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Abstract

While diffusion models have demonstrated exceptional image generation capabili-
ties, the iterative noise estimation process required for these models is compute-
intensive and their practical implementation is limited by slow sampling speeds. In
this paper, we propose a novel approach to speed up the noise estimation network
by leveraging the robustness of early-stage diffusion models. Our findings indicate
that inaccurate computation during the early-stage of the reverse diffusion process
has minimal impact on the quality of generated images, as this stage primarily
outlines the image while later stages handle the finer details that require more sen-
sitive information. To improve computational efficiency, we combine our findings
with post-training quantization (PTQ) and introduce a method that utilizes low-bit
activations for the early reverse diffusion process while maintaining high-bit acti-
vations for the later stages. Experimental results show that the proposed method
can accelerate the early-stage computation without sacrificing the quality of the
generated images.

1 Introduction

Diffusion models [1, 2, 3, 4, 5, 6, 7, 8] for image synthesis have gained significant attention in recent
years due to their exceptional proficiency in generating high quality and diverse images. A key feature
of the diffusion models is that they gradually dissipate noise from latent variables across a sequence of
diffusion steps [1]. However, despite their remarkable image synthesis capabilities, diffusion models
suffer from slow image synthesis process. This is primarily caused by the compute-intensive nature of
the denoising network [3, 9], which is an integral part of the diffusion model. The iterative process of
applying the denoising network across multiple diffusion steps consumes substantial computational
resources, resulting in very long synthesis time [6]. As a result, this limitation poses a challenge for
real-time applications or scenarios that require quick image synthesis.

Quantization [10, 11, 12] is a widely used technique for improving the computational efficiency of
neural networks. Quantization reduces memory usage by converting high-precision floating-point
weight/activation values into low-precision integer values [13]. It also enables more efficient pro-
cessing by leveraging efficient integer operations instead of computationally expensive floating-point
operations [14]. As a result, there is a growing research trend focusing on applying quantization
techniques to denoising networks. Two notable studies, PTQ4DM [15] and Q-diffusion [16], explored
the applications of LAPQ [17] and BRECQ [18], which are commonly used Post-Training Quanti-
zation (PTQ) frameworks, to the diffusion models. Denoising networks differ from conventional
neural networks as they are iteratively used during the reverse diffusion process, and their output
distributions vary with diffusion step. Considering this characteristic, the aforementioned studies
primarily explored methods for constructing a calibration dataset to effectively apply PTQ to diffusion
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Figure 1: (a) Overview of the diffusion process (b) U-Net architecture of the denoising network

models. While they have successfully achieved a reduction in weight precision to as low as 4 bits,
reducing activation bits below 8 bits still remains a challenge.

In this paper, we investigate the computational characteristics of diffusion models during their iterative
diffusion steps and present a novel strategy for quantizing diffusion models based on the analysis.
Our analysis of the diffusion model reveals the high tolerance of early-stage reverse diffusion in
the presence of computational errors. In the reverse diffusion process, the early stage focuses on
capturing the outlines of the images, while the later stage refines the details to improve the overall
quality of the generated images. As a result, modifications made in the early stages primarily affect
the structural aspects of the generated images, while the quality remains mostly unaffected. Based on
the observation, we propose leveraging the early-stage robustness observed in the diffusion process
to optimize activation bit precision, thereby reducing computational overhead while maintaining
the fidelity and diversity of the generated images. By strategically quantizing the activation values
in a step-wise manner, we can reduce the effective bit precision of the activations of the denoising
networks without sacrificing the overall quality of the generated images.

2 Background

2.1 Diffusion Models

The generation of an image in diffusion models is represented as a series of diffusion steps
(Fig. 1(a)) [1, 3]. In the forward diffusion process, each step adds noise to the data, eventually
making the data follow a Gaussian distribution. To generate an image x0 from a Gaussian noise
xT ∼ N(0, I), diffusion models reverse the forward process and sample latent variables xt from
a learned conditional distribution pθ(xt−1|xt), which approximates the true reverse conditional
distribution as follows:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), σ
2
t I) (1)

More specifically, by combining Eq. 1 and DDIM sampling method [6], the reverse diffusion process
yields the following equation to generate a sample:

xt−1 =
√
αt−1(

xt −
√
1− αtϵθ(xt, t)√

αt
) +

√
1− αt−1 − σ2

t · ϵθ(xt, t) + σtϵt (2)

where ϵt ∼ N(0, I) is Gaussian noise independent of xt. Here, αt is a coefficient determined by the
noise scheduling policy of the diffusion process, and σt is a hyperparameter that controls the degree
of stochasticity of the diffusion process. Note that xt, the output of the diffusion step t, becomes the
input of the next diffusion step t− 1, and this process continues until the image x0 is reconstructed
from the noise xT .

