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Abstract

Inspired by the problem of improving classification accuracy on rare or hard subsets
of a population, there has been recent interest in models of learning where the
goal is to generalize to a collection of distributions, each representing a “group”.
We consider a variant of this problem from the perspective of active learning,
where the learner is endowed with the power to decide which examples are labeled
from each distribution in the collection, and the goal is to minimize the number
of label queries while maintaining PAC-learning guarantees. Our main challenge
is that standard active learning techniques such as disagreement-based active
learning do not directly apply to the multi-group learning objective. We modify
existing algorithms to provide a consistent active learning algorithm for an agnostic
formulation of multi-group learning, which given a collection of G distributions
and a hypothesis classH with VC-dimension d, outputs an ε-optimal hypothesis
using Õ

(
(ν2/ε2)Gdθ2

G log2(1/ε) +G log(1/ε)/ε2
)

label queries, where θG is the
worst-case disagreement coefficient over the collection. Roughly speaking, this
guarantee improves upon the label complexity of standard multi-group learning in
regimes where disagreement-based active learning algorithms may be expected to
succeed, and the number of groups is not too large. We also consider the special
case where each distribution in the collection is individually realizable with respect
toH, and demonstrate Õ (GdθG log(1/ε)) label queries are sufficient for learning
in this case. We further give an approximation result for the full agnostic case
inspired by the group realizable strategy.

1 Introduction

There is a growing theory literature concerned with choosing a classifier that performs well on
multiple subpopulations or “groups” [1, 2, 7, 6, 4, 5, 6, 3]. In many cases, the motivation comes from
a perspective of fairness, where a typical requirement is that we classify with similar accuracy across
groups [7, 6, 4]. In other cases, the motivation may simply be to train more reliable classifiers. For
example, cancer detection models with good overall accuracy often suffer from poor ability to detect
rare subtypes of cancer that are not well-represented or identified in training. This suggests that naive
ERM may be insufficient in practice [8].

In this work, we consider the following formulation of “multi-group” learning. The learner is given
a collection of distributions G = {Dg}Gg=1, each corresponding to a group, and a hypothesis class
H, and wants to pick a classifier that approximately minimizes the maximum classification error
over group distributions. We consider this problem from an active learning perspective, where the
learner has the power to choose which examples from each group it wants to label during training.
In a standard extension of the active learning literature, we set out to design schemes for choosing
which examples from each group should be labeled, where the goal is to minimize the number of
label queries while retaining PAC-learning guarantees.

A major challenge in harnessing the power of active algorithms even in standard agnostic settings
is making sure they are consistent. In the case of active learning, this means that as the number
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of number of labels requested approaches infinity, the learner outputs an optimal hypothesis. To
complicate things further, the main algorithmic paradigm for consistent agnostic active learning over
a single distribution - disagreement based active learning (DBAL) - fails to admit direct application
in the multi-group learning objective. The fundamental idea in DBAL is that the learner may safely
spend its labeling budget in the “disagreement region”, a subset of instance space where empirically
well-performing hypotheses disagree about how new examples should be labeled. When the learner
need only consider a single distribution, error differences between classifiers are specified entirely
through their performance on the disagreement region, and so spending the labeling budget here
allows the learner to figure out which hypotheses are best while saving on labels. The problem is that
when multiple group distributions must be considered, the absolute errors of classifiers on each group
must be estimated to compare performance of two classifiers in their worst case over collection, and
this property no longer holds.

We resolve this via the observation that, while we cannot spend all our labeling budget in the
disagreement region, we can exploit the agreement in its complement to cheaply estimate absolute
errors of classifiers on each group. In particular, we estimate the absolute errors by choosing a
representative classifier hH′ in the set of empirically well-performing classifiersH′, and estimating
its error on the complement of the disagreement region on each group distribution. These error
estimates can be used to construct estimates for the absolute errors on each group for each h ∈ H′ at
the statistical cost of estimating a coin bias, leading to a relatively cheap, consistent active strategy.

We analyze the number of label queries made by this scheme in terms of a standard complexity
measure in the active learning literature called the “disagreement coefficient” [9, 10], and show an
upper bound of Õ

(
(ν2/ε2)Gdθ2

G log2(1/ε) +G log(1/ε)/ε2
)
, where θG is the maximal disagree-

ment coefficient over the collection of group distributions. We discuss some regimes where this label
complexity can be expected to push below sample complexity lower bounds for a learner that can
request samples from each group distribution during training, but does not have power to abstain
from labeling specific examples.

We also consider the special case of agnostic learning where each group distribution is individually
realizable, but no single hypothesis separates all groups simultaneously. In this case, we show that
all dependence on 1/ε2 in the label complexity can be replaced with log(1/ε) when disagreement
coefficients are bounded. It turns out that using the strategy we develop in this special case leads to
an approximation algorithm for the general agnostic case, for which we give guarantees.

2 Related Work

2.1 Multi-Group Learning

The majority of the empirical work on multi-group learning has been through the lens of “Group-
Distributionally Robust Optimization” (G-DRO) [11, 12, 13]. The goal in G-DRO is to choose a
classifier that minimizes the maximal risk against an unknown mixture over a collection of distri-
butions {Dg}Gg=1 representing groups. One assumes a completely passive sampling setting - all
data is given to the learner at the beginning of training, and the learner has no ability to draw ex-
tra, fine-grained samples. The strategy is usually empirical risk minimization (ERM) - or some
regularized variant - on the empirical max loss over groups; for a set of classifiers parameterized
by φ ∈ Φ, letting Sg denote the set of examples in the training set coming from Dg, one performs
minφ∈Φ maxg∈[G]

1
|Sg|

∑
(xi,yi)∈Sg

l(fφ(xi), yi) for some loss l. It is important to note that the
learner knows the group identity of each sample in the training set, but is not provided with group
information at test time, precluding the possibility of training a separate classifiers for each group.

“Multi-group PAC learning” consider the multi-group problem under the passive sampling assumption
from a more classical learning-theoretic perspective [7, 6]. Here, one assumes there is a single
distribution D from which one is given samples, but also a collection of subsets of instance space
G over which one wants to learn conditional distributions. Given a hypothesis classH, the learner
tries to improperly learn a classifier f that competes with the optimal hypothesis on each conditional
distribution specified by a group g in the collection - formally, one requires that for a given error
tolerance ε, f has the property ∀g ∈ G, PD(f(x) 6= y|x ∈ g) ≤ infh∈H PD(h(x) 6= y|x ∈
g) + ε with high probability. An interesting wrinkle in this literature is that the group identity of
samples is available at both training and test times. It has been shown that a sample complexity of
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Table 1: Overview of the complexity of multi-group learning. The Õ notation hide factors logarithmic
in d, G, 1/δ, and log(1/ε). We reserve discussion of regimes in which our algorithm improves on
results in Collaborative Learning for Section 5.

Problem Full Agnostic Group-Realizable

Passive Multi-Group [6] Õ
(
log(|H|)/γε2

)
Õ (log(|H|)/γε)

Collaborative Learning [3] Õ
(
d log(1/ε)/ε2 +G/ε2

)
?

