ = E[x].
Note that we have µk = wE(k) +

1
T

∑
t pt and µ̄ = 1

N

∑
k wE(k) +

1
T

∑
t pt, so that (11) becomes

W1 =
η

N

N∑

k=1

wU (k)(wE(k)− w̄E)
⊤, (12)

with w̄E := 1
N

∑N
k=1 wE(k). When d is large enough to ensure near-orthonormal embeddings, we

have for any y and t,

W1(wE(y) + pt) ≈
η

N
wU (y) +O

(
1

N2

)
.

This implies

wU (k)
⊤W1(wE(y) + pt) ≈

η

N
1{k = y}+O

(
1

N2

)
,

as claimed in the main text. The classifier ŷ = argmaxk wU (k)
⊤W1(wE(y)+pt) then has essentially

perfect accuracy, and has learned to ignore the spurious positional embeddings, which are simply
exogenous noise.

B.2 Gradients on key-query matrices at initialization

We now derive expressions for population gradients of the attention key-query matrices at zero
initialization, noting that random initialization behaves similarly to zero initialization. Although the
optimization problems involving these matrices are non-convex, these gradients at initialization lead
to associative memories, similar to Lemma 2. When output matrices of the previous layer already
encode the desired associations, these gradients can lead to associative memories that focus the
attention on the correct key-value pairs.

We begin with the following lemma, which gives the gradient of the loss w.r.t. W = W 2
K at zero

initialization. For simplicity, we drop the d−1/2 factor from the softmax, which only changes
gradients by a multiplicative factor, and thus does not change its form.

Lemma 4 (Gradient of second attention layer). Consider the following loss for predicting the next
token y from an attention layer with inputs X = [x1, . . . , xT], and value-output matrix Φ2 :=
W 2

OW
2
V :

L(W) = E(X,y)[ℓ(y, ξ(X))], ξ(X) = WUΦ2Xσ(X⊤WxT), (13)

with ℓ the cross-entropy loss and σ(u)t =
eut∑
s eus for u ∈ RT is the softmax.

The gradient at W = 0 is given by

∇WL(W)
∣∣
W=0

=

N∑

k=1

E(X,y)

[
(p̂W (k|X)− 1{y=k}) 1

T

T∑

t=1

wU (k)
⊤Φ2xt · (xt − x̄1:T)x

⊤
T

]

=
1

T

N∑

k=1

T∑

t=1

EX [p̂W (k|X)wU (k)
⊤Φ2xt · (xt − x̄1:T)x

⊤
T]

− 1

T

N∑

k=1

T∑

t=1

p(y = k)EX [wU (k)
⊤Φ2xt · (xt − x̄1:T)x

⊤
T | y = k]

with x̄1:T = 1
T

∑T
t=1 xt.

Now we consider the gradient w.r.t. W = W 1
K at zero initialization, and consier a simplification of

the second layer attention to its linearization around W 2
K = 0. We will see that this still provides

first-order information that is sufficient for W 1
K to be learned.

16

Lemma 5 (Gradient of first attention layer). Consider the following loss for predicting the next
token y from a stack of two attention layers, with all parameters fixed except for W = W 1

K , the
key-query matrix at the first attention layer:

L(W) = E(X,y)[ℓ(y, ξ(X))], ξ(X) = WUΦ2Xσ̄(Z(W)⊤W2xT). (14)

Here, σ̄(u1:T)t =
1
T (1+ut− 1

T

∑T
s=1 us) is the linearization of the softmax around 0, and Z(W) =

[z1(W), . . . , zT (W)] with

zt(W) =

t∑

s=1

Φ1xsσ(p
⊤
1:tWpt)s,

and Φℓ = W ℓ
OW

ℓ
V for ℓ = 1, 2.

The gradient at W = 0 is given by

∇WL(W)
∣∣
W=0

=

N∑

k=1

EX

[
p̂W (k|X)

1

T

T∑

t=1

wU (k)
⊤Φ2xt ·

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t

]

−
N∑

k=1

p(y = k)EX

[
1

T

T∑

t=1

wU (k)
⊤Φ2xt ·

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t |y = k

]

−
N∑

k=1

EX

[
p̂W (k|X)wU (k)

⊤Φ2x̄1:T · 1
T

T∑

t=1

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t

]

+

N∑

k=1

p(y = k)EX

[
wU (k)

⊤Φ2x̄1:T · 1
T

T∑

t=1

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t |y = k

]

B.3 Learning the induction head mechanism

In this section, we analyze the training dynamics of the induction head mechanism, in the following
simplified setup: we consider a single trigger (K = 1), and assume that πu, πq, πo and πb(·|i) are
uniform over [N] for any i.

To further simplify the analysis, we consider a loss that only considers sequences of length T where
the last input zT is the second occurrence of the trigger token, and the label y = zT+1 is the
corresponding output token. We note that this may be easily extended to later occurrencies of the
trigger. This is similar to the setup of Figure 1, where the loss is only taken on triggers after the
second occurrence: in that case, the loss may be written as a weighted sum of the one we consider
here, weighted by the probability of the second (or later) trigger appearing at the given position T .

In practice, when the loss is on all tokens and WF is also learned, we may expect that WF quickly
learns the global bigram statistics, as we saw empirically in Section 5. Indeed, the current token
embedding, which is included in the input superposition, has strong predictive signal compared
to the attention layers, which initially mainly appear as noise. This is then similar to the setup of
Lemma 1, which provides recovery of bigram statistics when d is large (though we note that the other
information from attention layers in the inputs may eventually be used and bias away from perfect
recovery, see Figure 4(right)). Once such global estimates are obtained, the expected loss will be
mainly dominated by trigger tokens, leading to the setup above.