ϵθ(xt, t) in Eq. 2 represents a trainable denoising network of a diffusion model. Diffusion models
often use the U-Net architecture (Fig. 1(b)) for their denoising network [9]. The U-Net consists of an
encoder-decoder structure in which the encoder progressively decreases the spatial dimensionality
of the input image, extracting high-level features. Conversely, the decoder performs upsampling
operations on the feature maps and incorporates skip connections from the encoder to reconstruct
the original image resolution while generating low-level features. In the context of diffusion models,
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the U-Net denoising model is trained to reduce noise in the latent variables at each diffusion step.
By iteratively applying the denoising model across multiple diffusion steps, the generated images
gradually exhibit improved clarity. However, it is worthwhile to note that the compute-intensive nature
of the denoising network makes the generation process of diffusion models very time-consuming.

2.2 Post-Training Quantization

A typical uniform quantization function for converting floating-point value x into integer value xint

is as follows:
xint = s · clamp(⌊x− z

s
⌉, minquant, maxquant) (3)

where s is a scaling factor and z is the zero point. Post-training quantization (PTQ) [10, 12, 17, 18]
refers to a technique for compressing neural networks that is typically applied after the network
has been trained unlike quantization-aware training (QAT) [11, 19, 20, 21, 22], which considers
quantization while training the network. One common PTQ strategy is to collect calibration data
from the training data and calibrate the scaling factor or the rounding scheme (e.g. AdaRound [10]).

Recent studies, PTQ4DM [15] and Q-diffusion [16], have proposed PTQ methodologies for denoising
network of diffusion models. PTQ4DM and Q-Diffusion provided insights into the methodology
for constructing the PTQ calibration dataset for diffusion models. Specifically, since the denoising
network is applied across multiple diffusion steps, these papers discussed how to consider the diffusion
steps when constructing the calibration data. Both works intensively analyzed the distribution of
activations in different diffusion steps, but they differ in the approaches to constructing the calibration
dataset. To improve the quality of the calibration dataset, PTQ4DM adopts a method of extracting
the diffusion steps from a distribution N(µ, 0.5T ) where µ ≤ 0.5T , drawing more samples from the
diffusion steps closer to 0.0T . On the other hand, Q-diffusion divides the diffusion steps evenly into
constant intervals to construct the calibration set, leveraging the similarity of activation distributions
of adjacent diffusion steps. As a result, PTQ4DM achieved INT8 weights and INT8 activations for
high-quality quantized diffusion models, while Q-diffusion models demonstrated INT4 weights and
INT8 activations.

Previous works on quantizing diffusion models demonstrate that optimizing the construction of the
calibration set can successfully reduce the bit precision of weights to as low as 4 bits [16]. However,
they still require 8-bit activations, which limits network efficiency. To further reduce the activation
precision, we first investigate the robustness of each diffusion step in the reverse diffusion process.

3 Early-Stage Robustness of Reverse Diffusion Process

3.1 Properties of Reverse Diffusion Process

The reverse diffusion process generates images progressively starting from Gaussian noise [8]. As
shown in Fig. 2(a), the early stage of the reverse diffusion process captures the outlines of the images.
In this stage, sampled images are rough and blurry sketches, so the shapes of the objects are hardly
recognizable. In the later stage, because the overall structure of the images are properly shaped, the
reverse diffusion process draws details of the images to improve the quality of the generation.

To quantitatively analyze the characteristics of the generated latent variables xt at each diffusion step
of the reverse diffusion process, we use entropy as a measure of the randomness exhibited by the
output at each step. Note that a higher entropy indicates higher randomness in the pixel values of
the images, meaning they are blurrier. The entropy values of the latent variables xt at each step are
summarized in Fig. 2(b). The early steps ranging from 1.0T to 0.5T maintain high entropy values,
indicating that sampled images are noisy with high randomness. On the other hand, the entropy
rapidly decreases after 0.5T step. These latter steps generate details of the image to enhance the
quality of image generation, so the sampled images become sharper and their randomness decreases.

