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Abstract

The blooming progress made in deep learning-based image restoration has been
largely attributed to the availability of high-quality, large-scale datasets and ad-
vanced network structures. However, optimization functions such as L1 and L2 are
still de facto. In this study, we propose to investigate new optimization functions to
improve image restoration performance. Our key insight is that “random weight
network can be acted as a constraint for training better image restoration networks”.
However, not all random weight networks are suitable as constraints. We draw
inspiration from Functional theory and show that alternative random weight net-
works should be represented in the form of a strict mathematical manifold. We
explore the potential of our random weight network prototypes that satisfy this
requirement: Taylor’s unfolding network, invertible neural network, central differ-
ence convolution, and zero-order filtering. We investigate these prototypes from
four aspects: 1) random weight strategies, 2) network architectures, 3) network
depths, and 4) combinations of random weight networks. Furthermore, we devise
the random weight in two variants: the weights are randomly initialized only once
during the entire training procedure, and the weights are randomly initialized in
each training epoch. Our approach can be directly integrated into existing networks
without incurring additional training and testing computational costs. We perform
extensive experiments across multiple image restoration tasks, including image
denoising, low-light image enhancement, and guided image super-resolution to
demonstrate the consistent performance gains achieved by our method.

1 Introduction

Image restoration is a challenging task that involves recovering a latent clear image from a given
degraded observation. This task is highly ill-posed as there are infinite feasible results for a single de-
graded image [1, 2]. Researchers have tackled this problem through two main approaches: traditional
optimization methods [3, 4, 5] and deep learning-based methods [2, 6, 7].

Traditional methods formulate image restoration as an optimization problem and use various image
priors to regularize the solution space of the latent clear image, such as low-rank prior [4, 5], dark
channel prior [8, 9, 10], graph-based prior [11, 12], total variation regularization [13, 14], and sparse
image priors [15, 16]. However, these priors require carefully designed priors and involve iteration
optimization, making them computationally expensive.

In recent years, deep neural networks (DNNs) have shown promising results in image restoration
tasks [17, 18, 19]. These methods have three key components: data, model, and optimization function.
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Figure 1: The flowchart of “Random Weight Networks as Optimization Prior for Image Restoration”. In
detail, the output of the task-specific model and the ground truth are respectively fed into the random weight
network to constrain the restoration network training, where the random weight network is required to satisfy a
strict mathematical manifold, and its weights are randomly initialized.

While significant effort has been devoted to collecting high-quality and large-scale datasets and
designing advanced network structures, the L1 and L2 losses remain the de facto optimization
functions. In this study, we explore the potential of using random weight networks as a constraint for
training better image restoration networks. By incorporating a random weight network as a constraint
during the training process, we aim to encourage the network to learn more robust features and
produce better results. This approach may help to overcome some of the limitations of traditional and
deep learning-based methods for image restoration.

Related Work. In terms of the prior loss function studies, the representative one [20] customized a
dual regression scheme for image super-resolution task in the form of loss regularization term. This
method introduces an additional constraint on low-resolution data to reduce the space of the possible
image super-resolution solutions. Similar to the loss regularization function, CycleGAN framework
[21, 22, 23] exploited two sets of parallel generative adversarial networks to formulate the image
restoration function and the image degradation mechanism respectively where the corresponding
cycle mechanism is modeled in the loss function by the form of regularization term. In addition, this
work [24] explored the Range-Null space decomposition to enable the relationship between realness
and data consistency, and the consistency constraint is transferred into loss function. Despite the
remarkable progress, the first two have been trained in a delicate manner while the remaining one
only works on the particular forms of known degradation matrix. These issues leave room to further
study the potential of loss function for image restoration.

