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Abstract

The problem of efficient approximation of a linear operator induced by the Gaus-
sian or softmax kernel is often addressed using random features (RFs) which yield
an unbiased approximation of the operator’s result. Such operators emerge in
important applications ranging from kernel methods to efficient Transformers. We
propose parameterized, positive, non-trigonometric RFs which approximate Gaus-
sian and softmax-kernels. In contrast to traditional RF approximations, parameters
of these new methods can be optimized to reduce the variance of the approximation,
and the optimum can be expressed in closed form. We show that our methods
lead to variance reduction in practice (e10-times smaller variance and beyond)
and outperform previous methods in a kernel regression task. Using our proposed
mechanism, we also present FAVOR#, a method for self-attention approximation in
Transformers. We show that FAVOR# outperforms other random feature methods
in speech modelling and natural language processing.

1 Introduction

Random feature decomposition is an important technique for the linearization of nonlinear kernel
functions with theoretical guarantees such as unbiasedness and concentration around the true kernel
value. Linearization allows a significant reduction in computations from quadratic to linear complexity
in the size of the operator induced by the kernel. The technique emerged under the name of random
kitchen sinks (RKS) introduced in [39, 40, 41] and was used in many applications such as kernel SVM
[43, 29, 38, 3], dimensionality reduction [18, 1], neural networks [12, 22, 49, 24, 14], function-to-
function regression [34], kernel regression [28, 2], nonparametric adaptive control [6], differentially-
private ML algorithms [11], operator-valued kernels [32, 8] and semigroup kernels [51]. An in-depth
theoretical analysis of random features was performed by [30, 52, 44, 42].

An exciting recent application of random features is in the area of scalable Transformer networks
[16, 13, 17, 26], where the self-attention matrix is approximated as a low-rank matrix when the
sequence is long. However, the RKS family of methods relies on the Fourier transform, resulting in sin
and cos types of random features, which were shown to be unsuitable for application in Transformers
due to negative values in the low-rank matrix. [16] proposed a solution in the form of positive-valued
random features relying on the exponential function (positive random features, PosRFs), yielding
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a method they called Fast Attention Via Orthogonal positive Random features (FAVOR+) for self-
attention approximation. This solution was improved by [31] by means of a careful choice of the
linear combination parameters under the exponent, and the so-called homogeneity heuristic, which
allows a choice of one set of parameters for all approximated values. The resulting random features
were called generalized exponential random features (GERFs), and the corresponding self-attention
approximation method was termed FAVOR++.

Contributions: In this paper, we make a leap forward in the design of positive-valued random
features by proposing dense exponential random features (DERFs) which contain both PosRFs and
GERFs as special cases. Instead of scalar parameters as in GERFs, DERFs rely on matrix parameters
and dense quadratic forms inside the exponent. We show how to select parameters of the new random
features efficiently without harming the overall subquadratic complexity.

More technically, our contributions are as follows:

1. We show that the homogeneity heuristic of [31] may in fact be viewed not as a heuristic, but a
closed-form optimum of the shifted log-variance objective.

2. We introduce DERFs and three special instantiations: asymmetric DERFs (ADERFs), symmetric
DERFs (SDERFs), and simplified ADERFs (SADERFs). All these instantiations contain GERFs as
a special case (Figure 1, left). For each instantiation we prove that a closed-form optimum of the
shifted log-variance objective can be found efficiently.

3. We show that our new variants result in lower variance than GERFs and other previous methods
in practice (e.g. up to e10 times variance improvement as in Figure 1, right). Further, we show
that DERFs outperform other random features in kernel regression and Transformer setups (speech
modelling and natural language processing). We refer to the DERF-based self-attention approximation
method as FAVOR#.

2 Prerequisites

2.1 Scaled softmax kernel and random features

By the scaled softmax kernel K(α) : Rd × Rd → (0,+∞), where α ∈ R, we denote a mapping
defined as K(α)(x,y) = exp(α∥x∥2 + x⊤y + α∥y∥2) for all x,y ∈ Rd where ∥ · ∥ is an L2-norm.
Two important special cases of the scaled softmax kernel are 1) the Gaussian kernel K(−1/2)(x,y) =
exp(−∥x − y∥2/2) and 2) the softmax kernel K(0)(x,y) = exp(x⊤y). For two sets of vectors
X = {x(i) ∈ Rd}Li=1 and Y = {y(j) ∈ Rd}Lj=1, by K(X ,Y) ∈ RL×L we denote a matrix where
K(α)(X ,Y)i,j = K(α)(x(i),y(j)) for all 1 ≤ i, j ≤ L.

In this paper, we will be interested in the problem of computing K(α)(X ,Y)C where X , Y and a
matrix C ∈ RL×n are provided as an input. A naive solution requires O(L2(d+ n)) computations
for constructing K(α)(X ,Y) (O(L2d)) and computing the matrix multiplication K(α)(X ,Y) ×C
(O(L2n)). Instead, we will use an efficient Monte-Carlo approximation of K(α)(X ,Y)×C using
the following notion of random features (RFs) for the scaled softmax kernel:

Figure 1: (left) Venn diagram of the new types of random features (green) we propose. (right)
Logarithm of the relative variance of different random feature maps on pairs of vectors sampled from
CIFAR10 and MNIST/CIFAR10. A new random feature map SDERF results in a consistent variance
reduction of the previous best method GERF, up to ≈ e10 and ≈ e5 times. Figure 2 extends this plot.
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Definition 2.1. By random features for the scaled softmax kernel K(α), α ∈ R, we denote a
triple T = ⟨ν, f (1), f (2)⟩ where ν is a probability distribution over random objects ω ∈ Ω and
f (i) : Ω× Rd → R, i ∈ {1, 2}, are such mappings that, for all x,y ∈ Rd,

K(α)(x,y) = Eν

[
f (1)(ω,x)f (2)(ω,y)

]
. (1)

The decomposition of type (1) can be used for an efficient unbiased approximation of K(α)(X ,Y)C.
Let ω(1), . . . ,ω(M) ∈ Ω be i.i.d. samples from ν. Define matrices P,S ∈ RL×M where for all
1 ≤ i, j ≤ L,

Pi,: = M−1/2(f (1)(ω(m),x(i)))Mm=1, Sj,: = M−1/2(f (2)(ω(m),y(j)))Mm=1, (2)

where Pi,:,Sj,: ∈ Rd are column vectors corresponding to the rows of P,S. Then according to
(1), K̂ = PS⊤ is an unbiased Monte Carlo (MC) approximation of K(α)(X ,Y) on M samples.
The variance Var K̂i,j = M−1Varνf

(1)(ω,x(i))f (2)(ω,y(j)) of this approximation is inversely
proportional to M , hence M is a tradeoff parameter between computations and precision. Now, K̂C

is an unbiased approximation of K(α)(X ,Y)C but K̂ = PS⊤ is a rank-M matrix, hence computing
K̂C has O(LMn) complexity. Assuming that sampling each ω(m) and computing f (·)(·, ·) are O(d)
operations, which is usually the case, precomputing P and S takes O(LMd) computations, resulting
in a total O(LM(d+ n)) computational complexity. By choosing M ≪ L, we obtain a significant
reduction in computations compared to the exact variant: O(LM(d+ n)) ≪ O(L2(d+ n)).

Operations of type K(α)(X ,Y)C, especially for the Gaussian kernel α = −1/2, emerge in kernel
SVM [40], kernel regression [33, 47] and in physics in the form of the Gauss transform [50]. Another
important application is in the area of efficient Transformers and is discussed in the next section [16].

2.2 Random features for efficient Transformers

RFs found a prominent application in the area of efficient long-sequence Transformers [16]. Trans-
formers rely on a self-attention block for propagating information between elements of the sequence.
If the sequence length is L and input matrices are denoted as Q,K,V ∈ RL×d (queries, keys and
values), then self-attention outputs the following matrix:

Y = diag(K(0)(X ,Y)1L)
−1K(0)(X ,Y)V ∈ RL×d, (3)

where 1L ∈ RL is a vector of all ones, diag(·) returns a diagonal (L × L)-sized matrix with the
argument on the diagonal, X = {x(i) = d−1/4Qi,: ∈ Rd}, and Y = {y(j) = d−1/4Kj,: ∈ Rd}.
Hence, substitution of K̂ instead of K(0)(X ,Y) in (3) reduces computational complexity from O(L2d)
to O(LMd) (n = d + 1). diag(K(0)(X ,Y)1L)

−1K(0)(X ,Y) is the result of a softmax operation
performed on rows of d−1/2QK⊤.

2.3 Existing random features for the softmax kernel

Representation (1) is not unique and different RFs can be proposed for a single K(α). Note that if
⟨ν, f (1), f (2)⟩ are RFs for K(0), then ⟨ν, f̂ (1), f̂ (2)⟩ are RFs for K(α) for α ∈ R where f̂ (k)(ω,x) =
exp(α∥x∥2)f (k)(ω,x). Hereafter we focus on the softmax kernel K(0) without loss of generality.

[15] proposed to use trigonometric random features (TrigRFs) from [40] for efficient Transformers:

Ωtrig = Rd+1, νtrig = Unif([0, 2π])×N (0d, Id)
d, f

(1)
trig((θ, ω̃),x) = (4)

=
√
2 exp(∥x∥2/2) cos(ω̃⊤x+ θ), f

(2)
trig((θ, ω̃),y) =

√
2 exp(∥y∥2/2) cos(−ω̃⊤y+θ), (5)

where ω = (θ, ω̃), Unif(·) denotes a uniform distribution on the argument set, N (0d, Id) is a
multivariate Gaussian distribution with mean 0d (vector of d zeros) and covariance matrix Id (identity
matrix of size d× d).

The next iteration of efficient attention approximators [16] observed a problem with TrigRFs (4-5).
The attention matrix diag(K(0)(X ,Y)1L)

−1K(0)(X ,Y) from (3) is right stochastic meaning that its

3



entries are nonnegative and each row sums to 1 due to the normalizing term diag(K(0)(X ,Y)1L)
−1.

