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Abstract

What can be learned about causality and experimentation from passive data? This
question is salient given recent successes of passively-trained language models
in interactive domains such as tool use. Passive learning is inherently limited.
However, we show that purely passive learning can in fact allow an agent to learn
generalizable strategies for determining and using causal structures, as long as
the agent can intervene at test time. We formally illustrate that, under certain
assumptions, learning a strategy of first experimenting, then seeking goals, can
allow generalization from passive learning in principle. We then show empirically
that agents trained via imitation on expert data can indeed generalize at test time to
infer and use causal links which are never present in the training data; these agents
can also generalize experimentation strategies to novel variable sets never observed
in training. We then show that strategies for causal intervention and exploitation
can be generalized from passive data even in a more complex environment with
high-dimensional observations, with the support of natural language explanations.
Explanations can even allow passive learners to generalize out-of-distribution from
otherwise perfectly-confounded training data. Finally, we show that language
models, trained only on passive next-word prediction, can generalize causal inter-
vention strategies from a few-shot prompt containing examples of experimentation,
together with explanations and reasoning. These results highlight the surprising
power of passive learning of active causal strategies, and may help to understand
the behaviors and capabilities of language models.

1 Introduction

Learning from passive observational data only allows learning correlational, not causal, structure.
This observation is sometimes cited as a fundamental limitation of current machine learning research
[60, 61, 39]. However, reinforcement learning (RL) agents can intervene on their environment, and
are therefore not entirely limited. Indeed, various works have shown that RL agents can (meta-)learn
to intervene on the environment to discover and exploit its causal structure [50, 14, 41, 16, 30].

However, these prior works leave open the possibility that an agent could passively learn a generaliz-
able strategy for discovering and exploiting causal structure. While it is certainly necessary for an
agent to intervene on the world at test time to discover causal structure, it may be possible for the
agent to learn such a strategy from purely passive, offline data. Metaphorically, we ask “could an
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agent learn to be a scientist by only reading a textbook detailing previous experiments and discoveries,
and then successfully perform new experiments to discover and exploit new causal structures?”

The answer to this question is interesting for several reasons. From the perspective of causal learning,
it is useful to investigate what limitations passive learning actually induces with respect to the
knowledge an agentic system can later gain of the world’s causal structure. Moreover, the answer
is particularly salient at present because language models (LMs) — even when trained on purely
passive imitation — show emergent capabilities such as adapting or reasoning in-context [71, 55, 77],
or using tools to interact with the world [66]. These abilities are presumably driven by distributional
properties of the passive data on which the LMs are trained [cf. 10, 64]. While LMs are often
fine-tuned in active settings, e.g. using RL from Human Feedback [12], it is unclear whether this
step is necessary to unlock causal abilities; the vast majority of learning occurs during the passive
pretraining phase [e.g. 76]. Thus, understanding whether passive learning can lead to generalizable
causal strategies can contribute to understanding the capabilities and limitations of language models.

In this work, we make the following contributions:

• We formally show that it is possible for an agent to learn a generalizable strategy for
exploiting certain causal structures from passive data, as long it can intervene at test time.

• We demonstrate empirically that an agent trained via imitation (behavioral cloning) on
expert data from a simple causal intervention task indeed can generalize at test time to infer
and use causal links that are never present in the training data.

• We show that passively-trained agents can also generalize strategies for adaptive experimen-
tation to experiment optimally in a novel situation.

• We show that strategies for causal intervention and exploitation can be learned from passive
data even in a more complex environment with pixel observations and relational structure.

• We further show that natural language explanations support learning and generalizing causal
strategies from passive data, and can enable generalization out-of-distribution, even from
otherwise totally confounded training data.

• Finally, we show that language models, trained only on passive next-word prediction, can
generalize causal intervention strategies from a few-shot prompt containing explanations.

2 Related work

Here, we attempt to briefly situate our contributions within the extensive prior literature on causal
structure induction, language models, and online and offline RL agents.