Active Multi-Group (us) Õ
(
(ν2/ε2)Gdθ2

G log2(1/ε) +G log(1/ε)/ε2
)

Õ
(
Gd log2(1/ε)

)

Õ
(
log(|H|)/γε2

)
is sufficient for agnostic learning in this model, where γ is the minimal mass of a

group g under D [6].

“Collaborative learning” studies the multi-group problem under an alternative sampling model [1,
2, 3]. In this case, we are given a collection of distributions {Dg}Gg=1, each corresponding to a
group. Given some hypothesis class H, the goal is to learn a classifier f , possibly improperly,
that is evaluated against its worst-case loss over D1, . . . , DG; formally, we would like f to satisfy
maxg∈[G] PDg

(f(x) 6= y) ≤ infh∈Hmaxg∈[G] PDg
(h(x) 6= y) + ε. In contrast with multi-group

PAC learning, the learner may decide how many samples from each Dg it wants to collect during
training, and group identity is hidden on test examples. This models the case where a learner may want
to collect more data from a particularly difficult group of instances, such as a rare or hard-to-diagnose
type of cancer. It has been shown for finite hypothesis classes that Θ̃(log(|H|)/ε2 + G/ε2) total
samples over all groups are necessary and sufficient to learn in this model; Õ(d log(1/ε)/ε2 +G/ε2)
total samples are sufficient for VC-classes [3].

Our work extends the model of collaborative learning, and endows the learner with the ability to
decide which samples from each group distribution Dg should be labeled. This is the standard
framework of active learning, applied to the multi-group setting. As in collaborative learning, we
assume group identity is hidden at test time.

2.2 Active Learning

Active learning concerns itself with the development of learning algorithms for training classifiers
that have power over which training examples should be labeled [14, 15]. The field has largely
focused on uncovering settings in which algorithmic approaches reduce the amount of labels required
for PAC-style learning guarantees beyond sample complexity lower bounds that apply to i.i.d. data
collection from the underlying distribution [16, 17]. In the agnostic, 0-1 loss setting, the standard
upper bounds for label complexity follow Õ

(
θ(d log(1/ε) + dν2/ε2

)
. Here, ν is the “noise rate”, i.e.

the true error of the optimal hypothesis h∗, and θ is a distribution-dependent parameter called the
“disagreement coefficient”. Thus, gains of active strategies over standard passive lower bounds of
Ω(dν/ε2) depend on certain easiness conditions like small noise rates and bounded disagreement
coefficients [15].

The vast majority of the work on active learning has been done in the 0-1 loss setting [18, 9, 10, 19,
20, 21]. It has been significantly harder to push the design of active learning algorithms past the
regime of accuracy on a fixed distribution. While some work has attempted to generalize classical
ideas of active learning to different losses [22], these are heavily outnumbered in the literature.

As previously mentioned, the most difficult part of designing agnostic active learning strategies is
maintaining consistency. The issue comes down to a phenomenon referred to as “sampling bias”
: because active learners would like to target certain parts of space to save on labels, there is a
risk that the learner prematurely stops sampling on a part of space in which there is some detail in
the distribution that could not be detected at a higher labeling resolution. This can easily lead to
inconsistent strategies [15]. Thus, a major contribution of our work is exhibiting a consistent active
scheme for the multi-group problem.
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3 Preliminaries

3.1 Learning Problem

We study a binary classification setting where examples fall in some instance space X , and labels
lie in Y := {−1, 1}. We suppose we are given some pre-specified, finite collection of distributions
G = {Dg}Gg=1 over X × Y corresponding to groups. Given a hypothesis class H of measurable
classifiers with VC-dimension d, the goal of the leaner is to pick some h ∈ H from finite data that
performs well across all the distributions in G in the worst case. Let LG(h | g) := PDg

(h(x) 6= y)
be the error of a hypothesis h on group g. Formally speaking, the learner would like to choose a
classifier approximately obtaining

inf
h∈H

max
g∈[G]

LG(h | g),

using finite data. We often use Lmax
G (h) as shorthand for maxg∈[G] LG(h | g). We use ν :=

infh∈H L
max
G (h) to denote the “noise rate” ofH on the multi-distribution objective. The use of the

term “agnostic” throughout reflects the fact that we make no assumption that ν = 0 in our algorithm
design or analysis. We assume for simplicity that there is some h∗ ∈ H attaining ν.

3.2 Active Learning Model

We consider a standard active learning model specified as follows. Let supp(g) denote the support
of the marginal over instance space of Dg. The active learner has access to two sampling oracles
for each distribution specified by Dg. The first is Ug(·), which given a set S ⊆ X measurable with
respect to Dg, returns an unlabeled sample from Dg conditioned on S; if PDg

(x ∈ S) = 0, then
Ug(S) returns “None”. The second is Og(·), which given a point in supp(g), returns a sample from
the conditional distribution over labels specified by x and g. More formally, querying Ug(S) for S
such that PDg

(x ∈ S) 6= 0 is equivalent to drawing i.i.d. samples according to marginal over instance
space of Dg (independent of previous randomness), and returning the first example that falls in S;
querying the oracle Og(x) for x ∈ supp(g) is equivalent to receiving a sample from a Rademacher
random variable with parameter PDg

(Y = 1|X = x).

As is standard in active learning, the active learner is assumed to have functionally unlimited access to
queries from Ug(·). On the other hand, queries to oracles Og(·) are precious: the “label complexity”
of a strategy executed by the active learner is the sum of queries to oracles Og(·) over all g, and is to
be minimized given a desired generalization error guarantee.

4 Challenges in Multi-Group Active Learning

In this section, we give some background on classical disagreement-based methods on a single
distribution, and discuss in more detail the challenge of designing consistent active learning strategies
in the multi-group setting.

4.1 Background on Disagreement-Based Active Learning

Almost all agnostic active learning algorithms for accuracy over a single distribution boil down to
disagreement-based methods [18, 10, 15, 16]. The fundamental idea in this school of algorithms
is that one can learn the relative accuracy of two classifiers h and h′ by only requesting labels for
examples in the part of instance space on which they disagree about how examples should be labeled.
More generally, given a set of classifiersH′ ⊆ H, one can consider the “disagreement region” ofH′,
defined as

∆(H′) := {x ∈ X : ∃h, h′ ∈ H′ s.t. h(x) 6= h′(x)} .
As alluded to above, the difference in accuracy of classifiers h, h′ ∈ H′ is specified entirely through
this inherently label-independent notion. For a single distribution D, we may write

PD (h(x) 6= y)− PD (h′(x) 6= y)

PD (∆(H′))
= PD

(
h(x) 6= y | ∆(H′)

)
− PD (h′(x) 6= y | ∆(H′)) ,

as by definition, h, h′ have the same conditional loss on ∆(H′)c. Inspired by this observation, the
idea is to label examples in ∆(H′), and ignore those outside of it. This allows the learner to learn
about the relative performance of classifiers while saving on the labels of examples falling in ∆(H′)c.
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In running a DBAL algorithm, one hopes certain classifiers quickly reveal themselves to be empirically
so much worse on ∆(H′) than the current ERM hypothesis, that by standard concentration bounds,
they can be inferred to be worse than ε-optimal on D with high probability. Elimination of these
classifiers shrinks the disagreement region, allowing the labeling to become further fine-grained.
Given the above loss decomposition, this leads to consistent active learning strategies.