Since the characteristics of the generated images vary at each step of the reverse diffusion process,
we can expect that the computational requirements for each step may differ as well. Specifically,
the entropy of the sampled images remains constant with relatively high value in the early stage,
suggesting that the computations performed during this stage may not need to be as precise as that
for the later stages. However, in later stages where the computations have a greater impact on the
entropy results, more accurate computations are necessary.
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Figure 2: Studies on the reverse diffusion process with respect to diffusion steps. (a) Examples of
256×256 LSUN-Bedrooms, LSUN-Churches, and CelebA-HQ generated in each step of the reverse
diffusion process. (b) Entropy transition across the diffusion steps for various image generation tasks.

Figure 3: Image generation quality (FID) after noise injection. 5k images of (left) 32×32 CIFAR-10
and (right) 256×256 LSUN-Churches are generated for the evaluation. The magnitude of the noise
is controlled by τ using Eq. 4. The diffusion step exhibits lower FID after noise injection indicates a
higher level of resilience to inaccurate computations.

3.2 Early-Stage Robustness of Reverse Diffusion Process

In this section, we evaluate the robustness of the reverse diffusion process at each diffusion step.
To measure the robustness, we inject random noise into xt, the output of the target diffusion step t
(Eq. 2), and assess the quality of the generated image x0 after the entire reverse diffusion process
using the Fréchet Inception Distance (FID) [23]. The FID helps us to understand how much the
computational inaccuracy at step t affects the quality of overall diffusion process. The injected noise
follows a Gaussian distribution N(0, σxt ·τ), where σxt is the standard deviation of xt, and τ controls
the noise standard deviation. The noise injection modifies the latent variable xt as follows:

xt,noisy = xt + ϵ, ϵ ∼ N(0, (σxt · τ)2) (4)

The analysis results are summarized in Fig. 3. The cases of 32×32 CIFAR-10 and 256×256 LSUN-
Churches generation exhibit different responses to the noise injection. This discrepancy is attributed
to the higher resolution of LSUN-Churches images, which introduces finer details into the generation
process. Nevertheless, in both cases, there is a consistent pattern: as the standard deviation of injected
noise (τ ) increases, the FID also increases, while the correlation between noise and FID varies
signficantly depending on the diffusion step. In the early diffusion stages, close to 1.0T , we observe
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Figure 4: Examples of image generation after noise injection. (a) Comparison of the CIFAR-10
images generated without noise and with noise injected in different diffusion steps. (b) Comparison
of the generated images with and without early-stage noise injection. The early-stage noise injection
changes the overall structure of the images rather than their quality.

that the quality of the image is relatively tolerant to noise. The early stages exhibit resilience to high
magnitude of noise, as can be found by the maintained FID even with high τ values. However, the
later stages are more susceptible to the injected noise, leading to a degradation in the FID score. This
analysis confirms that the early stages are more robust to the noise than the latter stages.

To gain a more intuitive understanding of this phenomenon, we examine how the final output images
change when noise is injected at each diffusion step (Fig. 4). When noise is added to the back
end of the diffusion steps to capture image details, the resulting image maintains a similar overall
structure but exhibits lower quality due to the injected noise. In contrast, when noise is added in the
early stages, high-resolution image details remain intact while the shape of the image changes due
to the noise which affects the process of capturing the overall outline. For example, as shown in
Fig. 4(a) for CIFAR-10 [24] image generation, injecting noise in the initial stage causes the image
at the bottom row (originally a green airplane) to become a green automobile or a slightly different
shaped airplane. The diffusion model is trained to generate images similar to those belonging to
the CIFAR-10 dataset, regardless of the specific class. Since both airplane and automobiles fall
within the CIFAR-10 class categories, the diffusion model generates images as intended. Similarly,
in the case of LSUN-bedrooms, LSUN-churches [25], CelebA-HQ [26], and FFHQ [27] generation
(Fig. 4(b)), injecting noise in the early stage leads to changes in the overall image shape, rather than
impacting image quality significantly. The effect of shape alteration while maintaining image quality
is similar to that of modifying the random seed xT of the diffusion. The diffusion model initiates
image generation from xT and gradually acquires overall shapes and colors of the images. Therefore,
modification in the early stage would introduce changes to the overall structure of the generated
images, not the quality.

This finding highlights the importance of understanding the varying robustness of diffusion models
across different sampling steps, which can be a critical factor in improving the efficiency of denoising
networks. When trying to speed up a neural network computations, approximated operations are often
employed. For instance, quantization techniques approximate FP operations as integer operations to
enhance processing efficiently. However, the fact that robustness varies across each step suggests
that the degree to which operations can be approximated also differs across each step. Therefore, to
improve efficiency without compromising the generation quality of the diffusion model, there is a
great need to analyze and optimize each step individually.

