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This supplementary document is organized as follows:1

Section 0.1 provides the quantitative results for pan-sharpening.2

Section 0.2 provides the qualitative experimental results.3

Section 0.3 provides more provides more quantitative experimental results over ablation studies.4

0.1 Guided Image super-resolution.5

The quantitative results for pan-sharpening are summarized in Tables 1 where the best results are6

highlighted in bold. From the results, by integrating with our proposed random weights network by7

alternative mathematical manifolds, all the reported baselines have achieved consistent performance8

gains across all the datasets in terms of all metrics, suggesting the effectiveness of our belief.9

0.2 Visual comparison.10

Due to the page limits, the main manuscript has not presented the sufficient visual results of the11

reported tasks over the reported baselines. In this section, we provide the representative samples to12

validate the effectiveness of our belief over image de-noising task of Figure 1, Figure 2, low-light13

image enhancement of Figure 3. As can be seen, integrating with our belief is capable of improving14

the visual quality.15

0.3 Implementation details of ablation studies.16

Initialization strategy. In our work, the default initialization strategy is Kaiming initialization.17

To explore the impact of initial mode, we replace the default Kaiming initialization by Xavier18

initialization, reported in Table 9 and Table 8 show that replacing the default almost has little impact19

on performance, thus verifying the robustness of our belief.20

In our experiment, we select two representative random weights network manifolds by Central Differ-21

ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.22

In detail, we employ the Xavier initialization to weight the convolution kernels within the above23

manifolds.24

Model architecture. All of the loss networks are implemented by convolution network as default.25

To explore the architecture impact, we replace the default CNN by Transformer. The results in Table26

3 and Table 2 demonstrate that replacing it rarely affects the performance.27

In our experiment, we select the following random weights network manifolds by Taylor’s Unfolding28

Manifold and Invertible Neural Network Manifold for performance verification. In detail, we replace29

the convolution part of main body part within Taylor’s Unfolding Manifold by the transformer and30

the translation functions F and G within Invertible Neural Network Manifold by transformer.31
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Table 1: Quantitative comparisons of guided image super-resolution.

Model Configurations
WorldView-II GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

INNformer

Original 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479
+Taylor 41.8168 0.9716 0.0224 0.9276 47.4058 0.9901 0.0101 0.5356
+CDC 41.8072 0.9715 0.0224 0.9276 47.4121 0.9902 0.0100 0.5354
+INN 41.8229 0.9717 0.0223 0.9276 47.4233 0.9904 0.0100 0.5353
+Reverse 41.7293 0.9711 0.0226 0.9276 47.4010 0.9901 0.0101 0.5354

SFINet

Original 41.7244 0.9725 0.0220 0.9506 47.4712 0.9901 0.0102 0.5462
+Taylor 41.9314 0.9723 0.0219 0.9278 47.6132 0.9911 0.0101 0.5277
+CDC 41.8943 0.9719 0.0220 0.9283 47.5990 0.9910 0.0101 0.5281
+INN 41.9521 0.9727 0.0217 0.9278 47.6316 0.9916 0.0101 0.5275
+Reverse 41.9217 0.9722 0.0218 0.9281 47.6227 0.9914 0.0101 0.5275

The reason is that 1) Reverse Filtering Network Manifolds have to stand on the low-pass filters for32

convergence maintaining where Multi-scale Gaussian Convolution Module is devised in our paper.33

Therefore, the architecture cannot change; 2) Central Difference Convolution Manifold is inborn with34

convolution architectures and thus cannot change. To this end, we select the above two samples.35

Model depth. For model depth, we change the model depth of loss network by adding the layers.36

To ensure a fair comparison, the other factor keeps the same. The results in Table 5 and Table 437

demonstrate the stable performance.38

In our experiment, we select two representative random weights network manifolds by Central Differ-39

ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.40

In detail, we change the default three-layer Central Difference Convolution and Invertible Neural41

Network by seven layers.42

Model numbers. In our experiment, we use the single loss network as default. As shown in Table 743

and Table 6, we employ multiple parallel loss networks to verify the impact of model numbers. The44

results indicates that increasing the number of models will improve the performance. It attributes to45

the advantages of model ensemble.46

In our experiment, we select two representative random weights network manifolds by Central Differ-47

ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.48

In detail, we change the default single loss network with three ones by 3-3-3 variants and 3-5-749

variants.50

Table 2: Ablation studies of model architecture for image enhancement.