However, since f
(·)
trig can be arbitrary real numbers, P,S (2) and, therefore, K̂ can take negative

values. Hence, diag(K̂1L)
−1K̂ is not right stochastic in general and entries of K̂1L can take very

small and/or negative values resulting in unstable behaviour when inverting diag(K̂1L)
−1. [16]

therefore proposed a new type of positive random features (PosRFs) which have the form:

Ωpos = Rd, νpos = N (0, 1)d, f (1)
pos(ω,x) = f (2)

pos(ω,x) = exp(ω⊤x− ∥x∥2/2).

It is clear that such f
(·)
pos only take strictly positive values resulting in the right stochastic

diag(K̂1L)
−1K̂ and a stable Transformer training procedure.

[31] extended PosRFs, proposing generalized exponential random features (GERFs)1 for K(0):

ΩGE = Rd, νGE = N (0, 1)d, f
(1)
GE(ω,x)=f

(2)
GE(ω,x)=D exp(A∥ω∥2+Bω⊤x+C∥x∥2/2) (6)

where A,B,C,D are real numbers2 satisfying: 1 − 8A > 0, B =
√
1− 4A, C = −0.5, D =

(1− 4A)d/4. [31] express B,C,D through A and find a closed-form equation for the variance of (1):

VarνGE
f
(1)
GE(ω,x)f

(2)
GE(ω,y)=eLGE(A,x,y)−K(0)(x,y)2,

LGE(A,x,y) = d log

(
1− 4A√
1− 8A

)
+

2(1− 4A)

1− 8A
∥x+ y∥2 − ∥x∥2 − ∥y∥2. (7)

The minimum variance corresponds to the minimum L(A,x,y) since K(0)(x,y)2 does not depend
on A. Since L(A,x,y) is defined for a single pair of x,y and not for sets X ,Y , [31] propose a
homogeneity heuristic when they replace ∥x + y∥2, ∥x∥2, ∥y∥2 in (7) with averages over X ,Y:
L−2

∑
i,j ∥x(i) + y(j)∥2, L−1

∑
i ∥x(i)∥2 and L−1

∑
j ∥y(j)∥2 respectively. This heuristic is based

on the assumption that {x(i)} and {y(j)} are homogeneous and their statistics are tightly concentrated
around the mean. After this, the minimum of (7) with respect to A can be found in closed form.

3 Dense-exponential random features (DERFs)

We prove that the homogeneity heuristic (Section 2.3) corresponds to a certain minimization problem.
Then, we present DERFs which generalize GERFs and provide a tighter solution of that problem.

3.1 The objective minimized by GERFs

Our first contribution is showing that the homogeneity heuristic adopted in GERFs is actually an
analytic solution of a certain optimization problem. Define

L(θ;X ,Y, T ) = L−2
∑

1≤i,j≤L

log(Varν [f
(1)(ω,x(i))f (2)(ω,y(j))] +K(0)(x(i),y(j))2), (8)

where T = ⟨ν, f (1), f (2)⟩ are RFs for the kernel K(0) and θ are their parameters appearing implicitly
in ν, f (1), f (2). (8) is a mean log-variance shifted by K(0)(x(i),y(j))2. The best possible value of (8)
is logK(0)(x(i),y(j)) which corresponds to all variances Varf (1)(ω,x(i))f (2)(ω,y(j)) being zero,
meaning that RFs provide exact kernel estimation. Hence, minimization of (8) leads to more precise
estimators on X ,Y . We call the loss function L(θ;X ,Y, T ) the shifted log-variance objective.
Since log is concave loss L is conceptually similar to relative standard deviation: the smaller
K(0)(x(i),y(j)), the higher L is for the same amount of variance Varf (1)(ω,x(i))f (2)(ω,y(j)).

If TGE = ⟨νGE, f
(1)
GE, f

(2)
GE⟩ are taken in (8), then θGE = {A,B,C,D} and L(θGE;X ,Y, TGE) =

L−2
∑

i,j LGE(A;x(i),y(j)). Using (7), we get: L(θGE;X ,Y, TGE) =

d log

(
1− 4A√
1− 8A

)
+

2− 8A

1− 8A

1

L2

∑
i,j

∥x(i) + y(j)∥2− 1

L

∑
i

∥x(i)∥2− 1

L

∑
j

∥y(j)∥2.

1[31] define these RFs for K(−1/2) but we adapt them for K(0) using the trick mentioned above.
2[31] consider a more generalized form when A,B,C,D are complex with an additional parameter s = ±1,

however only the subfamily (6) with s = 1 is proposed for use in the Transformer application.
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That is, L(A;X ,Y) coincides with (7) when ∥x + y∥2, ∥x∥2, ∥y∥2 are replaced by their average
statistics computed on X ,Y . Hence, the homogeneity heuristic (Section 2.3) is nothing but minimiza-
tion of (8). While in general it’s unclear how to find a closed-form optimum of VarK̂ or Var(K̂C),
the global minimum of (8) is feasible and can be computed in O(1) time. Further, in the case of
GERF, the values minimizing (8) lead to very good results in large-scale applications of efficient
Transformers as shown by [31] without knowing about (8) objective. In the next section we present
extensions of GERFs which aim to minimize (8) in closed form.

4 Towards DERFs

Dense-exponential random features (DERFs) are an extension of GERFs where scalars A,B,C are
replaced with dense matrices. DERFs may be viewed as a generalization that contain the previously
introduced classes as special cases. We define DERFs as follows: ΩDE = Rd, νDE = N (0, 1)d and
for k ∈ {1, 2}:

f
(k)
DE(ω,x)=D exp(ω⊤Aω + ω⊤B(k)x+ x⊤C(k)x),

where B(k),C(k) ∈ Rd×d, D ∈ R, A ∈ Sd (a set of d× d real symmetric matrices). Clearly, GERFs
with parameters A,B,C,D can be expressed via DERFs with parameters A = AId, B(1) = B(2) =
BId, C(1) = C(2) = CId, D is unchanged. Our first theoretical result is giving the conditions when
TDE = ⟨νDE, f

(1)
DE, f

(2)
DE⟩ are valid RFs:

Theorem 4.1. Let the following conditions hold: 8A ≺ Id, (B(1))⊤(Id − 4A)−1B(2) = Id,
C(k) = − 1

2 (B
(k))⊤(Id − 4A)−1B(k), D = det(Id − 4A)1/4 where k ∈ {1, 2}. Then TDE are RFs

for K(0) and for all x,y ∈ Rd: VarνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) =

D4 det(Id − 8A)−1/2 exp

(
2x⊤

(
C(1) + (B(1))⊤(Id − 8A)−1B(1)

)
x

+2y⊤
(
C(2)+(B(2))⊤(Id−8A)−1B(2)

)
y+4x⊤(B(1))⊤(Id−8A)−1B(2)y

)
−K(0)(x,y)2. (9)

Our ultimate goal is to find optimal parameters A,B(k),C(k) and D minimizing the variance of the
low-rank approximation of K(0)(X ,Y) where sets X ,Y are provided. Our first observation is that
we can assume that A ∈ Dd (a set of d× d real diagonal matrices). Indeed, any symmetric A can be
expressed as QÃQ⊤ where Q ∈ Od (a set of orthogonal matrices {Z ∈ Rd×d |Z⊤Z = Id}) and
Ã ∈ Dd. Let ω ∼ N (0d, Id). Then, for any x ∈ Rd, k ∈ {1, 2},

f
(k)
DE(ω,x)=D exp(ω⊤QÃQ⊤ω+ω⊤B(k)x+x⊤C(k)x) =

= D exp(ω̃⊤Ãω̃ + ω̃⊤B̃(k)x+ x⊤C(k)x) = f̃
(k)
DE(ω̃,x),

where B̃(k) = Q⊤B(k), ω̃ = Q⊤ω ∼ N (0d, Id) since the distribution ω ∼ N (0d, Id) is isometric,
i.e. rotation-invariant and f̃

(k)
DE are DERFs with parameters Ã, B̃(k), C(k), D. We conclude that with

any A, f (k)
DE(ω,x) can be expressed as DERFs f̃ (k)

DE with Ã ∈ Dd. Hence, hereafter we only consider
A ∈ Dd without loss of generality.

Since B(k),C(k) are dense matrices in general, evaluation of f (k)
DE(ω,x) takes O(d2) time which

is bigger than the O(d) complexity for TrigRFs, PosRFs and GERFs. However, P and S matrices
(2) can be still computed in a time subquadratic in L. For that, precompute (B(k))⊤ω(m), C(1)x(i),
C(2)y(j) for all k ∈ {1, 2}, 1 ≤ m ≤ M , 1 ≤ i, j ≤ L in O((M + L)d2) time. Then, computing
f
(1)
DE(ω

(m),x(i)), f (2)
DE(ω

(m),y(j)) for all 1 ≤ i, j ≤ L, 1 ≤ m ≤ M takes O(LMd) operations.
The complexity of constructing (2) then is O(L(Md+ d2) +Md2) which is still subquadratic in L.

Our goal is to minimize L(θDE;X ,Y, TDE) for θDE = {A,B(1),B(2),C(1),C(2), D}. However,
we find that even for a single pair of x,y it’s unclear how to minimize the variance (9) in closed form.
Hence, below we consider special cases where an analytic solution is feasible.
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Figure 2: Log of the relative variance of new and existing RF mechanisms, mean value over multiple
samples. 0.1 ≤ σ ≤ 1.

4.1 Asymmetric dense-exponential random features

Define RFs TADE = ⟨νADE, f
(1)
ADE, f

(2)
ADE⟩ in the same way as TDE with the only difference

that A = AId where A ∈ R. We refer to these RFs as asymmetric dense-exponential RFs
(ADERFs) since f

(1)
ADE ̸= f

(2)
ADE in general. The only additional restriction of ADERFs com-

pared to DERFs is that all diagonal entries of A ∈ Dd are the same. The parameters of TADE

are θADE = {A,B(1),B(2),C(1),C(2), D}. By ΘADE denote a set of all possible θADE’s resulting
in correct RFs for the kernel K(0), i.e. satisfying Theorem 4.1 with A = AId. The following result
gives an analytic formula for a minimum of L(θADE;X ,Y, TADE). In the theorem, we use notions
of SVD and eigendecomposition of a symmetric matrix [45] (all proofs are in the Appendix).