4 Robustness-Aware Quantization of Diffusion Models

4.1 Impact of Weight and Activation Quantization on Diffusion Models

As the first step of quantizing the diffusion model, we evaluate the impact of quantization on each
component of the denoising network. We begin by examining the impact of weight and activation
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Figure 5: Image generation quality as measured by FID after (left) weight quantization (right)
activation quantization of the denoising network. The diffusion model LDM-8 [8] is used to generate
5k images of 256×256 LSUN-Churches for the evaluation. The dashed gray lines indicate FID with
the full-precision network. Note that the y-axis of the left graph is on a linear scale while the y-axis
of the right graph is on a logarithmic scale.

Figure 6: (left) Examples and (right) FID of 256×256 LSUN-Churches generation with activation
quantization across different diffusion steps. Example images are generated by applying 4-bit
activation quantization in the target diffusion steps, and FID is measured after 5k image generation.
The dashed gray lines indicate FID for the full-precision network

quantization. We use BRECQ [18], a commonly utilized PTQ framework, for weight quantization
and the calibration dataset is constructed based on the method proposed in Q-diffusion [16]. For
activation quantization, we employ the uniform quantization function described in Eq. 3. Similar
to Q-diffusion, we apply quantization for all layers of the denoising network that perform matrix
multiplication, including convolution, linear, and attention layers, while keeping the activation values
of attention score matrix to 8 bits. Fig. 5 shows that FID degradation is negligible up to 4 bit weight
values so that low-bit weight quantization is relatively straightforward. In contrast, FID deteriorates
more rapidly when the activation quantization bit decreases. Hence, we focus on reducing the number
of activation bits.

4.2 Dynamic Nature of Activation Quantization across Diffusion Steps

Activation quantization introduces error when converting floating-point activations to integer values.
In the case of uniform quantization, where a finite range of data is evenly divided using a specified
number of bits, the quantization error of the target data is inversely proportional to the number of
quantization bits. Furthermore, as discussed in Section 3.2, the robustness of diffusion models varies
across different diffusion steps. Hence, we can expect that the bit precision of activations at each
diffusion step will have distinct effects on FID. To investigate the impact of activation quantization
on different diffusion steps, we divide the diffusion steps into five intervals [1.0T :0.8T , 0.8T :0.6T ,
..., 0.2T :0.0T ], and selectively apply activation quantization to the target step interval while keeping
the floating-point activation values in the other steps. For instance, if the target interval is set as
1.0T :0.8T , activation quantization is applied within this interval only, while activations in the other
diffusion steps remain unquantized. Fig. 6 indicate that the early-stage diffusion steps closer to 1.0T
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exhibit higher resilience to quantization errors. In the case of applying 4-bit activation quantization to
the 0.2T :0.0T diffusion steps in 5k LSUN-Churches generation, the resulting FID is 34.30. However,
when the same 4-bit activation quantization is applied to the 1.0T :0.8T steps, the resulting FID is
6.10, which is close to the FID of 6.05 achieved through image generation using a full-precision
network.

It is worthwhile to emphasize that the dynamic nature of activation quantization during network
processing eliminates the requirement of using identical activation bits for each diffusion step. This
characteristic alleviates burden on adjustment of network parameters or other factors to reduce the
activation bits. Consequently, by leveraging the robustness observed in the early stages, it becomes
possible to further reduce activation bits, leading to more efficient processing of the denoising
network.

4.3 Proposed Robustness-Aware Quantization

The previous section has shown that using low activation bits (e.g. 4 bits) for the denoising network
in the early diffusion steps does not have a significant impact on the quality of image generation.
However, as the reverse diffusion process progresses, it becomes increasingly challenging to lower the
activation bits while maintaining the generated image quality. Therefore, we propose a quantization
technique that leverages robustness observed in the early stages to minimize the activation bits as
much as possible.