In Figure 1, we show the flowchart of a random weight network as optimization prior to train an
image restoration network, where the random weight network is treated as an optimization function
without incurring additional training and testing computational costs. Despite the succinct idea,
there still exists a question “whether any network architecture with random weights can be used
as optimzation function?". With this question, we propose our analysis and solution. Specifically,
we stand on the Functional theory and show that alternative random weight networks should be
represented in the form of a strict mathematical manifold. We explore the potential of our random
weight network prototypes that satisfy this requirement: Taylor’s unfolding network, invertible neural
network, central difference11 convolution, and zero-order filtering. We investigate these prototypes
from four aspects: 1) random weight strategies, 2) network architectures, 3) network depths, and
4) combinations of random weight networks. Based on the above settings, we employ the random
weight networks as optimization functions to better optimize the task model in the following two
variants: 1) the weights are randomly initialized only once during the entire training procedure, and
2) the weights are randomly initialized in each training iteration epoch. The illustration of random
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Figure 2: Random Weight Strategies: (a) the weights are randomly initialized only once during the entire
training procedure; (b) the weights are randomly initialized in each training iteration epoch.

weights strategies is shown in Figure 2. Our approach is verified over the representative baselines
across multiple image restoration tasks including image denoising, low-light image enhancement, and
guided image super-resolution and the extensive experimental results demonstrate its effectiveness.

To summarize, we make the following key contributions. 1) It is the first attempt to propose the
insight that “random weight network can be acted as a constraint for training better image restoration
networks”. Our insight would spark the studies of optimization functions for image restoration. 2)
Orthogonal to the existing data and model studies conducted in the field of deep learning-based image
restoration, our proposed approach is a plug-and-play, thus improving image restoration performance
without changing the original model and data configurations. 3) Our approach can improve the
performance of multiple image restoration tasks without incurring additional training and testing
computational costs.

2 Methodology

In this section, we will first introduce the prior image restoration optimization flowchart and discuss
the limitation of current optimization functions. We then detail the alternative random weight
networks as optimization functions and show their feasibility. At last, we present the random weights
initialization strategies.

2.1 Image Restoration Flowchart

Suppose that the restoration task model as f(X) that transforms the input image x to the output Y ,
the restoration process can be written as

Y = f(X), (1)

Suppose that the ground truth as GT, the commonly used optimization function e.g., L1 or L2 can be
written as

L = ||GT− Y||1,2, (2)

where ||.||1,2 is the image-level L1 or L2 loss.

Discussion. From the Bayesian perspective, it is well known that minimizing L1 or L2 can be
equivalent to maximum likelihood estimation in regression. The prediction of a regressor can be
treated as the mean of a noisy prediction distribution, which is modeled as a Gaussian or Laplace
distribution in the classic probabilistic interpretation:

L2 : p(Y|X; θ) = N (GT;Y, σ2
noiseI), (3)

L1 : p(Y|X; θ) = L(GT;Y,b), (4)

where σnoise is the scale of an i.i.d. error term ϵ ∼ N (0, σ2
noiseI) and b =

√
σnoise

2 . However, the
real distribution is more complex, making the model optimization difficult and pushing the model
prediction biased. To solve this issue, we propose to customize the additional network as loss prior
regularization term to better constrain the output close to the ground truth distribution.
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2.2 Random Weight Network Manifold

In this study, we found that only random weight networks adhering to a specific mathematical
manifold are suitable as optimization functions. To meet this requirement, we propose alternative
random weight networks: Taylor’s Unfolding Network, Invertible Neural Network, Central Difference
Convolution, and Zero-order Filtering.

Taylor’s Unfolding Network Manifold in Figure 3. Drawing inspiration from image decomposition,
we leverage Taylor’s unfolding [25] to formulate the manifold that is oriented towards decomposition

Y = T X+N, (5)

where we denote the observation, latent clear image, transformation matrix, and error term as Y , X,
T , and N, respectively.

