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Abstract

Bayesian inference allows expressing the uncertainty of posterior belief under a
probabilistic model given prior information and the likelihood of the evidence.
Predominantly, the likelihood function is only implicitly established by a simula-
tor posing the need for simulation-based inference (SBI). However, the existing
algorithms can yield overconfident posteriors (Hermans et al., 2022) defeating the
whole purpose of credibility if the uncertainty quantification is inaccurate. We
propose to include a calibration term directly into the training objective of the
neural model in selected amortized SBI techniques. By introducing a relaxation of
the classical formulation of calibration error we enable end-to-end backpropagation.
The proposed method is not tied to any particular neural model and brings mod-
erate computational overhead compared to the profits it introduces. It is directly
applicable to existing computational pipelines allowing reliable black-box posterior
inference. We empirically show on six benchmark problems that the proposed
method achieves competitive or better results in terms of coverage and expected
posterior density than the previously existing approaches.

1 Introduction

Inverse problems [46] appear in a variety of fields of human activity, including engineering [2],
geology [8], medical imaging [29], economics [21], and particle physics [1]. In some domains,
uncertainty quantification is required for results to be used in the real-world [51]. A particularly
well-suited tool for this task is Bayesian inference, where the procedure of updating prior beliefs
(knowledge) with observed evidence is formally described in the framework of probability theory. In
order to compute the posterior probability according to Bayes’ rule, the likelihood function has to
be evaluated. Often, it is only implicitly established by a simulator which given input parameters
generates (possibly stochastically) outputs. Such a situation requires the use of likelihood-free
techniques, also referred to as simulation-based inference (SBI) [9].

There exist two major classical approaches that address the problem of Bayesian inference in
the likelihood-free setting. In the first one, simulated data are used to estimate the distribution
of expert-crafted low-dimensional summary statistics with a nonparametric method like kernel
density estimation [14]. Next, the approximate density is used as a likelihood surrogate turning
the problem into likelihood-based inference. In the second approach, termed as Approximate
Bayesian Computation (ABC) [40, 38, 48, 42, 3, 44] no data is simulated upfront, but instead for
every newly appearing observation (instance of the inverse problem), an independent sampling-
rejection procedure with a simulator in-the-loop is run. Given some proposal distribution, candidate
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parameters are accepted if the simulator’s output is in sufficient agreement with the observation.
While ABC effectively sorts out the lack of explicit likelihood, it is generally costly, especially when
the underlying simulator is computationally expensive.

Deep Neural Networks have been increasingly utilized in SBI to alleviate these costs, by acting as
universal and powerful density estimators or surrogating other functions. The following approaches of
neural SBI can be identified: Neural Likelihood Estimation (NLE) [35], where the missing likelihood
function is approximated based on the simulator; Neural Ratio Estimation (NRE) [19, 15, 32], where
the likelihood-to-evidence ratio (other ratios have also been considered) is approximated; Neural
Posterior Estimation (NPE) [34, 30, 18], where the learned density estimator directly solves the
inverse problem for a given observation. In the last category the score-based methods [41, 16]
are emerging, where the posterior is implicitly expressed by the learned score function. All of the
approaches mentioned above amortize the use of a simulator, however, inference with NLE and NRE
still requires the use of Markov chain Monte Carlo [7], while NPE can be fully amortized with the
use of appropriate generative models [47].

The question of reliability is raised with the use of approximate Bayesian inference methods. Many
works have been devoted to inference evaluation techniques in the absence of the ground-truth
posterior reference [45, 53, 27, 28]. Lueckmann et al. [31] propose an SBI benchmarking protocol
taking into account the effect of the simulation budget, with the observation that the assessment’s
conclusions will strongly depend on the metric chosen. Hermans et al. [20] suggest relying on
coverage analysis of posterior’s multi-dimensional credible regions, showing that numerous SBI
techniques yield overconfident posteriors. In a follow-up work [11] they introduce a balancing
regularizer for training NRE, and show empirically that it leads to the avoidance of overconfident
solutions. Very recently, an interesting study by Delaunoy et al. [12] extends the applicability
of balancing regularizer to the NPE approach. An alternative perspective is studied in Dey et al.
[13] where an additional regression model for posthoc re-calibration based on Probability Integral
Transform is learned for the outputs of a pre-trained inference model.

In this work, we introduce and empirically evaluate a new regularizer that directly targets the coverage
of the approximate posterior. It is applicable to NRE and NPE based on neural density estimators
such as Normalizing Flows [26, 36]. As an additive term, it is easy for practitioners to use as a plug-in
to existing pipelines. The additional computational overhead introduced by the regularizer is justified
in view of the advantages it brings.

The rest of the work is structured as follows. Section 2 introduces the formal description of the
studied problem and presents the coverage analysis that is the motivation for the presented method.
Section 3 describes the proposed method and a differentiable formulation of the regularizer that
allows gradient-based learning. Section 4 shows the empirical results of applying the method on a
wide range of benchmark problems, as well as providing a hyper-parameter sensitivity analysis. In
section 5, we provide summarize our work with conclusions and potential future directions.

