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A Proofs

A.1 Proof of Theorem 1

Proof. We first write the regularized loss function corresponding to SGD with vanilla weight decay
as

ft(θ) = L(θ) +
λ′

2ηt
∥θ∥2 (1)

at t-th step.

If the corresponding L2 regularization λ′

2ηt
is unstable during training, the regularized loss function

ft(θ) will also be a time-dependent function and has no non-zero stable stationary points.

Suppose we have a non-zero solution θ⋆ which is a stationary point of f(θ, t) at t-th step and SGD
finds θt = θ⋆ at t-th step.

Even if the gradient of ft(θ) at t-step is zero, we have the gradient at (t+ 1)-th step as

gt+1 = ∇ft+1(θ
⋆) = λ′(η−1

t − η−1
t+1)θ

⋆. (2)

It means that

∥gt+1∥2 = λ′2(η−1
t − η−1

t+1)
2∥θ⋆∥2 ≥ λ′2δ2∥θ⋆∥2

ηtηt+1
(3)

To achieve convergence, we must have ∥gt+1∥2 = 0.

It requires (η−1
t − η−1

t+1)
2 = 0 or ∥θ⋆∥2 = 0.

Theorem 2.2 of Shapiro and Wardi [9] told us that the learning rate should be small enough for
convergence. Obviously, we have η < ∞ in practice.

As ηt = ηt+1 does not hold, SGD cannot converging to any non-zero stationary point.

The proof is now complete.

A.2 Proof of Theorem 2

Before formally completing the proof, we first introduce a useful Lemma 1, which is a specialized
case of Theorem 1 in Yan et al. [10] with β = s = 0.
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Lemma 1 (Convergence of SGD). Assume that L(θ) is an L-smooth function1, L is lower bounded
as L(θ) ≥ L⋆, E[∇L(θ,X) − ∇L(θ)] = 0, E[∥∇L(θ,X) − ∇L(θ)∥2] ≤ δ2, ∥∇L(θ)∥ ≤ G for
any θ. Let SGD optimize L for t+ 1 iterations. If η ≤ C√

t+1
, we have

min
k=0,...,t

E[∥∇L(θk)∥2] ≤
C0√
t+ 1

, (4)

where C0 =
[
L(θ0)−L⋆

C + CL(G2 + σ2)
]
.

Proof. Given the conditions of L(θ) in Lemma 1, we may obtain the resulted conditions of f(θ) =
L(θ) + λ

2 ∥θ∥
2.

As L(θ) is an L-smooth function, we have

∥∇f(θa)−∇f(θb)∥ = ∥∇L(θa)−∇L(θb) + λ(θa − θb)∥ ≤ (L+ λ)∥θa − θb∥ (5)

holds for any θa and θb. It shows that f(θ) is an (L+ λ)-smooth function.

As L is lower bounded as L(θ) ≥ L⋆, we have

f⋆ ≥ L⋆. (6)

As E[∇L(θ,X)−∇L(θ)] = 0, we have

E[∇f(θ,X)−∇f(θ)] = E[∇L(θ,X)−∇L(θ)] = 0. (7)

As E[∥∇L(θ,X)−∇L(θ)∥2] ≤ δ2, we have

E[∥∇f(θ,X)−∇f(θ)∥2] = E[∥∇L(θ,X)−∇L(θ)∥2] ≤ δ2. (8)

As ∥∇L(θ)∥ ≤ G, we have

∥∇f(θ)∥ = ∥∇L(θ) + λθ∥ ≤ G+ λ∥θ∥max, (9)

where ∥θ∥max is the maximum L2 norm of any θ.

Introducing the derived conditions Eq. (12) - (16) for f into Lemma 1, we may treat f as the objective
optimized by SGD. Then we have

min
k=0,...,t

E[∥∇f(θk)∥2] ≤
1√
t+ 1

[
f(θ0)− f⋆

C
+ C(L+ λ)((G+ λ∥θ∥max)

2 + σ2)

]
(10)

≤ 1√
t+ 1

[
L(θ0) +

λ
2 ∥θ0∥

2 − L⋆

C
+ C(L+ λ)((G+ λ∥θ∥max)

2 + σ2)

]
(11)

Obviously, the gradient norm upper bound in convergence analysis monotonically increases as the
weight decay strength λ.

