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Abstract

Given a set of points of interest, a volumetric spanner is a subset of the points using1

which all the points can be expressed using “small” coefficients (measured in an2

appropriate norm). Formally, given a set of vectors X = {v1, v2, . . . , vn}, the goal3

is to find T ⊆ [n] such that every v ∈ X can be expressed as
∑

i∈T αivi, with ∥α∥4

being small. This notion, which has also been referred to as a well-conditioned5

basis, has found several applications, including bandit linear optimization, deter-6

minant maximization, and matrix low rank approximation. In this paper, we give7

almost optimal bounds on the size of volumetric spanners for all ℓp norms, and8

show that they can be constructed using a simple local search procedure. We then9

show the applications of our result to other tasks and in particular the problem of10

finding coresets for the Minimum Volume Enclosing Ellipsoid (MVEE) problem.11

1 Introduction12

In many applications in machine learning and signal processing, it is important to find the right13

“representation” for a collection of data points or signals. As one classic example, in the column14

subset selection problem (used in applications like feature selection, [Boutsidis et al., 2008]), the goal15

is to find a small subset of a given set of vectors that can represent all the other vectors via linear16

combinations. In the sparse coding or problem, the goal is to find a basis or dictionary under which a17

collection of vectors admit a sparse representation (see [Olshausen and Field, 1997]).18

In this paper, we focus on finding “bases” that allow us to represent a given set of vectors using19

small coefficients. A now-classic example is the notion of an Auerbach basis. Auerbach used an20

extremal argument to prove that for any compact subset X of Rd, there exists a basis of size d (that is21

a subset of X) such that every v ∈ X can be expressed as a linear combination of the basis vectors22

using coefficients of magnitude ≤ 1 (see, e.g., [Lindenstrauss and Tzafriri, 2013]). This notion was23

rediscovered in the ML community in the well-known work of Awerbuch and Kleinberg [2008],24

and subsequently in papers that used such a basis as directions of exploration in bandit algorithms.25

The term barycentric spanner has been used to refer to Auerbach bases. More recently, the paper26

of Hazan et al. [2013] introduced an ℓ2 version of barycentric spanners, which they called volumetric27

spanners, and use them to obtain improved bandit algorithms.28

The same notion has been used in the literature on matrix sketching and low rank approximation,29

where it has been referred to as a “well-conditioned basis” (or a spanning subset); see Dasgupta et al.30

[2009]. These works use well conditioned bases to ensure that every small norm vector (in some31

normed space) can be expressed as a combination of the vectors in the basis using small coefficients.32

Woodruff and Yasuda [2023] used the results of [Todd, 2016] and [Kumar and Yildirim, 2005] on33

minimum volume enclosing ellipsoids (MVEE) to show the existence of well conditioned spanning34

subset of size O(d log log d). (Note that this bound was already superseded by the work of Hazan35

et al. [2013], who used different techniques.)36
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Our main contribution in this paper is showing that a simple local search algorithm yields volumetric37

spanners with parameters that improve both lines of prior work Hazan et al. [2013] and Woodruff38

and Yasuda [2023]. Our arguments also allow us to study the case of having a general ℓp norm39

bound on the coefficients. Thus, we obtain a common generalization with the results of Awerbuch40

and Kleinberg [2008] on barycentric spanners (which correspond to the case p = ∞). Woodruff41

and Yasuda [2023] also showed a range of low-rank approximation problems (in offline and online42

regimes) for which well-conditioned spanning subsets are useful, and our result can be plugged in to43

obtain improvements in these settings.44

One application we highlight is the following. Volumetric spanners turn out to be closely related45

to another well-studied problem, that of finding the minimum volume enclosing ellipsoid (MVEE)46

for a given set of points, or more generally, for a given convex body K. This is a classic problem47

in geometry [Welzl, 1991, Khachiyan and Todd, 1990]. The celebrated result of Fitz John (e.g., see48

[Ball, 1992]) characterized the optimal solution for general K. Computationally, the MVEE can49

be computed using a semidefinite programming relaxation [Boyd et al., 2004], and more efficient50

algorithms have subsequently been developed; see [Cohen et al., 2019]. Coresets for MVEE (de-51

fined formally below) were used to construct well-conditioned spanning subsets in the recent work52

of Woodruff and Yasuda [2023]. We give a result in the opposite direction, and show that the local53

search algorithm for finding well-conditioned spanning sets can be used to obtain a coreset of size54

