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We provide supplementary materials for the submission of Self-Weighted Contrastive Learning
among Multiple Views for Mitigating Representation Degeneration. Specifically, Appendix A (Page-
1) shows all theoretical proofs and complexity analysis of SEM; Appendix B (Page-7) includes the
settings in experiments; Appendix C (Page-8) lists additional experimental results and provides
more experimental analysis, which are not shown in the paper due to space; Appendix D (Page-10)
discusses the limitations and future work of this paper. The code implementation, trained models,
and datasets used in our method are provided in https://github.com/SubmissionsIn/SEM.

Appendix A Theoretical Analysis

Theorem 1. For any three views (v ∈ {m,n, o}), if class mutual information only exists in two views,
e.g., I(ym;yo) → 0, I(yn;yo) → 0, and I(ym;yn) = δ, δ > 0, we have minimizing the weighted
InfoNCE losses Wm,nLm,n

InfoNCE(Z
m,Zn)+Wm,oLm,o

InfoNCE(Z
m,Zo)+Wn,oLn,o

InfoNCE(Z
n,Zo)

is equivalent to maximizing the mutual information between the two views (eδ/ logN − 1)I(Zm;Zn).

Proof. According to Proposition 1, minimizing the weighted InfoNCE losses becomes maximizing
the following weighted mutual information:

Wm,nI(Zm;Zn) +Wm,oI(Zm;Zo) +Wn,oI(Zn;Zo). (1)

Furthermore, based on the definition of CMI weighing strategy, we have

Wm,n = e
2·I(ym;yn)

H(ym)+H(yn) − 1. (2)

If I(ym;yo) → 0 and I(yn;yo) → 0, we obtain

lim
I(ym;yo)→0

Wm,oI(Zm;Zo) + lim
I(yn;yo)→0

Wn,oI(Zn;Zo)

= lim
Wm,o→0

Wm,o · I(Zm;Zo) + lim
Wn,o→0

Wn,o · I(Zn;Zo) = 0.
(3)

Then, if I(ym;yn) = δ, δ ∈ R+, Eq. (1) becomes(
e

2·δ
H(ym)+H(yn) − 1

)
· I(Zm;Zn). (4)

For H(ym) + H(yn), it has a maximum value 2 logN if ym and yn follow the uniform
distribution, i.e., H(ym) + H(yn) = −

∑N
i=1 p(y

m
i ) log p(ymi ) −

∑N
i=1 p(y

n
i ) log p(y

n
i ) =

−
∑N

i=1 p(y
m
i ) log 1

|ym| −
∑N

i=1 p(y
n
i ) log

1
|yn| = 2 logN . Therefore, we have(

e
2·δ

H(ym)+H(yn) − 1
)
· I(Zm;Zn) ≥

(
eδ/logN − 1

)
· I(Zm;Zn), (5)

which completes the proof.
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Theorem 2. For any two views (v ∈ {m,n}) with positive class mutual information, denoting
Lv as the total layer number of the v-th view’s encoder network before representation Zv, the l-th
layer has the information losing rate γv

l ≥ 0. If S is an oracle variable that contains and only
contains multiple views’ discriminative semantic information, and Hv is the tv-th layer’s features, we
have minimizing the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v Rv(Xv,Hv) is expected

to obtain I(S;Zm;Zn) ≤ min{I(S;Xm) ·
∏Lm

l=tm+1(1− γm
l ), I(S;Xn) ·

∏Ln

l=tn+1(1− γn
l )}.