A variety of works have considered the problem of causal graph structure induction from data
[21, 54, 63]. While in a few cases the causal graph is identifiable from observational data alone
[62], observations are generally not sufficient [e.g. 73], so most works also incorporate at least some
interventional data. However, there is some flexibility in the interventional information required; for
example, Faria et al. [18] show that a deep learning system can infer causal relations from data in
which interventions are present, but latent (not directly observed). Perhaps most relevantly, Ke et al.
[31] show that a transformer-based model can learn to induce causal structures from observational
and interventional data. Our work moves beyond theirs in demonstrating that an agent can passively
learn both to actively collect its own interventional data, and to use implicit inferences about causal
structure to achieve goals — and by connecting these observations to recent progress in LMs.

Many perspectives on the limitations of LMs correspond to causal arguments. For example, the
“octopus test” of Bender and Koller [4] is an argument about causal structure in the world that is latent
in language. Other works have expressed skepticism about the possibility of LMs (or other models)
learning causal strategies from passive data [e.g. 56, 60]. Even works that take more optimistic
perspectives tend to focus on memorization of observed causal structure — e.g. Kıcıman et al. [32]
study LM knowledge about real-world causal structure, and note their potential utility as causal priors.
Willig et al. [72] make some overlapping observations, but argue that these are simply examples of
discovering correlations between causal structures in the real world and their descriptions in language,
and that therefore LLMs “simply recite the causal knowledge embedded in the data” and thus “we
cannot expect any sort of generalization in terms of causal prowess.” However, some works have
suggested that LMs can learn implicit world models from the training data [43, 44], suggesting that
there is potential for more than purely superficial memorization. Correspondingly, we will show
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that it is possible to learn generalizable causal strategies from passive data, especially when given
explanations that link observations to causal structure (which is particularly relevant for LMs).

Work in offline RL has also studied the ability of agents to generalize from passive data [20, 38, 1],
but has generally used more complex offline algorithms rather than pure imitation. Some work on
pure imitation has considered the causal challenges for learning an optimal policy [65, 15, 74], but
generally under a fixed causal structure. Other work has explored the generalization capabilities of
agents trained from pure imitation when conditioned on information about the trajectories (such as
returns) [67, 68, 3, 11]. Laskin et al. [42] show that passive offline imitation can learn a meta-RL
algorithm that can improve an RL policy at test time. However, none of these works focused on tasks
of causal experimentation and exploitation.

Instead, work on learning causal strategies has generally relied on online RL agents. Dasgupta et al.
[14] showed that causal reasoning can emerge implicitly from meta-RL; other approaches learn
to infer causal structures explicitly as part of an meta-RL process [50, 30]. Lampinen et al. [41]
demonstrate that explanations can support meta-learning of causal strategies. Other works have
proposed benchmarks for meta-learning causal experimentation [70]. However, all of these works
relied on active RL. Kosoy et al. [36] recently considered learning of causal overhypotheses, and in
addition to online RL agents evaluated behavioral cloning, but found it performed poorly; a decision
transformer performed somewhat better, but only if forced to explore. Thus, past works leave open
the question of whether agents can generalize causal strategies from passive data.

3 Passive learning can suffice

The key idea is that an agent that can intervene at test time could correctly infer and use the causal
structure, as long as it has acquired an appropriate strategy during training. One way to enable this
is to teach the agent this strategy in two stages: first, explore a system using an experimentation
strategy that is guaranteed to identify the causal structure; second, learn an exploitation strategy to
use this identified causal structure to achieve a goal. If the agent is successfully able to execute the
experimentation strategy in the first part, it will necessarily have acquired the information required.
Generalizing the exploitation strategy is directly amenable to passive learning – given that all the
relevant information has been uncovered, there is no in-principle limitation on its success.

More formally, suppose an agent A receives observations ot at time t, and is capable of taking
actions at that intervene on a system. Assume that the system in question consists of a finite set
of n random variables {X0, ..., Xn} that are connected to form a causal Directed Acyclic Graph
(DAG; see e.g. Glymour et al. [22], Ch. 2). We will assume for simplicity that the variables are
real-valued and that edges in the graph correspond to linear effects. We assume that independent
variables (i.e., those without ancestors) are sampled from a normal distribution with mean 0 and
a random variance, followed by a nonlinearity; nodes with ancestors are sampled from a normal
distribution with mean corresponding to the linear effects of its inputs and again a random variance,
and final nonlinearity. It is easy to adapt our argument in order to change many of these assumptions.1
The agent’s observations correspond to current values of the variables and (at some time steps) a goal
g ∈ G, that is, ot ∈ Rn × G. The agent’s actions correspond to interventions that set the value of a
variable at = do (Xi = x) for some i ∈ {1, ..., n} and x ∈ R.

