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Abstract

Performative prediction is a recently proposed framework where predictions guide
decision-making and hence influence future data distributions. Such performative
phenomena are ubiquitous in various areas, such as transportation, finance, public
policy, and recommendation systems. To date, work on performative prediction
has only focused on unconstrained scenarios, neglecting the fact that many real-
world learning problems are subject to constraints. This paper bridges this gap
by studying performative prediction under inequality constraints. Unlike most
existing work that provides only performative stable points, we aim to find the
optimal solutions. Anticipating performative gradients is a challenging task, due
to the agnostic performative effect on data distributions. To address this issue,
we first develop a robust primal-dual framework that requires only approximate
gradients up to a certain accuracy, yet delivers the same order of performance
as the stochastic primal-dual algorithm without performativity. Based on this
framework, we then propose an adaptive primal-dual algorithm for location family.
Our analysis demonstrates that the proposed adaptive primal-dual algorithm attains
O(
√
T ) regret and constraint violations, using only

√
T + 2T samples, where T

is the time horizon. To our best knowledge, this is the first study and analysis on
the optimality of the performative prediction problem under inequality constraints.
Finally, we validate the effectiveness of our algorithm and theoretical results
through numerical simulations.

1 Introduction

Stochastic optimization plays a critical role in statistical sciences and data-driven computing, where
the goal is to learn decision rules (e.g., classifiers) based on limited samples that generalize well
to the entire population. Most prior studies on stochastic optimization [Heyman and Sobel, 2004;
Karimi et al., 2019; Powell, 2019] rely on the assumption that the data of the entire population
follows a static distribution. This assumption, however, does not hold in applications where the
data distributions change dynamically in response to decision-makers’ actions [Hardt et al., 2016;
Dong et al., 2018]. For instance, in transportation, travel time estimates [Mori et al., 2015] influence
routing decisions, resulting in realized travel times; in banking, credit evaluation criteria [Abdou and
Pointon, 2011] guide borrowers’ behaviors and subsequently their credit scores; and in advertising,
recommendations [García-Sánchez et al., 2020] shape customer preferences, leading to consumption
patterns. Such interplay between decision-making and data distribution arises widely in various areas,
such as transportation, finance, public policy, and recommendation systems.

The seminal work [Perdomo et al., 2020] formalized the phenomenon as performative prediction,
which represents the strategic responses of data distributions to the taken decisions via decision-
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dependent distribution maps [Quinonero-Candela et al., 2008]. Since then, an increasing body of
research has been dedicated to performative prediction problems. Most existing studies are focused
on identifying performative stable points [Li and Wai, 2022; Li et al., 2022; Drusvyatskiy and Xiao,
2022; Brown et al., 2022; Mendler-Dünner et al., 2020; Wood et al., 2021; Ray et al., 2022], given
the complexities of the decision-induced distribution shifts and the unknown decision-dependent
distributions. The proposed algorithms typically iteratively retrain the deployed models until conver-
gence. However, performative stability generally does not imply performative optimality. Aiming to
achieve optimal performance, a few recent works designed effective algorithms by leveraging rich
performative feedback [Jagadeesan et al., 2022], or by making some parametric assumptions on the
underlying distribution maps. For instance, the distribution maps belong to the location family with
linear structure [Miller et al., 2021] or are from the exponential family [Izzo et al., 2021].

All the aforementioned work on performative prediction is focused on unconstrained learning prob-
lems. However, in the real world, many performative prediction applications are subject to constraints
[Detassis et al., 2021; Wood and Dall’Anese, 2022a]. Constraints can be used to ensure the satisfaction
of desired properties, such as fairness, safety, and diversity. Examples include safety and efficiency
constraints in transportation [Metz, 2021], relevance and diversity constraints in advertising [Khamis,
2020], and risk tolerance and portfolio constraints in financial trading [Föllmer and Schied, 2002],
etc. In addition, constraints can serve as side information to enhance the learning outcomes, e.g., by
narrowing the scope of exploration or by incorporating prior knowledge Serafini and Garcez [2016];
Wu et al. [2018]. As performative shifts can rarely be analyzed offline, incorporating constraints
on what constitutes safe exploration [Turchetta et al., 2019] or facilitates optimization [Wood and
Dall’Anese, 2022b] is of crucial importance.