The proof is complete.

B Experimental Details

Computational environment. The experiments are conducted on a computing cluster with GPUs of
NVIDIA® Tesla™ P100 16GB and CPUs of Intel® Xeon® CPU E5-2640 v3 @ 2.60GHz.

1It means that ∥∇L(θa)−∇L(θb)∥ ≤ L∥θa − θb∥ holds for any θa and θb.
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B.1 Image Classification on CIFAR-10 and CIFAR-100

Data Preprocessing For CIFAR-10 and CIFAR-100: We perform the common per-pixel zero-mean
unit-variance normalization, horizontal random flip, and 32× 32 random crops after padding with 4
pixels on each side.

Hyperparameter Settings: We select the optimal learning rate for each experiment from
{0.0001, 0.001, 0.01, 0.1, 1, 10} for non-adaptive gradient methods. We use the default learning
rate for adaptive gradient methods in the experiments of Table 1, while we also compared Adam,
AdamW, AdamS under various learning rates and batch sizes in other experiments. In the experiments
on CIFAF-10 and CIFAR-100: η = 0.1 for SGD and SGDS; η = 0.001 for Adam, AdamW, AdamS,
AMSGrad, Yogi, AdaBound, and RAdam; η = 0.01 for Padam. For the learning rate schedule, the
learning rate is divided by 10 at the epoch of {80, 160} for CIFAR-10 and {100, 150} for CIFAR-100,
respectively. The batch size is set to 128 for both CIFAR-10 and CIFAR-100.

The strength of L2 regularization and SWD is default to 0.0005 as the baseline. Considering the
linear scaling rule, we choose λW =

λL2

η . Thus, the weight decay of AdamW uses λW = 0.5

for CIFAR-10 and CIFAR-100. The basic principle of choosing weight decay strength is to let all
optimizers have similar convergence speed.

We set the momentum hyperparameter β1 = 0.9 for SGD and SGDS. As for other optimizer
hyperparameters, we apply the default hyperparameter settings directly.

We repeated each experiment for three times in the presence of the error bars.

We leave the empirical results with the weight decay setting λ = 0.0001 in Appendix C.

B.2 Image classification on ImageNet

Data Preprocessing For ImageNet: For ImageNet, we perform the per-pixel zero-mean unit-
variance normalization, horizontal random flip, and the resized random crops where the random size
(of 0.08 to 1.0) of the original size and a random aspect ratio (of 3

4 to 4
3 ) of the original aspect ratio is

made.

Hyperparameter Settings for ImageNet: We select the optimal learning rate for each experiment
from {0.0001, 0.001, 0.01, 0.1, 1, 10} for all tested optimizers. For the learning rate schedule, the
learning rate is divided by 10 at the epoch of {30, 60}. We train each model for 90 epochs. The batch
size is set to 256. The weight decay hyperparameter of AdamS, AdamW, Adam are chosen from
{5× 10−6, 5× 10−5, 5× 10−4, 5× 10−3, 5× 10−2}. As for other optimizer hyperparameters, we
still apply the default hyperparameter settings directly.

B.3 Language Modeling

We use a classical language model, Long Short-Term Memory (LSTM) [2] with 2 layers, 512
embedding dimensions, and 512 hidden dimensions, which has 14 million model parameters and is
similar to the “medium LSTM” in Zaremba et al. [12]. Note that our baseline performance is better
than the reported baseline performance in Zaremba et al. [12]. The benchmark task is the word-level
Penn TreeBank [7]. We empirically compared AdamS, AdamW, and Adam under the common and
same conditions.

Hyperparameter Settings. Batch Size: B = 20. BPTT Size: bptt = 35. Learning Rate: η = 0.001.
We run the experiments under various weight decay selected from {10−4, 5 × 10−5, 10−5, 5 ×
10−6, 10−6, 5× 10−7, 10−7}.The dropout probability is set to 0.5. We clipped gradient norm to 1.