2 Background

In this work, we consider the problem of estimating posterior distribution p(θ|x) of model parameters
θ, given the observation x. We approach the problem from a likelihood-free [43] perspective, where
the model’s likelihood p(x|θ) cannot be evaluated. Instead, there exists a simulator that generates
observations x based on the input parameters θ. We can prepare a dataset {(θi, xi)}Ni=1, by sampling
parameters from a prior p(θ) and running them through the simulator. In that way, the problem
of finding the approximate posterior marked as p̂(θ|x) turns into a supervised learning problem.
However, it is important to note that usually there is not only a single generating parameter θ for a
given x possible. Instead, for each observation multiple parameter values are plausible [23]. These
values form a posterior distribution p(θ|x) under a prior distribution p(θ).

Assessing the performance of an SBI technique is challenging due to the non-availability of the
ground-truth posterior p(θ|x) in the general case. Theoretically, methods such as the rejection-
sampling ABC [44] are proven to converge to p(θ|x) under an infinite simulation budget but often
require a large number of simulation runs to achieve a good approximation. Avoiding this costly
procedure is exactly what motivates the introduction of different techniques. Therefore, it is common
to resort to performance metrics evaluated on test datasets sampled from the simulator.
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If a Bayesian inference method allows p̂(θ|x) evaluation, its performance can be assessed by looking
at the expected value of the approximate log posterior density of the data-generating parameters
(nominal parameters) Ep(θ,x) [log p̂(θ|x)], estimated over a test dataset. In domains such as natural
sciences, it is also accurate uncertainty quantification that matters, i.e. reliable posterior density
estimation given the available evidence in data. It has been shown in Hermans et al. [20] that
approaches yielding high expected posterior density values can give overconfident posteriors, and
therefore, verifying the quality of credible regions returned by inference engines as well as designing
more reliable ones is essential. In this work, we define a regularizer suitable for training NRE and
NPE based on the Simulation-Based Calibration (SBC) diagnostic of Talts et al. [45]. To make the
paper self-contained, in the rest of Section 2 we will introduce SBC formally, adapting the definitions
and lemmas from Lemos et al. [27], and making the link with the coverage analysis from Hermans
et al. [20].

2.1 Coverage analysis

Coverage analysis offers a way to evaluate the quality of an approximate posterior. Given an
observation and an estimated distribution, one can assess the probability that a certain credible
region [22] of the parameter space contains the nominal parameter value found in the dataset. For
a conditional probability distribution, a credible region at level 1− α is a region of the support to
which the parameter used to generate the conditioning observation belongs with a 1− α probability,
called the credibility level. There are infinitely many credible regions at any given level, and coverage
analysis requires a particular way of choosing one. In this work, we will consider the Highest
Posterior Density Region (HPDR).
Definition 1 (Highest Posterior Density Region).

ΘHPDR
p̂(θ|x)(1− α) := argmin

Θ
|Θ| s.t.

∫

θ∈Θ

p̂(θ|x)dθ = 1− α, (1)

where |Θ| :=
∫
Θ
dµ is the volume of a subset Θ of the parameters’ space, under some measure µ.

Next, we introduce the central concept of coverage analysis.
Definition 2 (Expected Coverage Probability). The Expected Coverage Probability (ECP) over a
joint distribution p(θ, x) for a given ΘHPDR

p̂(θ|x)(1− α) is

ECP
(
ΘHPDR

p̂(θ|x)(1− α)
)
:= Ep(θ,x)

[
1
[
θ ∈ ΘHPDR

p̂(θ|x)(1− α)
]]

, (2)

where 1[·] is the indicator function.

While the expectation in eq. (2) can be easily estimated by using a set of i.i.d. samples from the joint
distribution p(θ, x), the challenge of finding ΘHPDR

p̂(θ|x)(1− α) remains non-trivial. In general, directly
following eq. (1) requires solving an optimization problem. This would be prohibitive to do for every
instance during training, thus it is crucial to benefit from the two lemmas we introduce below.
Lemma 1. A pair (θ∗, x∗) and a distribution p̂(θ|x) uniquely define an HPDR:

ΘHPDR
p̂(θ|x)(1− αHPDR(p̂, θ

∗, x∗)) := {θ | p̂(θ|x∗) ⩾ p̂(θ∗|x∗)}, (3)

where
αHPDR(p̂, θ

∗, x∗) :=

∫
p̂(θ|x)1[p̂(θ|x∗) < p̂(θ∗|x∗)]dθ. (4)

See proof in Appendix A .
Lemma 2.

ECP
(
ΘHPDR

p̂(θ|x)(1− α)
)
= Ep(θ,x) [1[αHPDR(p̂, θ, x) ⩾ α]] (5)

See proof of Lemma 1 in Lemos et al. [27].