O(d/ϵ). This quantitatively improves upon prior work, as we now discuss.55

We now present our results in detail.56

1.1 Our Results57

We start with some notation. Suppose X = {v1, v2, . . . , vn} is a set of vectors in Rd. We say that a58

subset S ⊆ [n] is a volumetric spanner [Hazan et al., 2013] or a well-conditioned spanning subset59

[Woodruff and Yasuda, 2023], if for all j ∈ [n], we can write vj =
∑

i∈S αivi, with ∥α∥2 ≤ 1. More60

generally, we will consider the setting in which we are given parameters c, p, and we look to satisfy61

the condition ∥α∥p ≤ c (refer to Section 2) for a formal definition.62

Our main results here are the following.63

Volumetric spanners via local search. For the ℓ2 case, we show that there exists a volumetric64

spanner as above with |S| ≤ 3d. Moreover, it can be found via a single-swap local search procedure65

(akin to ones studied in the context of determinant maximization Madan et al. [2019]). This improves66

on the constructions of Hazan et al. [2013], Woodruff and Yasuda [2023] in terms of the size of67

S obtained. Our result is also simpler, without relying on spectral sparsification or coresets for68

minimum volume ellipsoids.69

General p norms. For the case of general ℓp norms, we show that a local search algorithm can still70

be used to find the near-optimal sized volumetric spanners. However, the optimal size exhibits three71

distinct behaviors:72

• For p = 1, we show that there exist sets X of size n = exp(d) for which any ℓ1 volumetric73

spanner of strictly smaller than n can only achieve ∥α∥1 = Ω̃(
√
n).74

• For p ∈ (1, 2), we show that ℓp volumetric spanners that can achieve ∥α∥p ≤ 1 exist, but75

require |S| = Ω
(
d

p
2p−2

)
. For strictly smaller sized S, we show a lower bound akin to the76

one above for p = 1.77

• For p > 2, an ℓp volumetric spanner (achieving ∥α∥p ≤ 1) of size 3d exists trivially because78

of the corresponding result for p = 2.79

Our results show that one-swap local search yields near-optimal sized volumetric spanners for all ℓp80

norms.81

Coresets for MVEE. While well-conditioned spanning subsets have several applications [Woodruff82

and Yasuda, 2023], we highlight one in particular as it is a classic problem. Given a symmetric83

convex body K, the minimum volume enclosing ellipsoid (MVEE) of K, denoted MVEE(K), is84

defined as the ellipsoid E that satisfies E ⊃ K, while minimizing vol(E). We show that for any K,85

there exists a subset S of O
(
n
ϵ

)
points of K, such that86

vol(MVEE(K)) ≤ (1 + ϵ)d · vol(MVEE(S)).
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We define such a set S to be a coreset, and while it is weaker than notions of coresets considered for87

other problems (see the discussion in Section 2.1), it is the one used in the earlier works of Todd88

[2016], Kumar and Yildirim [2005]. We thus improve the size of the best known coreset constructions89

for this fundamental problem, indeed, by showing that a simple local search yields the desired coreset.90

Other applications. Our result can be used as a black-box to improve other results in the recent91

work of Woodruff and Yasuda [2023], such as entrywise Huber low rank approximation, average92

top k subspace embeddings and cascaded norm subspace embeddings and oblivious ℓp subsapce93

embdeddings. In particular, we show that the local search algorithm provides a simple existential94

proof of oblivious ℓp subsapce embdeddings for all p > 1. In this application, the goal is to find a95

small size “spanning subset” of a whole subspace of points (i.e., given a matrix A, the subspace is96

{x|∥Ax∥p = 1}), rather than a finite set. Our results for oblivious ℓp subsapce embdedding improves97

the bounds of non-constructive solution of Woodruff and Yasuda [2023] by shaving a factor of98

log log d in size.99

1.2 Related work100

In the context of dealing with large data sets, getting simple algorithms based on greedy or local101

search strategies has been a prominent research direction. A large number of works have been102

on focusing to prove theoretical guarantees for these simple algorithms (e.g. [Madan et al., 2019,103

Altschuler et al., 2016, Mahabadi et al., 2019, Civril and Magdon-Ismail, 2009, Mirzasoleiman et al.,104

2013, Anari and Vuong, 2022]). Our techniques are inspired by these works, and contribute to this105

literature.106

More broadly, with the increasing amounts of available data, there has been a significant amount107

of work on data summarization, where the goal is to find a small size set of representatives for a108

data set. Examples include column subset selection [Boutsidis et al., 2009, Deshpande and Vempala,109