Let Y0 = T X = Y −N, we learn X by the function F
X = F(Y0) = F(Y −N). (6)

When only regarding n order Taylor’s approximations, it can be simplified as

X = F(Y) +

n∑
k=1

∂kF(Y)

∂kY
ϵk. (7)

Recalling Equation (7), for the k order derivative part, it can be written as

Fk(Y)ϵk =
∂kF(Y)

∂kY
ϵk, (8)

To achieve this objective, we employ a Derivative function sub-network denoted as G, which operates
in the aforementioned process. The kth order output of network G is represented as Fk(Y)ϵk and
conveniently recorded as gkout

gk+1
out = G(gkout) + k · gkout. (9)

By combining the aforementioned two operational steps, we can obtain the final output of the nth
order deep Taylor’s approximations framework as follows:

O = F(Y) +

n∑
k = 1

1

k!
gkout. (10)

Invertible Neural Network Manifold in Figure 3. Drawing inspiration from image transformation
techniques such as Fourier transform and wavelet transform, we can designate the aforementioned
invertible transformation as:

Y = T X, (11)
where T is the wavelet function for wavelet transform while representing the Trigonometric basis for
Fourier transform.

To capture the general invertible manifold, the fundamental units divide the input into x1 and x2.
Reversible blocks receive (X1,X2) and generate outputs (Y1,Y2) using additive coupling rules
inspired by NICE’s transformation [26, 27, 28], as demonstrated in Figure 3(right):

Y1 = X1 + F(X2),

Y2 = X2 + G(Y1). (12)

Central Difference Convolution Manifold in Figure 4. In deep networks, the vanilla 2D convolution
is a fundamental operator with two steps: 1) sampling, selecting a local neighbor region R from input
feature map x; and 2) aggregating, combining sampled values with learnable weights w. This process
formulates the output feature map Y

Y(p0) =
∑
pn∈R

w(pn) ·X(p0 + pn), (13)

Here, p0 represents the current location on both input and output feature maps, while pn iterates over
locations in R. For example, in a convolution operator with a 3×3 kernel and dilation 1, the local
receptive field region is defined as R = {(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)}.
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Figure 3: The functional manifolds of deep Taylor’s approximations framework (left) and invertible
neural network (right).

Contrary to the vanilla convolution, the central difference convolution incorporates central gradient
features to augment the representation and generalization capabilities. This can be formulated as:

Y(p0) =
∑
pn∈R

w(pn) · (X(p0 + pn)−X(p0)). (14)

Reverse Filtering Network Manifold inspired by [29] in Figure 4. Definition. Let (H, d) be a
metric space, and T : H → H be a mapping function. For all x, y ∈ H, if there exists a constant
c ∈ [0, 1) such that the following formula holds:

d(T (x), T (y)) ≤ c · d(x, y), (15)
mapping T : H → H is called Contraction Mapping.

Theorem-1. Given a function Φ : H → H, a variable x∗ is considered a fixed point if Φ(x∗) = x∗. If
Φ is a contraction mapping, it guarantees the existence of a unique fixed point x∗ in H. Moreover,
the fixed point x∗ can be determined using the following iterative process. Let the initial guess be x0

and define a sequence {xn} such that xn = Φ(xn−1). As the iterative process converges, we have
limn→∞ xn = x∗.

Reverse Filtering. The function F(·) can be viewed as a set of versatile filters used for image
smoothing. This filtering process can be described as Y = F(X), where X represents the input image
and Y represents the filtering result. By performing reverse filtering, we can estimate X without
explicitly computing F−1(·) and update the restored image based on the filtering effect, resulting in:

Xk+1 = Xk + Y − F(Xk), (16)

Here, Xk represents the current estimation of X in the k-th iteration. The iteration begins with
X0 = Y , and as the iteration count k increases, Xk gradually approaches the true X. To facilitate this
process, we introduce the auxiliary function φ(·) as: φ(X) = X + Y − F(X). Therefore, the above
iterative process can be regarded as a fixed point iteration

Xk+1 = φ(Xk). (17)
In Figure 4(right), the filtering process F(·) is realized using the Multi-scale Gaussian Convolution
Module, which satisfies the necessary condition outlined in Theorem-1. Specifically, taking φ1(·) as
an example, the sufficient condition for Theorem 1 to hold is that φ1(H) constitutes a contraction
mapping

∥φ1 (Ha)− φ1 (Hb)∥

=
∥∥∥[Ha + L̂− f (Ha)

]
−

[
Hb + L̂− f (Hb)

]∥∥∥
= ∥[Ha − f (Ha)]− [Hb − f (Hb)]∥ ≤ c · ∥Ha −Hb∥ .