If ECP
(
ΘHPDR

p̂(θ|x)(1− α)
)

is equal to 1− α the inference engine yields posterior distributions that are
calibrated at level 1− α, or simply calibrated if the condition is satisfied for all α. The ground-truth
posterior p(θ|x) is calibrated, but another such distribution is the prior p(θ) as discussed in Hermans
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et al. [20] and Lemos et al. [27]. Therefore, coverage analysis should be applied in conjunction with
the standard posterior predictive check. Formally, we aim for:

p∗(θ|x) := argmax
p̂(θ|x)

Ep(θ,x) [log p̂(θ|x)] s.t. ∀αECP
(
ΘHPDR

p̂(θ|x)(1− α)
)
= 1− α (6)

In Hermans et al. [20] it has been pointed out that for practical applications often the requirement of
the equality sign in the condition in eq. (6) can be relaxed and replaced with ECP

(
ΘHPDR

p̂(θ|x)(1− α)
)

above or equal the 1− α level. Such a posterior distribution is called conservative.

We define the calibration error as

1

M

M∑

i=1

|(1− αi)− ECP
(
ΘHPDR

p̂(θ|x)(1− αi)
)
|, (7)

and the conservativeness error as

1

M

M∑

i=1

max
(
(1− αi)− ECP

(
ΘHPDR

p̂(θ|x)(1− αi)
)
, 0
)
, (8)

where {αi}Mi=1 is a set of credibility levels of arbitrary cardinality such that ∀i 0 < αi < 1; we
can exclude α = 0 and α = 1 because calibration/conservativeness at these levels is achieved by
construction. For a motivating graphical example of coverage analysis of an overconfident distribution
see appendix D.

3 Method

We propose a method supporting the training of neural models underlying SBI engines such that the
resulting distributions are calibrated or conservative against the real p(θ, x) in the data. In addition to
the standard loss term in the optimization objective function, we include a regularizer corresponding
to differentiable relaxations of the calibration (conservativeness) error as defined in eq. (7) (eq. (8)).
In the remainder of this section, we will show how to efficiently estimate the expected coverage
probability during training and how to alleviate the arising non-continuities to allow gradient-based
optimization. After a few simplifications, the regularizer will become a mean square error between
the sorted list of estimated αHPDR(p̂, θ, x)s and a step function on the (0, 1) interval.

The proposed method is based on the Monte Carlo (MC) estimate of the integral in eq. (4):

α̂L
HPDR(p̂, θ

∗, x∗) :=
1

L

L∑

j=1

1[p̂(θj |x∗) < p̂(θ∗|x∗)], (9)

where θ1, ..., θL are samples drawn from p̂(θ|x). The entity defined in eq. (9) is a special case
of what is called rank statistic in Talts et al. [45] (with the 1/L normalization constant skipped
there). The non-normalized variant is proven to be uniformly distributed over the integers [0, L] for
p̂(θ|x) = p(θ|x) ∀(θ, x) ∼ p(θ, x), which is the accurate posterior as defined in Lemos et al. [27].
Taking L → ∞ and applying the normalization (as done in eq. (9)) one shows that distribution of
α̂∞

HPDR(p̂, θ
∗, x∗) converges to a standard continuous uniform distribution (proof in appendix A.2).

We return to coverage analysis with the following remark:
Remark 1. An inference engine yields calibrated posterior distributions if and only if it is character-
ized by uniformly distributed αHPDR(p̂, θ, x)s.

See proof in Appendix A .

Following remark 1, we will enforce the uniformity of the normalized rank statistics which coincides
with a necessary, though not sufficient, condition for the approximate posterior to be accurate. The
one-sample Kolmogorov–Smirnov test provides a way to check whether a particular sample set
follows some reference distribution. We will use its test statistic to check, and eventually enforce, the
condition. An alternative learning objective is to directly minimize the calibration (conservativeness)
error at arbitrary levels with ECP computed following eq. (5).

4



3.1 One-sample Kolmogorov–Smirnov test

Let B be a random variable taking values β ∈ B. Given a sample set B̂ = {βi|i = 1, . . . , N}, the
one-sample Kolmogorov–Smirnov test statistic [5] for r.v. B is defined as:

DN = sup
β∈B
|FN (β)− F (β)|, (10)

where FN is the empirical cumulative distribution function (ECDF) of the r.v. B, with regard to
the sample set B̂ [10]. F is the reference cumulative distribution function (CDF) against which we
compare the ECDF.

In the proposed method, we instantiate the KS test statistic for r.v. αHPDR(p̂, θ, x),
where (θ, x) ∼ p(θ, x), thus FN is its ECDF, which we estimate from a sample set
Â := {α̂L

HPDR(p̂, θi, xi)|(xi, θi) ∼ p(x, θ), i = 1, . . . , N}. The reference CDF, F , is that of the stan-
dard uniform distribution because we want to check and enforce the uniformity of the elements of
Â.

By the Glivenko–Cantelli theorem [49] we know that DN → 0 almost surely with N → ∞ if
samples follow the F distribution. The claim in the opposite direction, that is if DN → 0 then
samples follow F , is also true and we show that in appendix A.3. As a result, minimizing DN will
enforce uniformity and thus posterior’s calibration. We can upper-bound the supremum in eq. (10)
with the sum of absolute errors (SAE), but instead, to stabilize gradient descent, we use the mean
of squared errors (MSE), which shares its optimum with SAE. Minimizing the one-sample KS test
statistic is just one of the many ways of enforcing uniformity. We can deploy any divergence measure
between the sample set and the uniform distribution.