4.2 Labeling in the Disagreement Region: No Longer Enough

In the multi-group setting, the strategy of comparing performance of classifiers solely on ∆(H′)
breaks down. Although the classifiers in H′ still agree in ∆(H′)c, this is not enough to infer
differences in the worst case error over groups Lmax

G ; this is because differences in performance on
∆(H′) are not generally representative of differences in absolute errors over group distributions. The
following simple example makes this concrete.
Example 1. Consider the task of determining which of two classifiers h and h′ has lower worst
case error over distributions D1 and D2 with marginal supports S1 ⊆ X and S2 ⊆ X . Let their
disagreement region be denoted by ∆ = {x ∈ X : h(x) 6= h′(x)}, and let l(f, i, A) denote the
conditional loss of classifier f on Si ∩A under Di. Suppose we only know their conditional losses
on ∆ ∩ S1 and ∆ ∩ S2 under D1 and D2, respectively. We see for h that

l(h, i, A) =


49/100 i = 1, A = ∆ ∩ S1

52/100 i = 2, A = ∆ ∩ S2

? i = 1, A = ∆c ∩ S1

? i = 2, A = ∆c ∩ S2

and for h′ that

l(h′, i, A) =


51/100 i = 1, A = ∆ ∩ S1

48/100 i = 2, A = ∆ ∩ S2

? i = 1, A = ∆c ∩ S1

? i = 2, A = ∆c ∩ S2

.

Consider ignoring the performance of classifiers in ∆c, and using as a surrogate for the multi-group
objective

max
i∈{1,2}

l(h, i, Si ∩∆).

In this case, we would choose h′ has the better of the two hypotheses.

Suppose now that ∆∩S1 and ∆∩S2 have mass γ under bothD1 andD2, and that l(h, 1,∆c∩S1) =
l(h′, 1,∆c ∩ S1) = 3/10. Finally, suppose that l(h, 2,∆c ∩ S2) = l(h′, 2,∆c ∩ S2) = 2/10. Then
under the true multi-group objective, by decomposing the group losses, one can compute that h has a
lower worst case error over groups D1 and D2 .

Thus, to utilize the disagreement region in multi-group algorithms, we will need to at least label
some samples on ∆(H′)c as H′ shrinks. The specification of such a strategy is the content of the
next section.

5 General Agnostic Multi-Group Learning

5.1 An Agnostic Algorithm

The basic idea in Algorithm 1 is similar to classical DBAL approaches for a single distribution. We
start with the full hypothesis classH, and look to iteratively eliminate hypotheses from contention as
we learn about how to classify on each group through targeted labeling.

Our solution to the problem posed to DBAL above is to keep track of the errors of well-performing
hypotheses on the complement of the disagreement region in a way that exploits the agreement
property. To do this, we construct a two-part estimate for the loss of a hypothesis on a given group.
Denote the set of hypotheses still in contention at iteration i isHi. Let Ri = ∆(Hi) and SRi,g be a
labeled sample from U(Ri) and SRc

i ,g
be a labeled sample from U(Rci ). We can now estimate the

loss for some h ∈ Hi on group g via

LS;Ri(h | g) := PDG
(x ∈ Ri) · LSRi,g

(h) + PDG
(x ∈ Rci ) · LSRc

i
,g

(hHi),
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Algorithm 1 General Agnostic Algorithm
1: procedure multi_group_agnostic(H, ε, δ, {Ug(·)}Gg=1, {Og(·)}Gg=1)
2: H1 ← H, I ← dlog(1/ε)e
3: for i ∈ [I] do
4: Ri ← ∆(Hi)
5: mi ← maxg′∈[G] PDg′ (x ∈ ∆(Hi))
6: for g ∈ [G] do
7: S ′Ri,g

← 1024
(
mi

ε2I−i

)2 (
2d log(64/ε) + ln(8Gdlog(1/ε)e/δ)

)
i.i.d. samples

8: from Ug(Ri)

9: S ′Rc
i ,g
← 128 ln(4Gdlog(1/ε)e/δ)

(ε2I−i)2
i.i.d. samples from Ug(R

c
i )

10: if “None” ∈ S ′Ri,g
then . PDg (x ∈ Ri) = 0 in this case

11: SRi,g ← ∅
12: else
13: SRi,g ← {(x,Og(x)) : x ∈ S ′Ri,g

}
14: end if

15: if “None” ∈ S ′Rc
i ,g

then
16: SRc

i ,g
← ∅

17: else
18: SRc

i ,g
← {(x,Og(x)) : x ∈ S ′Rc

i ,g
}

19: end if

20: end for
21: ĥi = arg minh∈Hi

Lmax
S;Ri

(h)

22: Hi+1 ←
{
h ∈ Hi : Lmax

S;Ri
(h) ≤ Lmax

S;Ri
(ĥi) + 2I−iε/4

}
23: end for
24: return ĥ = arg minh∈HI+1

Lmax
S;RI+1

(h)
25: end procedure

where LS(h) := 1/|S|
∑

(x,y)∈S 1[h(x) 6= y] is a standard empirical loss estimate1, and hHi
is an

arbitrarily chosen hypothesis fromHi that is used in the loss estimate of every h ∈ Hi. This leads to
an unbiased estimator given that every h ∈ Hi labels the sample from this part of space in exactly the
same way.

The utility of this estimator is that by choosing an arbitrary representative hHi , we can estimate the
loss of all hypotheses still in contention to precision O(ε) on Rci with Õ(1/ε2) samples, removing
the usual dependence of the VC-dimension. On the other hand, as the disagreement region shrinks,
PDG

(x ∈ Ri) shrinks as well, so while we will still need to invoke uniform convergence to get reliable
loss estimates in Ri, the precision to which we need to estimate losses in this part of space decreases
with every iteration, and eventually the overall dependence on the VC-dimension is diminished. This
later observation is the standard source of gains in DBAL [18, 9, 24].

After forming these loss estimates on each group, we construct unbiased loss estimates for the worst
case over groups via

Lmax
S;Ri

(h) := max
g∈G

LS;Ri(h | g).

These loss estimates inherit concentration properties from the two-part estimator above. We draw
enough samples at each iteration i such that we essentially learn the multi-group problem to precision
2dlog(1/ε)e−iε.

We note that Algorithm 1 assumes access to the underlying group marginals measures PDG
. This is

common in the active learning literature [18, 20]. Probabilities of events in instance space can be
estimated to arbitrary accuracy using only unlabeled data, so this assumption is not dangerous to our
goal of lowering label complexities.