Despite its importance, research on performative prediction under constraints has been neglected so
far. Although some work [Izzo et al., 2021; Piliouras and Yu, 2022] restricted decision variables to
certain regions, this feasible set restriction was simply handled by projections. This paper bridges this
gap by studying the performative prediction problem under inequality constraints, for which simple
projection is inadequate to handle. Unlike most existing work that provides only performative stable
points, we aim to find the optimal solutions. As aforementioned, finding performative optima is a
challenging task because we now need to anticipate performative effect actively rather than simply
retrain models in a myopic manner.

However, the performative effect on distribution maps is unknown, which hinders the computation
of exact performative gradient. To solve this problem, we develop a robust primal-dual framework
that admits inexact gradients. We ask the following questions: How does the gradient approximation
error affect the performance of the primal-dual framework? Under what accuracy can the approx-
imate gradients maintain the performance order of the stochastic primal-dual algorithm without
performativity? How to construct effective gradient approximations that attain the desired accuracy?
We answer the above thoroughly. Our idea hinges on enhancing gradient approximation with the
parametric knowledge of distribution maps. In particular, we follow existing studies [Miller et al.,
2021; Jagadeesan et al., 2022] and focus on the family of location maps. Location family exhibit a
favorable linear structure for algorithm development while maintaining broad generality to model
many real-world applications. Distribution maps of this type are ubiquitous throughout the performa-
tive prediction literature, such as strategic classification [Hardt et al., 2016; Perdomo et al., 2020],
linear regression [Miller et al., 2021], email spam classification [Li et al., 2022], ride-share [Narang
et al., 2022], among others. Nevertheless, we emphasize that our robust primal-dual framework is
applicable to other forms of distributions with effective gradient approximation methods.

To our best knowledge, this paper provides the first study and analysis on the optimality of performa-
tive prediction problems under inequality constraints. We highlight the following key contributions:

• We develop a robust primal-dual framework that requires only approximate gradients up
to an accuracy of O(

√
T ), yet delivers the same order of performance as the stochastic

primal-dual algorithm without performativity, where T is the time horizon. Notably, the
robust primal-dual framework does not restrict the approximate gradients to be unbiased
and hence offers more flexibility to the design of gradient approximation.

• Based on this framework, we propose an adaptive primal-dual algorithm for location family,
which consists of an online stochastic approximation and an offline parameter estimation
for the performative gradient approximation. Our analysis demonstrates that the proposed
algorithm achieves O(

√
T ) regret and constraint violations, using only

√
T + 2T samples.
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Finally, we conduct experiments on two examples: multi-task linear regression and multi-asset
portfolio. The numerical results validate the effectiveness of our algorithm and theoretical analysis.

1.1 Related Work

The study on performative prediction was initiated in [Perdomo et al., 2020], where the authors
defined the notion of performative stability and demonstrated how performative stable points can be
found through repeated risk minimization and stochastic gradient methods. Since then, substantial
efforts have been dedicated to identifying performative stable points in various settings, such as
single-agent [Mendler-Dünner et al., 2020; Drusvyatskiy and Xiao, 2022; Brown et al., 2022], multi-
agent [Li et al., 2022; Piliouras and Yu, 2022], games [Narang et al., 2022], reinforcement learning
[Mandal et al., 2023], and online learning [Wood et al., 2021; Wood and Dall’Anese, 2022a].

A few recent works aimed to achieve performative optimality, a more stringent solution concept than
performative stability. In [Miller et al., 2021], the authors evaluated the conditions under which the
performative problem is convex and proposed a two-stage algorithm to find the performative optima
for distribution maps in location family. Another paper on performative optimality is [Izzo et al.,
2021], which proposed a PerfGD algorithm by exploiting the exponential structure of the underlying
distribution maps. Both works took advantage of parametric assumptions on the distribution maps.
Alternatively, [Jagadeesan et al., 2022] proposed a performative confidence bounds algorithm by
leveraging rich performative feedback, where the key idea is to exhaustively explore the feasible
region with an efficient discarding mechanism.

A closely related work is [Wood and Dall’Anese, 2022b], which studied stochastic saddle-point
problems with decision-dependent distributions. The paper focused on performative stable points
(equilibrium points), whereas we aim at the performative optima, which is more challenging. An-
other difference is that [Wood and Dall’Anese, 2022b] only demonstrated the convergence of the
proposed primal-dual algorithm in the limit, without providing an explicit finite-time convergence
rate. In contrast, we provide O(

√
T ) regret and O(

√
T ) constraint violation bounds for the proposed

algorithm in this paper.