Algorithm 1 Robustness-aware Quantization

Require: Weight-quantized denoising network ϵθq
Require: Lower bound of the activation bit a
Require: Number of sampled images n for evaluation and threshold of FID ηfid
Bitact = a, Dact = {} ▷ Dact: Dictionary for matching steps and activation bits
for t = T to 1 do ▷ Optimizing activation bits for each step

while (t not in Dact.keys()) or (Dact[t] ̸= Bitact) do
Dact[t] = Bitact
Sample n images with ϵθq applying Dact for acitvations
if FID of sampled images > ηfid then

Bitact = Bitact + 1
end if

end while
end for

The proposed robustness-aware quantization (RAQ) is presented in Algorithm 1. It begins with
pre-quantizing the weights of the denoising network, utilizing 4 bits for weight quantization, as
weights are relatively easier to quantize. The optimization of activation bits starts from diffusion
step T and proceeds sequentially for each step. At each step, the dictionary Dact is updated to
establish the correspondence between the given activation bit Bitact and the diffusion step t. This
dictionary is used by the denoising network to adjust activation bits. FP32 activations are employed
for diffusion steps that have not yet been updated in the dictionary. Subsequently, using the updated
bit information, the diffusion model generates n small subset images, and their FID is evaluated. If the
FID exceeds the desired threshold, the activation bit Bitact is increased by 1, and the image quality
is re-evaluated. Note that RAQ employs the FID of diffusion models without activation quantization
as the FID threshold to preserve the quality of image sampling after the quantization. Nonetheless,
there exists the flexibility to modify the FID threshold according to the user-defined level of FID
tolerance, enabling greater reduction in activation bitwidths. The iterative process continues until
the desired FID is achieved. Once the FID meets the desired criterion, the optimization proceeds
to the next diffusion step. Notably, the optimization starts from the previously adopted activation
bit and does not explore lower bit values. This strategy acknowledges the increasing difficulty of
lowering activation bits as diffusion steps progress. As a result, the time complexity for optimizing
activation bits at each step is reduced from O(mT ) to O(m+ T ), where m represents the number of
bit candidates for activation.
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Table 1: Unconditional image generation results of the baselines and the proposed RAQ. (W: weight
bidwidth, A: effective activation bitwidth, TBOPs: Tera Bit Operations)

Baseline

LSUN-Churches (256x256) LSUN-Bedrooms (256x256)

Model W/A FID↓ TBOPs Model W/A FID↓ TBOPs

LDM-8 [8] 32/32 4.09 4285.2 LDM-4 [8] 32/32 2.96 20725.8

Q-diffusion [16] 4/32 4.46 769.2 Q-diffusion [16] 4/32 4.13 3120.7
4/8 4.45 148.6 4/8 4.17 681.2

Proposed RAQ (w/ 4-bit weights)

LSUN-Churches (256x256) LSUN-Bedrooms (256x256)

A Dact FID↓ TBOPs A Dact FID↓ TBOPs

6.00 entire range - 6b 5.31 108.8 6.00 entire range - 6b 5.58 504.8

6.00

[1.00T :0.80T ] - 4b

4.64 108.8 6.00

[1.00T :0.90T ] - 4b

3.99 504.8
[0.80T :0.60T ] - 5b [0.90T :0.60T ] - 5b
[0.60T :0.50T ] - 6b [0.60T :0.40T ] - 6b
[0.50T :0.10T ] - 7b [0.40T :0.10T ] - 7b
[0.10T :0.00T ] - 8b [0.10T :0.00T ] - 8b

5.60

[1.00T :0.75T ] - 4b

5.12 101.3 5.50
[1.00T :0.90T ] - 4b
[0.90T :0.60T ] - 5b
[0.60T :0.00T ] - 6b

4.94 461.6
[0.75T :0.60T ] - 5b
[0.60T :0.25T ] - 6b
[0.25T :0.00T ] - 7b

5.35
[1.00T :0.75T ] - 4b

5.51 96.4 5.45
[1.00T :0.85T ] - 4b

5.32 457.3[0.75T :0.60T ] - 5b [0.85T :0.60T ] - 5b
[0.60T :0.00T ] - 6b [0.60T :0.00T ] - 6b

5 Experiment

5.1 Unconditional Image Generation with Proposed Robustness-Aware Quantization

We first evaluate the effectiveness of the proposed method for unconditional image generation. We
use Latent Diffusion Model (LDM) [8] with DDIM sampling [6] for 256×256 image generations,
with a total of 200 diffusion steps. The lower bound of the activation bit a is set to 4, as we observed
that using 3 bits significantly degrades the quality of the generated images even with the proposed
RAQ. As we find that consecutive timesteps within a 0.05T range exhibit similar sensitivity to
noise injection, we set the granularity of Bitact update as 0.05T . We sample 5,000 images for
the optimization of the quantization bits, but we use a larger sample size of 50,000 images for the
final evaluation. We evaluate the performance of our approach using two datasets: 256x256 LSUN
Bedrooms and LSUN Churches. Note that the generation of LSUN Bedrooms use a diffusion model
LDM-4 and LSUN Churches use a diffusion model LDM-8 [8]. The quality of the generated images
is evaluated using the FID metric. To estimate the efficiency improvement of RAQ, we introduce the
concept of Bit Operations (BOPs), where BOPs are calculated as the product of OPs (Operations)
with weight bitwidth and activation bitwidth.