(18)

For linear filters, the condition is further simplified as
∥H− f(H)∥ ≤ c · ∥H∥. c ∈ [0, 1). (19)
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Figure 4: The functional manifolds of deep central difference convolution (left) and reverse filtering
network (right).

2.3 Random Weight Strategies

Based on the above settings, we employ random weight networks as optimization functions to better
optimize the image restoration models. In Figure 2, we present the following two variants for the
random weights initialization:

• (1) the weights are randomly initialized only once during the entire training procedure,

• (2) the weights are randomly initialized in each training iteration epoch, denoted as
“epochR”;

We also discuss their effects in the experiment part.

2.4 Optimization Pipeline

Suppose that the randomly initialized manifold model as frandom(.), it is employed as the comple-
mentary loss function to the original image-level loss function. The total loss function is remarked
as

L = ||GT− y||1,2 + λ||frandom(GT)− frandom(y)||1,2, (20)

where λ indicates the weighted factor, ||.||1,2 is the L1 or L2 loss, and GT denotes the ground truth.

3 Experiments

To demonstrate the efficacy of our proposed approach, we conduct extensive experiments on multiple
image restoration tasks, including image denoising, low-light image enhancement, and guided image
super-resolution. We provide more experimental results in the Appendix.

3.1 Experimental Settings

Image Enhancement. We verify our approach on the image enhancement benchmarks, LOL [30].
Further, we adopt representative SID [31] and DRBN [32] as two baselines.

Image Denoising. Following [33], we employ the widely-used SIDD dataset [34] as the training
benchmark. Further, the corresponding performance evaluation is conducted on the remaining
validation samples from the SIDD dataset. Two representative image denoising algorithms DnCNN
[35] and MPRnet [33] are selected as the baselines.

Guided Image Super-resolution. Following [7, 36], we adopt the pan-sharpening, the representative
task of guided image super-resolution, for evaluations. The WorldView II and GaoFen2 datasets
[7, 36] are used for experiments. We employ INNformer [7] and SFINet [36] as the baselines.

Several widely-used image quality assessment (IQA) metrics are employed to evaluate the perfor-
mance, including the relative dimensionless global error in synthesis (ERGAS) [37], PSNR, the
spectral angle mapper (SAM) [38], SSIM.
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Table 1: Quantitative comparison of different
random weight networks with different random
weight initialization strategies on image de-noising
task.

Model Configurations SIDD
PSNR SSIM

DnCNN

Original 37.1992 0.8954
+Taylor 37.3163 0.8955
+Taylor+epochR 37.3719 0.8954
+CDC 37.2329 0.8958
+CDC+epochR 37.2784 0.8955
+INN 37.3168 0.8970
+INN+epochR 37.3318 0.8964
+Reverse 37.3162 0.8965
+Reverse+epochR 37.3321 0.8955

MPRnet

Original 39.2372 0.9159
+Taylor 39.2953 0.9161
+Taylor+epochR 39.3283 0.9161
+CDC 39.2609 0.9160
+CDC+epochR 39.2821 0.9161
+INN 39.2729 0.9162
+INN+epochR 39.3317 0.9162
+Reverse 39.2446 0.9160
+Reverse+epochR 39.2660 0.9161

Table 2: Quantitative comparison of different
random weight networks with different random
weight initialization strategies on image enhance-
ment task.