Now suppose we have a dataset of expert demonstrations on varied causal structures, in which the
expert first intervenes on every variable to determine the causal structure; then uses that structure to
achieve some goal. For example, the trajectories of the expert might have the following form:

a0 = do(X0=x0) , ..., an = do(Xn=xn)︸ ︷︷ ︸
experimentation: determine causal structure

an+1 = do
(
Xi=xg

n+1

)
, ..., an+k = do

(
Xj=xg

n+k

)︸ ︷︷ ︸
exploitation: take optimal actions to achieve goal g given causal structure

In this example, the first phase — the intervention strategy — is easy to learn, since it consists
of a fixed sequence of actions.2 Thus, as long as the agent successfully learns the training data,
it should reproduce this sequence on new causal structures. Once the agent has completed these
interventions, it will have acquired all the information necessary to correctly infer the causal structure.
With this information, the agent can in principle behave optimally in the goal-seeking remainder

1E.g., to accommodate interactions interevene on subsets up to the interaction order.
2N.B. we discuss this simple strategy because it is clear; it is not the most efficient [17].
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in training data.
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At eval time, D is
the most impactful
ancestor of E.
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Figure 1: The causal DAG environment and experimental results. (a) The constraints imposed on
the causal DAG structures when creating the training dataset, and when evaluating the agent on test
structures. During training, D is not allowed to be an ancestor of E (even indirectly), though they
may be correlated due to confounding variables. In evaluation environments, D is the most impactful
ancestor of E (see text). (b) Rewards obtained by the agent when evaluated in interactive settings, as a
percentage of the optimal rewards. In both evaluation settings, the agent still achieves close to optimal
reward. (c) Analyzing the agent’s behavior in more detail, by plotting the proportion of the agent’s
actions that match the optimal behavior, or baselines based on heuristics from the interventions or
correlational statistics. The agent matches the optimal strategy significantly more closely than it
matches the heuristic baselines. (Error bars are 95%-CIs; 5 seeds per condition.)

of the episode, i.e. implementing the exploitation strategy. Thus, the agent is not subject to any
in-principle limitations. The two core tenets are whether a) the agent is able to follow the learned
exploration strategy in new unobserved causal structures at test time, and b) the agent is able to
generalize the exploitation strategy to account for the novel outcomes of those interventions. Below,
we show empirically that an agent can indeed exhibit this kind of generalization from passive data.

4 Methods

Agent: We used a standard agent architecture: an input encoder that processes the observations,
a memory that tracks and integrates information over time, and a policy that predicts actions. In
analogy to the language model setting, we used a TransformerXL [13] for the agent memory, with a
sufficiently long memory to cover the expected episode length. For the encoder in the causal DAG
environments we concatenated the input observations and projected through a single linear layer. For
the odd-one-out environments we used a CNN for visual observation encoding and an LSTM for
language (following prior work on these environments [41]). For the agent policy, we used a single
linear layer which receives as input the state output from the Transformer memory, and produces
logits over the set of possible actions. For explanation prediction output (where applicable) we used a
single-layer LSTM which received the same input as the policy.

Expert policies & datasets: We trained the agent on a dataset of trajectories generated by an expert
policy, which behaves (near-)optimally. The specific implementation of the expert policy depends
on the task, see below and Appendix A. We place our agent in the infinite-data regime (a common
assumption in language model training [e.g., 27]), that is, the number of episodes in the dataset is
larger than the number of episodes the agent trains on, so the agent does not repeat any episode.