The evaluation results of the baseline method, which does not employ the step-wise bitwidth opti-
mization, are presented in the top of Table 1. Despite optimizing the activation bitwidth with a 0.05T
granularity, certain consecutive intervals exhibit similar sensitivity to quantization, resulting in the
the RAQ results being composed of only 5 or fewer intervals. As demonstrated in Q-diffusion [16],
utilizing 4-bit weights and 8-bit activations preserves FID at a similar level to that of floating-point
models. However, it is observed that FID substantially increases when 6-bit activation values are
used in the entire range of the steps. In contrast, when applying our proposed RAQ method, we
observe FID scores comparable to those obtained with 8-bit activations even when the effective bit
count of the activation is 6 (Table 1). Thus, for LSUN-Churches/Bedrooms, the proposed RAQ
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Figure 7: Text-guided 512×512 image generation results with Stable Diffusion. The denoising model
with full-precision, 8-bit (Q-diffusion), and 6-bit activations, and scalable-bit acitvations with the
proposed RAQ method are evaluated for the comparison. Here, W4 denotes adopting 4-bit weights,
An denotes n-bit activations, and An/m indicates adopting n-bit activations in the early stage of the
diffusion stages, while the later stage adopts m-bit activations

achieves 39.4/41.1 times smaller BOPs compared to the full-precision baseline, while Q-diffusion
only achieves 28.8/30.4 times smaller BOPs compared to the full-precision baseline. Furthermore, by
slightly compromising FID, it becomes possible to further reduce the effective activation bits. These
experimental results clearly demonstrate that leveraging the early-stage robustness of the diffusion
model contributes to maintaining the quality of image generation even with low-bit activations.

5.2 Conditional Image Generation with Proposed Robustness-Aware Quantization

In this section, we assess the effectiveness of the proposed method for conditional image generation
using Stable Diffusion [8]. We employ the PLMS sampler [28] with 50 diffusion steps to generate
512x512 images. Since there is no established metric to quantitatively measure the image generation
quality in this case, we rely on qualitative comparison for each image. As presented in Figure 7, even
when the proposed RAQ method is not applied, 8-bit activations produce high-quality images that are
comparable with full-precision models. However, there is a significant degradation in image quality
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when the activation bits are reduced to 6 bits. On the other hand, by applying 6-bit activations only to
the [1.0T :0.8T ] diffusion steps and retaining 8-bit activations for the remaining steps, the diffusion
models are able to generate high-quality images. This result underscores the importance of leveraging
the early-stage robustness of the diffusion process.

Meanwhile, unlike the unconditional image generation cases in Section 5.1, we had difficulties in
applying 4-bit activations to the early-stage diffusion process of Stable Diffusion. This challenge
arises from the large dynamic range of the activation values in Stable Diffusion. Hence, we plan to
explore more sophisticated techniques to address this issue in the future work.

6 Limitation

An important limitation of the proposed RAQ is that current results do not enhance running time
efficiency on GPUs. This is primarily due to the substantial presence of irregular activation bitwidths,
such as 6 bits (Table 1), and accelerating diffusion models with irregular bitwidths on a GPU does
not lead to performance improvement due to the lack of corresponding arithmetic units in GPU.

However, we would like to emphasize that our main contribution is to show a direction that we can
reduce bit resolution for a part of parameters, and our approach is not fundamentally limited to a
certain bit resolution. Hence, if other works that can further reduce the overall bit resolution of
the network are developed independent of our scheme, then it can be combined with our proposed
scheme, and there is a chance that portion of the 4-bit parameters in our scheme can be increased
to see realistic performance benefits on GPU. For example, our current approach involves a basic
min/max-based quantization mechanism for activation quantization, leading to an 8-bit quantization
for the baseline fixed bitwidth case. Then, the allocation of activation bits using the RAQ method
is distributed as (4b, 5b, 6b, 7b, 8b) = (20%, 20%, 10%, 40%, 10%) for LSUN-churches (Table
1). However, in the scenario where an advanced quantization mechanism enables 6-bit activation
quantization even for the baseline fixed bitwidth case, there exists the possibility of increasing the
proportion of 4-bit activations with the proposed RAQ, such as (4b, 5b, 6b) = (50%, 30%, 20%),
which can then be effectively accelerated on GPUs.

