
Appendix

A Proofs of Theorems

A.1 Proof of Theorem 1

Theorem 3 (The best low-rank approximation). Suppose W is decomposed via SVD and yield
W =

∑r
i=1 σiuiv

T
i where singular values {σi} are sorted in descending order. Given integer k < r,

the best k-rank approximation of W , namely the k-rank matrix that has the smallest l2 distance to W
is

W̃ =

k∑
i=1

σiuiv
T
i .

This theorem is also the Eckart-Young-Mirsky Theorem for Frobenius norm.

Though the proof is easily accessible (e.g. from Wikipedia 2), we will provide a sketch of proof here
for reference.

Proof. DenoteWk =
∑k
i=1 σiuiv

T
i be the best k-rank approximation ofW , σi(W) be the ith largest

singular value of W . Then the low-rank approximation error could be reduced as follows:

∥∥∥W − W̃∥∥∥2

F
=

∥∥∥∥∥∥
r∑

i=k+1

σiuiv
T
i

∥∥∥∥∥∥
2

F

=

r∑
i=k+1

σ2
i . (A.1)

Given W = W ′ +W ′′, according to the triangle inequality of spectral norm,

σ1(W) = σ1(W ′) + σ1(W ′′). (A.2)

Then for two arbitrary ranks i, j ≥ 1, we have:

σi
(
W ′
)

+ σj
(
W ′′

)
= σ1

(
W ′ −W ′i−1

)
+ σ1

(
W ′′ −W ′′j−1

)
≥ σ1

(
W −W ′i−1 −W ′′j−1

)
≥ σ1

(
W −Wi+j−2

)
= σi+j−1(W).

(A.3)

Assume there is another k-rank approximation X , Then according to the above formula, for arbitrary
i ≥ 1,

σi(W −X) = σi(W −X) + σk+1(X) ≥ σk+i(W) (A.4)

Hence,

‖W −X‖2F ≥
n∑
i=1

σi (W −X)
2 ≥

n∑
i=k+1

σ2
i , (A.5)

which means W̃ is the best k-rank approximation.

A.2 Proof of Theorem 2

Theorem 2 states the effectiveness of rank loss. Before the theorem, recall notations that we previously
defined: W := W

‖W‖ is the l2 normalized weight matrix W ; U , Σ, V are matrices reached from the
SVD of W , where U = {u1, u2, ...} and V = {v1, v2, ...} are orthonormal bases; Σ is a diagonal
matrix where singular values {σ1, σ2, ...} are sorted in descending order on the diagonal; operator
Trun

(
UΣV T

)
=
∑k
i=1 σiuiv

T
i stands for k-rank truncated SVD, or the k-rank best approximation

of W according to Theorem 1.
2https://en.wikipedia.org/wiki/Low-rank_approximation

15

Theorem 4 (Effectiveness of the adversarial rank loss). Given the adversarial rank loss

Lrank = −‖W − Trun
(
UΣV T

)
‖2F . (A.6)

If we optimize W in rank loss via gradient descent, the rank of W will increase.

Proof. In gradient descent, the update from weight W to W ′ based on rank loss Lrank could be
described as:

W ′ = W − γ ∂Lrank
∂W

. (A.7)

We first simplify rank loss. Since U = {u1, u2, ...} and V = {v1, v2, ...} are orthonormal bases, we
could easily rewrite rank loss Lrank as the squared sum of small singular values:

Lrank = −‖ W

‖W‖F
−

k∑
i=1

σiuiv
T
i ‖2F

= −‖UΣV T − UΣ[1:k]V
T ‖2F

= −‖Σ− Σ[1:k]‖2F = −
r∑

i=k+1

σ2
i .

(A.8)

The form Equation (A.8) allows us to apply chain rule to calculate the gradient of the normalized
weight matrix ∂Lrank

∂W
:

∂Lrank
∂W

=

r∑
i=k+1

∂Lrank
∂σi

∂σi

∂W
= −

r∑
i=k+1

2σiuiv
T
i . (A.9)

Again, the chain rule is applied for the derivative of the weight matrix. For clarity, we show the
gradient expression for a single weight parameter W [m,n] (the weight value at position (m,n) in
the reshaped weight matrix W):

∂Lrank
∂W [m,n]

=tr

(
∂Lrank
∂W

T

∂W

∂W [m,n]

)

=−
(
∑r
i=k+1 2σiuiv

T
i)[m,n]

‖W‖F

+

W [m,n]
∑(

W �
(∑r

i=k+1 2σiuiv
T
i

))
‖W‖3F

.

(A.10)

Based on the gradient, one step of optimization under learning rate α could be expressed in a
neat matrix multiplication format, decomposed by orthonormal bases U = {u1, u2, ...} and V =
{v1, v2, ...}.

Lemma 1 (Weight optimization based on rank loss). Denote
∑(

W �
(∑r

i=k+1 2σiuiv
T
i

))
:= c,

which is a scalar constant within each step, one step of weight W optimization under learning rate

16

γ > 0 and rank loss (as defined in Equation (2.6)) could be expressed as:

W ′ =W − γ ∂Lrank
∂W

=W − γ

(
−
∑r
i=k+1 2σiuiv

T
i

‖W‖F
+

cW

‖W‖3F

)

=UΣV T +
2γ

‖W‖F
UΣ[k+1:r]V

T − cγ

‖W‖3F
UΣV T

=U

(1− cγ

‖W‖3F

)
Σ +

2γ

‖W‖F
Σ[k+1:r]

V T .