2 Problem Setup

We study a performative prediction problem with loss function ` (θ;Z), where θ ∈ Θ is the decision
variable, Z ∈ Rk is an instance, and Θ ∈ Rd is the set of available decisions. Different from
in stationary stochastic optimization where distributions of instances are fixed, in performative
prediction, the distribution of Z varies with the decision variable θ, represented by Z ∼ D(θ).
In this paper, we consider that the decision variable θ is subject to a constraint g (θ) � 0, where
g(·) : Θ → Rm. The constraint g(·) can be imposed on θ to ensure certain properties, such as
fairness, safety, and diversity, or to incorporate prior knowledge. We assume that g(·) is available at
the decision-maker in advance of the optimization. Ideally, the goal of the decision-maker is to solve
the following stochastic problem:

minθ∈Θ EZ∼D(θ)` (θ;Z) s.t. g (θ) � 0, (1)

where EZ∼D(θ)` (θ;Z) is referred to as performative risk, denoted by PR(θ).

Problem (1) is, however, impossible to be solved offline because the distribution map D(θ) is
unknown. Instead, the decision-maker needs to interact with the environment by making decisions to
explore the underlying distributions. Given the online nature of this task, we measure the loss of a
sequence of chosen decisions θ1, · · · ,θT by performative regret, defined as

Reg(T ) :=
∑T
t=1 (E[PR(θt)]− PR(θPO)) ,

where the expectation is taken over the possible randomness in the choice of {θt}Tt=1, and θPO is the
performative optimum, defined as

θPO ∈ arg minθ∈Θ EZ∼D(θ)` (θ;Z) s.t. g (θ) � 0.

Performative regret measures the suboptimality of the chosen decisions relative to the performative
optima. Another performance metric for problem (1) on evaluating the decision sequence {θt}Tt=1 is
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constraint violation, given by

Vioi(T ) :=
∑T
t=1 E[gi (θt)],∀i ∈ [m],

where we use the symbol [m] to represent the integer set {1, · · · ,m} throughout this paper.

Applications pertaining to problem (1) are ubiquitous. Next is an example.
Example 1 (Multi-Asset Portfolio). Consider a scenario where an investor wants to allocate
his/her investment across a set of l assets, such as stocks, bonds, and commodities. The objective
is to maximize the expected return subject to certain constraints, including liquidity, diversity, and
risk tolerance. Let zi denote the rate of return of the ith asset and θi denote its weight of allocation,
∀i ∈ [l]. The investment can affect the future rates of return of the assets and, consequently, the
overall expected return of the portfolio. For example, excessive investment in a particular asset may
lead to a decline in the rate of return of other assets. Let z = [z1, · · · , zl]> and θ = [θ1, · · · , θl]>.
Then, the expected return of the portfolio is E[rp] := Ez∼D(θ)z

>θ. Typically, the risk of the portfolio
is measured by the variance of its returns, given by θTΨθ, where Ψ is the covariance matrix of
z. One common approach to model liquidity is using the bid-ask spread, which measures the gap
between the highest price a buyer is willing to pay (the bid) and the lowest price a seller is willing
to accept (the ask) for a particular asset. Denote the vector of the bid-ask spread of the l assets by
s = [s1, · · · , sl]>. Then, a liquidity constraint on the portfolio can be defined as s>θ ≤ S, where S
is the maximum allowable bid-ask spread. The multi-asset portfolio problem can be formulated as:

minθ − Ez∼D(θ)z
>θ s.t.

∑l
i=1 θi ≤ 1, 0 � θ � ε · 1, s>θ ≤ S, and θTΨθ ≤ ρ,

where ε restricts the maximum amount of investment to one asset, and ρ is the risk tolerance threshold.

In this paper, our goal is to design an online algorithm that achieves both sublinear regret and sublinear
constraint violations with respect to the time horizon T , i.e., Reg(T ) ≤ o(T ) and Vioi(T ) ≤ o(T ),
for all i ∈ [m]. Then, the time-average regret satisfies Reg(T )/T ≤ o(1), and the time-average
constraint violations satisfy Vioi(T )/T ≤ o(1), for all i ∈ [m]. Both asymptotically go to zero as
T goes to infinity. Therefore, the performance of the decision sequence {θt}Tt=1 generated by the
algorithm approaches that of the performative optimum θPO as T goes to infinity.