For simplicity, we thus drop the feed-forward layer WF in the remainder of this section, focusing
on the learning of W 2

O, W 2
K and W 1

K , in this top-down order. We will consider zero-initialization
a single gradient steps, noting that random initialization should lead to similar associative memory
behaviors when the dimension is large enough, since it leads to a remapping of input embeddings
which is near-orthogonal to any output embedding (see Appendix A).

B.3.1 Learning W 2
O

We begin by studying the learning of the second output matrix W 2
O. In the above data model, we may

consider a loss as in Lemma 2 with input-outputs (x, y), where y is the output token of the sequence,

17

and x depends on the random sequence z1:T as

x =
1

T

T∑

t=1

W 2
V (wE(zt) + εt),

where εt = pt +
1
t

∑t
s=1 Φ1(wE(zs)+ ps) with Φ1 = W 1

OW
1
V , is a “noise” vector from the residual

streams, containing positional embeddings as well as an average attention output from the first layer.
In practice, the logit predictions are of the form WU (W

2
Ox+ εT) due to residual connections, but we

ignore the term WUεT for simplicity, noting that it is near-zero when d is large.

After a gradient step on W 2
O with step-size η, starting from zero-initialization (so that p̂(k|x) =

p(y = k) = 1/N for all x), Lemma 2 yields

W 2
O =

η

N

N∑

k=1

wU (k)(E[x|y = k]− E[x])⊤. (15)

Now, consider the random variables q (trigger token), o (output token), to (position of the first
occurrence of the output token). In our simplified data model, q and to have the same distribution
regardless of the conditioning on y = k, while o is equal to k when y = k, while it is uniform in [N]
without this condition. The sequence z1:T has the same distribution in either p(·) or p(·|y = k),
except for the token zto .

Then, we may write:

E[x|y = k]− E[x] =
1

T

(
E[W 2

V wE(zto)|y = k]− E[W 2
V wE(zto)]

)

+
1

T

(
E

[
T∑

t=to

W 2
V εt|y = k

]
− E

[
T∑

t=to

W 2
V εt

])
,

since εt is independent of o when t < to. Noting that εt only depends on zto and thus on y through
the first layer attention, we have

E[x|y = k]− E[x] =
1

T
W 2

V (wE(k)− w̄E)

+
1

T

(
E

[
T∑

t=to

1

t
W 2

V Φ1wE(zto)|y = k

]
− E

[
T∑

t=to

1

t
W 2

V Φ1wE(zto)

])

=
1

T
W 2

V (wE(k)− w̄E) +
τ

T
W 2

V Φ1(wE(k)− w̄E),

where τ := E
[∑T

t=to
1
t

]
, and w̄E = 1

N

∑N
k=1 wE(k). Thus, (15) becomes

W 2
O =

η

NT

N∑

k=1

wU (k)(W
2
V (wE(k)− w̄E))

⊤ +
ητ

NT

N∑

k=1

wU (k)(W
2
V Φ1(wE(k)− w̄E))

⊤, (16)

so that when d is learn enough to ensure near-orthonormal embeddings, we have

wU (k)
⊤W 2

OW
2
V wE(j) ≈

η

NT
1{k = j}+O

(η

N2T

)

wU (k)
⊤W 2

OW
2
V Φ1wE(j) ≈

ητ

NT
1{k = j}+O

(ητ

N2T

)
,

where the O(·) terms are due to the w̄E elements. The first line yields a behavior that matches desired
associative memory in (7) of Section 4.2 when N is large. The second line shows additional spurious
associations that are stored in W 2

O due to the output of the first layer attention, but which may be
“cleaned up” once the attention layers start focusing on the correct tokens.

Finally, we note that despite the recovery of these useful associations after one gradient step, the
predictions with this estimate W 2

O are still near-random, since in the bag-of-words setup with average
attention, the output token cannot be distinguished from any other token in the sequence in our model
(except perhaps the trigger token, which is guaranteed to appear twice, but does not provide any
signal to infer the output token, since the two are independent).

18

B.3.2 Learning W 2
K

Now assume that W 2
O is as in (16). As argued above, the predictions p̂(k|x) are essentially ran-

dom 1/N in our model for W 2
K = 0, so that after one gradient step on W 2

K with learning rate η,
Lemma 4 yields:

W 2
K =

η

TN

∑

k,t

(
E[wU (k)

⊤Φ2xt · (xt − x̄)x⊤
T | y = k]− E[wU (k)

⊤Φ2xt · (xt − x̄)x⊤
T]
)
, (17)

where xt are the inputs to the second attention layer, given by

xt = xt,0 + xt,1 (18)
xt,0 = wE(zt) + pt (19)

xt,1 =
1

t

t∑

s=1

Φ1(wE(zs) + ps). (20)

From now on, we consider a simplified architecture where only xt,0 are fed as queries and values,
while only xt,1 are fed as keys. Using the fact that trigger tokens q are sampled uniformly (i.e.,
πq = 1/N), we have

W 2
K =

η

TN

N∑

k=1

T∑

t=1

(E[At,k | y = k]− EX [At,k]) (21)

=
η

TN2

N∑

k=1

T∑

t=1

N∑

j=1

(E[At,k | y = k, q = j]− E[At,k | q = j]) (22)

where
At,k = wU (k)