Proof. We denote the hidden layers’ features in encoders as Hv
(1),H

v
(2), . . . ,H

v
(l), . . . ,H

v
(Lv). Based

on data processing inequality, we have

I(S;Xv) ≥ I(S;Hv
(1)) ≥ I(S;Hv

(2)) ≥ . . . I(S;Hv
(l)) ≥ . . . I(S;Hv

(Lv)) ≥ I(S;Zv). (6)

Considering information losing, we have

I(S;Zv) ≤ I(S;Xv) ·
Lv∏
l=1

(1− γv
l ). (7)

According to Proposition 1 and Proposition 2, minimizing the regularized loss approximately becomes
maximizing the following objective:

Wm,nI(Zm;Zn) + λ
∑

v=m,n

I(Xv;Hv), (8)

where Wm,n > 0 as two views (v ∈ {m,n}) are with positive class mutual information. The
reconstruction regularization I(Xv;Hv) makes I(S;Xv) = I(S;Hv). Therefore, if Hv is the tv-th
layer’s features (i.e., Hv

(tv) act as the regularized hidden features), we have

I(S;Zv) ≤ I(S;Xv) ·
Lv∏

l=tv+1

(1− γv
l ). (9)

The contrastive loss leads to max I(Zm;Zn) which essentially explores the discriminative semantic
information in S. Given I(S;Zm;Zn) ≤ min{I(S;Zm), I(S;Zn)}, as a result, we can obtain the
mutual information across S, Zm, and Zn as follows:

I(S;Zm;Zn) ≤ min{I(S;Xm) ·
Lm∏

l=tm+1

(1− γm
l ), I(S;Xn) ·

Ln∏
l=tn+1

(1− γn
l )}. (10)

In SEM, we have Zv = gv(Hv; Φv) where Hv and Zv are two different variables. This design aims
at separately maintaining different views’ discriminative information by {Hv}Vv=1 and exploring
their common semantic information by {Zv}Vv=1. Contrastive learning on {Zv}Vv=1 will capture the
common semantics across multiple views induced by the contrastive loss, and discard other useless
information in {Hv}Vv=1. In extreme cases, if we consider gv as a smooth invertible transformation
and we have the following theorem:
Theorem 3. For any two views (v ∈ {m,n}) with positive class mutual information I(ym;yn) = δ,
δ > 0, if gv learned by contrastive learning is a smooth invertible transformation, minimizing
the regularized loss Wm,nLm,n

InfoNCE(Z
m,Zn) + λ

∑
v=m,n Rv(Xv,Hv) will lead to a trade-off

between max I(Xm;Xn;Hm;Hn) and max I(Xm;Hm) + I(Xn;Hn).

Proof. According to Proposition 1 and Proposition 2, minimizing the regularized loss approximately
becomes maximizing the following objective:

(eδ/ logN − 1)I(Zm;Zn) + λI(Xm;Hm) + λI(Xn;Hn). (11)

If transformations gm and gn are smooth and invertible, the Jacobian determinant is JZm = | ∂Z
m

∂Hm |
and JZn = | ∂Z

n

∂Hn |, respectively. For the m-th and n-th views, we have

p(hm,hn) = p(zm, zn)JZm(hm)JZn(hn),

p(hm) = p(zm)JZm(hm), dzm = JZm(zm)dhm,

p(hn) = p(zn)JZn(hn), dzn = JZn(zn)dhn.

(12)

2



Then, we can obtain the invariance property of mutual information between I(Zm;Zn) and
I(Hm;Hn) as follows:

I(Zm;Zn) =

∫ ∫
p(zm, zn) log

(
p(zm, zn)

p(zm)p(zn)

)
dzmdzn

=

∫ ∫
p(hm,hn)

JZm(hm)JZn(hn)
log

 p(hm,hn)
JZm (hm)JZn (hn)

p(hm)p(hn)
JZm (hm)JZn (hn)

 JZm(zm)dhmJZn(zn)dhn

=

∫ ∫
p(hm,hn) log

(
p(hm,hn)

p(hm)p(hn)

)
dhmdhn

= I(Hm;Hn).
(13)