Theorem 4.2. Let X = {x(i) ∈ Rd}Li=1, Y = {y(j) ∈ Rd}Lj=1. Let M(1) = 1
L

∑L
i=1 x

(i)(x(i))⊤,
M(2) = 1

L

∑L
j=1 y

(j)(y(j))⊤. Suppose that M(1),M(2) ∈ Sd are nonsingular (implying that

L ≥ d). Define µ(3) = d−1L−2
(∑L

i=1 x
(i)
)⊤ (∑L

j=1 y
(j)
)
∈ R. For k ∈ {1, 2}, let M(k) =

Q(k)Λ(k)(Q(k))⊤ be eigendecomposition of a symmetric M(k) where Q(k) ∈ Od. Λ(k) ∈ Dd has
strictly positive diagonal values since M(k) ⪰ 0 by definition and M(k) is nonsingular. Let UΣV⊤

be SVD decomposition of (Λ(1))
1
2 (Q(1))⊤Q(2)(Λ(2))

1
2 where U,V ∈ Od, Σ ∈ Dd has nonnegative

diagonal entries.

One of the solutions θ∗
ADE = {A,B(1),B(2),C(1), C(2), D} of minθADE∈ΘADE

L(θADE;X ,Y, TADE) is as follows. Set ϕ = 2d−1
∑d

l=1 Σl,l + 2µ(3) and, for k ∈ {1, 2},

A =
1

16

(
1− 2ϕ−

√
(2ϕ+ 1)2 + 8ϕ

)
, B(1) =

√
1− 4AΣ1/2U⊤(Λ(1))−1/2(Q(1))⊤,

B(2) =
√
1− 4AΣ−1/2U⊤(Λ(1))1/2(Q(1))⊤, C(k) = − 1

2(1− 4A)
(B(k))⊤B(k), D = (1− 4A)d/4.

Further, we have: L(θ∗
ADE;X ,Y, TADE) =

d

(
log(1−4A)− 1

2
log(1−8A) + 2(1− 8A)−1

(
d−1

d∑
l=1

Σl,l + µ(3)

)
+ 2µ(3)

)
. (10)

Theorem 4.2 implies an algorithm for finding θ∗
ADE efficiently. Namely, compute M(k), k ∈ {1, 2}

(O(Ld2) time) and µ(3) (O(Ld) time). Then, perform matrix decompositions to obtain Q(k),Λ(k),
k ∈ {1, 2}, and U,Σ,V in O(d3) time. After that, A,B(1),B(2),C(1),C(2), D can be all evaluated
in O(d3) time using formulae from Theorem 4.2. The total time complexity of the approximation
scheme is therefore O(L(Md+ d2) +Md2 + d3) which is subquadratic in L as required.
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4.2 Symmetric dense-exponential random features

Define TSDE = ⟨νSDE, f
(1)
SDE, f

(2)
SDE⟩ in the same way as TDE with the only difference that B(1) =

B(2) = B. From the conditions in Theorem 4.1 it follows immediately that also C(1) = C(2) = C.
Hence, f (1)

SDE = f
(2)
SDE and we refer to these RFs as symmetric dense-exponential RFs (SDERFs).

The parameters of TSDE are θSDE = {A,B,C, D}. By ΘSDE denote a set of all possible θSDE’s
resulting in correct RFs for the kernel K(0), i.e. satisfying conditions from Theorem 4.1 with
B(k) = B, C(k) = C, k ∈ {1, 2}. The following theorem gives an analytic solution for a global
minimum of L(θSDE;X ,Y, TSDE).

Theorem 4.3. Let X = {x(i) ∈ Rd}Li=1, Y = {y(j) ∈ Rd}Lj=1 and let M(1), M(2) be defined as in
Theorem 4.2 (but without the restriction of nonsingularity) and define µ(4) = 1

L

∑L
i=1 x

(i) ∈ Rd,
µ(5) = 1

L

∑L
j=1 y

(j) ∈ Rd. Further, let Q(3)Λ(3)(Q(3))⊤ be eigendecomposition of a symmetric
positive semidefinite matrix M(1) + µ(4)(µ(5))⊤ + µ(5)(µ(4))⊤ + M(2) where Q(3) ∈ Od and
Λ(3) ∈ Dd with nonnegative diagonal entries. Let the entries on the diagonal of Λ(3) be sorted in the
non-ascending order.

One of the solutions θ∗
SDE = {A,B,C, D} of minθSDE∈ΘSDE

L(θSDE;X ,Y, TSDE) is as follows.

A ∈ Dd, for all 1 ≤ l ≤ d: Al,l = 1
16

(
1− 2Λ

(3)
l,l −

√(
2Λ

(3)
l,l + 1

)2
+ 8Λ

(3)
l,l

)
, B = (Id −

4A)1/2(Q(3))⊤, C = − 1
2Id, D = det(Id − 4A)1/4. Further, we have: L(θSDE;X ,Y, TSDE) =

d∑
l=1

(
log(1−4Al,l)−

1

2
log(1−8Al,l)+

(
1+(1−8Al,l)

−1)Λ(3)
l,l

)
− 1

L

L∑
i=1

∥x(i)∥2 − 1

L

L∑
j=1

∥y(j)∥2 (11)

Again, Theorem 4.3 implies an algorithm for finding θ∗
SDE in a time subquadratic in L. That is, we can

compute M(1), M(2), µ(3), µ(4), µ(5) in O(Ld2) total time. Then, perform an eigendecomposition
to obtain Q(3),Λ(3) in O(d3) time. After that, A,B,C, D can be computed in O(d3) time using
formulae from Theorem 4.3. The total time complexity of the approximation scheme is the same as
for ADERFs: O(L(Md+ d2) +Md2 + d3) or O(L(Md+ d2) +Md2) if we assume that L ≥ d.

4.3 Simplified ADERFs

While having a compact and closed-form expression, both ADERFs and SDERFs rely on eigende-
composition and SVD decompositions: operations for which implementation has not yet matured in
popular deep learning libraries with GPU and TPU support. For this reason, we propose simplified
ADERFs (SADERFs) TSADE = ⟨νSADE, f

(1)
SADE, f

(2)
SADE⟩ which extend GERFs but require only basic

unary operations. SADERFs are defined via GERFs as follows: ΩSADE = Rd, νSADE = N (0, 1)d,
f
(1)
SADE(ω,x) = f

(1)
GE(ω,Ψx), f (2)

SADE(ω,y) = f
(2)
GE(ω,Ψ−1y) where Ψ ∈ Dd is a diagonal ma-

trix with nonzero diagonal entries. First of all, TSADE are valid random features for the soft-
max kernel K(0) since EνSADE

[f
(1)
SADE(ω,x)f

(2)
SADE(ω,y)] = EνGE

[f
(1)
GE(ω,Ψx)f

(2)
GE(ω,Ψ−1y)] =

K(0)(Ψx,Ψ−1y) = K(0)(x,y), where we use K(0)(x,y) = exp(x⊤y) by the definition.

We find Ψ by optimizing the objective (8) for TSADE, the form of which is easily deduced from
L(θGE;X ,Y, TGE):

L(θSADE;X ,Y, TSADE)− d log

(
1− 4A√
1− 8A

)
=

2− 8A

1− 8A

1

L2

∑
i,j

∥Ψx(i) +Ψ−1y(j)∥2

− 1

L

∑
i

(∥Ψx(i)∥2+∥Ψ−1y(j)∥2)= 1

L2(1−8A)

∑
i,j

∥Ψx(i)+Ψ−1y(j)∥2+ 2

L2

∑
i,j

(x(i))⊤y(j), (12)

where we move a term not depending on Ψ to the left-hand side. Since 1− 8A > 0, we conclude
that minimizing (12) is equivalent to minimizing

∑
i,j ∥Ψx(i) +Ψ−1y(j)∥2=∑

l

∑
i,j

(Ψl,lx
(i)
l +Ψ−1

l,l y
(j)
l )2 =

∑
l

∑
i,j

(Ψ2
l,l(x

(i)
l )2 + 2x

(i)
l y

(j)
l +Ψ−2

l,l (y
(j)
l )2). (13)
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Figure 3: Kernel classification, test accuracy (%). The last plot shows average curves over 8
benchmarks. We observe that our proposed method SDERF, shows the best accuracy across most of
the (benchmark, M ) pairs and also shows the best average performance.

Optimizing (13) reduces to independent optimization problems with respect to Ψl,l, 1 ≤ l ≤ d.
Each problem is convex and the solution is found trivially by setting the derivative to zero: for all
1 ≤ l ≤ d : Ψ∗

l,l = (
∑

j(y
(j)
l )2/

∑
i(x

(i)
l )2)1/4. The solution can be computed in O(dL) time, after

which the parameters of f (1)
GE, f

(2)
GE can be found efficiently as described in Section 2.3.

It is easy to see that TSADE are a special case of ADERFs (Section 4.1) which explains their name.
Furthermore, the case Ψ = Id reduces TSADE to TGE, hence the latter is a special case of the former.
Figure 1 (left) illustrates all the new types of random features in a Venn diagram.

5 Experiments

In this section, we evaluate DERFs experimentally in various machine learning applications. More
details about each experiment can be found in Appendix B.

5.1 Variance comparison

We follow the variance comparison setup from [31]: we sample pairs of vectors x,y and compute
relative variances of the approximation VarK̂(0)(x,y)/K(0)(x,y) where K̂(0) denotes the RF
approximation and VarK̂(0)(x,y) is evaluated via (9). We set d = 64 as in [31] and take 6
different regimes for sampling x,y: normal where x,y are drawn from N (0d, σ

2Id), sphere
where x,y are drawn uniformly on a sphere σSd−1, heterogen where x,y are drawn from different
distributions N (0d, σ

2Id) and N (σ1d, σ
2Id). mnist and cifar10 are where x,y are random

images from MNIST [19] or CIFAR10 [27], resized to 8× 8, scaled by σ > 0 and flattened. Finally,
mnist/cifar10 is a regime where x is drawn as in mnist and y is drawn as in cifar10.

We do not report SADERFs since they’re a special case of ADERFs (Figure 2). SDERFs outperform
or are on par with other methods in all setups – about e5 times better than GERFs in heterogen,
mnist and mnist/cifar10 and about e10 times better in cifar10. Further, ADERFs outperform
GERFs by around e3 times in mnist/cifar10 where x and y are drawn “asymmetrically”.