3.2 Approximating DN

In practice we cannot evaluate the squared errors over the complete support of the r.v., but only over a
finite subset. There are two ways of evaluating this approximation which differ by how we instantiate
FN (α) and F (α).

Direct computation In the first, we compute FN (α) =
∑

i 1[αi ≤ α]/N summing over all αi ∈ Â
and use the fact that F (α) = α for the target distribution. To approximate DN we aggregate the
squared error over an arbitrary set of αk values:

∑
k(FN (αk) − αk)

2. Including this term as a
regularizer means that we need to backpropagate through FN (αk). Such an approach can be seen as
directly aiming for calibration at arbitrary levels αk, i.e. applying eq. (5) to evaluate the calibration
error.

Sorting-based computation Alternatively, we can sort the values in Â to get the ordered sequence
(αi|i := 1 . . . N). Given the sorted values, αi, and their indices, i, the FN (αi) values are given
directly by the indices normalized by the sample size (i/N ), and by the corresponding target
distribution F (αi) = αi, which leads to the

∑
i(i/N − αi)

2 approximation. Under this approach,
the gradient will now flow through F (αi). This is the approach that we use in our experiments.

3.3 Importance Sampling integration

In the definition of αHPDR(p̂, θ
∗, x∗) in eq. (4) as well as in its MC estimate α̂L

HPDR(p̂, θ
∗, x∗) defined

in eq. (9) we sample θjs from the approximate posterior p̂(θ|x). Optimizing the model constituting the
approximate posterior requires backpropagating through the sampling operation which can be done
with the reparametrization trick [24]. However, the reparametrization trick is not always applicable;
for example, in NRE an MC procedure is required to sample from the posterior [19]. Here we can use
instead self-normalized Importance Sampling (IS) to estimate α̂L

HPDR(p̂, θ, x) and lift the requirement
of sampling from the approximate posterior. We will be sampling from a known proposal distribution
and only evaluate the approximate posterior density. We thus propose to use IS integration [e.g., 17]
to estimate the integral in eq. (4), in the following way:

α̂L,IS
HPDR(p̂, θ

∗, x∗) =

∑L
j=1 p̂(θj |x∗)/I(θj)1[p̂(θj |x∗) < p̂(θ∗|x∗)]

∑L
j=1 p̂(θj |x∗)/I(θj)

. (11)
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Algorithm 1 Computing the regularizer loss with calibration objective.

Require: Data batch {(θi, xi)}Ni=1, model p̂(θ|x), number of samples L, proposal distribution I(θ)
Ensure: Regularizer’s loss R

1: for i← 1 to N do
2: pi ← p̂(θi|xi)
3: for j ← 1 to L do
4: θji ∼ I(θ) ▷ sampling from proposal distribution
5: pji ← p̂(θji |xi)
6: end for
7: α̂L,IS

HPDR(p̂, θi, xi)←
∑L

j=1 pj
i/I(θ

j
i )1[p

j
i<pi]∑L

j=1 pj
i/I(θ

j
i )

▷ eq. (11)

8: end for
9: (αi|i = 1, . . . , N)← sort({α̂L,IS

HPDR(p̂, θi, xi)|i = 1, . . . , N})
10: R← 1

N

∑N
i (i/N − αi)

2
▷ the second term in eq. (12)

The θjs are sampled from the proposal distribution I(θ). For a uniform proposal distribution, the
I(θj) terms are constant and thus cancel out. By default, we suggest using the prior as the proposal
distribution. While IS is not needed in the case of NPE, we use it also for this method to keep the
regularizer’s implementation consistent with the NRE setting.

3.4 Learning objective

So far we have shown how to derive a regularizer that enforces a uniform distribution of the normalized
rank statistics that characterizes a calibrated model as shown in remark 1. This is also a necessary
condition for the accuracy of the posterior as shown in Talts et al. [45] but not a sufficient one, as
exemplified by the approximate posterior equal to the prior for which the regularizer trivially obtains
its minimum value. Thus the final objective also contains the standard loss term and is a weighted
sum of the two terms:

1

N

N∑

i

log p̂(θi|xi) + λ
1

N

N∑

i

(
index

(
α̂L,IS

HPDR(p̂, θi, xi)
)
/N − α̂L,IS

HPDR(p̂, θi, xi)
)2

, (12)

which we will minimize with AdamW optimizer. The first term in eq. (12) is the likelihood loss
which we use for the NF-based NPE (or its corresponding cross-entropy loss for the NRE) and the
second is the uniformity enforcing regularizer. The index(·) operator gives the index of its argument
in the sequence of sorted elements of {α̂L,IS

HPDR(p̂, θi, xi) | i = 1, . . . , N}. When regularizing for
conservativeness we accept αHPDR(p̂, θ

∗, x∗)s to first-order stochastically dominate [39] the target
uniform distribution, thus the differences in the uniformity regularizer are additionally activated with
a rectifier max(·; 0) analogously to eq. (8). In appendix A.1 we sketch a proof of how minimizing
such regularizer affects the learned model. The two main hyper-parameters of the objective function
are the number of samples L we use to evaluate eq. (11), and the weight of the regularizer λ in
eq. (12). In algorithm 1 we provide the pseudo-code to compute the uniformity regularizer.