⊤Φ2xt,0 · (xt,1 − x̄1)x
⊤
T,0, (23)

with x̄1 = 1
T

∑
t xt,1. Now, note that we have wU (k)

⊤Φ2xt,0 ≈ α1{zt = k} with α = η/TN
by (16), and xT,0 = wE(q) + pT . This yields

W 2
K ≈ αη

TN2

N∑

j=1

N∑

k=1

∆k,j(wE(j) + pT)
⊤, (24)

with

∆k,j := E

[
T∑

t=1

1{zt = k}(xt,1 − x̄1)|y = k, q = j

]
− E

[
T∑

t=1

1{zt = k}(xt,1 − x̄1)|q = j

]

= ∆o
k,j +∆q

k,j +∆r
k,j ,

where the three terms split the sum inside the expectation

∆o
k,j := E [1{zto = k}(xto,1 − x̄1)|y = k, q = j]− E [1{zto = k}(xto,1 − x̄1)|q = j]

∆q
k,j := E

∑

t∈Tq

1{zt=k}(xt,1 − x̄1)|y=k, q=j

− E

∑

t∈Tq

1{zt=k}(xt,1 − x̄1)|q=j

∆r
k,j := E

[∑

t∈Tr

1{zt=k}(xt,1 − x̄1)|y=k, q=j

]
− E

[∑

t∈Tr

1{zt=k}(xt,1 − x̄1)|q=j

]
,

where Tq = {to − 1, T} and Tr = [T] \ {to, to − 1, T} (recall that to is a random variable,
corresponding to the first occurrence of the output token, so that these sets are random).

We will now show that ∆o
k,j carries the desired signal for the appropriate induction head associative

memory, while ∆q
k,j and ∆r

k,j are negligible, for N large enough.

19

Controlling ∆o
k,j . For t = to, noting that zto = y, we have

∆o
k,j = E [1{y = k}(xto,1 − x̄1)|y = k, q = j]− E [1{y = k}(xto,1 − x̄1)|q = j]

=

(
1− 1

N

)
E [xto,1 − x̄1|y = k, q = j]

=
N − 1

N

(
p̄+

N∑

i=1

ak,j,iΦ1wE(i)

)
,

with ak,j,i ≈ (Φ1wE(i))
⊤ E [xto,1 − x̄1|y = k, q = j] thanks to near-orthonormality, and

p̄ = Eto

[
1

to

to∑

s=1

ps −
1

T

T∑

t=1

1

t

t∑

s=1

ps

]

is a spurious positional mixture.

We then distinguish the following cases:

• If j ̸= k and i = j, since the trigger token j only appears at positions to − 1 and T , we have

ak,j,i ≈ Eto

[
1

to
− 1

T

T∑

t=to−1

1

t
− 1

T 2

]
=: γT .

We may expect to to be concentrated around T/2, in which case γT ≳ 2
T − 1

T − 1
T 2 ≥ C

T > 0
for T larger than a small constant.

• If j = k = i, the two occurrences of the trigger happen one after the other, so it must be that to = T .
Then

ak,j,i ≈
2

T
− 1

T (T − 1)
− 2

T 2
=

2

T
+O

(
1

T 2

)
,

for T larger than a small constant.
• If i ̸= j = k, all tokens up to position to − 2 = T − 2 are i.i.d. uniform in [N] \ {j}, so that

ak,j,i ≈
T − 2

T (N − 1)
− 1

T

(
(T − 2) · 1

N − 1
+

T − 2

(T − 1)(N − 1)
+

T − 2

T (N − 1)

)
= O

(
1

N

)

• If i ̸= j and j ̸= k, all tokens except at positions to − 1, to and T (we have to < T) are uniform
in [N] \ {j}. The triggers do not contribute anything to ak,j,i since i ̸= j, and the output token
may be also randomized by taking the average over k ∈ [N] \ {j}. We thus obtain

1

N − 1

∑

k ̸=j

ak,j,i ≈ O

(
1

N

)
.

In summary, we obtain
1

N

N∑

k=1

ak,j,i ≈
{
O
(

1
N

)
, if i ̸= j

Ω
(
1
T

)
, if i = j.

Thus, when N is large, while T is moderate, the above sum leads to more signal in the i = j terms
compared to i ̸= j. In particular, this yields

(Φ1wE(i))
⊤
(

1

N

N∑

k=1

∆o
k,j

)
≈
{
O
(

1
N

)
, if i ̸= j

Ω
(
1
T

)
, if i = j,

so that this component in (24) acts precisely like the desired associative memory in (7).

It remains to show that the other components are negligible compared to this. It then suffices to show:

1

N

N∑

k=1

(∆q
k,j +∆r

k,j) ≈ o

(
1

T

)
.

20

Controlling ∆q
k,j . For t ∈ Tq , note that we always have zt = j in the expectations, so that ∆q

k,j = 0

unless k = j. For k = j, we have ∆q
k,j = O(1), so that

1

N

N∑

k=1

∆q
k,j = O

(
1

N

)
.