8



TRANS-8 TRANS-32

TRANS-128

FAVOR#
FAVOR++

FAVOR#
FAVOR++

FAVOR#
FAVOR++

FAVOR#
FAVOR++

NST-8

Figure 4: Comparison of FAVOR# using SDRF with FAVOR++ Performer for regular Conformer-
Transducer training with m random features (TRANS-m) as well as the Noisy Student Training
variant with m random features (NST-m) on the LibriSpeech corpus. We report commonly used
normalized word error rate (NWER) metric.

5.2 Kernel classification

In this experiment, we compare accuracy of different RF methods in kernel classification on 8
benchmarks from UCI [21], following the setup of [31]. Kernel regression [33, 47] is applied for
predicting class probabilities. Training objects are denoted as u(1), . . . ,u(L) ∈ Rd and their one-hot
labels as r(1), . . . , r(L) ∈ Rn. During testing, the goal is to predict the class of a new object u∗ as
argmax1≤l≤nr

∗ where r∗ =
∑L

i=1 K
(−0.5)(σu∗, σu(i))r(i) and σ > 0 is tuned on the validation

set. With O(nLM) preprocessing, RFs are used to find an unbiased approximation of r∗ in O(nM)
instead of O(nL) exact computation. For each benchmark, we range the values of M from 24 to 27

(Figure 3). We observe that SDERF, which is proposed in this paper, shows the best accuracy across
most of the (benchmark, M ) pairs and also shows the best average performance.

5.3 DERFs for long-sequence Transformers

In this section, we evaluate DERFs for self-attention approximation in Performer-Transformer training
setups [16]. We refer to the DERF-based self-attention approximation method as FAVOR#.

5.3.1 Speech modelling

In our first set of experiments, we focus on speech models. We train Performer-encoders and test them
on the LibriSpeech corpus [35], commonly used for benchmarking speech models. We considered
two Transformers architectures/training setups: (a) Conformer-Transducer [23] trained in a regular
way (TRANS) as well as: (b) the Noisy Student Training (NST) variant introduced in [36]. We
compare “performized” variants of these architectures, applying FAVOR# with SDERF (since it
worked best in the previous setups) as well as FAVOR++ [31].

In the first setting, we see that FAVOR# consistently outperforms FAVOR++ for smaller m (where
reduced variance of the softmax-kernel estimation is more critical) and both achieve similar scores
for larger m. In the NST-experiment, we focused on the smaller m variant, where FAVOR# again
beats FAVOR++. All results are presented in Fig. 4.

5.3.2 Natural language processing

The General Language Understanding Evaluation (GLUE) benchmark [46] consists of 8 different
natural language understanding tasks with the sequence length ranging from 32 to 128. We use this
to test the performance of different low rank attention methods on NLP tasks. We used the same
training parameters as mentioned in [20] (see Appendix B.4.2 for details). We warm start all low-rank
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Table 1: GLUE Dev results on base sized models. Number of training examples is reported below
each task. MCC score is reported for CoLA, F1 score is reported for MRPC, Spearman correlation is
reported for STS-B, and accuracy scores are reported for the other tasks. The best result, second best.
System MNLI(m) QQP QNLI SST-2 CoLA STS-B MRPC RTE

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

Local Attention [37] 75.68 86.52 87.31 89.71 61.07 83.65 75.47 59.84
Global + Sliding Wndw [4, 53] 81.82 90.35 89.91 92.43 61.81 85.58 87.80 67.15
ELU [26] 82.58 90.05 89.81 92.43 58.63 87.91 87.50 67.15
RELU [16] 82.49 90.71 89.68 92.32 57.57 88.15 87.25 68.95
FAVOR+ [16] 77.69 86.69 89.41 91.80 54.87 83.78 80.73 66.19
FAVOR++ [31] 82.29 90.43 89.73 92.20 58.85 85.90 88.73 67.63

FAVOR# 82.69 90.68 90.01 92.53 59.33 85.48 87.99 69.68

Transformers with a pre-trained BERT-base model checkpoint [20], thus contrasting how well the
low rank methods approximate the softmax kernel.

We compared FAVOR++ [31], FAVOR+ [16], ELU [26], ReLU [16] variants of the Performers
[16] and sparse attention [37, 4] against the FAVOR# variant and report the results in Table 1. We
couldn’t use SDERF in this setup because eigendecomposition led to errors on TPUs due to a different
implementation compared to the speech modelling experiment. For this reason, we used SADERF
which doesn’t require any matrix decompositions. On most tasks we find that FAVOR# is the best
or second best performing variant showcasing its effectiveness in modelling the softmax kernel for
Transformers.

6 Conclusion

We proposed an extension of generalized exponential random features (GERFs) for the Gaussian and
softmax kernels: dense-exponential random features (DERFs). DERFs employ matrix parameters and
are more flexible than GERFs. We evaluated DERFs in several applications such as kernel regression
and two Transformers training setups, demonstrating downstream performance benefits.

Limitations & broader impact. Optimizing matrix parameters in the most general formulation
of DERFs (Theorem 4.1) could lead to further variance reductions. It remains an open question
how to find a closed form solution of the optimum which we leave to future work. Our work is
primarily theoretical but has broad applications. A prominent application is efficient Transformers
which should be used responsibly due to their potential for misuse and significant societal impact,
and carbon footprint [48, 5, 10].
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A Proofs

A.1 Proof of Theorem 4.1

Proof. By the definition of ⟨νDE, f
(1)
DE, f

(2)
DE⟩, we have:

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = (2π)−

d
2D2

∫
Rd

exp

(
−1

2
∥ω∥2 + 2ω⊤Aω

+ ω⊤(B(1)x+B(2)y) + x⊤C(1)x+ y⊤C(2)y

)
dω

= (2π)−
d
2D2 exp

(
x⊤C(1)x+ y⊤C(2)y

)
×
∫
Rd

exp

(
−1

2
ω⊤(Id − 4A)ω + ω⊤(B(1)x+B(2)y)

)
dω.

Since 8A ≺ Id, we have 4A ≺ 0.5Id ≺ Id, meaning that Id − 4A is positive definite and invertible.
The following identity is straightforward to check:

−1

2
ω⊤(Id − 4A)ω + ω⊤(B(1)x+B(2)y) = −1

2
(ω − µ)

⊤
Σ−1(ω − µ) +

1

2
µ⊤Σ−1µ,

Σ = (Id − 4A)−1, µ = Σ(B(1)x+B(2)y).

Therefore, we have:

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = (2π)−d/2D2 exp

(
x⊤C(1)x+ y⊤C(2)y +

1

2
µ⊤Σ−1µ

)
×
∫
Rd

exp

(
−1

2
(ω − µ)

⊤
Σ−1(ω − µ)

)
dω.

Next, we use the fact that the integral of the multivariate Gaussian distribution with mean µ and
variance Σ is 1:

(2π)−d/2 det(Σ)−1/2

∫
Rd

exp

(
−1

2
(ω − µ)

⊤
Σ−1(ω − µ)

)
dω = 1.

From that we conclude:

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = D2 det(Σ)1/2 exp

(
x⊤C(1)x+ y⊤C(2)y +

1

2
µ⊤Σ−1µ

)
= D2 det(Id − 4A)−1/2 exp

(
x⊤C(1)x+ y⊤C(2)y

+
1

2
(B(1)x+B(2)y)⊤(Id − 4A)−1(B(1)x+B(2)y)

)
= D2 det(Id − 4A)−1/2 exp

(
x⊤
(
C(1) +

1

2
(B(1))⊤(Id − 4A)−1B(1)

)
x

+y⊤
(
C(2) +

1

2
(B(2))⊤(Id − 4A)−1B(2)

)
y + x⊤(B(1))⊤(Id − 4A)−1B(2)y

)
.

Based on this expression, we conclude that, indeed, EνDEf
(1)
DE(ω,x)f

(2)
DE(ω,y) = K(0)(x,y) for all

x,y ∈ Rd if the conditions from theorem’s statement are satisfied.

Next, we calculate expression for the variance. For any random variable Z, VarZ = EZ2 − (EZ)2.
In particular, if Z = f

(1)
DE(ω,x)f

(2)
DE(ω,y), ω ∼ νDE, we get:

VarνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = EνDE

f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 −

(
EνDE

f
(1)
DE(ω,x)f

(2)
DE(ω,y)

)2
= EνDE

f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 −K(0)(x,y)2.
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We have:

EνDE
f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 = (2π)

d
2D4

∫
Rd

exp

(
−1

2
∥ω∥2 + 4ω⊤Aω + 2ω⊤(B(1)x+B(2)y)

+ 2x⊤C(1)x+ 2y⊤C(2)y

)
dω = (2π)

d
2D4 exp

(
2x⊤C(1)x+ 2y⊤C(2)y

)
×
∫
Rd

exp

(
−1

2
ω⊤(Id − 8A)ω + 2ω⊤(B(1)x+B(2)y)

)
dω.

Evaluation of the integral above can be done in the same way as calculation of
EνDE

f
(1)
DE(ω,x)f

(2)
DE(ω,y), noticing that Id − 8A is positive definite and invertible. The result

is as follows:

EνDE
f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 = D4 det(Id − 8A)−1/2

× exp

(
2x⊤

(
C(1) + (B(1))⊤(Id − 8A)−1B(1)

)
x

+2y⊤
(
C(2) + (B(2))⊤(Id − 8A)−1B(2)

)
y + 4x⊤(B(1))⊤(Id − 8A)−1B(2)y

)
.

We conclude that the variance expression given in the theorem’s statement is correct.

A.2 Important lemma

Below, we prove an important lemma which is used in the subsequent proofs:
Lemma A.1. Consider a function f : (−∞, 1

8 ) defined as

f(A) = log(1− 4A)− 1

2
log(1− 8A) +

ϕ

1− 8A
(14)

where ϕ ≥ 0. Then, the minimum of f on (−∞, 1
8 ) is achieved at

A∗ =
1

16

(
1− 2ϕ−

√
(2ϕ+ 1)

2
+ 8ϕ

)
. (15)

Proof. Set γ = (1 − 8A)−1 ∈ (0,+∞). Note that there is a one-to-one correspondence between
γ ∈ (0,+∞) and A ∈ (−∞, 1

8 ). Hence, we can substitute γ−1 = 1 − 8A and 1 − 4A =

((1− 8A)+ 1)/2 = (γ−1 +1)/2 = 1+γ
2γ in (14) and equivalently perform minimization with respect

to γ:

min
γ∈(0,+∞)

h(γ) = log

(
γ + 1

2γ

)
+

1

2
log γ + ϕγ = log(γ + 1)− 1

2
log γ − log 2 + ϕγ.