Language model: For experiments with language models, we used the 70 billion parameter Chin-
chilla LM [27]; a decoder-only transformer that is trained purely on language modelling, without any
downstream fine-tuning. When evaluating the LM’s choice among multiple answers, we calculated
the log-likelihood of each as a continuation of the current prompt, and selected the one with the
highest likelihood. When generating from the model, to produce explanations and reasoning traces at
test time, we used nucleus sampling [28] with p = 0.8 and T = 1.
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5 Experiments

5.1 A simple causal DAG environment

Our first experiments take place in a simple causal DAG setting, inspired by the argument above and
prior work on RL agents learning causal strategies [14]. The environment consists of a causal DAG
over n = 5 variables (A, B, C, D, E), with the causal graph, edge weights, and noise variance for each
node resampled on each episode. Each episode consists of several segments: first, the agent is given
n steps to explore the graph — enough to intervene on each variable and observe the consequences —
and a second phase in which the agent is cued to try to maximize a particular variable. During this
second phase, the agent is rewarded according to the value of the cued variable after its actions. In
both phases, the agent observes its previous intervention and the value of all variables before and
after. In the second phase, it also observes the goal cue. For details see Appx. A.1.

The training dataset is generated by an optimal expert policy that first explores (by choosing a random
node to start with, then iterating through subsequent nodes in order, looping back to the first node
after the last, and intervening on each to determine its effect). Then, the expert plans using the
inferred causal structure to identify the intervention that will optimally achieve the given goal, and
takes that action. The learning agent is trained to imitate this expert dataset via behavioral cloning —
that is, by passively learning to maximize the probability of the expert actions.

The training data are generated from a subset of the possible causal DAGs, holding out some causal
dependency links entirely for testing. We train the agent on expert data from DAGs in which node E
is never descended (even indirectly) of node D. We then test the agent (interactively) on DAGs in
which node E is descended from node D, with sufficiently large edge weights along paths from D
to E (and sufficiently small from other ancestors) that node E is most strongly influenced via node
D. We evaluate the agent’s ability to determine this dependency through its experiments, and then,
when cued to maximize node E, to optimally intervene. Specifically, we consider two test conditions:
“eval. target,” where node D is the optimal target to intervene on, and “eval. path,” where node D
is somewhere on the path from the optimal target to node E (but an ancestor of node D might be a
better intervention). The “eval. target” condition is perhaps the most difficult, as in the training data
the agent never sees any structure in which intervening on node D affects node E at all. Note that
this generalization split is challenging because neither the environment observations nor the agent
architecture encode permutation-invariance of the variables; their values are presented in a fixed order
in distinct observation entries, and the agent uses distinct actions for intervening on each variable.

Thus, the question is whether the agent can learn to infer this novel causal dependency path from its
experiments, and to use it to achieve the goal — i.e. can an agent generalize its exploitation strategy
to novel causal structures? (Generalization of exploration strategy is investigated below in Sec 5.1.1).
Indeed, in Fig. 1b we show that the agent rapidly learns to achieve high reward under interactive
evaluation in all conditions (both training and evaluation structures).

However, simpler heuristic strategies could achieve some rewards. We therefore compare the agent’s
actions during the exploitation phase to the optimal strategy, and four baselines. The change and
value baseline strategies use simpler heuristics, rather than relying on the full causal structure to
achieve the goal of maximizing a given node. The value baseline simply repeats the action that during
the exploration phase resulted in the highest value for the goal node. The change baseline is slightly
more sophisticated; it chooses the intervention that changed the value of the goal node the most, and
then flips its sign if the change was negative. We also consider two strategies that observe all the
node values that the agents do, but consider only correlational statistics — either the total correlation
between two nodes, or the correlation when controlling for all other nodes. Note that these baselines
and the optimal expert policy are not mutually exclusive; these heuristics are effective because they
often are match the expert. However, in Fig. 1c we show that the agent’s actions match the expert
policy significantly better than any baseline, across both training and evaluation. These observations
suggest that the agent is learning to use more complex causal strategies, rather than simpler heuristics
or correlational statistics.

In the supplement we perform a number of follow-up experiments, showing that at test time, it is
necessary to intervene rather than just observe (Appx. B.2); how causal strategy generalization
depends on the variety of causal DAG structures in training (Appx. B.3); and that agents can
generalize causal strategies to DAGs with different functional structures, such as linear DAGs in
training and nonlinear in test (Appx. B.4).
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5.1.1 Adaptive experimentation strategies

It is limiting to assume that the optimal policy requires intervening on every causal
factor; that does not scale to realistic scenarios. Scientists are guided by do-
main knowledge that suggests which variables may be relevant to a given phenomenon.
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Figure 2: When the agent is passively
trained on expert actions that explore (in-
tervene on) only a subset of the variables,
it can generalize to explore correctly on
held-out variable subsets at test time.