Controlling ∆r
k,j . Using that ∥xt,1 − x̄1∥ ≤ C = O(1) for all t, we provide the following crude

bound via the triangle inequality and Hölder inequality:

∆r
k,j = E

[∑

t∈Tr

1{zt=k}(xt,1 − x̄1)|y=k, q=j

]
− E

[∑

t∈Tr

1{zt=k}(xt,1 − x̄1)|q=j

]

∥∆r
k,j∥ ≤ C

(
E

[∑

t∈Tr

1{zt=k}|y=k, q=j

]
+ E

[∑

t∈Tr

1{zt=k}|q=j

])
≤ 2CT

N
,

since zt is independent of y given t ∈ Tr and thus is uniform in [N] \ {j}, and |Tr| ≤ T . We note,
however, that ∆r

k,j may be controlled much more finely by leveraging the similarities between the
distributions of zt, t ∈ Tr with or without conditioning on y.

Overall, we have shown that up to some spurious positional embeddings, W 2
K behaves as the desired

associative memory from (7) when N is large enough, satisfying:

(Φ1wE(i))
⊤W 2

KwE(j) ≈
αη

TN

{
Ω

(
1

T

)
1{i = j}+O

(
T

N

)}
(25)

We note that one may then amplify the gap between correct and incorrect associations by having a
large enough step-size, which then makes the softmax more peaked and hence the attention more
sparse and focused on correct associations.

B.3.3 Learning W 1
K

We now assume that W 2
O and W 2

K have learned the correct associations, and consider one gradient
step away from zero-initialization on W 1

K . Note that when W 1
K = 0, the predictions of the model are

still often near random chance. Indeed, the second layer attention will attend to all tokens starting at
the first occurrence of the trigger, since all such tokens contain Φ1wE(q) in their average attention,
which activates the second-layer attention head. Then the output is likely to predict the trigger itself,
which will be an incorrect prediction most of the time.

We may thus consider p̂(k|X) = 1/N at this stage as well. We also consider a simplified architecture
where the first layer attention only uses positional embeddings in the key-query matrix, and only
token embeddings in the value-output matrix. In particular, we have xt = wE(zt). Lemma 5 then
gives the following form for W 1

K after one gradient step of step-size η:

W 1
K =

η

N

N∑

k=1

EX

[
1

T

T∑

t=1

wU (k)
⊤Φ2xt ·

1

t

t∑

s=1

(Φ1xs)
⊤W 2

KxT (ps − p̄1:t)p
⊤
t |y = k

]

− η

N

N∑

k=1

EX

[
1

T

T∑

t=1

wU (k)
⊤Φ2xt ·

1

t

t∑

s=1

(Φ1xs)
⊤W 2

KxT (ps − p̄1:t)p
⊤
t

]

− η

N

N∑

k=1

EX

[
wU (k)

⊤Φ2x̄1:T · 1
T

T∑

t=1

1

t

t∑

s=1

(Φ1xs)
⊤W 2

KxT (ps − p̄1:t)p
⊤
t |y = k

]

+
η

N

N∑

k=1

EX

[
wU (k)

⊤Φ2x̄1:T · 1
T

T∑

t=1

1

t

t∑

s=1

(Φ1xs)
⊤W 2

KxT (ps − p̄1:t)p
⊤
t

]
.

Note that since W 2
O and W 2

K already captured the desired associations at this stage, we have

wU (k)
⊤Φ2xt ≈ α1{zt = k} and (Φ1xs)

⊤W 2
KxT ≈ α′

1{zs = zT },

21

for some α, α′ > 0. Recall that in our model, we have zT = q with probability one (q is the trigger
token), and that q only appears twice: once at position tq := to − 1 < T and once at position T . We
then have, for any t > 1,

W 1
Kpt ≈

ηαα′

NTt

N∑

k=1

(At,k −Bt,k − Ct,k +Dt,k),

with

At,k = E[1{zt=k}1{tq ≤ t}(ptq − p̄1:t)|y=k] (26)

Bt,k = E[1{zt=k}1{tq ≤ t}(ptq − p̄1:t)] (27)

Ct,k = E[rk 1{tq ≤ t}(ptq − p̄1:t)|y=k] (28)

Dt,k = E[rk 1{tq ≤ t}(ptq − p̄1:t)], (29)

where rk := 1
T

∑T
t=1 1{zt = k}. We have

At,k = E[1{zt=k}(1{tq = t− 1}+ 1{tq ∈ [t− 2] ∪ {t}})(ptq − p̄1:t)|y=k]

= P(tq = t− 1|y = k)(pt−1 − p̄1:t) +
1

N

∑

s∈[t−2]∪{t}
P(tq = s|y = k)(ps − p̄1:t)

= P(tq = t− 1)(pt−1 − p̄1:t) +
1

N

∑

s∈[t−2]∪{t}
P(tq = s)(ps − p̄1:t)

= P(tq = t− 1)(pt−1 − p̄1:t) +O

(
1

N

)
,

since the distribution of tq is the same regardless of y. We proceed similarly for the other quantities
and obtain the following:

Bt,k = O

(
1

N

)

Ct,k =
P(tq = t− 1)

T
(pt−1 − p̄1:t) +O

(
1

N

)

Dt,k = O

(
1

N

)
.

This yields the following associative memory behavior, for t > 1:

p⊤s W
1
Kpt ≈

ηαα′(T − 1)

T 2t

{
P(tq = t− 1)

(
1{s = t− 1} − 1

t
1{s ∈ [t]}

)
+O

(
1

N

)}
,

which matches the desired “previous token head” behavior from (7) when N is large. As in the case
of W 2

K , we may then “saturate” the softmax by choosing a large enough step-size.

C Other Proofs

C.1 Proof of Lemma 1

Proof. Recall the form of the cross-entropy loss for classification with K classes:

ℓ(y, ξ) = −
N∑

k=1

1{y = k} log eξk∑
j e

ξj
.