1taken to be an arbitrary constant if S = ∅; see the Appendix for details.
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5.2 Guarantees

Vitally, the scheme given in Algorithm 1 is consistent. It is a lemma of ours that the number of
samples drawn at each iteration is sufficiently large that the true error of any h ∈ Hi+1 is no more than
2dlog(1/ε)e−iε. Thus, after dlog(1/ε)e iterations, the ERM hypothesis on Lmax

S;Ri
(·) is then ε-optimal

with high probability.

We can bound the label complexity of the algorithm using standard techniques from DBAL. A
ubiquitous quantity in the analysis of disagreement-based schemes is that of the “disagreement
coefficient” [9, 25]. The general idea is that the disagreement coefficient bounds the rate of decrease
in r of the measure of the the disagreement region of a ball of radius r around h∗ in the pseudo-metric
ρg(h, h

′) := PDg (h(x) 6= h′(x)). Precisely, we use the following definition of the disagreement
coefficient in our analysis [10, 24]: given a group Dg , the disagreement coefficient on g is

θg := sup
h∈H

sup
r′≥2ν+ε

PDg
(x ∈ ∆(Bg(h, r

′)))

r′
,

where Bg(h, r′) := {h′ ∈ H : ρg(h, h
′) ≤ r′} is a ball of radius r′ about h in pseudo-metric ρg . We

further notate the maximum disagreement coefficient over the groups G as θG := maxg θg .

The disagreement coefficient is trivially bounded above by 1/ε, but can be bounded independently
of ε in many cases [10, 25]. For example, whenH is the class of linear separators in d dimensions
and the underlying marginal distribution is uniform over the Euclidean unit sphere, the disagreement
coefficient is Θ(

√
d) [9].

Theorem 1. For all ε > 0, δ ∈ (0, 1), collections of groups G, and hypothesis classesH with d <∞,
with probability ≥ 1− δ, the output ĥ of Algorithm 1 satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and its label complexity is bounded by

Õ

(
G θ2
G

(
ν2

ε2
+ 1

)(
d log(1/ε) + log(1/δ)

)
log(1/ε) +

G log(1/δ) log(1/ε)

ε2

)
.

Here, the Õ notation hides factors of log(log(1/ε)) and log(G); we leave all proofs for the Appendix.

Theorem 1 tell us that Algorithm 1 enjoys the following upside over passive and collaborative learning
approaches: the dependence on the standard interaction of the VC-dimension d and 1/ε2 is removed,
and replaced with Gdθ2

G log2(1/ε)ν2/ε2, which in settings with small disagreement coefficients and
low noise rates, will be significant for small ε.

5.3 Comparison to Lower Bounds in Collaborative Learning

We compare our label complexity guarantees to results in collaborative learning, where the learner has
the power to ask for samples from specific group distributions, but not selectively label these samples.
This is a strictly more demanding comparison than to pure passive settings, but a fair one, given
that active learners have the option of executing any collaborative learning strategy. In collaborative
learning, for finite hypothesis classesH, it is known that

Ω

(
log(|H|)

ε2
+
G log(min(|H|, G)/δ)

ε2

)
total labels over all groups are necessary [3]. We consider comparing this lower bound to a simplified
version of the label complexity guarantee in Theorem 1:

Õ

(
dGθ2

G log2(1/ε) +
G log(1/ε)

ε2

)
,

thus implicitly assuming ν is neglectably small, and making all comparisons up to factors logarithmic
in G, 1/δ and log(1/ε). This former assumption is a standard assumption under which we may hope
an agnostic active learner to succeed [15].
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Algorithm 2 Group Realizable Algorithm
procedure group_realizable(H, ε, δ, active learner A, {Ug(·)}Gg=1, {Og(·)}Gg=1))

for g ∈ [G] do
ĥg ← A(H, ε/6, δ/2G,Ug(X ), Og)
S′g ← 144/ε2 (2d ln(24/ε) + ln(8G/δ)) samples from oracle Ug(X )

Ŝg ←
{(
x, ĥg(x)

)
: x ∈ S′g

}
end for
return ĥ = arg minh∈Hmaxg∈[G]

1
|Ŝg|

∑
(x,ŷ)∈Ŝg

1 [h(x) 6= ŷ]

end procedure

Even the simplified upper bound does not admit the cleanest comparison this to lower bound, due
to our excess factor of log(1/ε) in the second term. However, it does showcase that while we
pay slightly more per group than necessary, under conditions amenable to active learning, we pay
significantly less per dimension d. Particularly for small ε, one can see that’s approximately sufficient
that G < o(θ2

G(log(1/ε)ε)2)−1) for the simplified upper bound to beat the lower bound.

For a more fine-grained comparison that in some sense underestimates the power of Algorithm 1,
assume that the following condition governs the relationship of G, d, and ε:

G log(1/ε) ≤ d <
(
θ2
Gε

2 log2(1/ε)
)−1

.

Then the simplified bound is smaller in order than the lower bound above.

6 Group Realizable Learning

A special case of the learning problem, where extreme active learning gains can be readily seen,
comes when the hypothesis class H achieves zero noise rate on each group Dg. This setting has
been considered in the passive “multi-group learning” literature [6]. Formally speaking, in the group
realizable setting, the following condition holds:

∀g ∈ [G],∃h∗g ∈ H s.t. LG(h∗g | g) = 0,

i.e. for all groups in the collection G, there is some hypothesis achieving 0 error on that group. Note
that this differs from the fully realizable setting where there is some h∗ ∈ H with Lmax

G (h∗) = 0.
While fully realizable implies group realizable, the converse is not true. Thus, group realizability
represents an intermediate regime between the realizable setting and the full agnostic settings.

6.1 Algorithm

In the group realizable case, it is possible to show a reduction of the problem of active learning over
hypothesis classes with respect to a single distribution.

This can be accomplished as follows. For each Dg, we call as a subroutine an active learner that
is guaranteed to find an order ε-optimal hypothesis ĥ∗g with high probability over it’s queries. It
then gathers new unlabeled samples from each Dg, and instead of requesting labels from Og(·),
labels each unlabeled point with ĥ∗g. The final step is to do an empirical risk minimization on these
artificially labeled samples with respect to the multi-group objective. See Algorithm 2 for a formal
specification of the strategy.

6.2 Guarantees

The strategy given in Algorithm 2 leads to a consistent active learning scheme, provided the active
learners called as subroutines have standard guarantees that can be inherited.

Theorem 2 gives a guarantee to this end. The proof follows from an argument similar to one used in
[10] - because the subroutine calls return hypotheses with near 0 error on each group, the artificially
labeled training set used in the ERM step looks nearly identical to a counterfactual training set for the
ERM step constructed by querying labels Og(x) for each unlabeled x. This is similar to the idea in
[24]. We present Theorem 2 assuming access to a classical, realizable active learner due to [26].
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Theorem 2. Suppose Algorithm 2 is run with the active learner ACAL of [26]. Then for all ε > 0,
δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups G with the group realizability
property underH, with probability ≥ 1− δ, the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and the number of labels requested is

Õ

(
dGθG log(1/ε)

)
.

Thus, when disagreement coefficients across the collection of groups are bounded independently of ε,
the usual, passive dependence on 1/ε2 is replaced by log(1/ε).