We therefore explored whether the passive agent can learn
to adapt its experimentation procedure based on cues about
which variables might matter.

To do so, we increased the variables to n = 10, but re-
stricted so that only 5 are relevant in any given episode.
The other 5 are independent from everything, and the goal
node to maximize is always one of the 5 relevant variables.
The agent is given a many-hot cue that marks which vari-
ables are relevant currently, and the expert policy which
the agent learns to imitate only intervenes on the relevant
variables. In the training data, we hold out some subsets
of variables such that the agent never sees experiments
on these subsets, as well as holding out certain ancestor
structures as above. We test the agent in settings where
it encounters both a held-out set of variables, and new
relations among them.

In Fig. 2, we plot over training the proportion of evaluation
episodes in which the agent correctly uses an optimal exploration strategy; that is, in which it
intervenes on each relevant variable once, without intervening on any irrelevant variable. The agent
rapidly learns to generalize the experimentation strategy from the data to correctly experiment when
cued with sets of variables never encountered in training. It then goes on to successfully use the
results of these experiments to achieve the goal, and again aligns with the optimal causal policy more
closely than the heuristic baselines (Appx. B.5).

5.2 The odd-one-out environments
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Figure 3: The odd-one-out meta-learning environments, where the goal is to pick up an object that
is unique along the “correct” dimension, which cannot be directly observed. (a) An example of the
observations and task structure. At top is an example experimentation trial. The agent is the white
square (the view is egocentric, i.e. the agent is always in the center); it transforms one object to a
unique shape, then it will “pick up” that object to check whether shape is the relevant dimension for
this episode. After three experimentation trials, the agent proceeds to an exploit trial (bottom), where
it can no longer transform objects, but where each object is unique along a different dimension; it
must pick up an object according to the latent causal dimension discovered through experimentation.
In training, the environment provides explanations of the objects and the results of experiments, which
support learning. (b) Generalization to novel feature combinations. (c) Generalization from training
data where 0-2 dimensions have a hard initialization (see text) to the case when all 3 dimensions do.
(Panel (a) adapted with permission from Lampinen et al. [41]. 3 seeds per condition.)

The above experiments used simple environments, where the agent directly observes the variables and
the outcomes of its interventions. Here, we extend to a more complex set of environments involving
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a causal structure that can only be understood by interpreting relations among objects in high-
dimensional pixel observations. Specifically, we experiment on the causal intervention/meta-learning
versions of the odd-one-out environments [41]. See Fig. 3a for some example observations.

In these environments, objects vary along multiple dimensions (color, shape, and texture). In each
episode there is one dimension that is “correct” — this “correct” dimension is a latent causal factor
that the agent cannot directly observe. The agent is rewarded for picking up an object that is unique
(the odd one out) along the “correct” feature dimension. The agent is first given a series of trials in
which to experiment and determine which dimension is currently “correct.” Specifically, the agent is
given a magic wand that allows it to transform features of objects, thus allowing it to make an object
unique along one feature dimension. It can then pick up this object, and it can infer from whether
it receives reward whether the dimension it tried is correct. These experiments allow the agent to
succeed on a final exploit trial, where it no longer has access to a magic wand, but instead is faced
with multiple objects that are each unique along a different dimension. To achieve a reward, the agent
must use the results of its earlier experiments to choose the object that is unique in the correct way.

We evaluated two types of generalization. First, we simply split possible feature combinations into
train and test sets. We evaluate whether the agent can learn, from passive data, an experimentation
and exploitation strategy that generalizes to novel combinations. In Fig. 3b, we show that the agent is
able to learn these tasks well, and to generalize equally well to the evaluation conditions. Note that
the tasks are designed such that simpler strategies — such as relying on feature values — will not
yield above chance performance.