3 Adaptive Primal-Dual Algorithm

3.1 Robust Primal-Dual Framework

In this subsection, we develop a robust primal-dual framework for the performative prediction
problem under inequality constraints. Our approach involves finding a saddle point for the regularized
Lagrangian of problem (1). The Lagrangian, denoted by L(θ,λ), is defined as

L(θ,λ) := PR(θ) + λ>g(θ)− δη
2 ‖λ‖

2
2, (2)

where θ is the primal variable (decision), λ is the dual variable (multiplier), η > 0 is the stepsize of
the algorithm, and δ > 0 is a control parameter. In (2), we add the regularizer − δη2 ‖λ‖

2
2 to suppress

the growth of the multiplier λ, so as to improve the stability of the algorithm.

To find the saddle point of the Lagrangian L(θ,λ), we utilize alternating gradient update on the
primal variable θ and the dual variable λ. The gradients of L(θ,λ) with respect to θ and λ are
respectively given by

∇θL(θ,λ) =∇θPR(θ) +∇θg(θ)>λ, (3)
∇λL(θ,λ) =g(θ)− δηλ,

where ∇θg(θ) is the Jacobian matrix of g(·). In (3), ∇θPR(θ) is the gradient of the performative
risk PR(θ), given by

∇θPR(θ) = EZ∼D(θ)∇θ` (θ;Z) + EZ∼D(θ)` (θ;Z)∇θ log pθ(Z), (4)

where pθ(Z) is the density of D(θ).

Since the data distribution D(θ) is unknown, the exact gradient of the performative risk PR(θ) is
unavailable, posing a significant challenge to the algorithm design. In this paper, we tackle this
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issue using a robust primal-dual framework. The main idea is to construct gradient approximations
from data and then perform alternating gradient updates based on the inexact gradients. Denote by
∇θP̂Rt(θ) the approximation of the gradient ∇θPR(θ) at the tth iteration. Correspondingly, an
approximation for the Lagrangian gradient∇θL(θ,λ) at the tth iteration is given by

∇θL̂t(θ,λ) :=∇θP̂Rt(θ) +∇θg(θ)>λ,∀t ∈ [T ].

The robust alternating gradient update is then performed as

θt+1 = ΠΘ

(
θt − η∇θL̂t(θt,λt)

)
, (5)

λt+1 = [λt + η∇λLt(θt,λt)]+ . (6)

Then, the next question is how to construct effective gradient approximations that achieve satisfactory
performance.

By (4), the expectation over D(θ) in the gradient ∇θPR(θ) can be approximated by samples,
while the unknown probability density pθ(Z) presents the main challenge. Most existing research
circumvented this problem by omitting the second term in ∇θPR(θ). This essentially gives a
performative stable point. However, as pointed out in [Miller et al., 2021], performative stable points
can be arbitrarily sub-optimal, leading to vacuous solutions. Instead, if we have further knowledge
about the parametric structure of pθ(Z), the complexity of gradient approximation can be greatly
reduced. In this regard, [Miller et al., 2021] and [Jagadeesan et al., 2022] exploited the linear structure
of location family, and [Izzo et al., 2021] considered distribution maps within exponential family.
Following [Miller et al., 2021; Jagadeesan et al., 2022], we focus on the family of location maps in
this paper because it exhibits a favorable linear structure for algorithm development while maintaining
broad generality to various applications. Next, we develop an adaptive algorithm for problem (1)
with location family distribution maps based on the above robust primal-dual framework.

3.2 Algorithm Design for Location family

In the setting of location family, the distribution map depends on θ via a linear shift, i.e.

Z ∼ D(θ)⇔ Z
d
= Z0 + Aθ, (7)

where Z0 ∼ D0 is a base component representing the data without performativity, A ∈ Rk×d

captures the performative effect of decisions, and d
= means equal in distribution. Denote by Σ the

covariance matrix of the base distributionD0. Note thatD0 is still unknown. Plugging the distribution
definition (7) into (4), we obtain a more explicit expression for∇θPR(θ) as

∇θPR(θ) = EZ0∼D0

[
∇θ` (θ;Z0 + Aθ) + A>∇Z` (θ;Z0 + Aθ)

]
.

To compute∇θPR(θ), we still need to address two problems: the unknown base distribution D0 and
the unknown performative parameter A. We tackle them as follows.