Its derivatives take the form
∂ℓ

∂ξk
(y, ξ) = s(ξ)k − 1{y = k},

with s(ξ)k = eξk∑
j eξj

the softmax.

22

The gradient of L is then given by

∇WL(W) = E(z,y)

[
N∑

k=1

∂ℓ

∂ξk
(y,WUWwE(z))∇W (wU (k)

⊤WwE(z))

]

= E(z,y)

[
N∑

k=1

(p̂W (k|z)− 1{y = k})wU (k)wE(z)
⊤
]

=

N∑

k=1

Ez[Ey[(p̂W (k|z)− 1{y = k})wU (k)wE(z)
⊤ | z]]

=

N∑

k=1

Ez[(p̂W (k|z)− Ey[1{y = k}|z])wU (k)wE(z)
⊤],

which yields the desired result.

C.2 Proof of Lemma 2

Proof. Using similar steps as the proof of Lemma 1, we have

∇WL(W) = E(x,y)

[
N∑

k=1

∂ℓ

∂ξk
(y,WUWx)∇W (wU (k)

⊤Wx)

]

= E(x,y)

[
N∑

k=1

(p̂W (k|x)− 1{y = k})wU (k)x
⊤
]

=

N∑

k=1

wU (k)Ex[p̂W (k|x)x]⊤ −
N∑

k=1

Ey[1{y = k}wU (k)E[x|y]⊤]

=

N∑

k=1

wU (k)Ex[p̂W (k|x)x]⊤ −
N∑

k,j=1

p(y = j)1{j = k}wU (k)E[x|y = j]⊤

=

N∑

k=1

p(y = k)wU (k)(µ̂k − µk)
⊤,

with µ̂k = p(y = k)−1 Ex[p̂W (k|x)x] and µk = E[x|y = k].

C.3 Proof of Lemma 4

Proof. To better isolate the role of keys from values, we denote the keys that are fed into the matrix W
by Z = [z1, . . . , zT] ∈ Rd×T , while the query is simply xT . In practice we have Z = X , and both
are superpositions of potentially multiple embeddings (if W is part of the second attention layer,
these are the token embedding, positional embedding, and the output of the first attention layer).

The gradient of the loss at W = 0 writes:

∇WL(W)
∣∣
W=0

= E(X,Z,y)

[
N∑

k=1

∂ℓ

∂ξk
(y, ξ) · ∇W (wU (k)

⊤Φ2Xσ(Z⊤WxT))
∣∣
W=0

]
(30)

= E(X,Z,y)

[
N∑

k=1

(p̂W (k|X,Z)− 1{y = k}) · ∇W (wU (k)
⊤Φ2Xσ(Z⊤WxT))

∣∣
W=0

]
. (31)

We have

∇W (wU (k)
⊤Φ2Xσ(Z⊤WxT))

∣∣
W=0

=

T∑

t=1

wU (k)
⊤Φ2xt · ∇W (σ(Z⊤WxT)t)

=
1

T

T∑

t=1

wU (k)
⊤Φ2xt · (zt − z̄1:T)x

⊤
T ,

23

where z̄1:T = 1
T

∑
t zt, and we used the fact that

∂

∂us
σ(u)t

∣∣
u=0

=
1

T
1{t = s} − 1

T 2
. (32)

The gradient (31) now writes

∇WL(W)
∣∣
W=0

=

N∑

k=1

E(X,Z)[(p̂W (k|X,Z)− 1{y = k}) 1
T

T∑

t=1

wU (k)
⊤Φ2xt · (zt − z̄1:T)x

⊤
T],

and the result follows.

C.4 Proof of Lemma 5

Proof. The linearization of the second layer softmax around zero takes the following form:

σ̄(Z⊤W2xT)t =
1

T
(1 + z⊤t W2xT − z̄⊤1:TW2xT),

with zt =
∑t

s=1 Φ1xsσ(p
⊤
1:tWpt)s the output of the first attention layer.

ξk =

T∑

t=1

wU (k)
⊤Φ2xtσ̄(Z

⊤W2xT)

=
1

T

T∑

t=1

wU (k)
⊤Φ2xt +

1

T

T∑

t=1

wU (k)
⊤Φ2xt

t∑

s=1

(Φ1xs)
⊤W2xTσ(p

⊤
1:tWpt)s

− wu(k)
⊤Φ2x̄1:T · 1

T

T∑

t=1

t∑

s=1

(Φ1xs)
⊤W2xTσ(p

⊤
1:tWpt)s.

Then,

∇WL(W)
∣∣
W=0

(33)

= E(X,y)

[
N∑

k=1

∂ℓ

∂ξk
(y, ξ) · ∇W ξk

∣∣
W=0

]
(34)

= E(X,y)

[
N∑

k=1

∂ℓ

∂ξk
(y, ξ)

1

T

T∑

t=1

wU (k)
⊤Φ2xt

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t

]
(35)

− E(X,y)

[
N∑

k=1

∂ℓ

∂ξk
(y, ξ)wU (k)

⊤Φ2x̄1:T · 1
T

T∑

t=1

1

t

t∑

s=1

(Φ1xs)
⊤W2xT (ps − p̄1:t)p

⊤
t

]
,

(36)

using (32). The result follows by using ∂ℓ
∂ξk

(y, ξ) = p̂(k|ξ)− 1{y = k}.