We then evaluated a more challenging generalization condition. The original paper [41] considered
harder object initializations that make the experiments more difficult, by forcing the agent to transform
one object, and then choose a different object that is made unique by that transformation. We create
a more challenging relational generalization split by training the agent in settings where 0-2 of
the feature dimensions (randomly sampled in each training episode in the dataset) have this harder
initialization. We then evaluate the agent’s ability to generalize to evaluation in a harder setting where
all 3 feature dimensions have this difficult initialization. This condition tests the agent’s generalization
to settings more challenging than those observed in the data. In Fig. 3c, we show that the agent is
able to learn and generalize these more difficult tasks.

Explanations support learning: In these experiments, we followed the method of Lampinen et al.
[41]; the agent is trained to predict natural language explanations (provided by the environment during
training) as an auxiliary loss. For example, when the agent performs a successful experiment that
identifies the correct dimension as shape, during training this will be accompanied by an explanation
like “correct, the latent feature is shape, and this object is uniquely square.” In Supp. Fig. 12 we
show that these explanations are beneficial even when learning from expert data; without predicting
explanations, the agents do not learn or generalize these tasks as readily. Furthermore, explanations
can enable other kinds of generalization from passive learning, as we explore in the next section.

5.2.1 Explanations can deconfound for passive learners too
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Figure 4: Explanations can deconfound
for passive learners trained on con-
founded data — the agents generalize
OOD in accordance with the explana-
tions they were trained to predict.

The original odd-one-out work also explored a setting
of learning from perfectly confounded experiences, in
which a rewarding object is unique along three feature
dimensions, so it is unclear which feature(s) are relevant.
The authors showed that RL agents can generalize out of
distribution to follow any particular dimension in a de-
confounded test (where different objects are unique along
each dimension), if they are trained to predict language
explanations that focus on that particular feature dimen-
sion. Although these experiments do not directly involve
causal intervention, they are relevant to the broad question
of what can be learned from confounded data — and are
particularly relevant to LMs, because explanations are a
common feature of the human language from which these
models learn. However, the prior work only experimented
with active RL agents. Can passive learners also generalize
out-of-distribution from predicting explanations?
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We reproduced these deconfounding experiments in our passive learning setup, using the same expert
as above. We find that passive learners also generalize consistently OOD according to the explanations
they predicted during training (Fig. 4). Passive learners that were trained to predict explanations
about shape would tend to choose the uniquely-shaped object in the deconfounded evaluation, and
agents trained to predict explanations about texture or shape would analogously generalize according
to those features. Thus, natural language explanations encountered during passive training can shape
the way a system generalizes out-of-distribution at test time.

5.3 Pretrained language models

Finally, we tested whether pretrained language models could generalize causal strategies from a
few-shot prompt. To do so, we adapt the odd-one-out intervention experiments from above to a
language setting, and evaluate whether a large language model [70B parameter Chinchilla, from 27]
can generalize a causal strategy in this environment from a few-shot prompt. Specifically, we give
the LM natural language observations of the objects in a scene, and pose choices between actions
described in natural language. For the experimentation trials, we give a choice of which object to
intervene on and which feature to transform. In the final trial, we simply give a choice among the
objects, each of which is unique along one dimension.

We give the LM four example shots, in all of which the latent “correct” dimension is sam-
pled from only two of the three possible dimensions (color, shape, and texture), and eval-
uate the ability of the LM to generalize to an episode where the relevant dimension is the
third, held-out one. Note that this is a more difficult generalization setting than was inves-
tigated with the agents — generalizing a causal relation to a dimension for which it was
never observed in training, from only a handful of examples of other dimensions. We also
experiment with holding out each of the dimensions, to ensure that the results are robust.
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Figure 5: LMs can generalize the odd-one-out tasks to
new dimensions that were not correct in the example
shots (right panel), but only if explanations/reasoning
are included in the prompt. On new samples of the
dimensions included in the examples (left), LMs can
achieve some performance with or without explanations.
(3 prompts per condition; errorbars are 95%-CIs.)

LM performance can be increased by incor-
porating factors like reasoning traces/chain-
of-thought or explanations [55, 71, 69, 77,
40, 35] in the prompt, and these strategies
are particularly useful in challenging rea-
soning cases. We therefore include both
reasoning traces and explanations in our
prompt examples; at test time we allow the
LM to generate its own explanations and
reasoning traces at the appropriate places
in the episode. We also choose the example
shots for the prompt by optimizing for per-
formance on new samples of tasks involv-
ing the two trained dimensions [45, 40].
For more details, including an example
episode, see Appx. A.2.1.