In the passive multi-group setting of [7], it has been shown that Õ (log(|H|)/γε) samples are sufficient
for group realizable learning, where we recall γ is a lower bound on the probability of getting a
sample in each group [6].

7 Full Agnostic Approximation

7.1 Inconsistency of the Reduction in the Full Agnostic Regime

Algorithm 2 admits clean analysis, and nicely harnesses the power of realizable active learners for
a single distribution. One might wonder if a similar strategy might provide a consistent strategy in
full agnostic regime. Unfortunately, the direct application of Algorithm 2 using agnostic learners
does not yield a consistent active learning algorithm. In fact, consistency fails even when for each
g ∈ [G], h∗g is the Bayes optimal classifier on Dg , and νg := infh∈H LG(h | g) is small. This lack of
consistency comes down to the fact that labeling with the Bayes optimal underestimates noise rates
on each group, which in turn may bias the output of the ERM step.

7.2 A 3ν-Approximation Algorithm

Although the strategy of creating an artificially labeled training set with near-optimal hypotheses on
each group fails outside of the group realizable case, it possesses a nice approximation property.

We give a guarantee to this end in Theorem 3. It states that if we call an active learner with agnostic
guarantees on each groupDg , and then use the outputs ĥ∗g to artificially label a new batch of unlabeled
data from each group, using ERM on this artificially labeled data gives at worst a 2ν + ε-optimal
hypothesis with high probability.
Theorem 3. Suppose Algorithm 2 is run with the agnostic active learner ADHM of [15]. Then for
all ε > 0, δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups G, with probability
≥ 1− δ, the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + 2 · max
g∈[G]

νg + ε ≤ 3 · Lmax
G (h∗) + ε,

and the number of labels requested is

Õ

(
dGθG

(
log2(1/ε) +

ν2

ε2

))
.

The proof is very similar to that of Theorem 2, but notes in addition that ĥ∗g mislabels on a roughly
νg-fraction of the unlabeled samples from each group G. This allows us to upper bound the distortion
of the ERM step.

8 Conclusion

In this work, we have taken a first look at active multi-group learning. Though the design of general
agnostic strategies in this setting is quite challenging, an interesting future direction may be the
search for strategies that work in more specific cases, for exampling extending our work in the group
realizable setting. In particular, the search for algorithms with small label complexities under specific
low-noise conditions, such as Tsybakov noise on each Dg , may prove fruitful [27].
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9 Appendix

9.1 Guarantees for General Agnostic Algorithm

In this section, we give proofs for the guarantees of Algorithm 1. We begin with some definitions,
starting with how empirical loss estimates are made.

Definition 1. Given a hypothesis h ∈ H, and a set of pairs S = {(xi, yi) : xi ∈ X , yi ∈ Y}Ni=1, let

LS(h) :=
1

N

(
N∑
i=1

1[h(xi) 6= yi]

)
the standard empirical loss of h on S. Let L∅(h) := 1.

The convention to let L∅(h) = 1 allows us to “collapse” the two-part loss estimates in the case the
probability of drawing an unlabeled sample in a specific region is 0; under the specification of the
algorithm, S = ∅ if and only if the probability of a sample falling in the disagreement region or its
complement is 0 under Dg , in which case we can safely ignore estimation in one of these regions.

Definition 2. Given a set of classifiersH′ ⊆ H, we say “H′ agrees on a subset S ⊆ X” if for each
x ∈ S and for each pair (h, h′) ∈ H′ ×H′, it holds that h(x) = h′(x).

We now recall the two-part estimator for the loss of a hypothesis introduced above.

Definition 3. Fix a group distribution Dg, some H′ ⊆ H, a hypothesis h ∈ H′, and some R ⊆ X
which is measurable with respect to each marginal of Dg and for whichH′ agrees on Rc. Given sets
of pairs SR,g and SRc,g , and some arbitrarily chosen classifier hH′ ∈ H′, let

LS;R(h | g) := PDg
(x ∈ R) · LSR,g

(h) + PDg
(x ∈ Rc) · LSRc,g

(hH′).

As mentioned in the main body, hH′ must be used in the estimate of the loss under Dg in the
“agreement region” for all h ∈ H. The extent to which this estimator is useful can be captured by
standard uniform convergence arguments. To this end, we first introduce a function that will prove to
control its deviations nicely.

Definition 4. Given a confidence parameter δ ∈ (0, 1), a group distribution Dg ∈ G, some R ⊆ X
that is measurable with respect to each marginal Dg ∈ G, and sample sizes m,m′ > 0, define the
function

Γg(δ,R,m,m
′) :=



PDg (x ∈ R)

(
1
m +

√
ln(8/δ)+d ln(2em/d)

m

)
+
√

ln(4/δ)
2m′

if PDg (x ∈ R) > 0,PDg (x ∈ Rc) > 0

1
m +

√
ln(8/δ)+d ln(2em/d)

m

if PDg (x ∈ R) > 0,PDg (x ∈ Rc) = 0√
ln(4/δ)

2m′

if PDg (x ∈ R) = 0,PDg (x ∈ Rc) > 0.

Lemma 1. Fix δ ∈ (0, 1), a set of group distributions G, and a group distribution Dg ∈ G arbitrarily.
Further, fix a subset R ⊆ X measurable with respect to each marginal of Dg ∈ G, and a set of
classifiers H′ ⊆ H with the property that H′ agree on Rc. Suppose we query m > 0 unlabeled
samples from Ug(R), and m′ > 0 samples from Ug(R

c). Suppose further that we label the output via
calls to Og(·), forming the labeled samples SR,g and SRc,g , respectively; if either PDg (x ∈ R) = 0
or PDg

(x ∈ Rc), then we set the corresponding sample to be ∅. Then with probability ≥ 1− δ, it
holds for all h ∈ H′ that

|LG(h | g)− LS;R(h | g)| ≤ Γg(δ,R,m,m
′).

Further, for all γ > 0, if m ≥ 16(PDg (x∈R))2

γ2 (2d ln(8/γ) + ln(8/δ)) and m′ ≥ 2 ln(4/δ)
γ2 , then

Γg(δ,R,m,m
′) < γ.
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Proof. We begin with the case where both PDg (x ∈ R) 6= 0 and PDg (x ∈ Rc) 6= 0. In this case,
we are able to draw unlabeled samples from both regions, and neither SR,g nor SR,g is ∅.
By a lemma of Vapnik [28], we have that with probability ≥ 1− δ/2 over the draw of m samples
from Ug(R) and their labeling via Og(·), that simultaneously for each h ∈ H′:∣∣∣∣LSR,g

(h)− PDg
(h(x) 6= y|x ∈ R)

∣∣∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(2em/d)

m
.

In Rc, all h ∈ H′ agree, and so estimating the conditional loss for each h ∈ H′ in this region is as
statistically hard as estimating a single Bernoulli parameter, which we do by arbitrarily choosing a
classifier to use for the loss estimate in this part of space. Thus, by definition of the two-part estimator
and Hoeffding’s inequality [29], we have with probability ≥ 1− δ/2 for all h ∈ H′ simultaneously∣∣∣∣LSRc,g

(hH′)− PDg
(h(x) 6= y|x ∈ Rc)

∣∣∣∣ ≤
√

ln(4/δ)

2m′
.