As a result, the optimization objective in Eq. (11) becomes

(eδ/ logN − 1)I(Hm;Hn) + λI(Xm;Hm) + λI(Xn;Hn). (14)
The mutual information I(Xm;Xn) in data Xm and Xn is fixed, and the mutual information
I(Hm;Hn) changes due to variables Hm and Hn. Maximizing I(Hm;Hn) makes variables to
access I(Xm;Xn), while maximizing I(Xm;Hm) + I(Xn;Hn) tends to maintain all information
of view-specific data in variables. Since I(Xm;Hm) ̸= I(Xm;Xn;Hm;Hn), there is a trade-off
controlled by λ, i.e., maximizing to access the mutual information I(Xm;Xn) between two view’s
data, or maximizing I(Xm;Hm) + I(Xn;Hn) between variables and view-specific data.

Typically, gv will not be a smooth invertible transformation such that Hv and Zv learn different infor-
mation of data Xv . As we all know, data Xv in different views usually contain useful discriminative
information for common semantics as well as semantic-irrelevant information. We introduce the
reconstruction regularization on Hv to avoid that Hv loses the useful discriminative information of
data (here, Hv also maintains some semantic-irrelevant information due to the information recon-
struction). Then, contrastive learning on Zv can make Zv access sufficient discriminative information
from Hv to further explore the common semantics of multiple views. However, if the reconstruction
regularization is punished on Zv, Zv will also retain the semantic-irrelevant information which
might disturb Zv to explore the common semantics of multiple views. Therefore, the reconstruction
objective of our SEM framework is built on Hv instead of Zv, for reducing the interference of
semantic-irrelevant information to the contrastive learning performed on Zv .
Proposition 1. Minimizing the weighted InfoNCE losses among multiple views’ representations∑

m,n Wm,nLm,n
InfoNCE(Z

m,Zn) is equivalent to maximizing their weighted mutual information∑
m,n Wm,nI(Zm;Zn).

Proof. In this part, we leverage d(zmi , zni ) to denote the cosine distance between zmi ∈ Zm and
zni ∈ Zn. Then, based on the inequality in Lemma 1, we have:

− 1

N

N∑
i=1

log
ed(z

m
i ,zn

i )/τ∑N
j=1 e

d(zm
i ,zn

j )/τ
≥ logN − I(Zm;Zn), (15)

We rewrite the positive and negative pairs in InfoNCE loss and can obtain the following inequality:

− 1

N

N∑
i=1

log
ed(z

m
i ,zni )/τ∑N

j=1

∑
v=m,n ed(z

m
i ,zvj )/τ

≥− 1

N

N∑
i=1

log
ed(z

m
i ,zni )/τ∑N

j=1 e
d(zmi ,znj )/τ

≥ logN − I(Zm;Zn).

(16)

Given the equations I(Zm;Zn) = I(Zn;Zm) and Wm,n = Wn,m, we further have∑
m,n

Wm,nLm,n
InfoNCE(Z

m,Zn) ≥
V∑

m=1

V∑
n=1

(logN −Wm,nI(Zm;Zn))

= V 2 logN − 2

V∑
m=1

V∑
n=m

Wm,nI(Zm;Zn).

(17)
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Therefore, min
∑

m,n Wm,nLm,n
InfoNCE(Z

m,Zn) is equivalent to max
∑

m,n Wm,nI(Zm;Zn), i.e.,
minimizing the weighted InfoNCE losses among multiple views’ representations is equivalent to
maximizing their weighted mutual information.

The success of contrastive learning is often (not absolutely) attributable to the estimation of mutual
information. The following Eq. (18) gives the relation between InfoNCE and mutual information,
which also has been discussed by other forms in [1, 2, 3, 4, 5]. In this paper, We rewrite a proof to
this inequality for the completeness of lemmas.