Moreover, the utilization of specialized hardware, like bit-scalable accelerators, could offer a promis-
ing solution for processing these models [29]. These accelerators are purpose-built to harness the
benefits of quantization on a bit-by-bit basis, resulting in a nearly linear improvement in computing
efficiency, encompassing both latency and energy consumption, with decreasing bit width. To show
potential benefit from such bit-scalable hardware, we analyze the BOPs in Table 1. This metric
allows us to estimate the performance gain achievable through the RAQ method. In the case of
LSUN-Churches, the full-precision baseline and Q-diffusion necessitates 4285.2 and 148.6 TBOPs
for a single image generation respectively, while the proposed RAQ method only requires 108.8
TBOPs. This indicates that with the utilization of specialized accelerators, the implementation of the
RAQ approach could potentially lead to more than 39.4 times speedup and energy savings compared
to the full-precision baseline, while Q-diffusion can achieve 28.8 times improvement compared to the
full-precision baseline.

7 Conclusion

In this paper, we present a comprehensive analysis of the reverse diffusion process and introduce
a strategy to optimize diffusion models using quantization techniques. Leveraging the observed
robustness of the early stages in the diffusion process, we successfully optimize the activation bitwidth
for each diffusion step, leading to reduced effective activation bit precision without compromising the
fidelity and diversity of the generated images. Experimental results show that our proposed method
(RAQ) effectively reduces the effective bitwidth of activations to 6 bits while maintaining image
quality comparable to conventional approaches that employ 8-bit activations. Additionally, we also
evaluate the effectiveness of the proposed method in the context of conditional image generation
using Stable Diffusion, a state-of-the-art diffusion model.
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A Experimental Details

A.1 Details of Diffusion Models

In order to conduct a comprehensive analysis of the early-stage robustness in diffusion models,
we employ five different diffusion models to generate various datasets, including CIFAR10 [24],
FFHQ [27], CelebA-HQ [26], LSUN-bedrooms, and LSUN-churches [25]. To meausre the Fréchet
Inception Distance (FID), we utilize the torch-fidelity library 1, following the methodology established
in previous works [6, 8]. Subsequently, we apply the proposed RAQ method to perform high-
resolution image generation tasks, encompassing both unconditional image generation for LSUN-
bedrooms/LSUN-churches and conditional image generation using Stable Diffusion [8]. The details
of the diffusion models utilized in these experiments are thoroughly presented in Table 2. Note that
the calculation of σt in Eq. 2 is performed using η in Table 2 as specified in the following equation [6]:

σt = η ·
√
(1− αt−1)/(1− αt)

√
1− αt/αt−1 (5)

Table 2: Implementation specifications of the diffusion models

CIFAR-10 FFHQ/
CelebA-HQ

LSUN-
Bedrooms

LSUN-
Churches

Conditional
Generation

Image Size 32×32 256×256 256×256 256×256 512×512
Architecture DDIM 2 LDM-4 3 LDM-4 3 LDM-8 3 Stable Diffusion v1.4 4

Sampler DDIM [6] DDIM DDIM DDIM PLMS [28]
Step Count 100 200 200 200 50
η 0 0/1 1 0 0

A.2 Details of Entropy Analysis

In Section 3.1, we calculate the entropy of the latent variables xt for each diffusion step. To facilitate
this calculation, we transform the values of xt into histogram bins. Specifically, we map xt to a
histogram bin using the following equation:

h(xt) = clamp(⌊ xt

256
⌉, −3, +3) (6)

This equation ensures that the values of the histogram bins are constrained within the range of −3
to +3, allowing us to effectively create a histogram with 256 bins. Once we have the histogram
representation of xt, we can calculate the entropy using the equation5:

H(X) =
∑
x

−p(X) log p(X) (7)

A.3 Intermediate Image Prediction during Reverse Diffusion Process

In Fig. 1(a) and Fig. 2, we showcase the intermediate image prediction results during the reverse
diffusion process, aiming to illustrate the characteristics of diffusion models. To visualize the
prediction results, we utilize the following x0 prediction of each diffusion step as stated in [6]:

x0 =
xt −

√
1− αtϵθ(xt, t)√

αt
(8)