2006], subspace approximation [Achlioptas and McSherry, 2007], projective clustering [Deshpande110

et al., 2006, Agarwal and Mustafa, 2004], determinant maximization [Civril and Magdon-Ismail,111

2009, Gritzmann et al., 1995, Nikolov, 2015], experimental design problems [Pukelsheim, 2006],112

sparsifiers [Batson et al., 2009], and coresets [Agarwal et al., 2005], which all have been extensively113

studied in the literature. Our results on coresets for MVEE are closely related to a line of work114

on contact points of the John Ellipsoid (these are the points at which an MVEE for a convex body115

touches the body). Srivastava [2012], improving upon a work of Rudelson [1997], showed that any116

convex K in Rd can be well-approximated by another body K ′ that has at most O
(

d
ϵ2

)
contact points117

with its corresponding MVEE (and is thus “simpler”). While this result implies a coreset for K, it118

has a worse dependence on ϵ than our results.119

2 Preliminaries and Notation120

Definition 2.1 (ℓp-volumetric spanner). Given a set of n ≥ d vectors {vi}i∈[n] ⊂ Rd and p ≥ 1, a121

subset of vectors indexed by S ⊂ [n] is an c-approximate ℓp-volumetric spanner of size |S| if for122

every j ∈ [n], vj can be written as vj =
∑

i∈S αivi where ∥α∥p ≤ c.123

In particular, when c = 1 the set is denoted as an ℓp-volumetric spanner of {v1, · · · , vn}.124

Determinant and volume. For a set of vectors {v1, v2, . . . , vd} ∈ Rd, det
(∑d

i=1 viv
T
i

)
is equal to125

the square of the volume of the parallelopiped formed by the vectors v1, v2, . . . , vd with the origin.126

The determinant maximization problem is defined as follows. Given n vectors v1, v2, . . . , vn ∈ Rd,127

and a parameter k, the goal is to find S ⊆ [n] with |S| = k, so as to maximize det
(∑

i∈S viv
T
i

)
. In128

this paper, we will consider the case when k ≥ d.129

Fact 2.2 (Cauchy-Binet formula). Let v1, · · · , vn ∈ Rd, with n ≥ d. Then130

det

(
n∑

i=1

viv
T
i

)
=

∑
S⊂[n],|S|=d

det

(∑
i∈S

viv
T
i

)
Lemma 2.3 (Matrix Determinant Lemma). Suppose A is an invertible square matrix and u, v are131

column vectors, then132

det(A+ uvT ) = (1 + vTA−1u) det(A).
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Lemma 2.4 (Sherman-Morrison formula). Suppose A is an invertible square matrix and u, v are133

column vectors. Then, A+ uv⊤ is invertible iff 1 + v⊤A−1u ̸= 0. In this case,134

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

We will also use the following inequality, which follows from the classic Hölder’s inequality.135

Lemma 2.5. For any 1 ≤ p ≤ q and x ∈ Rn, ∥x∥p ≤ n1/p−1/q∥x∥q .136

2.1 Coresets for MVEE137

As discussed earlier, for a set of points X ⊂ Rd, we denote by MVEE(X) the minimum volume138

enclosing ellipsoid (MVEE) of X . We say that S is a coreset for MVEE on X if139

vol(MVEE(X)) ≤ (1 + ϵ)d · vol(MVEE(S)).

Strong vs. weak coresets. The notion above agrees with prior work, but it might be more natural (in140

the spirit of strong coresets considered for problems such as clustering; see, e.g., Cohen-Addad et al.141

[2021]) to define a coreset as a set S such that for any E ⊃ S, (1 + ϵ)E ⊃ X . Indeed, this guarantee142

need not hold for the coresets we (and prior work) produce. An example is shown in Figure 1.143

Figure 1: Suppose X is the set of all points (blue and black), and let S be the set of black points.
While MVEE(X) = MVEE(S), there can be ellipsoids like the one in red, that contain S but not X
even after scaling up by a small constant.