Lemma 1. Let m and n denote two views, assuming p(zmi , znj ) = p(zmi )p(znj ) when j ̸= i, we have
the following inequality that give the relation between InfoNCE and mutual information:

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

≥ logN − I(Zm;Zn). (18)

Proof. If j ̸= i, p(znj |zmi ) =
p(zn

j ,z
m
i )

p(zm
i ) = p(znj ). Let Si =

∑N
j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )
, therefore, we have

I(Zm;Zn) =
N∑
i=1

N∑
j=1

p(zmi , znj ) log
p(zmi , znj )

p(zmi )p(znj )

=

N∑
i=1

N∑
j=1

p(zmi , znj ) log

(
p(zmi , znj )

p(zmi )p(znj ) · Si
· Si

)

=

N∑
i=1

N∑
j=1

p(zmi , znj ) log

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

Si
+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

∑
j ̸=i

p(zmi , znj ) log

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

Si

+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi.

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

∑
j ̸=i

p(zmi , znj ) log
p(zmi )p(znj )

p(zmi )p(znj )

+

N∑
i=1

N∑
j=1

p(zmi , znj ) logSi −
N∑
i=1

∑
j ̸=i

p(zmi , znj ) logSi

=

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

p(zmi , zni ) logSi.

(19)

Since positive pairs are correlated, we have the estimate: p(zmi , zni ) ≥ p(zmi )p(zni ). Therefore, the
following inequality holds:

logSi = log

 N∑
j=1

p(zmi , znj )

p(zmi )p(znj )


= log

 p(zmi , zni )

p(zmi )p(zni )
+
∑
j ̸=i

p(zmi , znj )

p(zmi )p(znj )


= log

(
N +

p(zmi , zni )

p(zmi )p(zni )
− 1

)
≥ logN.

(20)
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According to Lemma 2 and Eq. (20), we assume that there exists a constant δ ∈ (0, 1) such that
p(zmi |zni ) ≥ δ, i = 1, 2, · · · , N holds. With the estimation [1, 3], i.e., p(zni ) ≈ 1

N , i = 1, 2, · · · , N ,
the following inequality holds:

I(Zm;Zn) =

N∑
i=1

p(zmi , zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

p(zmi , zni ) logSi

≈
N∑
i=1

1

N
p(zmi |zni ) log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )

Si
+

N∑
i=1

1

N
p(zmi |zni ) logSi

≥ δ

(
1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

+ logN

)
.

(21)

Furthermore, we have

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

≥ logN − 1

δ
I(Zm;Zn). (22)

Consequently, when the constant δ ≈ 1 (i.e., the positive pairs are approximate to be correlated),
Eq. (18) holds.

According to [1], Eq. (22) is more precise when N is larger. Minimizing the left part of Eq. (22) is
equivalent to maximizing the mutual information I(Zm;Zn). Note that this bound is weak as there
exists approximation about mutual information [6].
Lemma 2. The optimal value of exp(d(zmi , znj )/τ) is proportional to the ratio of p(zmi , znj ) to

p(zmi )p(znj ), i.e., exp(d(zmi , znj )/τ) ∝
p(zm

i ,zn
j )

p(zm
i )p(zn

j )
.

Proof. We consider the following formulation:

− 1

N

N∑
i=1

log
exp(d(zmi , zni )/τ)∑N
j=1 exp(d(z

m
i , znj )/τ)

. (23)

Eq. (23) can be regarded as a cross-entropy loss. As a result, minimizing this loss is equivalent to
solving a binary classification problem, namely, classifying the given pairs into positive or negative
pairs. We let {zmi , zni } denote the positive pairs and {zmi , znj }j ̸=i denote the negative pairs. For
each given pairs {zmi , znj }Ni,j=1, we let p(zni |{zn1 , · · · , znN}, zmi ) denote the predicted probability
of finding zni from {zn1 , · · · , znN} to form positive pairs {zmi , zni }. p(zmi , znj ), p(z

m
i ), and p(znj )

denote the joint probability and marginal probabilities of zmi and znj . Then, the optimal value of
p(zni |{zn1 , · · · , znN}, zmi ) is:

p(zni |{zn1 , · · · , znN}, zmi ) =
p(zni |zmi )

∏
l ̸=i p(z

n
l )∑N

j=1 p(z
n
j |zmi )

∏
l ̸=j p(z

n
l )

=

p(zn
i |z

m
i )

p(zn
i )∑N

j=1

p(zn
j |zm

i )

p(zn
j )

=

p(zm
i ,zn

i )
p(zm

i )p(zn
i )∑N

j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

.