Offline Stochastic Approximation: We approximate the base distribution D0 offline by sample
average approximation [Kleywegt et al., 2002]. Specifically, before the start of the alternating gradient
update, we first draw n samples {Z0,i}ni=1 from D(0). These samples are used to approximate the
expectation over Z0 throughout the algorithm iteration. Hence, the sample complexity from this
expectation approximation is fixed at n.

Online Parameter Estimation: We estimate the parameter A via online least squares. In each round
of the alternating gradient update, we first take the current decision θt and its perturbed point θt + ut
to observe samples Zt ∼ D (θt) and Z ′t ∼ D (θt + ut), respectively, where ut is an injected noise
specified by the decision-maker. We have E[Zt − Z ′t|ut] = Aut. Then, the least-square problem at
the tth iteration is designed as

minA
1
2 ‖Z

′
t − Zt −Aut‖22 .

Let Ât−1 be the estimate of A at the (t− 1)th iteration. Based on it, we construct a new estimate Ât

for A by using gradient descent on the above least-square objective. This gives us the update

Ât = Ât−1 + ζt

(
Z ′t − Zt − Ât−1ut

)
u>t ,
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Algorithm 1 Adaptive Primal-Dual Algorithm
1: Take decision θ = 0 and observe n samples Z0,i ∼ D0, ∀i ∈ [n].
2: Initialize θ1 ∈ Θ arbitrarily. Set λ1 = 0 and Â0 = 0.
3: for t = 1 to T do
4: Take decision θt and observe Zt ∼ D (θt).
5: Generate noise ut.
6: Take decision θt + ut and observe Z ′t ∼ D (θt + ut).
7: Update parameter estimate by Ât = Ât−1 + ζt

(
Z ′t − Zt − Ât−1ut

)
u>t .

8: Update gradient approximation∇θP̂Rt(θt) by (8).
9: Compute∇θL̂t(θt,λt) = ∇θP̂Rt(θt) +∇θg(θt)

>λt.
10: Update the primal variable by θt+1 = ΠΘ

(
θt − η∇θL̂t(θt,λt)

)
.

11: Compute∇λL(θt,λt) = g(θt)− δηλt.
12: Update the dual variable by λt+1 = [λt + η∇λL(θt,λt)]

+.
13: end for

where ζt is the stepsize of the online least squares at the tth iteration.

Adaptive Primal-Dual Algorithm: With the above preparation, we obtain an approximation for the
gradient∇θPR(θt) at the tth iteration as

∇θP̂Rt(θt) := 1
n

∑n
i=1

[
∇θ`

(
θt;Z0,i + Âtθt

)
+ Â>t ∇Z`

(
θt;Z0,i + Âtθt

)]
. (8)

Given∇θP̂Rt(θt), we develop an adaptive primal-dual algorithm for the constrained performative
prediction problem (1) based on the robust primal-dual framework in § 3.1, which is presented in
Algorithm 1. In Algorithm 1, the initial decision is randomly chosen from the admissible set Θ. Both
the dual variable and the parameter estimate Â0 are initialized to be zero. The algorithm maintains
two sequences. One is the estimate Ât, which is updated based on the newly observed samples
Zt and Z ′t, as given in Step 7. The other is the alternating gradient update on the primal and dual
variables, which are respectively given in Step 10 and Step 12.

Remark 1. While this paper considers the distribution maps within the location family, we emphasize
that the proposed robust primal-dual framework does not restrict to any form of distribution. For
instance, the exponential family considered in [Izzo et al., 2021] with their gradient approximation
method can be directly applied to our robust primal-dual framework.

4 Convergence Analysis

In this section, we analyze the convergence performance of the proposed adaptive primal-dual
algorithm. We first provide the convergence result of the robust primal-dual framework. Then, we
bound the error of gradient approximation in our adaptive algorithm for the location family. With
these results, the convergence bounds of the adaptive primal-dual algorithm are derived. Our analysis
is based on the following assumptions.

Assumption 1 (Properties of ` (θ;Z)). The loss function ` (θ;Z) is β-smooth, Lθ-Lipschitz con-
tinuous in θ, LZ-Lipschitz continuous in Z, γθ-strongly convex in θ, and γZ-strongly convex in Z.
Moreover, we have γθ − β2/γZ > 0.