Model Configurations
LoL

PSNR SSIM NIQE

SID

Original 20.2461 0.7920 4.1586
+Taylor+epochR 20.6018 0.7975 3.8079
+Taylor+epochR+Transformer 20.5864 0.7971 3.8348
+INN+epochR 20.3958 0.7924 3.9210
+INN+epochR+Transformer 20.3178 0.7944 3.8889

DRBN

Original 19.8509 0.7769 4.7738
+Taylor+epochR 20.2405 0.7791 4.6721
+Taylor+epochR+Transformer 20.1826 0.7784 4.6968
+INN+epochR 20.1913 0.7769 4.8067
+INN+epochR+Transformer 20.1196 0.7772 4.7163
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Table 3: Ablation studies of model architecture for image de-noising.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+Taylor+epochR 37.3719 0.8954
+Taylor+epochR+Transformer 37.3560 0.8958
+INN+epochR 37.3318 0.8964
+INN+epochR+Transformer 37.3297 0.8961

MPRnet

Original 39.2372 0.9159
+Taylor+epochR 39.3283 0.9161
+Taylor+epochR+Transformer 39.2783 0.9160
+INN+epochR 39.3317 0.9162
+INN+epochR+Transformer 39.2756 0.9159

Table 4: Ablation studies of model depth for image enhancement.

Model Configurations
LoL

PSNR SSIM NIQE

SID

Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636
+CDC(3)+epochR+Depth 20.3464 0.7915 3.8620
+CDC(7)+epochR+Depth 20.4258 0.7857 4.4067
+INN+epochR 20.3858 0.7924 3.9210
+INN(3)+epochR+Depth 20.4946 0.7862 4.1512
+INN(7)+epochR+Depth 20.2816 0.7959 3.7419

DRBN

Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756 0.7837 4.7850
+CDC(3)+epochR+Depth 19.9188 0.7808 4.7074
+CDC(7)+epochR+Depth 19.9769 0.7795 4.8156
+INN+epochR 20.1913 0.7769 4.8067
+INN(3)+epochR+Depth 20.0330 0.7758 4.5883
+INN(7)+epochR+Depth 20.1153 0.7787 4.7089
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Table 5: Ablation studies of model depth for image de-noising.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8955
+CDC(3)+epochR+Depth 37.2218 0.8921
+CDC(7)+epochR+Depth 37.2923 0.8930
+INN+epochR 37.3218 0.8964
+INN(3)+epochR+Depth 37.3213 0.8967
+INN(7)+epochR+Depth 37.3142 0.8967

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9161
+CDC(3)+epochR+Depth 39.2814 0.9160
+CDC(7)+epochR+Depth 39.2740 0.9161
+INN+epochR 39.2729 0.9162
+INN(3)+epochR+Depth 39.2758 0.9160
+INN(7)+epochR+Depth 39.2737 0.9160

Table 6: Ablation studies of model numbers for image enhancement.

Model Configurations
LoL

PSNR SSIM NIQE

SID

Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636
+CDC+epochR+Number(357) 20.4879 0.7991 3.6793
+CDC+epochR+Number(555) 20.5424 0.7889 3.7738
+INN+epochR 20.3858 0.7924 3.9210
+INN+epochR+Number(357) 20.3516 0.7843 4.2365
+INN+epochR+Number(555) 20.3316 0.7911 4.1289

DRBN

Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756 0.7837 4.7850
+CDC+epochR+Number(357) 20.0200 0.7789 4.6900
+CDC+epochR+Number(555) 20.0403 0.7750 4.7060
+INN+epochR 20.1913 0.7769 4.8067
+INN+epochR+Number(357) 20.0510 0.7779 4.6957
+INN+epochR+Number(555) 20.2572 0.7767 4.6169
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Table 7: Ablation studies of model numbers for image de-noising.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8925
+CDC+epochR+Number(357) 37.4377 0.8969
+CDC+epochR+Number(555) 37.3208 0.8948
+INN+epochR 37.3218 0.8964
+INN+epochR+Number(357) 37.3374 0.8937
+INN+epochR+Number(555) 37.3581 0.8944

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9162
+CDC+epochR+Number(357) 39.2704 0.9161
+CDC+epochR+Number(555) 39.2764 0.9160
+INN+epochR 39.2729 0.9162
+INN+epochR+Number(357) 39.2767 0.9160
+INN+epochR+Number(555) 39.2818 0.9160

Table 8: Ablation studies of initialization strategy for image enhancement.

Model Configurations
LoL

PSNR SSIM NIQE

SID

Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636
+CDC+epochR+xavier 20.3271 0.7847 4.1454
+INN+epochR 20.3858 0.7924 3.9210
+INN+epochR+xavier 20.3257 0.7927 4.1187

DRBN

Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756 0.7837 4.7850
+CDC+epochR+xavier 20.0136 0.7760 4.7566
+INN+epochR 20.1913 0.7769 4.8067
+INN+epochR+xavier 20.0948 0.7773 4.6879

Table 9: Ablation studies of initialization strategy for image de-noising.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8925
+CDC+epochR+xavier 37.2567 0.8963
+INN+epochR 37.3218 0.8964
+INN+epochR+xavier 37.2890 0.8957

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9161
+CDC+epochR+xavier 39.2768 0.9160
+INN+epochR 39.2729 0.9162
+INN+epochR+xavier 39.2779 0.9160
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Figure 1: The visual comparison for the image de-noising. We also list the PSNR/SSIM scores under
each case.
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Figure 2: The visual comparison for the image de-noising. We also list the PSNR/SSIM scores under
each case.

Figure 3: The visual comparison for the image enhancement. We also list the PSNR/SSIM scores
under each case.
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