3 Local Search Algorithm for Volumetric Spanners144

We will begin by describing simple local search procedures LocalSearch-R and LocalSearch-NR.145

The former allows “repeating” vectors (i.e., choosing vectors that are already in the chosen set), while146

the latter does not.147

LocalSearch-NR will be used for constructing well-conditioned bases, and LocalSearch-R will be148

used to construct coresets for the minimum volume enclosing ellipsoid problem.149

Algorithm 1 Procedure LocalSearch-NR

1: Input: Set of vectors {v1, v2, . . . , vn} ⊆ Rd, parameter δ > 0, integer r ≥ d
2: Output: Set of indices S
3: Initialize S using the greedy procedure described in the text
4: Define M =

∑
i∈S viv

T
i

5: while ∃ i ∈ S and j ∈ [n] \ S such that det(M − viv
T
i + vjv

T
j ) > (1 + δ) det(M) do

6: Set S ← S \ {i} ∪ {j}
7: M ←M − viv

T
i + vjv

T
j

8: Return S

Initialization. The set S is initialized as the output of the standard greedy algorithm for volume150

maximization [Civril and Magdon-Ismail, 2009] running for d iterations, and then augmented with a151

set of (r − d) arbitrary vectors from {v1, . . . , vn}.152

Procedure LocalSearch-R. The procedure LocalSearch-R (where we allow repetitions) is almost153

identical to Algorithm 1. It uses the same initialization, however, the set S that is maintained is now154

a multiset. More importantly, when finding j in the local search step, LocalSearch-R looks over all155

j ∈ [n] (including potentially j ∈ S). Also in this case, removing i from S in Line 6 corresponds to156

removing “one copy” of i.157
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3.1 Running time of Local Search158

We will assume throughout that the dimension of span({v1, v2, . . . , vn}) is d (i.e., the given vectors159

span all of Rd; this is without loss of generality, as we can otherwise restrict to the span).160

The following lemma bounds the running time of local search in terms of the parameters r, δ. We161

note that we only focus on bounding the number of iterations of local search. Each iteration involves162

potentially computing nr determinants, and assuming the updates are done via the matrix determinant163

lemma and the Sherman-Morrison formula, the total time is roughly O(nrd2). This can be large for164

large n, r, and it is one of the well-known drawbacks of local search.165

Lemma 3.1. The number of iterations of the while loop in the procedures LocalSearch-R and166

LocalSearch-NR is bounded by167

O

(
d

δ
· log r

)
.

The proof uses the approximation guarantee of Civril and Magdon-Ismail [2009] on the initialization,168

and is similar to analyses in prior work Kumar and Yildirim [2005]. We defer the details to Section B169

in the supplement.170

3.2 Analysis of Local Search171

We now prove some simple properties of the Local Search procedures. Following the notation172

of Madan et al. [2019], we define the following. Given a choice of S in the algorithm (which defines173

the corresponding matrix M ), let174

τi := vTi M
−1vi, τij := vTi M

−1vj . (1)

Note that τi is often referred to as the leverage score. We have the following (proof in Section B).175

Lemma 3.2. Let v1, . . . , vn ∈ Rd and let S be a (multi-)set of indices in [n]. Define M =
∑

i∈S viv
T
i ,176

and suppose M has full rank. Then,177

•
∑

i∈S τi = d,178

• For any i, j ∈ [n], τij = τji.179

The following key lemma lets us analyze how the determinant changes when we perform a swap.180

Lemma 3.3. Let S be a (multi-)set of indices and let M =
∑

i∈S viv
T
i be full-rank. Let i, j be any181

two indices. We have182

det(M − viv
T
i + vjv

T
j ) = det(M)

[
(1− τi)(1 + τj) + τ2ij

]
.

Remark. Note that the proof will not use any additional properties about i, j. They could be equal to183

each other, and i, j may or may not already be in S.184

Proof. By the matrix determinant lemma (Lemma 2.3),185

det(M + vjv
T
j − viv

T
i ) = det(M + vjv

T
j )(1− vTi (M + vjv

T
j )

−1vi)

= det(M)(1 + vTj M
−1vj)(1− vTi (M + vjv

T
j )

−1vi). (2)

Next, we apply Sherman-Morrison formula (Lemma 2.4) to get186

1− vTi (M + vjv
T
j )

−1vi = 1− vTi

(
M−1 −

M−1vjv
T
j M

−1

1 + vTj M
−1vj

)
vi

= 1− τi +
τ2ij

1 + τj
. (3)

Combining the above two expressions, we get187

det(M + vjv
T
j − viv

T
i ) = det(M)(1 + τj)

[
1− τi +

τ2ij
1 + τj

]
.

Simplifying this yields the lemma.188
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The following lemma shows the structural property we have when the local search procedure ends.189

Lemma 3.4. Let S be a (multi-)set of indices and M =
∑

i∈S viv
T
i as before. Let j ∈ [n], and190

suppose that for all i ∈ S, det(M − viv
T
i + vjv

T
j ) < (1 + δ) det(M). Then we have191

τj <
d+ rδ

r − d+ 1
.