(24)

The corresponding cross-entropy loss is:

L = − 1

N

N∑
i=1

log p(zni |{zn1 , · · · , znN}, zmi ) = − 1

N

N∑
i=1

log

p(zm
i ,zn

i )
p(zm

i )p(zn
i )∑N

j=1

p(zm
i ,zn

j )

p(zm
i )p(zn

j )

. (25)

Comparing Eq. (25) with Eq. (23), we can find exp(d(zmi , znj )/τ) ∝
p(zm

i ,zn
j )

p(zm
i )p(zn

j )
.
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Proposition 2. (max I(Xv;Hv) [7]) Combining with Monte Carlo sampling, minimizing the re-
construction loss between raw data and reconstructed data

∥∥Xv − fv
−(H

v)
∥∥2
F

is approximate to
maximizing the mutual information between raw data and their hidden features I(Xv;Hv).

Proof. For the v-th view, we let xv and hv denote the points in the space of raw data Xv and in
the space of hidden features Hv, respectively. According to the definition, the mutual information
between Xv and Hv can be formulated as

I(Xv;Hv) =

∫
hv

∫
xv

p(xv,hv) log

(
p(xv|hv)

p(xv)

)
dxvdhv. (26)

The decoder network achieves the approximation q(xv|hv) of the true posterior p(xv|hv). Based on
the non-negative property of Kullback-Leibler divergence (DKL), we have∫

xv

p(xv|hv) log

(
p(xv|hv)

q(xv|hv)

)
dxv = DKL[p(x

v|hv)||q(xv|hv)] ≥ 0

⇒
∫
xv

p(xv|hv) log (p(xv|hv)) dxv ≥
∫
xv

p(xv|hv) log (q(xv|hv)) dxv

⇒
∫
hv

p(hv)dhv

∫
xv

p(xv|hv) log (p(xv|hv)) dxv

≥
∫
hv

p(hv)dhv

∫
xv

p(xv|hv) log (q(xv|hv)) dxv

⇒
∫
hv

∫
xv

p(xv,hv) log (p(xv|hv)) dxvdhv

≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

⇒
∫
hv

∫
xv

p(xv,hv) log

(
p(xv|hv)

p(xv)

)
dxvdhv

≥
∫
hv

∫
xv

p(xv,hv) log

(
q(xv|hv)

p(xv)

)
dxvdhv

⇒I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log

(
q(xv|hv)

p(xv)

)
dxvdhv.

(27)

Considering −
∫
hv

∫
xv p(x

v,hv) log (p(xv)) dxvdhv ≥ 0, we further have

I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

−
∫
hv

∫
xv

p(xv,hv) log (p(xv)) dxvdhv

⇒ I(Xv;Hv) ≥
∫
hv

∫
xv

p(xv,hv) log (q(xv|hv)) dxvdhv

⇒ I(Xv;Hv) ≥
∫
xv

p(xv)dxv

∫
hv

p(hv|xv) log (q(xv|hv)) dhv.

(28)

Based on Monte Carlo sampling method [8, 7] on xv
i ∈ Xv , we obtain∫

xv

p(xv)dxv

∫
hv

p(hv|xv) log (q(xv|hv)) dhv

=
1

N

N∑
i=1

∫
hv

p(hv|xv
i ) log (q(x

v
i |hv)) dhv

=
1

N

N∑
i=1

Ep(hv|xv
i )
[log (q(xv

i |hv))],

(29)
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where p(hv|xv
i ) and q(xv

i |hv) could be treated as the encoder fv and decoder fv
− processes of xv

i ,
respectively. There is no harm in supposing that q(.) follows Gaussion distribution [7]. Then, the
approximate posterior q(xv

i |hv) can be formulated as

q(xv
i |hv) =

1√
2πσ

exp

(
−
∥∥xv

i − fv
−(h

v)
∥∥2
2

σ2

)
. (30)