C Supplementary Figures and Results of Adaptive Gradient Methods

Popular Adam variants often generalize worse than SGD. A few Adam variants tried to fix
the hidden problems in adaptive gradient methods, including AdamW Loshchilov and Hutter [5],
AMSGrad [8] and Yogi [11]. A recent line of research, such as AdaBound [6], Padam [1], and
RAdam [3], believes controlling the adaptivity of learning rates may improve generalization. This
line of research usually introduces extra hyperparameters to control the adaptivity, which requires
more efforts in tuning hyperparameters. However, we and Zhang et al. [13] found that this argument
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Table 1: Test performance comparison of optimizers with λL2
= λS = 0.0001 and λW = 0.1, which

is a common weight decay setting in related papers. AdamS still show better test performance than
popular adaptive gradient methods and SGD.

DATASET MODEL SGD ADAMS ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 5.58 4.69 6.08 5.72 5.33 6.87 5.83 5.43 5.81
VGG16 6.92 6.16 7.04 6.68 6.45 7.33 6.74 6.69 6.73

CIFAR-100 RESNET34 24.92 23.50 25.56 24.74 23.61 25.67 25.39 23.72 25.65
DENSENET121 20.98 21.35 24.39 22.80 22.23 24.23 22.26 22.40 22.40
GOOGLENET 21.89 21.60 24.60 24.05 21.71 25.03 26.69 22.56 22.35
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Figure 1: Language modeling under various weight decay. Note that the lower perplexity is better.

is contradicted with our comparative experimental results (see Table 1). In our empirical analysis,
most advanced Adam variants may narrow but not completely close the generalization gap between
adaptive gradient methods and SGD. SGD with a fair weight decay hyperparameter as the baseline
performance usually generalizes better than recent adaptive gradient methods. The main problem may
lie in weight decay. SGD with weight decay λ = 0.0001, a common setting in related papers, is often
not a good baseline, as λ = 0.0005 often shows better generalization on CIFAR-10 and CIFAR-100.
We also conduct comparative experiments with λ = 0.0001. Under the setting λ = 0.0001, while
some existing Adam variants may outperform SGD sometimes due to the lower baseline performance
of SGD, AdamS shows superior test performance. For example, for ResNet18 on CIFAR-10, the test
error of AdamS is lower than SGD by nearly one point and no other Adam variant may compare with
AdamS.

Language Modeling. It is well-known that, different from computer vision tasks, the standard Adam
(with L2 regularization) is the most popular optimizer for language models. Figure 1 in Appendix
C demonstrates that the conventional belief is true that the standard L2 regularization yields better
test results than both Decoupled Weight Decay and SWD. The weight decay scheduler suitable for
language models is an open problem.

We report the learning curves of all adaptive gradient methods in Figure 2. They shows that vanilla
Adam with SWD can outperform other complex variants of Adam.

Figure 3 displays the scatter plot of training losses and test errors during final 40 epochs of training
DenseNet121 on CIFAR-100.
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(a) ResNet18
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(b) VGG16
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(c) DenseNet121
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(d) GoogLeNet

Figure 2: The learning curves of adaptive gradient methods.
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Figure 3: Even if with similar or higher training losses, AdamS still generalizes better than AdamW
and Adam. The scatter plot of training losses and test errors during final 50 epochs of training VGG16
on CIFAR-10 and DenseNet121 on CIFAR-100.
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Figure 4: We compare the generalization of Adam, AdamW, and AdamS with various weight decay
rates by training ResNet34 on CIFAR-100. The displayed weight decay of AdamW in the figure has
been rescaled by the factor = 0.001. The optimal test performance of AdamS is significantly better
than AdamW and Adam.
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Figure 5: We train ResNet18 on CIFAR-10 for 900 epochs to explore the performance limit of
AdamS, AdamW, and Adam. The learning rate is divided by 10 at the epoch of 300 and 600. AdamS
achieves the most optimal test error, 4.70%.
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Figure 6: ResNet50 on ImageNet. The lowest Top-1 test errors of AdamS, AdamW, and Adam are
24.19%, 24.29%, and 30.07%, respectively.

Table 2: In the experiment of ResNet18 trained via SGD on CIFAR-10, we verified that the optimal
weight decay is approximately inverse to the number of epochs. The predicted optimal weight decay
is approximately 0.1× Epochs−1, because the optimal weight decay is λ = 0.0005 selected from
{10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6} with 200 epochs as the
base case. The observed optimal weight decay is selected from {Epochs−1, 0.1×Epochs−1, 0.01×
Epochs−1}. We observed that the optimal test errors are all corresponding to the predicted optimal
weight decay λ = 0.1 × Epochs−1. At least in the sense of the order of magnitude, the predicted
optimal weight decay is fully consistent with the observed optimal weight decay. Thus, the empirical
results supports that the optimal weight decay is approximately inverse to the number of epochs in
the common range of the number of epochs.