D Beyond our Simplified Architecture

While the simplified architecture presented in Section 4.2 is sufficient to capture the desired induction
behavior for our bigram task, transformer architectures used in practice typically involve more
components, as well as more heads and layers. In this section, we discuss how our memory viewpoint
extends to such architectures.

24

Factorizations. In practice, transformers typically involve products of matrices, potentially with a
low-rank bottleneck. For instance, our key-query matrices WK should instead be considered as a
product W⊤

KWQ, and the output-value matrices WO and WV are typically jointly optimized.

Consider an associative memory of the form:

W∗ =
∑

i

yix
⊤
i ∈ Rd×d,

where (xi)i and (yi)i are appropriate collections of near-orthonormal embeddings.

We now argue that a similar associative memory can be achieved with the factorization W = d
2d′UV ,

where U ∈ Rd×d′
, V ∈ Rd′×d with d′ ≤ d (for instance d′ could be the dimension of attention

heads), are given by:3

U = U0 +
∑

i

yi(V0xi)
⊤

V = V0 +
∑

i

(U⊤
0 yi)x

⊤
i ,

where U0 and V0 are random matrices with N (0, 1
d) entries. These matrices are similar to those that

would arise from a single gradient step individually on U and V from initializations U0 and V0, as in
Lemma 1. To see why W behaves like W∗, note that we have

UV = U0V0 +
∑

i

yi(V0xi)
⊤V0 +

∑

i

(U⊤
0 yi)x

⊤
i +

∑

i,j

yi(V0xi)
⊤(U⊤

0 yj)x
⊤
j .

It is also easy to check using central limit arguments (similar to remapping in Appendix A) that

x̃i :=
√

d
d′V0xi ∈ Rd′

and ỹi :=
√

d
d′U

⊤
0 yi are all nearly-orthonormal embeddings. Thus, we have

2y⊤k Wxl = ỹ⊤k x̃l +
∑

i

y⊤k yix̃
⊤
i x̃l +

∑

i

ỹ⊤k ỹix
⊤
i xl +

∑

i,j

y⊤k yix̃
⊤
i ỹjx

⊤
j xl

≈ 0 + 1{k = l}+ 1{k = l}+ 0,

where the first and last term vanish due to the cross-terms ỹ⊤i x̃i′ which vanish for any i, i′. Thus, W
and W∗ encode the same associations, when d and d′ are large enough to ensure near-orthogonality.

Layer-normalization. Normalization layers [4, 60] are typically used in transformers to improve
training stability [52], and are applied on each token representation, either after [52] or before [6]
each block. It may be seen as an operation of the form4

LN(x) =
x

∥x∥ ,

applied to the input or output of a given block.

In order to obtain a basic understanding of the role of layer-norm in our associative memory setup,
we may consider the setup Lemma 1, with a normalization applied after the linear operation, leading
to the population loss:

L(W) = E(x,y)∼p[ℓ(y,WULN(Wx))]. (37)
The gradients then take the form

∇WL(W) =

N∑

k=1

Ex

[
p̂W (y = k|x)− p(y = k|x)

∥Wx∥

(
I − (Wx)(Wx)⊤

∥Wx∥2
)
wU (k)x

⊤
]
. (38)

3When d′ is the head dimension, the d
d′ scaling can be interpreted as the correct multiplier to use in attention

logits, which plays a similar role to the 1
d′ multiplier in the µP scaling [59], for our setup where the variance of

the random entries of input embeddings is 1/d instead of 1 as in [59].
4RMSNorm [60] would use the variance instead of the norm in the denominator, leading to an additional

√
d

factor in the numerator. Here we use the norm, which is more natural when embeddings have near-unit norm, in
contrast to the ≈

√
d norm for the standard parameterization.

25

This illustrates that in addition to weighting the updates on class k by the prediction error p̂(k|x)−
p(k|x), the updates are also projected on the orthogonal of the Wx direction. This means that
an update on the direction wU (k)x

⊤ will occur only to the extent that Wx is not already aligned
with wU (k). Thus, if an association is “stored” once, so that Wx ≈ wU (y), layer-norm will
avoid further updating W in that direction, hopefully avoiding norms that grow too much, and also
encouraging frequent and infrequent tokens to be weighted similarly in the final memory (see also [7]
for more discussion on this).

Note that at random initialization Wx is nearly orthogonal to any wU (k), so that layer-norm only
starts playing a significant role later in training, and does not affect our theoretical analysis based on
single gradient steps.

MLP blocks. If we denote by (ui)i and (vi)i collections of near-orthonormal input and output
embeddings, an MLP block may encode associations (i, j) ∈ M as follows:

F (x) =
∑

(i,j)∈M
vjσ(u

⊤
i x− b),

where σ is a non-linear activation and b a bias term. Then, if one assumes that u⊤
i uj ≤ b for i ̸= j

and σ(t) = 0 for t < 0, then this can help filter out noise that arises from near-orthogonality, and
may then lead to additional storage capacity, at the cost of additional computation (see, e.g., [7, 30]).

An additional benefit of MLP layers discussed in Section 4 is that they may encode many-to-many
associations, which is useful when multiple embeddings are in the residual stream and need to be
considered jointly (e.g., a subject and a relation in a factual recall task [35]). This may be achieved,
for instance, by considering embeddings uI = 1√

|I|
∑

i∈I ui, where I are sets of bounded size (e.g.,

as obtained using layer-norm over a residual stream). Then, assuming the ui are nearly-orthonormal,
we have u⊤

I uI ≈ 1 while u⊤
I uI′ ≲ 1 − δ if I = I ′, for some δ that depends on the maximal

cardinality of these sets. Although 1− δ is no-longer vanishingly small, defining

F (x) =
∑

(I,J)∈M
vJ σ(u⊤

I x− b),

the non-linearity may still succeed at filtering out any I that does not correspond to the query set
in x. We leave the question of how such non-linear associative memories may arise from training
dynamics to future work.