By a union bound, with probability ≥ 1− δ, both of these events take place, and so for all h ∈ H′
simultaneously,

LG(h | g) = PDg

(
h(x) 6= y | x ∈ R

)
· PDg

(x ∈ R)

+ PDg (h(x) 6= y | x ∈ Rc) · PDg (x ∈ Rc)

≤
(
LSR,g

(h) + 1/m+
√

(ln(8/δ) + d ln(2em/d)) /m
)
· PDg

(x ∈ R)

+
(
LSRc,g

(hH′) +
√

ln(4/δ)/2m′
)
· PDg

(x ∈ Rc)

≤ LS;R(h | g) + Γg(δ,R,m,m
′).

The lower bound leading to the absolute value is analogous. Vapnik [28] also tells us that for any
γ′ > 0, a sample of size m ≥ 4

γ′2 (2d ln(4/γ′) + ln(8/δ)) is sufficient to yield

1/m+
√

(ln(8/δ) + d ln(2em/d)) /m < γ′.

Let γ′ = γ/2PDg (x ∈ R). Thus, substituting for γ′ and bounding the probability inside the natural
log above by 1,

m ≥ PDg
(x ∈ R)

2 16

γ2
(2d ln(8/γ) + ln(8/δ))

implies that
1

m
+

√
ln(8/δ) + d ln(2em/d)

m
<

γ

2PDg
(x ∈ R)

.

As a corollary to Hoeffding, if m′ ≥ 2 ln(4/δ)/γ2, then
√

log(4/δ)/2m′ < γ/2. Thus, we may
write

Γg(δ,R,m,m
′) = PDg (x ∈ R)

(
1

m
+

√
ln(8/δ) + d ln(2em/d)

m

)
+

√
ln(4/δ)

2m′
< γ/2 + γ/2 = γ.

Now suppose that PDg (x ∈ Rc) = 0. In this case, we have SRc,g = ∅. Again, we have that with
probability ≥ 1− δ/2,∣∣∣∣LSR,g

(h)− PDg (h(x) 6= y|x ∈ R)

∣∣∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(2em/d)

m
.

When PDg (x ∈ Rc) = 0, it holds that PDg (x ∈ R) = 1, and so

LG(h | g) = PDg (h(x) 6= y | x ∈ R) · PDg (x ∈ R)

+ PDg
(h(x) 6= y | x ∈ Rc) · PDg

(x ∈ Rc)
= PDg

(h(x) 6= y | x ∈ R)

≤ LSR,g
(h) + 1/m+

√
(ln(8/δ) + d ln(2em/d)) /m

= LS;R(h | g) + Γg(δ,R,m,m
′),
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where the final equality comes from fact that PDg (x ∈ Rc) = 0 and PDg (x ∈ R) = 1, as
well as the definitions of LS;R(h | g) and Γg(δ,R,m,m

′). Similarly to the above, if we let
γ′ = γ/2PDg

(x ∈ R) = γ/2, then

m ≥ 16

γ2
(2d ln(8/γ) + ln(8/δ))

implies that
1

m
+

√
ln(8/δ) + d ln(2em/d)

m
<
γ

2
,

which by the definition of Γg(δ,R,m,m
′) when PDg

(x ∈ Rc) = 0 gives us Γg(δ,R,m,m
′) <

γ/2 < γ. The case where PDg
(x ∈ R) = 0 follows the previous argument for when PDg

(x ∈ Rc) =
0.

Definition 5. Given a collection of group distributions G, someH′ ⊆ H, a hypothesis h ∈ H′, some
subset R ⊆ X measurable with respect to each marginal of Dg ∈ G, and labeled samples SR,k and
SRc,k, we define the empirical estimate of the multi-group loss of h parameterized by R via

Lmax
S;R (h) := max

g∈[G]
LS;R(h | g).

Having recalled the way in which we form empirical estimates for the group worst-case loss of a
given hypothesis, we can show a simple concentration lemma for this group worst-case loss estimator
using the concentration property for individual groups proved in Lemma 1,

Lemma 2. Fix δ ∈ (0, 1), a set of group distributions G, a subset R ⊆ X measurable with respect
to each marginal of Dg ∈ G, and a set of classifiers H′ ⊆ H that agree on Rc. Suppose for each
g ∈ [G], we query mg > 0 unlabeled samples from Ug(R), and m′g > 0 samples from Ug(R

c).
Suppose further that we label the outputs via calls to Og(·), forming the labeled samples SR,g and
SRc,g, respectively, for each g ∈ [G]; if PDg

(x ∈ R) = 0 or PDg
(x ∈ Rc) = 0, then we set the

corresponding sample to be ∅. Then with probability ≥ 1− δ, it holds for all h ∈ H′ that∣∣Lmax
G (h)− Lmax

S;R (h)
∣∣ ≤ max

g′∈[G]
Γg′(δ/G,mg′ ,m

′
g′).

Proof. By Lemma 1 and a union bound, it holds with probability ≥ 1 − δ that on all Dg, for all
h ∈ H′ simultaneously, that

|LG(h | g)− LS;R(h | g)| ≤ Γg(δ/G,mg,m
′
g).

Thus we may write∣∣∣∣Lmax
G (h)− Lmax

S;R (h)

∣∣∣∣ =

∣∣∣∣max
g′∈[G]

LG(h | g′)− max
g′∈[G]

LS;R(h | g)

∣∣∣∣
≤ max
g′∈[G]

∣∣LG(h | g′)− LS;R(h | g′)
∣∣

≤ max
g′∈[G]

Γg′(δ/G,mg′ ,m
′
g′).

We now use Lemma 2 to show that Algorithm 1 is conservative enough that the optimal hypothesis
h∗ is never eliminated from contention throughout the run of the algorithm with high probability.

Lemma 3. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with
d < ∞ arbitrarily. With probability ≥ 1 − δ, it holds after each iteration i of Algorithm 1 that
h∗ ∈ Hi+1.

Proof. By Lemmas 1 and 2, and a union bound over iterations, the number of samples labeled at
each iteration is sufficient for us to conclude that with probability ≥ 1− δ, for for every iteration i
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and for each h ∈ Hi, it holds that2

|Lmax
S;Ri

(h)− Lmax
G (h)| ≤ 2I−iε/8.

We give an inductive argument conditioned on this high probability event. When i = 1, we have
h∗ ∈ H1 becauseH1 = H, and h∗ ∈ H by definition. If h∗ ∈ Hi for i ≥ 1, then h∗ ∈ Hi+1 if and
only if

Lmax
S;Ri

(h∗) ≤ Lmax
S;Ri

(ĥi) + 2I−iε/4.