As a result, we have the following inequality:

I(Xv;Hv) ≥ 1

N

N∑
i=1

Ep(hv|xv
i )

[
− log

(√
2πσ

)
−
∥∥xv

i − fv
−(h

v)
∥∥2
2

σ2

]
. (31)

Therefore, minimizing 1
N

∑N
i=1 Ep(hv|xv

i )

[∥∥xv
i − fv

−(h
v)
∥∥2
2

]
is approximate to maximizing

I(Xv;Hv). If we continue to simplify hv
i ∈ Hv with Monte Carlo sampling method, we fur-

ther have

1

N

N∑
i=1

Ep(hv|xv
i )

[∥∥xv
i − fv

−(h
v)
∥∥2
2

]
=

1

N

N∑
i=1

1

M

M∑
j=1

[∥∥∥xv
i − fv

−(h
v
i(j))

∥∥∥2
2

]
. (32)

Since hv
i can be the only one output of xv

i by decoder network [7] (i.e., M = 1), we could obtain that
minimizing the reconstruction loss

∥∥Xv − fv
−(H

v)
∥∥2
F

is approximate to maximizing I(Xv;Hv).

Complexity analysis Letting N,n,E represent the data size, batch size, and total training epochs,
respectively, the computation of loss functions and the update of model parameters are with mini-
batch manner. Their time complexity is determined by the batch size n and the total training epochs
E. Since n ≪ N holds, the complexity would be O(E). Letting V represent the number of views,
hv and z denote the dimensionality of Hv and Zv of the v-th view, respectively. Step size S denotes
the number of training epochs after each update of weights. In terms of weighting strategy WMMD,
for reducing the complexity of MMD, we can leverage partial instead of whole samples to update
{Wm,n}Vm,n=1. For example, we can randomly pick up n̂ samples (n̂ ≪ N ) to compute MMD and
the complexity is just O(n̂2). For weighting strategy WCMI , the computation of {Wm,n}Vm,n=1
needs V ×N representations from all views to obtain K-Means clustering results and its total time
complexity is O(hvV N) +O(zV NE/S), which is linear to N . When N is too large, we can apply
mini-batch K-Means to reduce the complexity of CMI weighting strategy.

Appendix B Experimental Settings

Table 1: Description for abbreviation
Abbr. Description
InfoNCE Info noise contrastive estimation
SIFT Scale-invariant feature transform
STIP Space-time interest points
MFCC Mel-frequency cepstral coefficents
CENTRIST Census transform histogram
HOG Histogram of oriented gradient
LBP Local binary pattern

The models of all methods are implemented with PyTorch [9] platform and tested on the same
device with a NVIDIA GeForce RTX 3090 GPU (24.0GB caches) and a 11th Gen Intel(R) Core(TM)
i5-11600KF @ 3.90GHz CPU (64.0GB RAM). For fair comparison, all methods adopt the similar
architecture of neural networks following previous work [10, 11]. For our SEM, the encoder
network can be denoted as Xv → 500 → 500 → 2000 → Hv → Zv and the decoder is reversed
Hv → 2000 → 500 → 500 → X̂v. In this architecture, the penultimate layer of encoder networks
is recorded as the hidden features Hv. For all views, the dimension of hidden features Hv and
contrastive representations Zv are set to 512 and 128, respectively. Activation function is ReLU [12]
and optimizer adopts Adam [13]. For all used datasets, the learning rate is fixed to 0.0003 and the
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hyper-parameter λ is fixed to 1. Table 2 shows the network training details on different datasets. In
our experiments, as computing MMD has high complexity, we select first 2000 samples for avoiding
out-of-memory when data size is large. The noise of denoising autoencoder is random Gaussian
noise. The mask rate of masked autoencoder is set to 30%. For the CMI weighting strategy, the
cluster number of K-Means algorithm is pre-defined to the truth class number of a dataset. For the
MMD weighting strategy, the bandwith and number of kernels are set to 4 for all datasets used in this
paper. Since our work does not focus on specific contrastive losses, we adopt the fixed parameter
settings of InfoNCE/PSCL/RINCE as shown in Table 3 for all experiments. Moreover, the batch size
that will affect the number of negative pairs is also fixed to 256.