Assumption 2 (Compactness and Boundedness of Θ). The set of admissible decisions Θ is closed,
convex, and bounded, i.e., there exists a constant R > 0 such that ‖θ‖2 ≤ R, ∀θ ∈ Θ.

Assumption 3 (Properties of g(θ)). The constraint function g(θ) is convex, Lg-Lipschitz continu-
ous, and bounded, i.e., there exists a constant C such that ‖g(θ)‖2 ≤ C, ∀θ ∈ Θ.

Assumption 4 (Bounded Stochastic Gradient Variance). For any i ∈ [n] and θ ∈ Θ, there exists
σ ≥ 0 such that

EZ0,i∼D0

∥∥∇θ` (θ;Z0,i + Aθ) + A>∇Z` (θ;Z0,i + Aθ)−∇θPR(θ)
∥∥2

2
≤ σ2.
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Assumption 1 is standard in the literature of performative prediction. Assumptions 2 and 3 are widely
used in the analysis of constrained optimization problems [Tan et al., 2018; Yan et al., 2019; Cao and
Başar, 2020], even with perfect knowledge of objectives. Assumption 4 bounds the variance of the
stochastic gradient of PR(θ). Additionally, to ensure a sufficient exploration of the parameter space,
we make the following assumption on the injected noises {ut}Tt=1.
Assumption 5 (Injected Noise). The injected noises {ut}Tt=1 are independent and identically
distributed. Moreover, there exist positive constants κ1, κ2, and κ3 such that for any t ∈ [T ],
the random noise ut satisfies

0 ≺ κ1 · I � E
[
utu

>
t

]
, E ‖ut‖22 ≤ κ2, and E

[
‖ut‖22 utu

>
t

]
� κ3E

[
utu

>
t

]
.

Consider a Gaussian noise that ut ∼ N (0, I), ∀t ∈ [T ], we have κ1 = 1, κ2 = d, and κ3 = 3d.

With the above assumptions, we provide some supporting lemmas below. First, we show ε-sensitivity
of the location family given in (7).
Lemma 1 (ε-Sensitivity of D(θ)). Define σmax(A) := max‖θ‖2=1 ‖Aθ‖2. The location family
given in (7) is ε-sensitive with parameter ε ≤ σmax(A). That is, for any θ,θ′ ∈ Θ, we have
W1

(
D(θ),D

(
θ′
))
≤ ε

∥∥θ − θ′
∥∥

2
, whereW1 (D,D′) denotes the Wasserstein-1 distance.

See § A of the supplementary file for the proof. Building upon Lemma 1, we have the following
Lemma 2 about the performative risk PR(θ).
Lemma 2 (Lipschitz Continuity and Convexity of PR(θ)). Consider the location family given in
(7). With Assumption 1 and Lemma 1, we have that: 1) the performative risk PR(θ) is L-Lipschitz
continuous for L ≤ Lθ + LZσmax(A); 2) the performative risk PR(θ) is γ-strongly convex for

γ ≥ max
{
γθ − β2/γZ , γθ − 2εβ + γZσ

2
min(A)

}
,

where σmin(A) := min‖θ‖2=1 ‖Aθ‖2.

See § B of the supplementary file for the proof. Based on the Lipschitz continuity and convexity of
PR(θ), we provide the convergence result of the robust primal-dual framework below.
Lemma 3 (Convergence Result of Robust Primal-Dual Framework). Set η = 1√

T
. Then, there

exists a constant δ ∈
[

1−
√

1−32η2L2
g

4η2 ,
1+
√

1−32η2L2
g

4η2

]
such that under Assumptions 1-3, for T ≥

32L2
g, the regret satisfies:∑T
t=1 (E[PR(θt)]− PR (θPO)) ≤γ

√
T

γ−a
(
2R2 + C2 + 2L2

)
+ γ

γ−a

(
1
2a + 1√

T

)∑T
t=1 E

∥∥∥∇θP̂Rt(θt)−∇θPR(θt)
∥∥∥2

2
,

where a ∈ (0, γ) is a constant. Further, for any i ∈ [m], the constraint violation satisfies:

E
[∑T

t=1 gi (θt)
]
≤
√

1 + δ
(

2R+
√

2C + 2L
)√

T

+
√

1 + δ

(
T

1
4√
a

+
√

2

)(∑T
t=1 E

∥∥∥∇θP̂Rt(θt)−∇θPR(θt)
∥∥∥2

2

) 1
2

.