To allow backpropagation through indicator functions, we use a Straight-Through Estimator [4] with
the Hard Tanh [37] backward relaxation. In order to backpropagate through sorting operation we use
its differentiable implementation from Blondel et al. [6].

4 Experiments

In our experiments1, we basically follow the experimental protocol introduced in Hermans et al. [20]
for evaluating SBI methods. We focus on two prevailing amortized neural inference methods, i.e.
NRE approximating the likelihood-to-evidence ratio and NPE using conditional NF as the underlying
model. In the case of NRE, there has been already a regularization method proposed [11] and we
include it for comparison with our results, and mark it as BNRE. In the main text of the paper, we
focus on the conservativeness objective. For the calibration objective, the results can be found in

1The code is available at https://github.com/DMML-Geneva/calibrated-posterior.
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Figure 1: Evaluation on six benchmark problems (for each column) in the form of coverage curves
estimated on a set of 10k test instances. If the curve is on (above) the diagonal line, then p̂(θ|x) is
calibrated (conservative). Expected coverage of HPDRs at 19 evenly spaced levels on the [0.05; 0.95]
interval is estimated following eq. (2) by solving an optimization problem to find ΘHPDR

p̂(θ|x)(1− α) for
every test instance. The average of retraining five times from random initialization is shown. Top
there rows marked as NRE, BNRE, and CalNRE (ours) show the NRE trained without regularization,
with balancing regularizer, and the proposed regularizer with conservativeness objective, respectively.
The bottom rows marked as NPE and CalNPE show the NPE trained without regularization and with
the proposed regularizer with conservativeness objective, respectively. Best viewed in color.

appendix C where we report positive outcomes only for part of the studied SBI problems. As the
proposal distribution for IS, we use the prior p(θ). In the main experiments, we set the weight of the
regularizer λ to 5, and the number of samples L to 16 for all benchmarks. In section 4.3 we provide
insights into the sensitivity of the method with respect to its hyper-parameters.

4.1 Principal experiments

In fig. 1, we present a cross-sectional analysis of the results of the proposed method, based on six
benchmark SBI problems described in detail in Hermans et al. [20], for each considering eight differ-
ent simulation budgets. Expected coverage of HPDRs at 19 evenly spaced levels on the [0.05; 0.95]
interval is estimated following eq. (2) by solving an optimization problem to find ΘHPDR

p̂(θ|x)(1− α) for
every test instance. We intentionally use a different ECP estimation method than in the regularizer to
avoid accidental overfitting to the evaluation metric. The top three rows show empirical expected
coverage curves on the test set obtained by training the same model with three different objectives –
NRE: classification loss; BNRE: classification loss with balancing regularizer [11]; CalNRE: classifi-
cation loss with the proposed regularizer. The results for CalNRE show that the proposed method
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Figure 2: Expected value of the approximate log posterior density of the nominal parameters
Ep(θ,x) [log p̂(θ|x)] of the SBI approaches in fig. 1 estimated over 10k test instances. The solid line
is the median over five random initializations, and the boundaries of the shaded area are defined by
the minimum and maximum values. The horizontal black line indicates the performance of the prior
distribution. Best viewed in color.
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Figure 3: The computational overhead of
the proposed method applied to NRE on
the SLCP problem. The Y-axis indicates
how many times training with the regularizer
lengthens relative to training without it. For
every number of samples experiments were
conducted on both CPU (left chart) and GPU
(right chart). Averaged over five runs, error
bars show a double standard deviation range.
Best viewed in color.

systematically results in conservative posteriors – with SLCP simulation budget 1024 standing out,
due to too weak regularization weight λ. Moreover, in fig. 2 it can be seen that CalNRE typically
outperforms BNRE in terms of Ep(θ,x) [log p̂(θ|x)], being close to the performance of NRE (which is
not conservative), and demonstrating less variance across initializations.

The bottom two rows in fig. 1 show the same type of results for NPE-based models, with CalNPE
being trained with the proposed regularizer. For all budgets in the Gravitational Waves benchmark,
CalNPE does not meet the expected target, but this can easily be fixed by adjusting the regularization
strength λ. In fig. 2 one finds that CalNPE sometimes yields a higher Ep(θ,x) [log p̂(θ|x)] than the
non-regularized version, which is a counterintuitive result. We hypothesize that by regularizing the
model we mitigate the classical problem of over-fitting on the training dataset.