EPOCHS λ = Epochs−1 λ = 0.1× Epochs−1 λ = 0.01× Epochs−1

50 74.06 7.12 7.50
100 22.04 5.56 6.01
200 11.81 5.02 5.61
1000 4.67 4.43 6.02
2000 4.59 4.48 5.70

Figure 4 displays the test performance of AdamS, AdamW, and Adam under various weight decay
hyperparameters of ResNet34 on CIFAR-100.

We train ResNet18 on CIFAR-10 for 900 epochs to explore the performance limit of AdamS, AdamW,
and Adam in Figure 5.

Figure 6 in Appendix shows that, AdamS can make marginal improvements over AdamW.
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Figure 7: The scatter plot of training losses and test errors during final 40 epochs of training ResNet34
on CIFAR-100. Even with similar or higher training losses, AdamS still generalizes better than other
Adam variants. We leave the scatter plot on CIFAR-10 in Appendix C.

6



D Additional Algorithms

We note that the implementation of AMSGrad in Algorithm 1 is the popular implementation in
PyTorch. We use the PyTorch implementation in our paper, as it is widely used in practice.

Algorithm 1: AMSGrad/AMSGradW
gt = ∇L(θt−1) + λθt−1;
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g

2
t ;

m̂t =
mt

1−βt
1

;
vmax = max(vt, vmax);
v̂t =

vmax

1−βt
2

;
θt = θt−1 − η√

v̂t+ϵ
m̂t − ηλθt−1;

Algorithm 2: AMSGradS
gt = ∇L(θt−1);
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g

2
t ;

m̂t =
mt

1−βt
1

;
vmax = max(vt, vmax);
v̂t =

vmax

1−βt
2

;
v̄t = mean(v̂t);
θt = θt−1 − η√

v̂t+ϵ
m̂t − η√

v̄t
λθt−1;

E Supplementary Experiments with Cosine Annealing Schedulers and Warm
Restarts

In this section, we conducted comparative experiments on AdamS, AdamW, and Adam in the presence
of cosine annealing schedulers and warm restarts proposed by Loshchilov and Hutter [4]. We set
the learning rate scheduler with a recommended setting of Loshchilov and Hutter [4]: T0 = 14
and Tmul = 2. The number of total epochs is 210. Thus, we trained each deep network for four
runs of warm restarts, where the four runs have 14, 28, 56, and 112 epochs, respectively. Other
hyperparameters and details are displayed in Appendix B.

We conducted comparative experiments on AdamS, AdamW, and Adam in the presence of cosine
annealing schedulers and warm restarts proposed by Loshchilov and Hutter [4]. We set the learning
rate scheduler with a recommended setting of Loshchilov and Hutter [4] Our experimental results in
Figures 11 and 8 suggest that AdamS consistently outperforms AdamW and Adam in the presence
of cosine annealing schedulers and warm restarts. It demonstrates that, with various learning rate
schedulers, the advantage of SWD may generally hold.

Moreover, we did not empirically observe that cosine annealing schedulers with warm restarts may
consistently outperform the common piecewise-constant learning rate schedulers for adaptive gradient
methods. We noticed that Loshchilov and Hutter [4] empirically compared four-staged piecewise-
constant learning rate schedulers with cosine annealing schedulers with warm restarts, and argue
that cosine annealing schedulers with warm restarts are better. There may be two possible causes.
First, three-staged piecewise-constant learning rate schedulers, which usually have a longer first stage
and decay learning rates by multiplying 0.1, are the recommended settings, while the four-staged
piecewise-constant learning rate schedulers in Loshchilov and Hutter [4] are usually not optimal.
Second, warm restarts may be helpful, while cosine annealing may be not. The ablation study on
piecewise-constant learning rate schedulers with warm restarts is lacked. We argued that how to
choose learning rate schedulers may still be an open question, considering the complex choices of
schedulers and the complex loss landscapes.
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