Remark 2. Lemma 3 reveals the impact of gradient approximation error on the convergence perfor-
mance of the robust primal-dual framework. By Lemma 3, if the accumulated gradient approximation
error is less than O(

√
T ), both the regret and the constraint violations are bounded by O(

√
T ).

Although stochastic primal-dual methods for constrained problems without performativity also use
approximated (stochastic) gradients, they generally require unbiased gradient approximation [Tan
et al., 2018; Yan et al., 2019; Cao and Başar, 2022]. This requirement, however, is difficult to
satisfy in performative prediction since the unknown performative effect of decisions changes the
data distribution. In contrast, the robust primal-dual framework does not restrict the approximate
gradients to be unbiased and hence offers more flexibility to the design of gradient approximation.

Proof of Lemma 3 is provided in § C of the supplementary file. In the next lemma, we bound the
gradient approximation error of the adaptive primal-dual algorithm.
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Lemma 4 (Gradient Approximation Error). Set ζt = 2
κ1(t−1)+2κ3

, ∀t ∈ [T ]. Then, under
Assumptions 4 and 5, the accumulated gradient approximation error is upper bounded by:∑T

t=1 E
∥∥∥∇θP̂Rt(θt)−∇θPR(θt)

∥∥∥2

2
≤ 2Tσ2

n + 4
n

(
2L2

Z + β2R2 (1 + 2σmax(A))
)
α ln(T ),

where α := max
{

2κ3

κ1
‖Â0 −A‖2F,

8κ2 tr(Σ)
κ2
1

}
. In Algorithm 1, we set Â0 = 0, and thus we have

α = max
{

2κ3

κ1
‖A‖2F,

8κ2 tr(Σ)
κ2
1

}
.

Remark 3. Lemma 4 demonstrates that the gradient approximation error of the adaptive primal-dual
algorithm is upper bounded by O(T/n+ ln(T )). If we set the number of initial samples n ≥

√
T ,

we have
∑T
t=1 E

∥∥∥∇θP̂R(θt)−∇θP̂Rt(θt)
∥∥∥2

2
≤ O(

√
T ). According to Lemma 3, this suffices to

make the regret and constraint violation bounds to be O(
√
T ).

Proof of Lemma 4 is presented in § D of the supplementary file. Combining Lemma 3 and Lemma 4
yields the regret and constraint violations of Algorithm 1, which is elaborated in Theorem 1 below.

Theorem 1. Set η = 1√
T

and ζt = 2
κ1(t−1)+2κ3

, ∀t ∈ [T ]. Then, there exists a constant

δ ∈
[

1−
√

1−32η2L2
g

4η2 ,
1+
√

1−32η2L2
g

4η2

]
such that under Assumptions 1-5, for T ≥ 32L2

g, the

regret of Algorithm 1 is upper bounded by:∑T
t=1 (E[PR(θt)]− PR (θPO)) ≤γ

√
T

γ−a
(
2R2 + C2 + 2L2

)
+ γσ2

γ−a

(
1
a + 2√

T

)
T
n

+ γα ln(T )
n(γ−a)

(
2
a + 4√

T

) (
2L2

Z + β2R2 (1 + 2σmax(A))
)
,

Further, for any i ∈ [m], the constraint violation is upper bounded by:

E
[∑T

t=1 gi (θt)
]
≤
√

1 + δ

[(
2R+

√
2C + 2L

)√
T +

(√
2√
a

+ 2

T
1
4

)
σT

3
4√
n

]
+

2
√
α(1+δ) ln(T )√

n

(
T

1
4√
a

+
√

2

)(
2L2

Z + β2R2 (1 + 2σmax(A))
) 1

2 .

Remark 4. Theorem 1 demonstrates that Algorithm 1 achieves O(
√
T + T/n) regret and O(

√
T +

T
3
4 /
√
n) constraint violations. By setting n =

√
T , we have T/n =

√
T and T

3
4 /
√
n =
√
T , and

hence both the regret and constraint violations are upper bounded by O(
√
T ). This indicates that

Algorithm 1 attains the same order of performance as the stochastic primal-dual algorithm without
performativity [Tan et al., 2018; Yan et al., 2019].

Remark 5. Throughout the time horizon T , Algorithm 1 requires a total of
√
T + 2T samples.