In Fig. 5 we show the results. Given
a strong four-shot prompt, the language
model can generalize correctly to new in-
stances of the dimensions that were relevant in the prompt; critically, it can also generalize to new
instances of the held-out dimension in each case (and even to a somewhat harder test with an added
object; Appendix B.9.) However, explanations are critical for this generalization. In Appendix B.7
we show that either explanations or chain-of-thought reasoning suffice to provide some benefit, but
results are most reliable when both are provided together. Thus, the language model is able to build
on its strong prior knowledge to generalize, but only when supported by some form of explanation.

6 Discussion

What can be learned from passive data about strategies for experimenting to discover and exploit
causal structure? Our work illustrates that a non-trivial amount can, at least when the passive
data contains the results of experiments. From passive imitation, agents can learn strategies for
experimentation that can be generalized to correctly experiment on novel causal structures, and learn
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strategies for exploiting the results of their own experiments to achieve goals under those novel
structures. Agents can even generalize in complex environments where they receive high-dimensional
observations; likewise, passively-trained language models can generalize from a high-quality few-shot
prompt. Furthermore, our results highlight the role that natural language explanations can play in
drawing out latent causal structure to enable more generalizable learning. Explanations can even
enable passive learners to generalize nearly perfectly from otherwise perfectly-confounded data.
Passive learning can be surprisingly powerful under the right circumstances.

These observations provide perspective on the kinds of understanding of causality and experiments
that can be acquired by language models. For example, consider the following, from Pearl [60]:

“This hierarchy, and the formal restrictions it entails, explains why statistics-based
machine learning systems are prevented from reasoning about actions, experiments
and explanations. [...] the hierarchy denegrades [sic] the impressive achievements
of deep learning to the level of Association [...] Unfortunately, the theoretical
barriers that separate the three layers in the hierarchy tell us that the [...] objective
function does not matter. As long as our system optimizes some property of
the observed data, however noble or sophisticated, while making no reference to
the world outside the data, we are back to level-1 of the hierarchy with all the
limitations that this level entails.”

Naively, it might seem that these arguments doom language models to never acquire real knowledge
of causality [cf. 72]. Our results provide useful formal and empirical nuance. While there are certainly
restrictions to learning from passive data (see below for further discussion), it is possible to learn
generalizable strategies for causal experimentation and intervention from passive data alone — at
least if the data include examples of an expert intervening, and perhaps explanations.

Other work has engaged with these issues. In particular, Ortega et al. [56] provide a theoretical account
of the effects of confounding on passively trained sequence models, and propose a counterfactual
training method to enable an adaptive system to learn effective intervention strategies in the presence
of confounders. However, this method relies on having active access to an expert teacher rather
than simply offline data; the authors note that “in general, we cannot meta-train an agent only from
expert demonstrations to imitate the expert at deployment time” and “[t]o address the problem, it
is necessary to incorporate assumptions (e.g. a set of hypotheses) about the confounding variable,
but currently it is unclear how to incorporate this seamlessly into a meta-learning scheme.” Our
work complements theirs, by illustrating some of the cases in which an agent can successfully
generalize causal experimentation and goal-seeking strategies from passive data alone — even in the
presence of confounders — and by highlighting the role that natural language explanation can play in
incorporating expert knowledge to allow active generalization from passive learning.

Explanations & causal structure: Explanations were important for effective learning or general-
ization in the odd-one-out tasks; explanations can even allow generalizing from otherwise totally-
confounded data. These results fit with prior work showing that explanations and reasoning traces
help agents [41, 53] and LMs [52, 24, 71, 40, 29]. More broadly, explanations are key for human
learning because they explicitly highlight generalizable, causal structures [47, 46, 34]. For example,
explanations can constrain the hypothesis space of causal graphs that a system needs to consider [cf.
51]. Alternatively, language3 may obviate the need for explicit causal graphs. That is, explanations
could serve as the “reference to the world outside the data” that Pearl [60] sought in the quote above.