For h(·)’s derivative, we have:

h′(γ) = ϕ+
1

γ + 1
− 1

2γ
= ϕ+

γ − 1

2γ(γ + 1)
(16)

=
2ϕγ(γ + 1) + γ − 1

2γ(γ + 1)
=

2ϕγ2 + (2ϕ+ 1)γ − 1

2γ(γ + 1)
. (17)

Based on (16), we see that h′(γ) → −∞ as γ → 0 and h′(γ) > ϕ ≥ 0 for all γ > 1. Hence,
we conclude that h(·) is bounded from below on (0,+∞) and the global minimum γ∗ on (0,+∞)
exists and it is one of the points satisfying h′(γ∗) = 0. Hence, it’s one of the positive roots of the
polynomial in numerator of (17).

If ϕ = 0, there is a single root γ∗ = 1 of the polynomial in the numerator of (17), hence it is a global
minimum of h(·). If ϕ > 0, then there are two roots of the polynomial in the numerator of (17):

γ∗
− =

−(2ϕ+ 1)−
√
(2ϕ+ 1)2 + 8ϕ

4ϕ
,
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γ∗
+ =

−(2ϕ+ 1) +
√
(2ϕ+ 1)2 + 8ϕ

4ϕ
. (18)

Note that, if ϕ > 0, then 2ϕ + 1 > 0 and (2ϕ + 1)2 + 8ϕ ≥ (2ϕ + 1)2. Hence, γ∗
− < 0 and

γ∗
+ > 0. We conclude that γ∗ = γ∗

+ is the minimum of h(·) on (0,+∞). We multiply numerator and
denominator of (18)’s right hand side by (2ϕ+ 1) +

√
(2ϕ+ 1)2 + 8ϕ > 0:

γ∗ = γ∗
+ =

((2ϕ+ 1)2 + 8ϕ)− (2ϕ+ 1)2

4ϕ
(
(2ϕ+ 1) +

√
(2ϕ+ 1)2 + 8ϕ

) =
2

2ϕ+ 1 +
√
(2ϕ+ 1)2 + 8ϕ

. (19)

Note that the right hand side of (19) is equivalent to (18) when ϕ > 0 but also holds for the case
when ϕ = 0 (i.e. when γ∗ = 1). We conclude that f(·) is minimized at A∗ = 1

8 (1− (γ∗)−1) since
γ∗ = (1− 8A∗)−1. It’s easy to see that (15) follows from (19) directly.

A.3 Proof of Theorem 4.2

Proof. With A = AId, the conditions from Theorem 4.1 read as

8A < 1,
1

1− 4A
(B(1))⊤B(2) = Id, C(k) = − 1

2(1− 4A)
(B(k))⊤B(k), D = (1− 4A)d/4

(20)
for k ∈ {1, 2}. And the variance expression (9) for all x,y ∈ Rd transforms into

VarνADEf
(1)
ADE(ω,x)f

(2)
ADE(ω,y) = D4(1− 8A)−d/2 exp

(
2x⊤

(
C(1) +

1

1− 8A
(B(1))⊤B(1)

)
x

+2y⊤
(
C(2) +

1

1− 8A
(B(2))⊤B(2)

)
y +

4

1− 8A
x⊤(B(1))⊤B(2)y

)
−K(0)(x,y)2.

We express C(k) through A,B(k) and D through A using (20) in the equation above:

VarνADEf
(1)
ADE(ω,x)f

(2)
ADE(ω,y) =

(
1− 4A√
1− 8A

)d

exp

((
2

1− 8A
− 1

1− 4A

)
x⊤(B(1))⊤B(1)x

+

(
2

1− 8A
− 1

1− 4A

)
y⊤(B(2))⊤B(2)y +

4

1− 8A
x⊤(B(1))⊤B(2)y

)
−K(0)(x,y)2.

Since 1
1−4A (B(1))⊤B(2) is a full-rank matrix Id (20), both B(1) and B(2) are full-rank. Hence, we

can express B(2) = (1− 4A)(B(1))−⊤. Also, note that

2

1− 8A
− 1

1− 4A
=

2− 8A− 1 + 8A

(1− 8A)(1− 4A)
= (1− 8A)−1(1− 4A)−1.

We rewrite the expression for the variance using the identity above and the formula for B(2):

VarνADE
f
(1)
ADE(ω,x)f

(2)
ADE(ω,y) =

(
1− 4A√
1− 8A

)d

exp

(
(1− 8A)−1(1− 4A)−1x⊤(B(1))⊤B(1)x

+(1− 8A)−1(1− 4A)y⊤((B(1))⊤B(1))−1y + 4(1− 8A)−1(1− 4A)x⊤y

)
−K(0)(x,y)2.

We use the expression above to rewrite (8) for ⟨ν, f (1), f (2)⟩ = ⟨νADE, f
(1)
ADE, f

(2)
ADE⟩ as follows:

L(θADE;X ,Y, TADE) = L−2
∑

1≤i,j≤L

log(VarνADEf
(1)
ADE(ω,x(i))f

(2)
ADE(ω,y(j)) +K(0)(x(i),y(j)))

= d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1(1− 4A)−1L−1

L∑
i=1

(x(i))⊤(B(1))⊤B(1)x(i)

+(1− 8A)−1(1− 4A)L−1
L∑

j=1

(y(j))⊤(B(1))−1(B(1))−⊤y(j)
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+4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j). (21)

Denote E = (B(1))⊤B(1). Then (21) becomes:

L(θADE;X ,Y, TADE) = d log(1− 4A)− d

2
log(1− 8A)

+(1− 8A)−1(1− 4A)−1L−1
L∑

i=1

(x(i))⊤Ex(i)

+(1− 8A)−1(1− 4A)L−1
L∑

j=1

(y(j))⊤E−1y(j) + 4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j).

(22)

We next prove the following lemma:

Lemma A.2. Let B(1)∗ =
√
1− 4AΣ1/2U⊤(Λ(1))−1/2(Q(1))⊤. When A (8A < 1) is fixed,

E = E∗ = (B(1)∗)⊤B(1)∗ minimizes the right hand side of (22) with respect to E.

Proof. We have:

L−1
L∑

i=1

(x(i))⊤Ex(i) = L−1
L∑

i=1

Trace((x(i))⊤Ex(i)) = L−1
L∑

i=1

Trace(Ex(i)(x(i))⊤)

= Trace

(
E

(
L−1

L∑
i=1

x(i)(x(i))⊤

))
= Trace(EM(1))

where we use the cyclic property of trace Trace(·) and linearity of trace. Analogously, we obtain
L−1

∑L
j=1(y

(j))⊤E−1y(j) = Trace(E−1M(2)). Assuming that A is fixed, optimization of (22)
with respect to E reduces to the following minimization problem:

min
E∈Sd,E≻0

F(E) = β1Trace(EM(1)) + β2Trace(E
−1M(2)) (23)

where β1 = (1− 8A)−1(1− 4A)−1, β2 = (1− 8A)−1(1− 4A) and the constraint E ∈ Sd,E ≻ 0
follows from the fact that E = (B(1))⊤B(1) and E is invertible. We have 1 − 8A > 0 and
1− 4A = (1− 8A)/2+1/2 > 0. Hence, β1, β2 > 0. For any E ≻ 0 and any ∆ ∈ Sd there is t ∈ R
small enough such that E+ tB is invertible and the following Neumann series is convergent:

(E+ t∆)−1 = E−1(Id + t∆E−1)−1 =

∞∑
l=0

(−t)lE−1(∆E−1)l

We further deduce:

Trace((E+ t∆)−1M(2)) = Trace

(( ∞∑
l=0

(−t)lE−1(∆E−1)l

)
M(2)

)
=

=

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
and, therefore,

F(E+ t∆) = β1Trace((E+ t∆)M(1)) + β2

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
= β1Trace(EM(1)) + tβ1Trace(∆M(1)) + β2

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
. (24)
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Further, we have:

∂

∂t
F(E+ t∆) = β1Trace(∆M(1)) + β2

∞∑
l=1

(−1)lltl−1Trace
(
E−1(∆E−1)lM(2)

)
,

∂2

(∂t)2
F(E+ t∆) = β2

∞∑
l=2

(−1)ll(l − 1)tl−2Trace
(
E−1(∆E−1)lM(2)

)
,

∂2

(∂t)2
F(E+ t∆)

∣∣∣∣
t=0

= 2β2Trace
(
E−1∆E−1∆E−1M(2)

)
. (25)

We replace M(2) = Q(2)(Λ(2))1/2(Λ(2))1/2(Q(2))⊤ and apply the cyclic property of trace in (25):

∂2

(∂t)2
F(E+ t∆)

∣∣∣∣
t=0

= 2β2Trace
(
(Λ(2))1/2(Q(2))⊤E−1∆E−1∆E−1Q(2)(Λ(2))1/2

)
= 2β2Trace

(
TE−1T⊤)

where T = (Λ(2))1/2(Q(2))⊤E−1∆. Since E is positive definite, E−1 is also positive definite and
TE−1T⊤ is at least positive semidefinite. Hence, Trace

(
TE−1T⊤) ≥ 0 and also ∂2

(∂t)2F(E +

t∆)|t=0 ≥ 0. We conclude that F(E) is a convex function on {E ∈ Sd |E ≻ 0}. Since {E ∈
Sd |E ≻ 0} is an open set, (every) global minimum E of (23) satisfies two conditions

1) E ≻ 0, and 2) ∇F(E) = 0d×d (26)

Set t = 1 and assume that ∆ ∈ Sd is small enough by norm so that E + ∆ is invertible and the
Neumann series for (Id +∆E−1)−1 is convergent. Then, (24) holds for t = 1:

F(E+∆) = β1Trace(EM(1)) + β1Trace(∆M(1)) + β2

∞∑
l=0

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
= F(E) + β1Trace(∆M(1)) + β2

∞∑
l=1

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
= F(E) + β1Trace(∆M(1))− β2Trace

(
E−1∆E−1M(2)

)
+β2

∞∑
l=2

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
.