Table 2: Network training details on different datasets
Pre-training Epoch CL Epoch Input dimensions of different views dimension of Hv dimension of Zv

DHA 100 300 110/6144 512 128
CCV 100 200 5000/5000/4000 512 128
NUSWIDE 100 100 64/225/144/73/128 512 128
Caltech 100 400 48/40/254/1984/512/928 512 128
YoutubeVideo 100 25 512/647/838 512 128

Table 3: Parameter setting in contrastive losses
Parameters

InfoNCE τ = 1.0
PSCL r = 3.0
RINCE τ = 0.5, α = 0.001, q = 0.5

Appendix C Additional Experiments

Figure 1 and 2 show the linear classification performance on NUSWIDE and Caltech datasets. We do
not report the results on YoutubeVideo as this large-scale dataset is beyond the usable range of SVM.

Figure 1: Classification performance on NUSWIDE.

Figure 2: Classification performance on Caltech.

Table 4 reports the time consumption of SEM with three options of weight strategy on five datasets,
where the contrastive loss and reconstruction term are fixed to LInfoNCE and RAE . On CCV,
NUSWIDE, and YoutubeVideo, as MMD has high complexity, we select first 2,000 samples to
compute weights for avoiding out-of-memory. In this setting, we observe that SEM w/ WJSD is the
fastest variant among the three variants as the computation of JSD is the simplest. Generally, SEM w/
WCMI is faster than SEM w/ WMMD even if the MMD is computed on partial data.

Table 5 reports the results of ablation experiments on SEM with different options of weight strategy
on five datasets. Table 6 reports the results of ablation experiments on SEM with different options of
reconstruction term on five datasets, where RAE/DAE/MAE w/o SEM denote the performance on
representations learned by AE/DAE/MAE models without SEM framework. We can observe that
SEM w/ RAE/DAE/MAE achieve significant improvements over RAE/DAE/MAE w/o SEM.
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Table 4: Time consumption (seconds) of SEM with different options of weight strategy
Variants DHA CCV NUSWIDE Caltech YoutubeVideo
SEM w/ WCMI 38 984 783 533 1990
SEM w/ WJSD 25 556 389 396 1938
SEM w/ WMMD 28 833 1144 775 2248

Table 5: Clustering performance on SEM with different options of W
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
SEM w/o W 71.29 79.77 33.50 33.01 61.90 33.82 77.71 68.68 20.96 20.82
SEM w/ WCMI 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12
SEM w/ WJSD 80.53 83.75 35.59 33.45 62.96 34.61 85.50 77.16 21.76 21.49
SEM w/ WMMD 84.40 86.22 33.89 34.13 61.39 32.75 85.67 77.36 27.50 28.47

Table 6: Clustering performance on SEM with different options of R
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
RAE w/o SEM 69.15 78.43 14.29 11.39 38.70 13.60 86.00 76.43 20.03 19.55
RDAE w/o SEM 70.39 78.87 12.67 9.58 39.54 15.08 86.43 77.47 21.73 21.49
RMAE w/o SEM 69.98 77.10 14.62 11.66 35.84 14.54 86.21 77.08 22.78 21.95
SEM w/o R 60.45 74.11 28.72 26.53 57.74 26.62 79.42 69.78 32.69 32.57
SEM w/ RAE 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12
SEM w/ RDAE 81.50 83.49 38.42 33.62 59.54 33.62 86.57 79.12 38.78 36.70
SEM w/ RMAE 83.02 84.44 39.48 35.79 60.94 36.24 86.71 78.03 33.26 33.04