4.2 Computation time

In fig. 3 we show how applying the proposed regularizer affects the training time in the case of NRE
for the SLCP benchmark, with the distinction to CPU and GPU. As a reference, we take the training
time of the non-regularized model. While on CPU, the training time grows about linearly with L,
on GPU due to its parallel computation property the overhead is around x2, with some variation
depending on the simulation budget and the particular run. However, this is only true as long as
the GPU memory is not exceeded, while the space complexity is of order O(Ndim(θ)L), where N
is the batch size. Comparing with fig. 2, we conclude that applying the regularizer can result in a
similar Ep(θ,x) [log p̂(θ|x)] as in the case of increasing the simulation budget (what extends training
time) while keeping comparable computational time, and avoiding over-confidence. Moreover, in
situations where the acquisition of additional training instances is very expensive or even impossible,
the proposed method allows for more effective use of the available data at a cost sub-linear in L.

4.3 Sensitivity analysis

In fig. 4 we show the sensitivity of the method with respect to its hyper-parameters on the example of
NRE applied for the Weinberg benchmark. In fig. 4a, the analysis of regularization strength indicates
a tradeoff between the level of conservativeness and Ep(θ,x) [log p̂(θ|x)]. Therefore, choosing the
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(a) Sensitivity analysis with respect to regularizer’s weight λ.
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(b) Sensitivity analysis with respect to the number of samples L in the regularizer.

Figure 4: Sensitivity analysis study of CalNRE on the Weinberg benchmark with the smallest
simulation budget of 1024 training instances with respect to λ in (a) and L in (b). The yellow
color in each chart shows the results of non-regularized NRE on the highest simulation budget of
131072 training instances. Results in the first two charts show the performance of an ensemble model
built from five randomly initialized members. The vertical line in the first chart marks the nominal
parameter value. Points in the third chart indicate the average AUC over five randomly initialized
models, with two times the standard deviation marked with the shaded area. The shaded area and the
error bars in the fourth chart span between minimum and maximum results over the five randomly
initialized models with the median indicated by point (line). Best viewed in color.

right configuration for practical applications is a multi-objective problem. The lowest possible λ
value that yields a positive AUC (λ = 5 in the figure) should be used to maximize predictive power as
measured by Ep(θ,x) [log p̂(θ|x)]. From fig. 4b we can read that increasing the number of samples in
the regularizer brings the coverage curve closer to the diagonal while increasing Ep(θ,x) [log p̂(θ|x)].
This suggests that a more accurate estimation of conservativeness errors during training allows better
focus on the main optimization objective.

5 Conclusions and future work

In this work, we introduced a regularizer designed to avoid overconfident posterior distributions,
which is an undesirable property in SBI. It is applicable in both the NRE and NPE settings, whenever
the underlying model allows for amortized conditional density evaluation. It is derived directly from
the evaluation metric based on Expected Coverage Probability, used to assess whether the posterior
distribution is calibrated or conservative, depending on the target. We formally show that minimizing
the regularizer to 0 error under infinite sampling guarantees the inference model to be calibrated
(conservative).

We empirically show that applying the regularizer in parallel to the main optimization objective
systematically helps to avoid overconfident inference for the studied benchmark problems. We admit
that calculating the additional term adds computation cost at training time, but this can be mitigated
with the use of modern hardware accelerators well suited for parallel computation.

The presented method is introduced in the context of simulation-based inference, but it is suitable for
application in general conditional generative modeling, where calibration (conservativeness) can for
example help mitigate mode collapse [50].

As a future direction, we identify the need to evaluate the proposed method in problems where the
parameters’ space has a high dimension. Moreover, currently, the method is restricted to neural models
acting as density estimators, but not general generative models that only allow for sampling from the
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learned distribution. A sampling-based relaxation of the regularizer would extend its applicability to
a variety of models including Generative Adversarial Networks [33], score/diffusion-based models
[52], and Variational Autoencoders [24].
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A Proofs

Lemma 1. A pair (θ∗, x∗) and a distribution p̂(θ|x) uniquely define an HPDR:

ΘHPDR
p̂(θ|x)(1− αHPDR(p̂, θ

∗, x∗)) := {θ | p̂(θ|x∗) ⩾ p̂(θ∗|x∗)}, (3)

where

αHPDR(p̂, θ
∗, x∗) :=

∫
p̂(θ|x)1[p̂(θ|x∗) < p̂(θ∗|x∗)]dθ. (4)

Proof of Lemma 1.

1− αHPDR(p̂, θ
∗, x∗) =

∫

ΘHPDR
p̂(θ|x)

(1−αHPDR(p̂,θ∗,x∗))

p̂(θ|x)dθ =

∫

{θ|p̂(θ|x∗)⩾p̂(θ∗|x∗)}
p̂(θ|x)dθ =

∫
p̂(θ|x)1[p̂(θ|x∗) ⩾ p̂(θ∗|x∗)]dθ, (13)

while ∫
p̂(θ|x)1[p̂(θ|x∗) ⩾ p̂(θ∗|x∗)] +

∫
p̂(θ|x)1[p̂(θ|x∗) < p̂(θ∗|x∗)] = 1 (14)

because p̂(θ|x) is a probability density function.

Remark 1. An inference engine yields calibrated posterior distributions if and only if it is character-
ized by uniformly distributed αHPDR(p̂, θ, x)s.