Clearly, β2

∑∞
l=2(−1)lTrace

(
E−1(∆E−1)lM(2)

)
= o(∥∆∥) where ∥ · ∥ is an L2-norm. Also,

using the cyclic property of trace, we get:

Trace
(
E−1∆E−1M(2)

)
= Trace

(
∆E−1M(2)E−1

)
.

Therefore, we have:

F(E+∆) = Trace
(
∆
(
β1M

(1) − β2E
−1M(2)E−1

))
+ o(∥∆∥). (27)

Since ∆,E−1,M(1),M(2) ∈ Sd, from (27) it follows that

∇F(E) = β1M
(1) − β2E

−1M(2)E−1. (28)

Let E∗ = (B(1)∗)⊤B(1)∗ ⪰ 0. Note that

4

√
β2

β1
= 4

√
(1− 8A)−1(1− 4A)

(1− 8A)−1(1− 4A)−1
=

√
1− 4A.

Since
√
β2/β1 ̸= 0, Σ, U, Λ−1/2, Q(1) are full-rank, E∗ is also full-rank, therefore E∗ ≻ 0 and it

satisfies condition 1 from (26). Observe that

E∗Q(1)(Λ(1))1/2 =
√
β2/β1Q

(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2(Q(1))⊤Q(1)(Λ(1))1/2
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=
√
β2/β1Q

(1)(Λ(1))−1/2UΣU⊤

=
√
β2/β1Q

(1)(Λ(1))−1/2(UΣV⊤)VU⊤

=
√
β2/β1Q

(1)(Λ(1))−1/2((Λ(1))
1
2 (Q(1))⊤Q(2)(Λ(2))

1
2 )VU⊤

=
√
β2/β1Q

(2)(Λ(2))1/2VU⊤

where we use definitions of E∗, U, Σ, V and orthogonality of Q(1),Q(2),U,V. Hence, we deduce
that

β1E
∗M(1)E∗ = β1E

∗Q(1)(Λ(1))1/2
(
(Λ(1))1/2(Q(1))⊤E∗

)
(29)

= β1
β2

β1
Q(2)(Λ(2))1/2

(
(Λ(2))1/2(Q(2))⊤

)
= β2M

(2) (30)

by the definition of Q(1), Λ(1), Q(2), Λ(2) and due to orthogonality of V, U. By left- and right-
multiplication of (30) by (E∗)−1 we deduce that

β1M
(1) = β2(E

∗)−1M(2)(E∗)−1

or, in other words, ∇F(E∗) = 0d×d and the condition 2 from (26) is also satisfied. We conclude that
the global minimum of (23) is achieved at E∗.

According to Lemma A.2, B(1) = B(1)∗ is a global minimum of (21)’s right hand side when A is
fixed. Indeed, if there is B(1) which leads to a smaller value of (21), E = (B(1))⊤B(1) would lead
to a smaller value of (22)’s right hand side. Also, this E is positive definite by definition (note that
B(1) is nonsingular), leading to contradiction with Lemma A.2.

Substituting E∗ instead of E in (22) corresponds to the minimum value of L(θAGE;α,X ,Y, TAGE)
for a fixed A. Our next step is to minimize this expression with respect to A. Denote F =

Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2(Q(1))⊤. Then E∗ = (1− 4A)F where F doesn’t depend on A.
We substitute E∗ into (22) and get:

d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1(1− 4A)−1Trace((1− 4A)FM(1))

+(1− 8A)−1(1− 4A)Trace((1− 4A)−1F−1M(2))

+4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j)

= d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1Trace(FM(1)) + (1− 8A)−1Trace(F−1M(2))

+2
(
1 + (1− 8A)−1

)
dµ(3) (31)

where we also replace

L−2
∑

1≤i,j≤L

(x(i))⊤y(j) = L−2

(
L∑

i=1

x(i)

)⊤ L∑
j=1

y(j)

 = dµ(3)

and

(1− 8A)−1(1− 4A) =
(1− 8A) + 1

2(1− 8A)
=

1

2

(
1 + (1− 8A)−1

)
Based on (30) and since F =

√
β1/β2E

∗, we conclude that FM(1)F = M(2), or M(1)F =

F−1M(2). Using the cyclic property of trace, we get:

Trace(FM(1)) = Trace(M(1)F) = Trace(F−1M(2)).

By the definition of F, Λ(1),Q(1) and using the cyclic property and orthogonality of Q(1),U, we
have:

Trace(FM(1)) = Trace
(
Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2Q(1))⊤

(
Q(1)Λ(1)(Q(1))⊤

))
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= Trace
(
Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))1/2(Q(1))⊤

)
= Trace

(
ΣU⊤(Λ(1))1/2(Q(1))⊤Q(1)(Λ(1))−1/2U

)
= Trace(Σ) =

d∑
l=1

Σl,l.

Hence, (31) finally becomes:

d log(1− 4A)− d

2
log(1− 8A) + 2(1− 8A)−1

d∑
l=1

Σl,l + 2
(
1 + (1− 8A)−1

)
dµ(3)

= d

(
log(1− 4A)− 1

2
log(1− 8A) + 2(1− 8A)−1

(
d−1

d∑
l=1

Σl,l + µ(3)

)
+ 2µ(3)

)
. (32)

Next, we use Lemma A.1 (ϕ = d−1
∑d

l=1 Σl,l + µ(3) ≥ 0) for deriving expression for A which
minimizes (32). This expression coincides with the one in Theorem’s statement. The expressions
for B(2),C(1),C(2) follow directly from (20), optimal B(1) = B(1)∗ and A. (10) follows from (32).
The proof is concluded.

A.4 Proof of Theorem 4.3

Proof. With B(1) = B(2) = B and C(1) = C(2) = C, the conditions from Theorem 4.1 read as

8A ≺ Id, B⊤(Id−4A)−1B = Id, C = −1

2
B⊤(Id−4A)−1B = −1

2
Id, D = det(Id−4A)1/4.

(33)
Denote Q = (Id − 4A)−1/2B ∈ Rd×d. Then, according to (33), Q⊤Q = Id, that is Q ∈ Od. We
rewrite (9) using (33) and then substitute B = (Id − 4A)1/2Q:

VarνSDE
f
(1)
SDE(ω,x)f

(2)
SDE(ω,y) = det(Id − 4A) det(Id − 8A)−1/2 exp

(
−∥x∥2

+2x⊤B⊤(Id − 8A)−1Bx− ∥y∥2 + 2y⊤B⊤(Id − 8A)−1By + 4x⊤B⊤(Id − 8A)−1By

)
−K(0)(x,y)2 = det(Id − 4A)1/4 det(Id − 8A)−1/2 exp

(
−∥x∥2 − 2x⊤Q⊤EQx− ∥y∥2

−2y⊤Q⊤EQy − 4x⊤Q⊤EQy

)
−K(0)(x,y)2 (34)

where we denote:

E = −(Id − 4A)1/2(Id − 8A)−1(Id − 4A)1/2 = −(Id − 4A)(Id − 8A)−1

= −1

2
((Id − 8A) + Id) (Id − 8A)−1 = −1

2
Id −

1

2
(Id − 8A)−1 (35)

which is in Dd since A ∈ Dd. Next, we observe:

2x⊤Q⊤EQx+ 2y⊤Q⊤EQy + 4x⊤Q⊤EQy = 2(x+ y)⊤Q⊤EQ(x+ y)

We plug this into (34) and use the resulting expression to rewrite (8) for ⟨ν, f (1), f (2)⟩ =

⟨νSDE, f
(1)
SDE, f

(2)
SDE⟩ as follows:

L(θSDE;X ,Y, TSDE) = L−2
∑

1≤i,j≤L

log(VarνSDE
f
(1)
SDE(ω,x(i))f

(2)
SDE(ω,y(j)) +K(0)(x(i),y(j)))

= log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

−2L−2
∑

1≤i,j≤L

(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j)). (36)
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Using linearity and cyclic property of trace, we deduce that

L−2
∑

1≤i,j≤L

(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j)) =

= L−2
∑

1≤i,j≤L

Trace
(
(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j))

)
= L−2

∑
1≤i,j≤L

Trace
(
Q⊤EQ(x(i) + y(j))(x(i) + y(j))⊤

)

= Trace

Q⊤EQ

L−2
∑

1≤i,j≤L

(x(i) + y(j))(x(i) + y(j))⊤


Observe that

L−2
∑

1≤i,j≤L

(x(i) + y(j))(x(i) + y(j))⊤ =

= L−2
∑

1≤i,j≤L

(
x(i)(x(i))⊤ + x(i)(y(j))⊤ + y(j)(x(i))⊤ + y(j)(x(j))⊤

)

= L−1
L∑

i=1

x(i)(x(i))⊤ +

(
L−1

L∑
i=1

x(i)

)L−1
L∑

j=1

y(j)

⊤

+

L−1
L∑

j=1

y(j)

(L−1
L∑

i=1

x(i)

)⊤

+L−1
L∑

j=1

y(j)(y(j))⊤ = M(1) + µ(4)(µ(5))⊤ + µ(5)(µ(4))⊤ +M(2).

Denote N = M(1) + µ(4)(µ(5))⊤ + µ(5)(µ(4))⊤ +M(2). We conclude that

L(θSDE;X ,Y, TSDE) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2

−L−1
L∑

j=1

∥y(j)∥2 − 2Trace
(
Q⊤EQN

)
. (37)

With A fixed, we minimize the right hand side of (37) with respect to Q which is equivalent
to minimizing L(θSDE;X ,Y, TSDE) with respect to B with fixed A, since there is a one-to-one
correspondence between B and Q. This is equivalent to maximizing, again using the cyclic property
of trace,

Trace
(
Q⊤EQN

)
= Trace

(
EQNQ⊤) (38)

with respect to Q. We prove the following lemma first:

Lemma A.3. Suppose that diagonal entries of E are all distinct, and the same holds for Λ(3). Let
Π ∈ {0, 1}d×d be a permutation matrix sorting diagonal entries of E (i.e. by applying ΠEΠ⊤) in a
descending order corresponding to a permutation π ∈ Nd. Set Q∗ = Π⊤(Q(3))⊤ ∈ Od. Then we
have:

Trace
(
EQ∗N(Q∗)⊤

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l (39)

= sup
Q∈Od

Trace
(
EQNQ⊤) (40)

Proof. First of all, we have:

Trace
(
EQ∗N(Q∗)⊤

)
= Trace

(
EΠ⊤(Q(3))⊤NQ(3)Π

)
= Trace

(
EΠ⊤Λ(3)Π

)
(41)
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= Trace
(
ΠEΠ⊤Λ(3)

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l , (42)

i.e. (39) is satisfied.