Table 7 reports the experiments on SEM with different sum manner of contrastive losses (where the
combination of LInfoNCE+WCMI+RAE is taken). We observe that

∑V
m

∑V
n=m+1 L

m,n
CL performs

worse than
∑V

m

∑V
n Lm,n

CL . This might be because the latter (i.e.,
∑

m,n L
m,n
CL in the paper) pairs

negative samples for both zmi and zni (e.g., {zmi , zvj}
v=m,n
j ̸=i and {zni , zvj}

v=n,m
j ̸=i ), which can access

more comprehensive negative sample pairs for contrastive learning than the former.

Table 7: Clustering performance on SEM with different sum manner of contrastive losses
DHA CCV NUSWIDE Caltech YoutubeVideo

Variants ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI∑V
m

∑V
n=m+1 L

m,n
CL 72.04 78.38 27.95 29.92 58.28 29.74 86.54 78.35 21.47 21.82∑V

m

∑V
n Lm,n

CL 80.87 84.10 39.35 35.50 60.37 34.92 87.17 80.33 31.25 31.12

(a) (b)

Figure 3: (a) ACC vs. λ. (b) NMI vs. λ.

Parameter analysis Since different datasets have different levels of reconstruction errors, the trade-
off coefficient λ is introduced to balance contrastive learning and information recovery in our SEM
framework. In Figure 3, we change λ within the range of [10−3, 10−2, 10−1, 100, 101, 102, 103]
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and report the clustering accuracy on the learned representations. The results indicate that SEM
framework is not sensitive to λ in [10−1, 101]. For all our experiments, λ is consistently set to 1.
Additionally, we investigate the effect of cluster number when the weight strategy of SEM framework
is selected as WCMI that needs to pre-define the cluster number when applying K-Means. When
computing the class mutual information, as shown in Figure 4, we change the number of clusters
within the range of [K/2,K, 2K, 4K] where K denotes the truth class number of datasets. The
results demonstrate that SEM with WCMI is not sensitive to the choices of cluster number.

(a) (b)

Figure 4: (a) ACC vs. K. (b) ACC vs. K.

(a) (b)

Figure 5: (a) ACC vs. Iterative times of updating weights. (b) NMI vs. Iterative times of updating weights.

In experiments, the times of updating weights during whole training is E/S, where E is total training
epochs and S is the step size (the number of training epochs after each update of weights). In Figure 5,
we fix S after each update of weights and record the clustering accuracy on the learned representations
during the iterative times of updating weights in SEM framework (here, an iteration means the one
time of updating weights). We observe that only one time of updating weights is enough for some
datasets. Usually, the effect of multi-view contrastive learning is gradually improved with the increase
of the times of updating weights for some datasets. In our experiments, we fix the times of updating
weights on DHA/YoutubeVideo to 1, and fix those on CCV/NUSWIDE/Caltech to 4.

Appendix D Social Impacts and Limitations

In multi-view contrastive learning, it might be promising to take the representation degeneration into
account, especially in unsupervised environments where the qualities of different views captured by
various sensors cannot be guaranteed, e.g., the views from some sensors in real-world application
scenarios (such as in animal protection and automatic pilot) are faulty or not applicable, and thus
bring semantic-irrelevant information. Additionally, our work proposed a machine learning algorithm
to make contrastive learning more practical in the field of multi-view learning. This research is not
expected to introduce new negative societal impacts beyond what is already known. Conceptually,
the limitation of the self-weighting strategy is that it is more effective when there are over two views.
When there are only two views, the self-weighted contrastive learning transforms into traditional
contrastive learning but with reconstruction regularization. Therefore, one of our future work is to
extend the view-level weighting of our proposed framework to sample-level weighting.
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