(A.11)

From the formula of the optimized weight W ′, we can reach the following conclusions on the
optimized weight W ′: firstly, W ′ promises the same set of orthonormal bases U, V after SVD;
secondly, comparing small singular values against others, all singular values are penalized by the
same amount cγ

‖W‖3F
; but the small singular values (ranking from k + 1 to r) are awarded with

increments 2γ
‖W‖F . Regardless of swapped singular values due to magnitude change (because of small

learning rate γ), small singular values will make up more proportion in all the singular values after
one step of update. Recall the definition for δ-rank, given fixed sum of squared singular values after
l2 normalization, the rank of W will increase.

B Method Details

B.1 Details on Gradient-Grow.

We explain in details about the procedure of gradient grow evolved from RigL [14]. At each gradient
grow step, first we calculate the Rank-based Pruning (RPG) objective L. Then we back-propagate
L for gradients of network weights. Finally, gradients of pruned network weights are sorted in
magnitudes; weights with large gradients are re-activated.

The number of weights to be re-activated are determined by the number of remaining weights. The
whole pruning framework is detailed in Algorithm 1. Grow fraction α is a function of training
iterations that gradually decays for stability of training. Cosine Annealing is used for α, following
[14].

B.2 Selection of Approximation Rank

Factor k of the truncation operator Trun controls the rank of the low-rank approximation in this
adversarial process. However, controlling k for each layer is hardly practical, because layers are large
in quantity and vary in shapes. We leverage the concept of δ-rank in Definition 1, and tend to control
the approximation error (also the negative rank loss −Lrank for a layer) rather than control k. We set
a constant δ̃ between (0, 1) as the target approximation error between the normalized weight matrix
W and its low rank counterpart. Then we find the best k that has the closest low-rank approximation
error as δ̃ for each layer. Mathematically, this selection process could be written as:

arg min
k

| − Lrank − δ̃|. (B.1)

C Experiment Details

C.1 CIFAR Experiments

In the CIFAR experiments, we train VGG-19 and ResNet-32 for 300 epoch, which is identical to
Zhou et al. [59]. We use the SGD optimizer with momentum 0.9, batchsize 128, learning rate 0.1,
and weight decay 0.005.

17

Algorithm 1: Rank-based Pruning (RPG)
Input :A dense model W with n layers; Target density (a function of iteration) d; Grow

fraction (a function of iteration) α; Mask update interval ∆T ; Total training iteration
T = Tprune + Tfinetune

Output :A Sparse Model W �M
1 // Initialize a dense mask ;
2 M ← 1;
3 // Stage 1: prune and grow;
4 for t← 1 to Tprune do
5 Forward propagation for minibatch loss Ltask;
6 if t%∆T = 0 then
7 // Update mask M ;
8 Calculate and sum layerwise rank loss;
9 Keep top dt proportion of weights in W globally to get layerwise density dit;

10 for i← 1 to n do
11 Prune to density (1− αt)dit based on |W |;
12 Grow to density dit again based on |∇L|;
13 end for
14 end if
15 else
16 Train sparse net with task loss;
17 end if
18 end for
19 // Stage 2: keep masks fixed and finetune;
20 for t← Tprune + 1 to T do
21 Keep mask M static, and train weight W till converge;
22 end for
23 return Weights of the Pruned Model W �M

C.2 ResNet-50 on ImageNet

We mainly follow Goyal et al. [18] for ImageNet experiments. ImageNet experiments are run on
8 NVIDIA Tesla V100s. Our RPG method is applied on ResNet-50 for 100 epoch, and compared
with 100-epoch baselines at various sparsities. We use the SGD optimizer with momentum 0.9, 1024
batchsize, a learning rate of 0.4, 0.0001 weight decay, 0.1 label smoothing, 5 epochs of learning
rate warmup. We choose 1024 batchsize instead of the commonly-used 4096 batchsize [14, 45] due
to GPU memory constraints. We did not use augmentation tricks like mixup or cutmix. Standard
pretrained model from torchvision is used in ImageNet setting for fair comparison with top baselines.
α is kept at 0.3; ∆T is set to 100; Tprune is set to 90 epochs.

C.3 Downstream Vision Tasks

In Mask R-CNN experiments, all methods are implemented by us on the identical settings for fair
comparison. We follow the training setting of the original Mask R-CNN [21] on Detectron-2 [54].
The three methods are applied for 96000 iterations. Notably, certain components in Mask R-CNN
ResNet-50 FPN are loaded from pretrained models and left untrained. These components are omitted
from pruning and sparsity calculations for RPG and baseline experiments.

C.4 Vision Transformers

In vision transformers, we mainly follow the official setting of DeiT [52], but we extend training
epochs from 300 to 600 for fair comparison with SViT-E [6]. All other training settings are identical
to the official training setting of DeiT [52].

18

C.5 Replication of AC/DC

AC/DC [40] achieves State-of-the-Art performance at high sparsities. Therefore, we hope to compare
our method extensively with AC/DC on various settings. Accordingly, the schedule of AC/DC need
slight modifications based on the original setting. According to the original work [40], dense and
sparse status are alternated every 5 epochs. We scale the period according to the ratio of the training
epochs versus the standard training epochs in the paper [40]. For example, if the AC/DC method is
applied for 300 epochs, since the original ImageNet AC/DC setting has only 100 epochs, we lengthen
the period of AC/DC from the original 5 epochs to 15 epochs. For warming-up and finetuning periods,
the similar scaling is performed.

D Additional Experiments

We also tried RPG pruning without loading pretrained models on ResNet-50 ImageNet experiments.
Training settings are kept the same with other ResNet-50 pruning experiments. The results are
provided in Table 8. The proposed RPG method could surpass all baselines even without loading
pretrained models.

Algorithm Sparsity FLOPs Accuracy

ResNet-50 [22] 0 1× 76.80

RPG from scratch 0.9 0.155× 75.35
RPG from scratch 0.95 0.093× 73.62

Table 8. RPG-Sparsified ResNet-50 from scratch on ImageNet.

19