Optimization for finding supQ∈Od
Trace

(
EQNQ⊤) is a well-studied problem [9]. By the definition,

Λ(3) has eigenvalues of N on the main diagonal and E ∈ Dd hence it contains its eigenvalues on its
main diagonal. Then, as proven in [9], Q∗ is indeed a global maximum of this problem in the case of
distinct eigenvalues for E and N. That is, (40) is proven.

Next, we prove a generalization of Lemma A.3 when diagonal entries of E and Λ(3) are not necessarily
distinct:

Lemma A.4. Let Π ∈ {0, 1}d×d be a permutation matrix sorting diagonal entries of E (i.e. by
applying ΠEΠ⊤) in any non-ascending order corresponding to a permutation π ∈ Nd. Set
Q∗ = Π⊤(Q(3))⊤ ∈ Od. Then we have:

Trace
(
EQ∗N(Q∗)⊤

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l (43)

= sup
Q∈Od

Trace
(
EQNQ⊤) (44)

Proof. In the same way as (41-42), we show that Trace
(
EQ∗N(Q∗)⊤

)
=
∑d

l=1 Eπl,πl
Λ

(3)
l,l , i.e.

(43) is satisfied. Next we prove that for any Q ∈ Od,

Trace
(
EQNQ⊤) ≤ d∑

l=1

Eπl,πl
Λ

(3)
l,l . (45)

which would imply (44).

Our proof is by contradiction. First of all, we can assume that E,Λ(3) are nonzero matrices since
otherwise we have (44) trivially. Since Trace

(
EQNQ⊤) is a continuous function of Q and Od is

compact, supQ∈Od
Trace

(
EQNQ⊤) is finite. Suppose that there is δ > 0 such that

δ = sup
Q∈Od

Trace
(
EQNQ⊤)− d∑

l=1

Eπl,πl
Λ

(3)
l,l . (46)

Let Ẽ, Λ̃
(3)

∈ Dd be matrices with all distinct values on the diagonal such that

∥Ẽ−E∥F ≤ min

(
∥E∥F,

δ

12∥Λ(3)∥F

)
, ∥Λ̃

(3)
−Λ(3)∥F ≤ δ

12∥E∥F
(47)

where ∥ · ∥F denotes Frobenius norm and ∥E∥F, ∥Λ(3)∥F ̸= 0 since these are nonzero matrices.

Further, we assume that diagonal entries of Λ̃
(3)

are sorted in a descending order and, in addition

to Λ(3), π also sorts entries of Ẽ in a non-ascending (descending) order. Clearly, such Ẽ, Λ̃
(3)

can

be obtained by small perturbations of E, Λ(3). Also, denote Ñ = Q(3)Λ̃
(3)

(Q(3))⊤. Since Od is
a compact closed set and Trace

(
EQNQ⊤) is a continuous function of Q, there exists Q∗∗ ∈ Od

such that
Trace

(
EQ∗∗N(Q∗∗)⊤

)
= sup

Q∈Od

Trace
(
EQNQ⊤) . (48)

By the definition of Ẽ, Λ̃
(3)

, Ñ, we have:

Trace
(
EQ∗∗N(Q∗∗)⊤

)
− Trace

(
ẼQ∗∗Ñ(Q∗∗)⊤

)
=
(
Trace

(
EQ∗∗N(Q∗∗)⊤

)
− Trace

(
EQ∗∗Ñ(Q∗∗)⊤

))
+
(
Trace

(
EQ∗∗Ñ(Q∗∗)⊤

)
23



−Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
= Trace

(
EQ∗∗

(
N− Ñ

)
(Q∗∗)⊤

)
+Trace

((
E− Ẽ

)
Q∗∗Ñ(Q∗∗)⊤

)
.

Next, we apply Cauchy-Schwarz inequality to both terms:

Trace
(
EQ∗∗

(
N− Ñ

)
(Q∗∗)⊤

)
≤ ∥(Q∗∗)⊤E∥F∥(N− Ñ)(Q∗∗)⊤∥F = ∥E∥F∥N− Ñ∥F,

Trace
((

E− Ẽ
)
Q∗∗Ñ(Q∗∗)⊤

)
≤ ∥(Q∗∗)⊤(E− Ẽ)∥F∥Ñ(Q∗∗)⊤∥F = ∥E− Ẽ∥F∥Ñ∥F

where we use invariance of the Frobenius norm under multiplications by orthogonal matrices. Using
this invariance again, we deduce that

∥N− Ñ∥F = ∥Q(3)(Λ(3) − Λ̃
(3)

)(Q(3))⊤∥F = ∥Λ(3) − Λ̃
(3)

∥F,

∥Ñ∥F = ∥Q(3)Λ̃
(3)

(Q(3))⊤∥F = ∥Λ̃
(3)

∥F.
We conclude that

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤ Trace

(
ẼQ∗∗Ñ(Q∗∗)⊤

)
+∥E∥F∥Λ(3)−Λ̃

(3)
∥F+∥E−Ẽ∥F∥Λ̃

(3)
∥F.

(49)

Next, we apply Lemma A.3 to E = Ê, Λ(3) = Λ̂
(3)

and deduce that

Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
≤

d∑
l=1

Ẽπl,πl
Λ̃

(3)

l,l =

d∑
l=1

(
Eπl,πl

Λ
(3)
l,l +

(
Ẽπl,πl

−Eπl,πl

)
Λ

(3)
l,l

+Ẽπl,πl

(
Λ̃

(3)

l,l −Λ
(3)
l,l

))
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

d∑
l=1

(
Ẽπl,πl

−Eπl,πl

)
Λ

(3)
l,l +

d∑
l=1

Ẽπl,πl

(
Λ̃

(3)

l,l −Λ
(3)
l,l

)

=

d∑
l=1

Eπl,πl
Λ

(3)
l,l +Trace

(
Π(Ẽ−E)Π⊤Λ̃

(3)
)
+Trace

(
ΠẼΠ⊤(Λ̃

(3)
−Λ(3))

)
.

We apply Cauchy-Schwarz inequality again to the second and the third term:

Trace

(
Π(Ẽ−E)Π⊤Λ̃

(3)
)

≤ ∥(Ẽ−E)Π⊤∥F∥Π⊤Λ̃
(3)

∥F = ∥Ẽ−E∥F∥Λ̃
(3)

∥F,

Trace

(
ΠẼΠ⊤(Λ̃

(3)
−Λ(3))

)
≤ ∥ẼΠ⊤∥F∥Π⊤(Λ̃

(3)
−Λ(3))∥F = ∥Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F

where we use invariance of the Frobenius norm under column and row permutations. We conclude
that

Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l + ∥Ẽ−E∥F∥Λ̃

(3)
∥F + ∥Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F.

We combine this inequality with (49) and obtain:

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l +2∥E∥F∥Λ(3)−Λ̃

(3)
∥F+2∥E− Ẽ∥F∥Λ̃

(3)
∥F. (50)

Next, we use triangle inequality and deduce that

∥Λ̃
(3)

∥F ≤ ∥Λ(3)∥F + ∥Λ̃
(3)

−Λ(3)∥F.
Hence, we continue (50):

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3)
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−Λ̃
(3)

∥F + 2∥E− Ẽ∥F
(
∥Λ(3)∥F + ∥Λ̃

(3)
−Λ(3)∥F

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3) − Λ̃

(3)
∥F + 2∥Λ(3)∥F∥E− Ẽ∥F + 2∥E− Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F

≤
d∑

l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3) − Λ̃

(3)
∥F + 2∥Λ(3)∥F∥E− Ẽ∥F + 2∥E∥F∥Λ̃

(3)
−Λ(3)∥F

where in the last transition we use ∥E− Ẽ∥F ≤ ∥E∥F which is according to (47). We continue this
chain of inequalities using (47) again:

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

2

12
δ +

2

12
δ +

2

12
δ =

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

δ

2

<

d∑
l=1

Eπl,πl
Λ

(3)
l,l + δ.

This is a contradiction with (46) taking into account Q∗∗’s definition (48). Hence, (44) is proven.

Let Q∗ be defined as in Lemma A.4’s statement. Further, we denote π(A) = π, Π(A) = Π where
π,Π are defined as in Lemma A.4’s statement. That is, π(A) denotes some permutation which sorts
diagonal entries of E in a non-ascending order. It’s a function of A since E is a function of A defined
in (35). In fact, based on (35), we see that π(A) is some permutation which sorts diagonal entries of
A in a non-descending order. Π(A) denotes a permutation matrix corresponding to π(A). That is,
diagonal entries of Π(A)AΠ(A)⊤ are sorted in a non-descending order.

Let G(A) denote the right hand side of (37) where we substitute Q = Q∗. That is, G(A) is an
optimal value of L(θSDE;X ,Y, TSDE) with A fixed:

G(A) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

− 2

d∑
l=1

Eπ(A)l,π(A)lΛ
(3)
l,l

= log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8Aπ(A)l,π(A)l)

−1
)
Λ

(3)
l,l (51)

where we use E’s definition (35). Let π−1(A) ∈ Nd denote a permutation inverse to π(A). By
rearranging terms in the sum, we have:

d∑
l=1

(
1 + (1− 8Aπ(A)l,π(A)l)

−1
)
Λ

(3)
l,l =

d∑
l=1

(
1 + (1− 8Al,l)

−1
)
Λ

(3)
π−1(A)l,π−1(A)l

.

Therefore, we have:

G(A) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8Al,l)

−1
)
Λ

(3)
π−1(A)l,π−1(A)l

. (52)
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Define a new function G(Â,A), where Â ∈ Dd satisfies 8Â ≺ Id, as follows:

G(Â,A) = log det(Id − 4Â)− 1

2
log det(Id − 8Â) +

d∑
l=1

(1− 8Âl,l)
−1Λ

(3)
π−1(A)l,π−1(A)l

.