Language models: Our experiments have obvious implications for the causal abilities of language
models. Prior works have suggested that LMs can only parrot causal structures observed in training
[72]. However, our experiments illustrate that this should not be assumed; the implications of passive
learning for causal strategies can be subtle. Passive data is not necessarily strictly observational. In
particular, observing other’s interventions, especially with explanations, can enable generalization.
LM training data will contain many examples describing interventions and outcomes together with
explanations thereof — whether scientific articles, or just descriptions of a debugging process. Just as
the data in a scientific paper do not become observational if we read the paper rather than writing it,
the data on the internet do not become observational just because an LM consumes it passively. Thus,
sequences of interventions, outcomes, and explanations may in some cases be sufficient to allow an

3Or other forms of abstraction.
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LM to generalize to proposing experiments and using the results to draw appropriate conclusions, at
least if given an appropriate prompt.

Tool use & agency: These findings are of particular interest given the recent focus on language
models using tools [e.g. 66]. Tool use is a clear case of active interaction in the world, which one
might assume requires some knowledge of causality. Our results may help explain the successes of
these methods with models trained purely from passive supervised learning (though note that many
applications of LMs are also actively fine-tuned, which may also contribute, see below). A related
question is whether LMs, despite passive learning, can acquire an ability to act as goal-directed agents.
Andreas [2] notes that effective language modeling requires modeling the goals of the communicator
that produced the language, and thus suggests that through this process LMs learn to at least model
some aspects of agency. Our results may provide some support for these arguments, as generalizing
goal-directed behavior to new causal structures is a key aspect of agency.

Experimental limitations: Our experiments are limited in a number of important ways. First, the
causal structures we used are small, finite acyclic graphs. While this limitation (i.e., that the causal
graph is a DAG over a handful of variables) is assumed by much of the prior causal literature, many
real world causal structures are much more complex. For example, they may include cycles, at
least over time.4 Changing these assumptions changes the nature of the causal discovery problem
[6, 19]; thus it is an open question whether agents could similarly learn causal strategies in these
more complex settings. More generally, even our most complex environments have relatively simple
and constrained observation and action spaces compared to the real world, and the space of possible
experiments is generally small and heavily constrained. Our agents are also limited to fit with their
environments (e.g. having the right number of observation inputs and action outputs for the number
of variables in the DAG environment). It is an open question whether agents could in practice
learn causal strategies from passive data in environments that relaxed these simplifying assumptions,
though our results suggest it would be possible in principle.

What this paper does not imply: We do not intend to suggest that passive learning is as beneficial
as active learning, or that confounding is not a challenge for passive learners. Active learning can
be substantially more effective or efficient than passive learning in humans [23, 49], animals [25],
and RL agents [58, 5, 57, 8]. It can be difficult to learn from purely positive examples, without some
active correction of off-optimal-policy behavior [e.g. 65, 15]. Indeed, while the LM we evaluated
was only trained passively, many deployments of LMs incorporate interactive learning through RL
from Human Feedback [12; e.g. 59]; one key benefit of this may be the value of training the model
on active, on-policy data. We therefore expect that agents or LMs that are fine-tuned in an active
setting, or with more sophisticated causal corrections [56], will generally develop more robust and
generalizable causal strategies than those trained in purely passive settings.

Furthermore, confounding is clearly a challenge for any system that attempts to discover and use
causal structure. The ongoing debates about confounding in the medical literature [e.g. 37, 75]
illustrate that this is a challenge even for causal experts such as human scientists. However, our
work contributes to understanding the regimes in which confounding during passive learning can be
overcome by experimentation at test time. We consider a range of confounds; even our train-test
splits effectively correspond to strong confounds which are not directly observable, and for which the
agent/LM only experiences training data sampled under one value, and then is tested on situations
sampled under another. Nevertheless, agents can in some cases generalize despite these confounds,
particularly when supported by explanations. These results highlight the role that language and
explicit descriptions of the quest for causal structure can play in acquiring causal strategies.

Conclusions: We illustrate the potential for purely passive learning of active causal strategies across
various settings, particularly with the support of explanations. These results have implications for
understanding the causal limitations of passive learning for a system that can only interact at test time,
and have particular relevance to understanding the capabilities and behaviour of language models.
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