Proof of Remark 1. We start by observing that RHS of eq. (5) can be reformulated as
Ep(θ,x) [1[1− αHPDR(p̂, θ, x) ⩽ 1− α]] which is estimated using MC in the following way:

1

N

N∑

i=1

1[1− αHPDR(p̂, θi, xi) ⩽ 1− α], (15)

and for a calibrated model it is equal to 1− α. The empirical ECP expressed above, takes the form of
the ECDF of 1− αHPDR(p̂, θi, xi) at 1− α. Thus, following Glivenko–Cantelli theorem we conclude
that for a calibrated model, 1 − αHPDR(p̂, θi, xi) has a standard uniform distribution because it is
bounded in [0, 1] interval by construction. Thus, the same holds for αHPDR(p̂, θi, xi).

The opposite direction is trivial to show.

A.1 Stochastic dominance of rank statistics over U [0, 1] as over-confidence aversion

Let us consider the following minimization objective

DN = sup
α
|max(FN (α)− F (α), 0)|, (16)

which leads to first-order stochastic dominance of FN (α) (ECDF of {αHPDR(p̂, θi, xi)}Ni ) over F (α)
(target standard uniform distribution). At the minimum DN = 0 we know that

∀α α ⩾
N∑

j=1

1[αHPDR(p̂, θj , xj) ⩽ α]/N. (17)

But the LHS can be reformulated as ECDF of infinitely many samples generated with the ground-truth
distribution. Without the loss of generality, assume the number of samples is equal to N →∞ on
both sides.

∀α
N∑

j=1

1[αHPDR(p, θj , xj) ⩽ α] ⩾
N∑

j=1

1[αHPDR(p̂, θj , xj) ⩽ α]. (18)
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With equality between LHS and RHS, this means calibrated p̂(θ|x) which is a special case of
conservativeness in our formulation. Let us focus only on the inequality. Then, the condition above
translates into

∀α ∃j αHPDR(p, θj , xj) ⩽ α & αHPDR(p̂, θj , xj) > α, (19)
thus

∀α ∃j αHPDR(p, θj , xj) < αHPDR(p̂, θj , xj). (20)
Now, insert the definition of αHPDR(·, θj , xj):

∀α ∃j
L∑

k=1

1
[
p̂(θ∗(j)k|xj) < p̂(θj |xj)

]
<

L∑

k=1

1
[
p̂(θ(j)k|xj) < p̂(θj |xj)

]
, (21)

where θ∗(j)k are sampled from the ground truth posterior p(θ|x), and θ(j)k from the approximate
posterior p̂(θ|x). The following two steps show equivalent conditions:

∀α ∃j ∃k p̂(θ∗(j)k|xj) ⩾ p̂(θj |xj) & p̂(θ(j)k|xj) < p̂(θj |xj), (22)

∀α ∃j ∃k p̂(θ∗(j)k|xj) > p̂(θ(j)k|xj). (23)

The condition in eq. (23) says that ground-truth posterior generates at least one sample with higher
density measured by the approximate posterior p̂(θ|x) than that generated by the approximate
posterior. Thus, we have shown that a model generating αHPDR(p̂, θi, xi)s stochastically dominating
standard uniform distribution has an aversion to over-confidence.

A.2 Convergence to uniform

Let us2 consider a discrete uniform distribution over L+ 1 evenly spaced values on the [0, 1] interval,
which has the following CDF:

FL(x) =





0, x < 0

⌊xL⌋/L, 0 ⩽ x < 1

1, x ⩾ 1

The CDF of the standard continuous uniform distribution has the following form:

F (x) =





0, x < 0

x, 0 ⩽ x < 1

1, x ⩾ 1

For 0 ⩽ x < 1 we have

|F (x)− FL(x)| = |x− ⌊xL⌋/L| = |xL− ⌊xL⌋| /L < 1/L,

where the inequality is a property of the floor ⌊·⌋ operator.

Taking the limit of L→∞ we have

lim
L→∞

|F (x)− FL(x)| = lim
L→∞

1/L = 0,

what proofs convergence in the distribution of FL(x) to F (x).

A.3 GC theorem inverse direction

We3 are given a set of iid samples α1, . . . , αN from a G distribution implicitly given by the trained
model. With the regularizer optimized to 0 loss, we assume that

DN = sup
α
|FN (α)− F (α)| a.s.→ 0.

2We follow the derivation from https://stats.stackexchange.com/a/373350 (version: 2018-10-23).
3We follow the derivation from https://stats.stackexchange.com/q/485148 (version: 2020-08-29).
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Figure 5: AUC scores of the coverage curves presented in fig. 1. Points indicate the average, while
the shaded area spans over the two standard deviation range. Best viewed in color.

From the Glivenko-Cantelli theorem, we have that

DN = sup
α
|FN (α)−G(α)| a.s.→ 0.

The triangle inequality is satisfied for any norm, so:

sup
α
|FN (α)− F (α)|+ sup

α
|FN (α)−G(α)| > sup

α
|G(α)− F (α)|,

thus

sup
α
|G(α)− F (α)| a.s.→ 0,

where the LHS does not depend on N , and we conclude that G = F , what was to be shown.