When for each h ∈ Hi, it holds that |Lmax
S;Ri

(h)− Lmax
G (h)| ≤ 2I−iε/8, we may write

Lmax
S;Ri

(h∗)− Lmax
S;Ri

(ĥi) ≤ Lmax
S;Ri

(h∗)− Lmax
G (h∗) + Lmax

G (ĥi)− Lmax
S;Ri

(ĥi)

≤
∣∣Lmax
S;Ri

(h∗)− Lmax
G (h∗)

∣∣+
∣∣∣Lmax
G (ĥi)− Lmax

S;Ri
(ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/8

= 2I−iε/4,

where the first inequality comes from the optimality of h∗. Thus, we must have h ∈ Hi+1.

Now, using the fact that the optimal hypothesis stays in contention throughout the run of the algorithm,
we can give a guarantee on the true error of each hypothesis h ∈ Hi+1. The idea is that using
concentration and the small empirical error of each h ∈ Hi+1, we can say that the true errors of each
h ∈ Hi+1 are similar to the true errors of the ERM hypothesis ĥi, and then use the true error of ĥi as
a reference point to which we can compare the true error of h ∈ Hi+1 and h∗.
Lemma 4. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with
d <∞ arbitrarily. Then with probability ≥ 1− δ, after every iteration i of Algorithm 1, it holds for
all h ∈ Hi+1 that ∣∣Lmax

G (h)− Lmax
G (h∗)

∣∣ ≤ 2I−iε.

Proof. If h ∈ Hi+1, then by the specification of the algorithm, it holds that

Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi) ≤ 2I−iε/4.

Because ĥi is the ERM hypothesis at iteration i, it holds that Lmax
S;Ri

(ĥi)− Lmax
S;Ri

(h) ≤ 0 < 2I−iε/4,
and thus we may conclude ∣∣∣Lmax

S;Ri
(h)− Lmax

S;Ri
(ĥi)

∣∣∣ ≤ 2I−iε/4.

By Lemma 2 and the number of samples labeled at each iteration, with probability ≥ 1− δ, it holds
for all iterations and for all h ∈ Hi that∣∣Lmax

S;Ri
(h)− Lmax

G (h)
∣∣ ≤ 2I−iε/8.

Conditioned on this event, if h ∈ Hi+1, we have∣∣∣Lmax
G (h)− Lmax

G (ĥi)
∣∣∣ =

∣∣∣Lmax
G (h)− Lmax

S;Ri
(h) + Lmax

S;Ri
(h)− Lmax

S;Ri
(ĥi) + Lmax

S;Ri
(ĥi)− Lmax

G (ĥi)
∣∣∣

≤
∣∣Lmax
G (h)− Lmax

S;Ri
(h)
∣∣+
∣∣∣Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi)
∣∣∣+
∣∣∣Lmax
S;Ri

(ĥi)− Lmax
G (ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/4 + 2I−iε/8

= 2I−iε/2.

By Lemma 3, it holds that h∗ ∈ Hi+1 whenever
∣∣Lmax
S;Ri

(h)− Lmax
G (h)

∣∣ ≤ 2I−iε/8 for all h ∈ Hi at
all iterations. Thus, this bound on the true error difference with the ERM ĥi applies to h∗, and we
may write for arbitrary h ∈ Hi+1 that∣∣Lmax

G (h)− Lmax
G (h∗)

∣∣ ≤ ∣∣∣Lmax
G (h)− Lmax

G (ĥi)
∣∣∣+
∣∣∣Lmax
G (ĥi)− Lmax

G (h∗)
∣∣∣ ≤ 2I−iε,

which is the desired result.
2We do not directly apply Lemma 1 with γ = ε2I−i/8 here. We use this quantity in the outer dependence

on γ of Lemma 1, but for the natural log dependence on γ, we sub in ε/8 to simplify the analysis. Thus we
take slightly more samples than Lemma 1 directly suggests. Because we take the largest probability of the
disagreement region over groups as mi, it holds that mg is at the smallest the sample size suggested by Lemma
1 for each g.
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Definition 6. Given a group distribution Dg ∈ G, a hypothesis h ∈ H, and a radius r ≥ 0, let the
“Dg - disagreement ball inH of radius r about h” be

Bg(h, r) := {h′ ∈ H : ρg(h, h
′) ≤ r} ,

where ρg(h, h′) := PDg
(h(x) 6= h′(x)).

Definition 7. Given a group distribution Dg ∈ G and a hypothesis classH, let the “disagreement
coefficient” of Dg be defined as

θg := sup
h∈H

sup
r′≥2ν+ε

PDg (x ∈ ∆(Bg(h, r
′)))

r′
.

We further define the disagreement coefficient over a collection of group distributions G as

θG := max
g′∈[G]

θg′ .

Given these definitions, we are now ready to state the main theorem. The consistency comes from
what we showed in Lemma 4: as the true error for each h ∈ Hi+1 decreases with each iteration, after
enough iterations we will have each h ∈ Hi+1 having ε-optimality.

The label complexity bound follows standard ideas in the DBAL literature; see for example [9, 24].
Essentially, what we do is show that at each iteration i, because the true error of any h ∈ Hi on the
multi-group objective can’t be too large, the disagreement of h and h∗ on any single group cannot be
too large. This leads to a bound on the size of the disagreement region for each g.

Theorem 1. For all ε > 0, δ ∈ (0, 1), collections of group distributions G, and hypothesis classesH
with d <∞, with probability ≥ 1− δ, the output ĥ of Algorithm 1 satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and its label complexity is bounded by

Õ

(
G θ2
G

(
ν2

ε2
+ 1

)(
d log(1/ε) + log(1/δ)

)
log(1/ε) +

G log(1/ε) log(1/δ)

ε2

)
.

Proof. Lemma 4 says that the number of samples drawn at each iteration is sufficiently large
that with probability ≥ 1 − δ, for all i ∈ [I], it holds that for all h ∈ Hi+1, that we have∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ 2I−iε. Thus, after I = dlog(1/ε)e iterations, the output ĥ satisfies

the consistency condition.

To see the label complexity, which is the sum of the number of labels we query at each iteration, we
note at iteration i, we label no more than

1024
( mi

ε2I−i

)2
(

2d log

(
64

ε

)
+ ln

(
8Gdlog(1/ε)e

δ

))
+

128 ln(4Gdlog(1/ε)e/δ)
ε2

samples for each group distribution Dg, where mi = maxg′ PDg′ (x ∈ ∆(Hi)). The only term
here that depends on i is mi

ε2I−i . By Lemma 4, with probability ≥ 1 − δ, it holds for each i > 1

that
∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ 2I−i+1ε; this holds automatically at i = 1 by the setting of I =

dlog(1/ε)e. Thus, at arbitrary i and for arbitrary g ∈ [G], we may write

ρg(h, h
∗) = PDg

(h(x) 6= h∗(x))

= PDg (h(x) 6= y, h∗(x) = y) + PDg (h(x) = y, h∗(x) 6= y)

≤ PDg
(h(x) 6= y) + PDg

(h∗(x) 6= y)

= LG(h | g) + LG(h∗ | g)

≤ Lmax
G (h) + Lmax

G (h∗)

= Lmax
G (h)− Lmax

G (h∗) + Lmax
G (h∗) + Lmax

G (h∗)

≤ 2I−i+1ε+ 2ν,
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where we recall ν is the noise rate on the multi-group objective. Thus, with probability ≥ 1− δ, for
each i ∈ I and g ∈ [G], it holds that

Hi ⊆ Bg(h∗, 2I−i+1ε+ 2ν).