1https://github.com/toshas/torch-fidelity
2https://github.com/ermongroup/ddim
3https://github.com/CompVis/latent-diffusion
4https://github.com/CompVis/stable-diffusion
5Claude Elwood Shannon, "A Mathematical Theory of Communication", Bell system technical journal, 1948
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A.4 Details of Activation Quantization

During the activation quantization process, we observed that the skip connections of ResBlocks,
the first convolutional layer responsible for transforming the latent variable into the input of the
denoising network, and the last convolutional layer responsible for transforming the output of the
denoising network (Fig. 1(b)) had a significant impact on the quality of the final image. However,
these components constitute a negligible fraction of the overall computation. Therefore, in order
to balance computational efficiency and image quality, the proposed RAQ adjust the activation bits
of the diffusion models to the desired bit precision while keeping the activation bits of these three
components fixed at 8 bits.

B Additional Results

B.1 Activation Quantization across Diffusion Steps

Fig. 9 complements the image generation results presented in Fig. 6. Fig. 9 showcases image genera-
tion with 4-bit activation quantization at different diffusion steps, alongside the image generation with
floating-point activations. The results of the activation quantization demonstrate a consistent trend
with the noise injection test (4). When 4-bit activation quantization is applied to the early stages, the
resulting images closely resemble those generated using floating-point activations, showcasing high
quality with minor shape variations. However, applying 4-bit activation quantization to the entire
diffusion process leads to a significant compromise in the generated image quality. This is primarily
due to the degradation in image quality caused by the quantization applied to the later diffusion steps.

Figure 8: Examples of 256×256 LSUN-Churches generation with FP32 activation or activation
quantization across different diffusion steps. Example images with activation quantization are
generated by applying 4-bit activation quantization in the target diffusion steps.

B.2 Explanation on FID Improvement with Proposed RAQ on LSUN-Bedrooms

In Table 1 of Section 5.1, we observe that the LSUN-Bedrooms images generated with the proposed
RAQ exhibit slightly better FID scores compared to Q-diffusion with W4A32 and W4A8. To
investigate the reason behind this FID improvement, we conduct a detailed comparison of the images
generated using full-precision activations and 4-bit activations in the early stage of the diffusion
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(a) FP32 Activation

(b) 4-bit Activation for [1.0T :0.8T ]

Figure 9: Examples of 256×256 LSUN-Bedrooms generation with different activation precision.

process. We find that the models with full-precision activations sometimes generate images with
complex structures that are not easily recognizable as bedrooms. However, when 4-bit activation
quantization is applied to the early stage, it simplifies the complex structures and results in images that
more closely resemble bedrooms. This observation suggests that the step-wise activation quantization
strategy employed in the proposed RAQ method helps refine the generated images, leading to
improved quality and better alignment with the target LSUN-Bedrooms dataset.

B.3 Activation Quantization of Stable Diffusion

For the conditional image generation with Stable Diffusion, we utilize the prompt examples that are
publicly available online 6 7. The prompts used in Section 5.2 are as follows:

1. a puppy wearing a hat
2. cluttered house in the woods in anime oil painting style*
3. Old photo of Clint Eastwood dressed as cowboy,1800s, centered, by professional photogra-

pher, wide-angle lens, background saloon*
4. interior design, open plan, kitchen and living room, modular furniture with cotton textiles,

wooden floor, high ceiling, large steel windows viewing a city Artstation and Antonio
Jacobsen and Edward Moran, (long shot), clear blue sky, intricated details, 4k*

5. a tree on the hill, bright scene, highly detailed, realistic photo
6. a highly detailed, majestic royal tall ship on a calm sea,realistic painting, by Charles

Gregory*
7. medium shot side profile portrait photo of the Takeshi Kaneshiro warrior chief, tribal panther

make up, blue on red, looking away, serious eyes, 50mm portrait, photography, hard rim
lighting photography –ar 2:3 –beta –upbeta

8. a picture of dimly lit living room, minimalist furniture, vaulted ceiling, huge room, floor to
ceiling window with an ocean view, nighttim*

9. an armchair in the shape of an avocado, an armchair imitating an avocado*

In this section, we additionally present non-cherry-picked samples generated using Stable Diffusion
with and without activation quantization. We use the prompts that are highlighted with asterisk (*).
For each prompt, we generate four images to demonstrate the variety and quality of the generated
results (Fig. 10 in the next page).

6https://stablediffusion.fr/prompts
7https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts/
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(a) Full Precision (b) W4A8 (Q-Diffusion) (c) W4A6 (d) W4A6/8 (Proposed)

Figure 10: Text-guided 512×512 image generation results with Stable Diffusion.
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