Multiple heads and layers. We remark that our view of weights as associative memories applies
to any parameter other than embedding/unembedding layers, and thus naturally extends to multiple
heads (using the low-rank factorizations described above) and multi-layer models.

It is important to note, however, that the redundancy introduced by having more heads and layers
makes it more challenging to identify which layer/head/weight will learn certain associations (see,
e.g., Figure 11 in Appendix E). This is in contrast to our simplified architecture of Section 4.2, where
we may identify the role of each matrix (up to some possible redundancy when using the feed-forward
layer WF). In practice, mechanisms may appear in different heads/layers across different training
runs, which makes interpretability more challenging, and typically requires some causal identification
techniques, such as mediation analysis [35, 54].

E Experiment Details and Additional Experiments

In this section, we present additional details on the experiments, as well as additional results.

Computing setup. We use Pytorch and each run uses a single GPU, along with 60 CPU cores for
real-time data generation. We will make our code available upon publication.

Hyperparameters. We now provide the hyperparameters used in each figure. The SGD step-size
is denoted η. We fix the momentum parameter to 0.9 and the weight decay parameter to 10−4. U
denotes the uniform distribution over [N].

26

0 100 200 300 400 500
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
em

or
y

re
ca

ll

Wo2

K=1, fix q frequent
K=5, fix q rare
K=1, random q
K=5, random q

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

1.0

m
em

or
y

re
ca

ll

Wk2

K=1, fix q frequent
K=5, fix q rare
K=1, random q
K=5, random q

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

m
em

or
y

re
ca

ll

Wk1 (t<64)

K=1, fix q frequent
K=5, fix q rare
K=1, random q
K=5, random q

Figure 5: Memory recall probes for the setting of Figure 4(left).

0 100 200 300 400 500
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
em

or
y

re
ca

ll

Wo2

train unif
train bigram

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

m
em

or
y

re
ca

ll

Wk2
train unif
train bigram

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

m
em

or
y

re
ca

ll

Wk1 (t<64)

train unif
train bigram

Figure 6: Memory recall probes for the setting of Figure 4(center).

• Figure 2: K = 3, πq = πu (random triggers) or Q is the K most likely elements of πu, πo = U ,
d = 128, dhidden = 4× 128 (hidden dimension of the feed-forward MLPs), η = 0.2.

• Figure 3: K = 5, πq = πu (random triggers), πo = U , d = 128, η = 0.2.

• Figure 4(left) and Figure 5: πo = U , d = 128, η = 1. For random triggers we use πq = πu. For
K = 1 with fixed frequent trigger, the only trigger is the most probable token according to πu,
while for K = 5 with fixed rare triggers, the five triggers are the 6-th to 10-th most probable
tokens according to πu.

• Figure 4(center): K = 3, πq = πu (random triggers), πo = U or πo = πb (conditioned on the
trigger), d = 128, η = 1.

• Figure 4(right): K = 3, πq = πu (random triggers), πo = U , d = 128, η = 1.

Memory recall probes and data-distributional properties. Figure 5 and Figure 6 show the
evolution of the different memory probes for the settings considered in Figure 4(left,center). Figure 5
highlights that associative memories for the induction head are slower to learn when using few
triggers (small K), rare fixed triggers, or random triggers (note that the probe for W 2

K with fixed
triggers only shows recall accuracy on the set of triggers Q, which is an easier task). Figure 6

Figure 7: Visualization of the weights W 1
K (left), W 2

K (center), and W 2
O (right) after training with

random triggers, K = 3, πq = πu, πo = U . For each of these weight matrices W , if we write the
corresponding target memory in (7) as W∗ =

∑
i viu

⊤
i with appropriate embeddings (ui)i and (vi)i

(for instance ut = pt−1 and vt = pt for W 1
K on the left), and we show all values v⊤j Wui.

27

0 50 100 150 200 250
iteration

0.0

0.2

0.4

0.6

0.8

1.0
Wo2 recall, fixed lr

32
64
128
256
512
1024

0 20 40 60 80
iteration

0.2

0.4

0.6

0.8

1.0
Wo2 recall, tuned lr

32
64
128
256
512
1024

Figure 8: Effect of dimension on learning W 2
O alone, with fixed or tuned learning rate.

0 10 20 30 40
batches

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

one-step classifier

d = 32
d = 64
d = 128
d = 256
d = 512
d = 1024
d = 2048

102 103

dimension d

0.2

0.4

0.6

0.8

ac
cu

ra
cy

one-step classifier
5 batches
10 batches
20 batches

Figure 9: Accuracy of one-step estimate of W 2
O with varying dimension and number of batches used

for computing expectations. Each batch consists of 32 sequences of 256 tokens for a total of 8 192
tokens, with K = 5 random triggers and uniform outputs.

shows that using uniform output tokens can lead to better fitting of W 2
O and W 2

K compared to using
output tokens sampled from bigrams. In addition to the increased diversity when using uniform
outputs, this may also be due to the fact that bigram outputs are already well predicted using global
statistics with just the feed-forward layer, hence the gradient signal on such well-predicted tokens
may not propagate through the induction head mechanism. In contrast, the recall accuracy for W 1

K is
comparable for both settings, since the previous token head is useful at all positions regardless of the
output token distribution.