Given this observation, we may then write, for all g, that

PDg (x ∈ ∆(Hi)) ≤ PDg (x ∈ ∆(Bg(h
∗, 2ν + 2I−i+1ε))),

as if there are h, h′ ∈ Hi that disagree on some x, we have h, h′ ∈ Bg(h∗, 2ν + 2I−i+1ε), and so
h, h′ also realize disagreement on x for the larger set of classifiers. Recalling the definition of mi,
this allows us to bound the sum of terms depending on i for each distribution Dg as

I∑
i=1

( mi

ε2I−i

)2

≤
I∑
i=1

(
maxg′ PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2I−iε

)2

≤
I∑
i=1

(
max
g′

PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε
· 2ν + 2I−i+1ε

2I−iε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

sup
h∈H

sup
r≥2ν+ε

PDg
(x ∈ ∆(Bg′(h, r)))

r

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2(
max
g′

θg′

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2

θ2
G .

The label complexity bound then follows by noting the algorithm labels the same amount of samples
for all G groups each iteration, and ignoring the factors of log(G) and log(log(1/ε)).

9.2 Group-Realizable Guarantees

Theorem 2. Suppose Algorithm 2 is run with the active learner ACAL of [26]. Then for all ε > 0,
δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of group distributions G that are group
realizable with respect toH, with probability ≥ 1− δ, the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and the number of labels requested is

Õ

(
dGθG log(1/ε)

)
.

Proof. The label complexity follows directly from the guarantees given in [15]. By a union bound,
we with probability ≥ 1− δ, have that for all g ∈ [G], that ACAL returns ĥg with the property that

LG(ĥg | g) ≤ ε/6.

Fix some g ∈ [G] arbitrarily. Consider a counterfactual training set Sg, unseen by the learner,
constructed by labeling each example x ∈ S′g via the oracle call Og(x). Then Vapnik [28] tells us
that mg := |S′g| is sufficiently large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously,
we have ∣∣LG(h | g)− LSg

(h)
∣∣ < ε/6.
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Again by the union bound, this uniform convergence on Sg and the guarantee on the runs of ACAL
both hold for each g ∈ [G]. Conditioned on this high probability event, we can first note that for
some arbitrary h ∈ H,∣∣∣LSg (h)− LŜg

(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

= LSg
(ĥg)

≤ LG(ĥg) + ε/6

≤ ε/6 + ε/6

= ε/3,

where the second to last inequality comes from the uniform convergence over Sg, and the final
inequality comes from the success of the runs of ACAL. Then for arbitrary h, combining Vapnik’s
guarantee and the inequality we just showed, we may write:∣∣∣LG(h | g)− LŜg

(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg (h) + LSg (h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg (h)

∣∣+
∣∣∣LSg (h)− LŜg

(h)
∣∣∣

< ε/6 + ε/3

= ε/2.

Given this guarantee on the representativeness of the artificially labeled samples on each group g, we
have a guarantee for the representativeness over the worst case. For arbitrarily h ∈ H, we may write∣∣∣∣Lmax

G (h)− max
g∈[G]

LŜg
(h)

∣∣∣∣ =

∣∣∣∣max
g∈[G]

LG(h | g)− max
g∈[G]

LŜg
(h)

∣∣∣∣
≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣

≤ ε/2.

Thus, by the fact that ĥ is the ERM on the artificially labeled dataset, we have

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ) + ε/2 ≤ max
g∈[G]

LŜg
(h∗) + ε/2 ≤ Lmax

G (h∗) + ε.

9.3 Approximation Guarantees

Theorem 3. Suppose Algorithm 3 is run with the active learner ADHM of [15]. Then for all ε > 0,
δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups D, with probability ≥ 1− δ,
the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + 2 · max
g∈[G]

νg + ε ≤ 3 · Lmax
G (h∗) + ε,

and the number of labels requested is

Õ

(
dGθG

(
log2(1/ε) +

ν2

ε2

))
.
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Proof. The proof is almost identical to that of Theorem 2. The label complexity bound follows
directly from [10]. Similar to before, we have that for all g ∈ [G], ADHM returns ĥg with the
property that

LG(ĥg | g) ≤ LG(h∗g | g) + ε/6.

Fix some g ∈ [G] arbitrarily. On a counterfactual training set Sg , unseen by the learner, constructed
by labeling each example x ∈ S′g via the oracle call Og(x), it holds that mg := |S′g| is sufficiently
large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously, we have∣∣LG(h | g)− LSg (h)

∣∣ < ε/6.

By the union bound, this uniform convergence and the guarantee on the runs of ADHM both hold.
Thus, we can first note that for some arbitrary h ∈ H,∣∣∣LSg

(h)− LŜg
(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

≤ LG(ĥg | g) + ε/6

≤ LG(h∗g | g) + ε/3

= νg + ε/3.

where the second to last inequality comes from uniform convergence over SG, and the final equality
comes from the correctness guarantee ofADHM . Then for arbitrary h, combining Vapnik’s guarantee
and the inequality we just showed, we may write:∣∣∣LG(h | g)− LŜg

(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg (h) + LSg (h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg (h)

∣∣+
∣∣∣LSg (h)− LŜg

(h)
∣∣∣

< ε/6 + νg + ε/3

= νg + ε/2.

Then, as above, we have, for arbitrarily h ∈ H,∣∣∣∣Lmax
G (h)− max

g∈[G]
LŜg

(h)

∣∣∣∣ ≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ ≤ max

g∈[G]
νg + ε/2 ≤ ν + ε/2,

where the the final inequality comes from the fact that if any hypothesis has less than νg error on all
groups, it would be optimal on group g. Thus, by the fact that ĥ is the ERM on the artificially labeled
dataset, we have

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ)+νg+ε/2 ≤ max
g∈[G]

LŜg
(h∗)+νg+ε/2 ≤ Lmax

G (h∗)+2ν+ε ≤ 3·Lmax
G (h∗)+ε

19


	Introduction
	Related Work
	Multi-Group Learning
	Active Learning

	Preliminaries
	Learning Problem
	Active Learning Model

	Challenges in Multi-Group Active Learning
	Background on Disagreement-Based Active Learning
	Labeling in the Disagreement Region: No Longer Enough

	General Agnostic Multi-Group Learning
	An Agnostic Algorithm
	Guarantees
	Comparison to Lower Bounds in Collaborative Learning

	Group Realizable Learning
	Algorithm
	Guarantees

	Full Agnostic Approximation
	Inconsistency of the Reduction in the Full Agnostic Regime
	A 3-Approximation Algorithm

	Conclusion
	Appendix
	Guarantees for General Agnostic Algorithm
	Group-Realizable Guarantees
	Approximation Guarantees