Model Configurations LOL
PSNR SSIM

SID

Original 20.2461 0.7920
+Taylor 20.5864 0.7971
+Taylor+epochR 20.6018 0.7975
+CDC 20.3298 0.7927
+CDC+epochR 20.4750 0.7999
+INN 20.3178 0.7944
+INN+epochR 20.3958 0.7924
+Reverse 20.5014 0.7941
+Reverse+epochR 20.5203 0.7943

DRBN

Original 19.8509 0.7769
+Taylor 20.1156 0.7778
+Taylor+epochR 20.2405 0.7791
+CDC 19.7952 0.7851
+CDC+epochR 20.0756 0.7837
+INN 19.8543 0.7774
+INN+epochR 20.1913 0.7769
+Reverse 19.9547 0.7765
+Reverse+epochR 20.1358 0.7751

Table 3: Quantitative comparison of different random weight networks on the guided image super-
resolution task.

Model Configurations
WorldView-II GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

INNformer

Original 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479
+Taylor 41.8168 0.9716 0.0224 0.9276 47.4058 0.9901 0.0101 0.5356
+CDC 41.8072 0.9715 0.0224 0.9276 47.4121 0.9902 0.0100 0.5354
+INN 41.8229 0.9717 0.0223 0.9276 47.4233 0.9904 0.0100 0.5353
+Reverse 41.7293 0.9711 0.0226 0.9276 47.4010 0.9901 0.0101 0.5354

SFINet

Original 41.7244 0.9725 0.0220 0.9506 47.4712 0.9901 0.0102 0.5462
+Taylor 41.9314 0.9723 0.0219 0.9278 47.6132 0.9911 0.0101 0.5277
+CDC 41.8943 0.9719 0.0220 0.9283 47.5990 0.9910 0.0101 0.5281
+INN 41.9521 0.9727 0.0217 0.9278 47.6316 0.9916 0.0101 0.5275
+Reverse 41.9217 0.9722 0.0218 0.9281 47.6227 0.9914 0.0101 0.5275

Table 4: Ablation study of the impact of network
architecture on image denoising task.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+Taylor+epochR 37.3719 0.8954
+Taylor+epochR+Transformer 37.3560 0.8958
+INN+epochR 37.3318 0.8964
+INN+epochR+Transformer 37.3297 0.8961

MPRnet

Original 39.2372 0.9159
+Taylor+epochR 39.3283 0.9161
+Taylor+epochR+Transformer 39.2783 0.9160
+INN+epochR 39.3317 0.9162
+INN+epochR+Transformer 39.2756 0.9159

Table 5: Ablation study of the impact of network
architecture on image enhancement task.

Model Configurations
LoL

PSNR SSIM

SID

Original 20.2461 0.7920
+Taylor+epochR 20.6018 0.7975
+Taylor+epochR+Transformer 20.5864 0.7971
+INN+epochR 20.3958 0.7924
+INN+epochR+Transformer 20.3178 0.7944

DRBN

Original 19.8509 0.7769
+Taylor+epochR 20.2405 0.7791
+Taylor+epochR+Transformer 20.1826 0.7784
+INN+epochR 20.1913 0.7769
+INN+epochR+Transformer 20.1196 0.7772

3.2 Experimental Settings

Image Enhancement. We verify our approach on the image enhancement benchmarks, LOL [30].
Further, we adopt representative SID [31] and DRBN [32] as two baselines.
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Table 6: Ablation study of the impact of network
depth on image denoising task.

Model Configurations
SIDD

PSNR SSIM

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8955
+CDC(3)+epochR+Depth 37.2218 0.8921
+CDC(7)+epochR+Depth 37.2923 0.8930
+INN+epochR 37.3218 0.8964
+INN(3)+epochR+Depth 37.3213 0.8967
+INN(7)+epochR+Depth 37.3142 0.8967

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9161
+CDC(3)+epochR+Depth 39.2814 0.9160
+CDC(7)+epochR+Depth 39.2740 0.9161
+INN+epochR 39.2729 0.9162
+INN(3)+epochR+Depth 39.2758 0.9160
+INN(7)+epochR+Depth 39.2737 0.9160

Table 7: Ablation study of the impact of network
depth on image enhancement task.