Visualizing memories. Figure 7 shows visualizations of the associative memory behaviors after
training. We see that diagonal elements dominate in the plots, which corresponds to correct asso-
ciations lead to high ‘memory recall’. Nonetheless, we see that some of the diagonal elements are
weaker than others, particularly for late positions in W 1

K , and for some of the trigger tokens in W 2
K ,

while the diagonal for W 2
O seems to be roughly uniform. We note that characters corresponding to

capital letters have token index 13 to 38, while lowercase letters have index 39 to 64. The association
patterns found in W 2

K then seem related to frequencies of appearance of triggers, whereby capital
letters appear less frequently in the data, and are also less frequently chosen as triggers, compared to
lowercase letters. Similarly, since the first occurrence of triggers is typically early in a sequence, it
is natural that W 1

K learns stronger associations at earlier positions. In contrast, diagonal elements
for W 2

O are nearly uniform, which agrees with the fact that output tokens are sampled uniformly
in this setup. We refer to the follow-up work [7] for an analysis of how data frequencies affect
association strength in such associative memories.

Effect of dimension. Recall that our study of associative memories with random embeddings
requires large dimension d in order to ensure near-orthogonality, and thus store input-output pairs
more effectively. In Figure 8, we evaluate the recall accuracy for W 2

O for varying dimension, when
training it by itself, and only on the output tokens (as in Figure 3). We see that higher dimension
leads to faster learning of the memory, in particular d = 128 seems sufficient for fast learning after
just a few iterations with a tuned learning rate. If the learning rate isn’t tuned, we notice that there
is a further slowdown for low dimension, is likely due to issues with the fact that our experiments
use the standard parameterization of neural networks at initialization, rather than maximal update
parameterizations [58]. Note that learning W 2

O alone is a convex optimization problem, and we
hypothesize that higher dimension makes the problem better conditioned, and hence easier to learn.
In Figure 9, we show “one-step” recall accuracies for classifying output tokens from the average

28

0 100 200 300 400 500
iteration

1

2

3

4

lo
ss

in-context vs global loss
K=5, random q

0 100 200 300 400 500
iteration

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

in-context accuracy
K=5, random q

0 200 400 600
iteration

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ac

cu
ra

cy

Wo2 recall
Wk2 recall
Wk1 recall (t<64)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

KL
 d

iv
er

ge
nc

e

attention vs feed-forward probes

Wf KL

Figure 10: Training of a more realistic architecture with (i) ReLU MLP instead of linear layer
for the second feed-forward layer, (ii) all parameters trained, including embeddings, (iii) pre-layer
normalization. The loss, in-context accuracy and memory recall probes are similar to the simplified
architecture (see, e.g., Figure 4).

K : [l] T h e e _ m e r F _ m e K : [l] T h e e _ m e r F _ m e K : [l] T h e e _ m e r F _ m e K : [l] T h e e _ m e r F _ m e

Figure 11: Attention maps for a two-layer model with 4 attention heads. In the first layer (top), the
previous token mechanism is mostly achieved by one of the four heads, while the induction behavior
at the second layer (bottom) is distributed across the different heads.

attention input to W 2
O, given by

R1 =
1

N

N∑

k=1

1

{
k = argmax

k′
(W 2

V wE(k
′))⊤(µk − µ)

}
,

where µk = E[x|y = k] and µ = E[x], for x = 1
t

∑t
s=1 W

2
V wE(zs) and y = zt+1, when zt is a

trigger token after its first occurrence. Expectations are computed over batches of data of varying sizes
and in different dimensions. We call this “one-step” since it is related to the classifier obtained after
performing a single gradient step on W 2

O from zero initialization (see Lemma 2 and Appendix B.3.1).
The plots illustrate that this simple one-step model is already able to extract relevant signal from the
noisy average attention, after a handful of batches of data, corresponding to tens of thousands of
tokens, and that this gets easier as the dimension increases.

More complex architectures. Figure 10 shows training behavior for a more complex model than the
simplified one considered in Section 5, namely where we train all parameters, replace the linear WF

feedforward layer by a two-layer MLP, and were (pre-)layer-normalization is added. Despite these
changes, we see similar behavior for the memory recall probes (which now involve embeddings that
may change over time), suggesting that the model is still identifying the same memory associations,
despite the additional redundancies in parameters and modified training dynamics.

Figure 11 shows the attention maps obtained when training a multi-head version of our two-layer
model, with four attention heads per layer. We see that the redundancy of multiple heads creates
difficulties in identifiability: only one of the first layer heads learns the previous token behavior,
while the induction behavior is shared across different heads at the second layer. This illustrates the
challenges of interpretability in the presence of redundant models, which then require additional work
to identify which of the layers and heads are performing a given behavior, e.g., through interventions
and causal mediation analysis [35, 54].

29

	Introduction
	Background
	Synthetic Setup
	The Associative Memory Viewpoint
	Weight matrices as associative memories
	A simplified two-layer transformer architecture

	Empirical Study
	Theoretical Insights on Learning Dynamics
	Discussion
	Associative Memories with Random Vectors
	Theoretical Insights on Gradient Dynamics
	Details on illustrative example
	Gradients on key-query matrices at initialization
	Learning the induction head mechanism
	Learning
	Learning
	Learning

	Other Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Lemma 5

	Beyond our Simplified Architecture
	Experiment Details and Additional Experiments