By the definition of G(Â,A), we have:

G(A) = G(A,A)− L−1
L∑

i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2 +
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

.

Hence, it holds:

G(A) ≥ inf
Â∈Dd, 8Â≺Id

G(Â,A)−L−1
L∑

i=1

∥x(i)∥2−L−1
L∑

j=1

∥y(j)∥2+
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

. (53)

Next, we show that there is a closed-form expression for the solution of infÂ∈Dd, 8Â≺Id
G(Â,A).

Since Â ∈ Dd, we have: log det(Id − 4Â) =
∑d

l=1 log(1 − 4Âl,l), log det(Id − 8Â) =∑d
l=1 log(1− 8Âl,l). We further have:

G(Â,A) =

d∑
l=1

(
log(1− 4Âl,l)−

1

2
log(1− 8Âl,l) + (1− 8Âl,l)

−1Λ
(3)
π−1(A)l,π−1(A)l

)
. (54)

From (54), we see that minimization infÂ∈Dd, 8Â≺Id
G(Â,A) reduces to d independent minimization

problems with respect to Âl,l such that 8Âl,l < 1. l’th problem, 1 ≤ l ≤ d, is solved using Lemma
A.1 where we set ϕ = Λ

(3)
π−1(A)l,π−1(A)l

. Let A∗∗ ∈ Dd denote the corresponding solution. Then,
for all 1 ≤ l ≤ d, we have:

A∗∗
l,l =

1

16

(
1− 2Λ

(3)
π−1(A)l,π−1(A)l

−
√(

2Λ
(3)
π−1(A)l,π−1(A)l

+ 1
)2

+ 8Λ
(3)
π−1(A)l,π−1(A)l

)
.

(55)

From (53) it follows that

G(A) ≥ G(A∗∗,A)− L−1
L∑

i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2 +
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

= log det(Id − 4A∗∗)− 1

2
log det(Id − 8A∗∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗∗

l,l )
−1
)
Λ

(3)
π−1(A)l,π−1(A)l

. (56)

Denote E∗∗ = − 1
2Id −

1
2 (Id − 8A∗∗)−1. Then we have:

d∑
l=1

(
1 + (1− 8A∗∗

l,l )
−1
)
Λ

(3)
π−1(A)l,π−1(A)l

= −2Trace
(
E∗∗Π(A)−1Λ(3)

(
Π(A)−1

)⊤)
≤ −2

d∑
l=1

E∗∗
π(A∗∗)l,π(A∗∗)l

Λ
(3)
l,l (57)

where the second transition follows from Lemma A.4 and the fact that π(A∗∗) sorts diagonal
entries of A∗∗ in a non-descending order, hence its sorts diagonal entries of E∗∗ in a non-ascending
order (recall the definition of π(A∗∗) and E∗∗). Denote E∗ = Π(A∗∗)E∗∗Π(A∗∗)⊤. Then
E∗∗

π(A∗∗)l,π(A∗∗)l
= E∗

l,l for all 1 ≤ l ≤ d and

d∑
l=1

E∗∗
π(A∗∗)l,π(A∗∗)l

Λ
(3)
l,l =

d∑
l=1

E∗
l,lΛ

(3)
l,l . (58)
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Further, we have:

E∗ = Π(A∗∗)

(
−1

2
Id −

1

2
(Id − 8A∗∗)−1

)
Π(A∗∗)⊤

= −1

2
Id −

1

2
(Id − 8Π(A∗∗)A∗∗Π(A∗∗)⊤)−1

= −1

2
Id −

1

2
(Id − 8A∗)−1

where we denote A∗ = Π(A∗∗)A∗∗Π(A∗∗)⊤, i.e. A∗
l,l = A∗∗

π(A∗∗)l,π(A∗∗)l
for all 1 ≤ l ≤ d.

Given the definition of A∗∗ (55), for all 1 ≤ l ≤ d we have:

A∗
l,l =

1

16

(
1− 2Λ

(3)
l,l −

√(
2Λ

(3)
l,l + 1

)2
+ 8Λ

(3)
l,l

)
. (59)

That is, A∗ is independent of A. Based on (59), we see that smaller values of Λ
(3)
l,l result in

bigger values of A∗
l,l. Since Λ

(3)
1,1, . . . ,Λ

(3)
d,d are ordered in a non-ascending order, we deduce that

A∗
1,1, . . . ,A

∗
d,d are ordered in a non-descending order. By the definition of π(A∗), we then have

A∗
l,l = A∗

π(A∗)l,π(A∗)l
for all 1 ≤ l ≤ d. Therefore,

d∑
l=1

E∗
l,lΛ

(3)
l,l = −1

2

d∑
l=1

(1 + (1− 8A∗
l,l)

−1)Λ
(3)
l,l = −1

2

d∑
l=1

(1 + (1− 8A∗
π(A∗)l,π(A∗)l

)−1)Λ
(3)
l,l .

Combining this with (58), (57), we can continue the chain of inequalities (56):

G(A) ≥ log det(Id − 4A∗∗)− 1

2
log det(Id − 8A∗∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗

π(A∗)l,π(A∗)l
)−1
)
Λ

(3)
l,l

= log det(Id − 4A∗)− 1

2
log det(Id − 8A∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗

π(A∗)l,π(A∗)l
)−1
)
Λ

(3)
l,l = G(A∗) (60)

where in the second transition we use the fact that

det(Id − 4A∗) = det
(
Π(A∗∗)(Id − 4A∗∗)Π(A∗∗)⊤

)
= det (Id − 4A∗∗)

and, similarly, det(Id − 8A∗) = det (Id − 8A∗∗). In the third transition, we use definition of
G(·) (51). Note that (60) holds for all A ∈ Dd such that 8A ≺ Id and also 8A∗ ≺ Id since
8A∗∗ ≺ Id. We conclude that, when B,C, D are chosen optimally with a given A, the minimum
of L(θSDE;X ,Y, TSDE) is reached when A = A∗. As we have already deduced, diagonal entries
of A = A∗ are sorted in the non-descending order. Hence, using Lemma A.4’s notation, diagonal
entries of E are already sorted in a non-ascending sorting order and π = (1, . . . , d), Π = Id satisfy
requirements of the Lemma. Hence, with A = A∗, the optimal B has a form (Id− 4A)1/2Q∗ where
Q∗ = Id(Q

(3))⊤ = (Q(3))⊤. Optimal C and D are further determined by (33). (11) follows from
(60) and the fact that, as discussed above, we can replace π(A∗)l with l in (60), 1 ≤ l ≤ d.

B Additional experimental details

B.1 Compute resources and implementation

We use NumPy [25] in Google Colaboratory the variance comparison and kernel classification
experiment. For the Transformer setups, we use TPU cluster and JAX [7] library. All tested
Transformer variants were trained and tested on a TPU pods containing 4 TPU v3 chips with JAX
and on GPUs (V100).
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B.2 Variance comparison

We repeat the setup of [31] closely: we draw 5 pairs of sets {x(i)}1≤i≤L, {y(j)}1≤j≤L, L = 1024.
On each pair, we compute the relative variance for all pairs of points and for all indicated RF methods.
Further, the shifted log-variance is optimized separately on each pair of sets for GERF, ADERF and
SDERF.

We take M = 1 since M ’s value is not important in this experiment: bigger M would just shift the
curves below. The reported curves are means over all pairs of points and over all 5 sets.

Table 2: Hyperparameters for the base models for pre-training for all methods

Parameter Value

# of heads 12
# of hidden layers 12
Hidden layer size 768
# of tokens 512
Batch size 256
M 256
Pretrain Steps 1M
Loss MLM
Activation layer gelu
Dropout prob 0.1
Attention dropout prob 0.1
Optimizer Adam
Learning rate 10−4

Compute resources 8× 8 TPUv3

Table 3: Dataset used for pre training.

Dataset # tokens Avg. doc len.

Books [54] 1.0B 37K
Wikipedia 3.1B 592

B.3 Kernel classification

As in [31], we obtain training, validation and test splits by shuffling the raw dataset and taking 90%,
5%, 5% objects respectively. The splits are fixed for all RF methods. We tune σ on a logarithmic grid
of 10 values on [10−2, 102]. For each σ and each RF type, we try 50 seeds for drawing RFs during
validation and testing. Testing is performed for the best σ only. Figure 3 reports averages over 50
seeds. We use orthogonal ω’s for all types of RFs as described in [31], since orthogonal random
features work better in practice [16, 31].

B.4 DERFs for long-sequence Transformers

B.4.1 Speech modelling

Our Conformer-Transducer variant was characterized by: 20 conformer layers, model_dim = 512,
relative position embedding dimensionality rped = 512 and h = 8 heads. We used batch size
bs = 2048 and trained with the adam optimizer on TPUs. For the regular Conformer-Transducer
training, we run ablation studies over different number of random features: m = 8,32,128. In the
NST setting, we run experiments with m = 8. We reported commonly used metric: normalized word
error rate (NWER).

B.4.2 Natural language processing

We pretrained BERT model on two publicly available datasets (see: Table 3). Following the original
BERT training, we mask 15% of tokens in these two datasets, and train to predict the mask. All
methods were warm started from exactly the same pre-trained checkpoint after 1M iteration of BERT
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pretraining. We used the exact same hyperparameter-setup for all the baselines (FAVOR++[31],
FAVOR+ [16], ELU [26], ReLU [16]) and FAVOR++. The hyperparameters for pretraining are shown
in Table 2. We finetuned on GLUE task, warm-starting with the weights of the pretrained model. The
setup is analogous to the one from the original BERT paper.

29


	Introduction
	Prerequisites
	Scaled softmax kernel and random features
	Random features for efficient Transformers
	Existing random features for the softmax kernel

	Dense-exponential random features (DERFs)
	The objective minimized by GERFs

	Towards DERFs
	Asymmetric dense-exponential random features
	Symmetric dense-exponential random features
	Simplified ADERFs

	Experiments
	Variance comparison
	Kernel classification
	DERFs for long-sequence Transformers
	Speech modelling
	Natural language processing


	Conclusion
	Acknowledgements
	Proofs
	Proof of Theorem 4.1
	Important lemma
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Additional experimental details
	Compute resources and implementation
	Variance comparison
	Kernel classification
	DERFs for long-sequence Transformers
	Speech modelling
	Natural language processing