Model Configurations
LoL

PSNR SSIM

SID

Original 20.2461 0.7920
+CDC+epochR 20.4750 0.7999
+CDC(3)+epochR+Depth 20.3464 0.7915
+CDC(7)+epochR+Depth 20.4258 0.7857
+INN+epochR 20.3858 0.7924
+INN(3)+epochR+Depth 20.4946 0.7862
+INN(7)+epochR+Depth 20.2816 0.7959

DRBN

Original 19.8509 0.7769
+CDC+epochR 20.0756 0.7837
+CDC(3)+epochR+Depth 19.9188 0.7808
+CDC(7)+epochR+Depth 19.9769 0.7795
+INN+epochR 20.1913 0.7769
+INN(3)+epochR+Depth 20.0330 0.7758
+INN(7)+epochR+Depth 20.1153 0.7787

Table 8: Ablation study of the impact of initializa-
tion strategy on image denoising task.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8925
+CDC+epochR+xavier 37.2567 0.8963
+INN+epochR 37.3218 0.8964
+INN+epochR+xavier 37.2890 0.8957

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9161
+CDC+epochR+xavier 39.2768 0.9160
+INN+epochR 39.2729 0.9162
+INN+epochR+xavier 39.2779 0.9160

Table 9: Ablation study of the impact of initializa-
tion strategy on image enhancement task.

Model Configurations
LoL

PSNR SSIM

SID

Original 20.2461 0.7920
+CDC+epochR 20.4750 0.7999
+CDC+epochR+xavier 20.3271 0.7847
+INN+epochR 20.3858 0.7924
+INN+epochR+xavier 20.3257 0.7927

DRBN

Original 19.8509 0.7769
+CDC+epochR 20.0756 0.7837
+CDC+epochR+xavier 20.0136 0.7760
+INN+epochR 20.1913 0.7769
+INN+epochR+xavier 20.0948 0.7773

Table 10: Ablation studies of model numbers for
image enhancement.

Model Configurations
LoL

PSNR SSIM NIQE

SID

Original 20.2461 0.7920 4.1586

+CDC+epochR 20.4750 0.7999 3.6636

+CDC+epochR+Number(357) 20.4879 0.7991 3.6793

+CDC+epochR+Number(555) 20.5424 0.7889 3.7738

+INN+epochR 20.3858 0.7924 3.9210

+INN+epochR+Number(357) 20.3516 0.7843 4.2365

+INN+epochR+Number(555) 20.3316 0.7911 4.1289

DRBN

Original 19.8509 0.7769 4.7738

+CDC+epochR 20.0756 0.7837 4.7850

+CDC+epochR+Number(357) 20.0200 0.7789 4.6900

+CDC+epochR+Number(555) 20.0403 0.7750 4.7060

+INN+epochR 20.1913 0.7769 4.8067

+INN+epochR+Number(357) 20.0510 0.7779 4.6957

+INN+epochR+Number(555) 20.2572 0.7767 4.6169

Table 11: Ablation studies of model numbers for
image denoising.

Model Configurations
SIDD

PSNR↑ SSIM↑

DnCNN

Original 37.1992 0.8954
+CDC+epochR 37.2784 0.8925
+CDC+epochR+Number(357) 37.4377 0.8969
+CDC+epochR+Number(555) 37.3208 0.8948
+INN+epochR 37.3218 0.8964
+INN+epochR+Number(357) 37.3374 0.8937
+INN+epochR+Number(555) 37.3581 0.8944

MPRnet

Original 39.2372 0.9159
+CDC+epochR 39.2821 0.9162
+CDC+epochR+Number(357) 39.2704 0.9161
+CDC+epochR+Number(555) 39.2764 0.9160
+INN+epochR 39.2729 0.9162
+INN+epochR+Number(357) 39.2767 0.9160
+INN+epochR+Number(555) 39.2818 0.9160

Image Denoising. Following [33], we employ the widely-used SIDD dataset [34] as the training
benchmark. Further, the corresponding performance evaluation is conducted on the remaining
validation samples from the SIDD dataset. Two representative image denoising algorithms DnCNN
[35] and MPRnet [33] are selected as the baselines.
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Guided Image Super-resolution. Following [39, 40], we adopt the pan-sharpening, the representative
task of guided image super-resolution, for evaluations. The WorldView II and GaoFen2 datasets
[7, 36] are used for experiments. We employ the representative INNformer [7] and SFINet [36] as
the baselines.