Among them,
√
T samples are dedicated to approximate the expectation over the base component Z0.

Furthermore, each iteration requires an additional 2 samples to construct the online least-square
objective, accumulating the remaining 2T samples.

5 Numerical Experiments

This section verifies the efficacy of our algorithm and theoretical results by conducting numerical
experiments on two examples: multi-task linear regression and multi-asset portfolio.

We first consider a multi-task linear regression problem in an undirected graph G := (V, E), where
V represents the node set and E represents the edge set. Each node i handles a linear regression
task PRi(θi) := E(xi,yi)∼Di(θi)`i (θi; (xi, yi)), where θi is the parameter vector and (xi, yi) is a
feature-label pair. The loss function of each task is `i (θi; (xi, yi)) = 1

2 (yi − θ>i xi)
2, ∀i ∈ V . The

parameters of each connected node pair are subject to a proximity constraint ‖θi − θj‖22 ≤ b2ij ,
∀(i, j) ∈ E . The entire network aims to solve the following problem:

minθi,∀i
1
2

∑
i∈V E(xi,yi)∼Di(θi)(yi − θ>i xi)

2 s.t. 1
2 ‖θi − θj‖22 ≤ b

2
ij ,∀(i, j) ∈ E .
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Figure 1: Multi-task linear regression. (a) Reg(t)
t·Reg(1) ; (b) Vioi(t)

t·|Vioi(1)| ; (c) ‖θt − θPO‖22; (d) ‖Ât −A‖2F.

Figure 2: Multi-asset portfolio. (a) Reg(t)
t·Reg(1) ; (b) Vioi(t)

t·|Vioi(1)| ; (c) ‖θt − θPO‖22; (d) ‖Ât −A‖2F.

The second example considers the multi-asset portfolio described in Example 1. The simulation
details are provided in § F of the supplementary file.

We compare the proposed adaptive primal-dual algorithm (abbreviated as APDA) with two approaches.
The first approach is “PD-PS”, which stands for the primal-dual (PD) algorithm used to find the
performative stable (PS) points. The algorithm PD-PS is similar to APDA, but it uses only the first
term in Eq. (8) as the approximate gradient. The second approach is “baseline”, which runs the
same procedures as APDA with perfect knowledge of A, i.e., the performative effect is known. We
consider four performance metrics: (a) relative time-average regret Reg(t)

t·Reg(1) , (b) relative time-average

constraint violation Vioi(t)
t·|Vioi(1)| , (c) decision deviation ‖θt − θPO‖22, and (d) parameter estimation

error ‖Ât −A‖2F.

Fig. 1 and Fig. 2 show the numerical results of the multi-task linear regression and the multi-asset
portfolio, respectively. In both figures, we consider two settings for the sensitivity parameter of D(θ),
namely ε = 1 and ε = 10. The results of these two figures are qualitatively analogous. First, we
observe that APDA outperforms PD-PS significantly that both the relative time-average regret and
the decision derivation of the former achieve an accuracy around or up to 10−3 for the setting of
T = 106, while these of the latter have worse performance for ε = 1 and converge to constants for
ε = 10. The relative time-average constraint of all cases converges to zero or negative numbers.
This corroborates the sublinearity of the regret and the constraint violations of APDA, as shown
in Theorem 1. More importantly, this result implies that the larger the sensitivity parameter ε, the
stronger the performative power is and, consequently, the worse PD-PS performs. In contrast, by
tracking the performative gradient, APDA adapts to the unknown performative effect and performs
well constantly. Moreover, both subfigures (d) show that the error of parameter estimates decreases
sublinearly with iterations, validating the effectiveness of the online parameter estimation. Last but
not least, the performance of APDA is close to the performance of the baseline, which manifests the
effectiveness of our proposed APDA algorithm.

9



6 Conclusions

This paper has studied the performative prediction problem under inequality constraints, where the
agnostic performative effect of decisions changes future data distributions. To find the performative
optima for the problem, we have developed a robust primal-dual framework that admits inexact
gradients up to an accuracy of O(

√
T ), yet delivers the same O(

√
T ) regret and constraint violations

as the stochastic primal-dual algorithm without performativity. Then, based on this framework,
we have proposed an adaptive primal-dual algorithm for location family with effective gradient
approximation method that meets the desired accuracy using only

√
T + 2T samples. Numerical

experiments have validated the effectiveness of our algorithm and theoretical results.
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