B Additional conservative posterior results

In this section, we supplement the results shown in section 4.1 by presenting the coverage AUC
scores in fig. 5. We show explicitly, that applying the proposed method with a conservativeness
objective leads to conservative posteriors. For the two non-conservative cases – CalNRE for SLCP,
and CalNPE for Gravitational Waves – we expect a positive result when choosing the appropriate
value of the regularization weight, as already stated in the main text.
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Figure 6: Evaluation on six benchmark problems (for each column) in the form of coverage curves
estimated on a set of 10k test instances. If the curve is on (above) the diagonal line, then p̂(θ|x) is
calibrated (conservative). Expected coverage of HPDRs at 19 evenly spaced levels on the [0.05; 0.95]
interval is estimated following eq. (2) by solving an optimization problem to find ΘHPDR

p̂(θ|x)(1− α) for
every test instance. The average of retraining five times from random initialization is shown. Top two
rows marked as NRE, and CalNRE (ours) show the NRE model trained without regularization, and
the proposed regularizer with calibration objective, respectively. The bottom rows marked as NPE
and CalNPE show the NPE model trained without regularization and with the proposed regularizer
with calibration objective, respectively. Best viewed in color.

C Regularization for calibrated posterior

In this section, we present the results of experiments analogous to those in section 4.1, but with the
proposed regularizer configured as calibration error (see eq. (7)). Obtaining a calibrated posterior
is a task way more difficult than in the case of a conservative one, and this is what we empirically
confirm.

In fig. 6 we find a characteristic S-shaped coverage curve emerging for the regularized models. For
the low credibility levels (small credible regions) posteriors become overconfident, while with the
high levels (big credible regions) they become conservative, by a certain margin. Overall, this results
in an approximately 0 AUC as shown in fig. 8. However, it is only by chance that it becomes positive
(on average conservative), and not negative (on average overconfident). From fig. 7 we also see that
the predictive power of the regularized models measured by Ep(θ,x) [log p̂(θ|x)] estimated on the test
set degrades compared to the conservativeness setting in fig. 2.
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Figure 7: Expected value of the approximate log posterior density of the nominal parameters
Ep(θ,x) [log p̂(θ|x)] of the models in fig. 6 estimated over 10k test instances. The solid line is the
median over five random initializations, and the boundaries of the shaded area are defined by the
minimum and maximum values. The horizontal black line indicates the performance of the prior
distribution. Best viewed in color.
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the shaded area spans over the two standard deviation range. Best viewed in color.
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D Intuition about coverage analysis

In this section, we build a toy example to intuitively introduce the concept of Expected Cover-
age Probability and the over-/under-confidence that results from it. We rely on non-conditional
one-dimensional distributions for clarity. In fig. 9 we introduce a black multimodal ground-truth
distribution and a red one intentionally under-dispersed, but with the same modes, acting as the
approximate distribution. We find the 1− α = 0.9 Highest Density Region for the red distribution,
which consists of two segments concentrated around the modes. To mimic the real-world scenario we
sample N = 1000 points from the ground-truth distribution and use them to estimate the expected
coverage probability, which is trivial in one dimension knowing the segments’ boundaries. According
to the plan, the coverage analysis showed that the red distribution is overconfident for evidence from
the data.

E Implementation details

For the details of the architecture of Neural Ratio Estimation models please refer to Delaunoy et al.
[11]. The SELU function [25] is used as an activation function in the feed-forward networks.

For the details of the architecture of Neural Posterior Estimation models please refer to Hermans et al.
[20].

All the models with the proposed regularizer are trained for 500 epochs with 128 batch size with
AdamW optimizer with a 0.001 learning rate.

Additional remarks:

• We use the following PyTorch implementation of Blondel et al. [6]: https://github.
com/teddykoker/torchsort. We use it with the default parameters.

• In order to stabilize the training of regularized NRE (CalNRE) we introduced Gradient
Norm Clipping.

• Training of CalNPE for the M/G/1 in the conservativeness setting with the last four simula-
tion budgets was challenging due to extreme values in observations. It is reflected in the
decrease of Ep(θ,x) [log p̂(θ|x)] in fig. 2 as the simulation budget increases.

• When computing the regularizer the same p̂(·|x∗) is repeatedly evaluated, therefore, our
implementation evaluates x∗s embedding only once (per regularizer evaluation) and reuses
it for all samples.

1
N

∑N
i=1 I(θi ∈ Θp(θ)(0.9)) = 0.793

Figure 9: Plots of two probability density functions of 2-mixture of Gaussians (0.7/0.3 ratio), with
the red one (σ1 = 0.7, σ2 = 0.2) being under-dispersed compared to the black one (σ1 = 0.9,
σ2 = 0.4). The blue region marks 0.9 Highest Posterior Density Region of the red distribution. The
black points on the x-axis are random samples from the black distribution. Below the graph, the
empirical Expected Coverage Probability of the red distribution against N = 1000 samples of the
black distribution is computed. Best viewed in color.
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