3.3 Implementation Details

For concision, we denote some annotations of the proposed alternative solutions in strict mathematical
manifolds before our presentation, and the implementation variants of the baselines are organized as
the five configurations:

1) Original: the baseline with the basic loss ( L1 or L2);
2) +Taylor: complementing the basic loss with the Taylor’s unfolding network manifold;
3) +CDC: complementing the basic loss with the central difference convolution manifold;
4) +INN: complementing the basic loss with the invertible neural network manifold;
5) +Reverse: complementing the basic loss with the reverse filtering network manifold.

3.4 Comparison and Analysis

For quantitative Comparison, we perform the model performance comparison over different con-
figurations. The quantitative results of image denoising, low-light image enhancement, and guided
image super-resolution are respectively presented in Table 1, Table 2, and 3. From the results, we
can observe performance gain against the baselines across all the datasets in the corresponding tasks,
suggesting the effectiveness of our approach. For example, in terms of image enhancement, the
baseline DRBN with “+Taylor”, “+CDC”, “INN” and “Reverse” has obtained the 0.4dB, 0.3dB,
0.2dB, 0.2dB PSNR gains over LoL dataset respectively.

4 Ablation Studies

Figure 5: The ablation studies: 1) initializa-
tion strategy, 2) model architecture, 3) model
depth and 4) model numbers.

To verify the stability of our approach, we conduct the
following analysis from four aspects: 1) initialization
strategy, 2) model architecture, 3) model depth, and
4) model numbers.

Model architecture. In the previous experiments,
all of the random weight networks are implemented
by convolution networks as default. To explore the
impact of network structures, we replace the default
CNN with Transformer. The results in Table 4 and
Table 5 demonstrate that replacing the network rarely
affects performance.

Model depth. For model depth, we change the model
depth of the random weight network by adding more
layers. To ensure a fair comparison, other factors
keep the same. The results in Table 6 and Table 7 fur-
ther demonstrate the stable and robust performance
gains by introducing our designs.

Initialization strategy. In our work, the default ini-
tialization strategy is Kaiming initialization. To ex-

plore the impact of the initialization mode, we replace the default Kaiming initialization with Xavier
initialization. Table 8 and Table 9 show that replacing the default initialization mode almost has little
impact on the performance.

Model numbers. In our experiment, we use the single loss network as default and employ multiple
parallel loss networks to verify the impact of model numbers. The results in Table 10 and Table
11 indicate that increasing the number of models will improve the performance. It attributes to the
advantages of model ensemble.
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5 Conclusion and Limitation

In this paper, we explore the potential of optimization functions and present our insight that "random
weight networks can serve as a constraint for training improved image restoration networks." Drawing
inspiration from Functional theory, we offer several alternative solutions within strict mathematical
manifolds, known as "random weights network prototypes." Our approach seamlessly integrates into
existing image restoration networks, and extensive experiments across multiple tasks validate its
effectiveness. While our experiments are extensive, limitations in space prevent us from conducting
more comprehensive evaluations, such as including experiments on image de-blurring and additional
representative baselines.

Broader Impact

Our work demonstrates the potential of random weight networks as optimization functions for low-
level image restoration tasks, with applications in mobile photography, healthcare, entertainment, and
other fields that rely on high-quality images. We observe no apparent negative societal consequences.
While our experiments show significant performance improvements, additional real-world testing
and validation are necessary to ensure robustness and generalizability.
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