Once again, the lemma does not assume anything about j being in S.192

Proof. First, observe that for any j ∈ [n], we have193 ∑
i∈S

τ2ij =
∑
i∈S

vTj M
−1viv

T
i M

−1vj = vTj M
−1MM−1vj = τj .

Combining this observation with Lemma 3.3 and summing over i ∈ S (with repetitions, if S is a194

multi-set), we have195

(1 + τj)(r −
∑
i∈S

τi) + τj < r(1 + δ).

Now using Lemma 3.2, we get196

(1 + τj)(r − d) + τj < r + rδ,

and simplifying this completes the proof of the lemma.197

Since Lemma 3.4 does not make any additional assumptions about j, we immediately have:198

Corollary 3.5. The following properties hold for the output of the Local search procedures.199

1. For LocalSearch-NR, the output S satisfies: for all j ∈ [n] \ S, τj < d+rδ
r−d+1 .200

2. For LocalSearch-R, the output S satisfies: for all j ∈ [n], τj < d+rδ
r−d+1 .201

3.3 Volumetric Spanners: Spanning Subsets in the ℓ2 Norm202

We use Lemma 3.1 and Corollary 3.5 to obtain the following.203

Theorem 3.6 (ℓ2-volumetric spanner). For any set X = {v1, v2, . . . , vn} of n ≥ d vectors in Rd204

and parameter r ≥ d, LocalSearch-NR outputs a (max{1,
(

d+rδ
r−d+1

)1/2
)-approximate ℓ2-volumetric205

spanner of X of size r in O(dδ log r) iterations of Local Search.206

In particular, setting r = 3d and δ = 1/3, LocalSearch-NR returns an ℓ2-volumetric spanner of size207

3d in O(d log d) iterations of Local Search.208

Proof. Let S be the output of LocalSearch-NR with the parameters r, δ on X . Let U be the matrix209

whose columns are {vi : i ∈ S}. We show how to express any vj ∈ X as Uα, where α ∈ Rr is a210

coefficient vector with ∥α∥2 being small.211

For any j ∈ S, vj can be clearly written with α being a vector that is 1 in the row corresponding to vj212

and 0 otherwise, thus ∥α∥ = 1. For any j ̸∈ S, by definition, the solution to Uα = vj is α = U†vj ,213

where U† is the Moore-Penrose pseudoinverse. Thus, we have214

∥α∥22 = vTj (U
†)TU†vj = vTj (UUT )−1vj = τj .

Here we are using standard properties of the pseudoinverse. (These can be proved easily using the215

SVD). Hence, by Corollary 3.5, we have ∥α∥2 ≤
(

d+rδ
r−d+1

)1/2
.216

3.4 Spanning Subsets in the ℓp Norm217

We now extend our methods above for all ℓp-norms, for p ∈ [1,∞). As outlined in Section 1.1, we218

see three distinct behaviors. We begin now with the lower bound for p = 1.219
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ℓ1-volumetric spanner. For the case p = 1, we show that small sized spanning subsets do not exist220

for non-trivial approximation factors.221

Our construction is based on “almost orthogonal” sets of vectors.222

Lemma 3.7. There exists a set of m = exp(Ω(d)) unit vectors v1, . . . , vm ∈ Rd such that for every223

pair of i, j ∈ [m], |⟨vi, vj⟩| ≤ c
√

logm
d for some fixed constant c.224

An example construction of almost orthogonal vectors is a collection of random vectors where each225

coordinate of each vector is picked uniformly at random from { 1√
d
, −1√

d
} (e.g., see [Dasgupta et al.,226

2009]).227

Theorem 3.8 (Lower bound for ℓ1-volumetric spanners). For any n ≤ exp(Ω(d)), there exists a set228

of n vectors in Rd that has no o(
√

d
logn )-approximate ℓ1-volumetric spanner of size at most n− 1.229

In other words, unless the spanning subset contains all vectors, it is not possible to get an ℓ1-volumetric230

spanner with approximation factor o(
√

d
logn ).231

Proof. Let X = {v1, . . . , vn} be a set of n almost orthonormal vectors as in Lemma 3.7. Suppose232

for the sake of contradiction, that there exists a spanning subset indexed by S that is a strict subset of233

[n]. Note that for every i ∈ [n] \ S and j ∈ S, |⟨vi, vj⟩| ≤ c
√

logn
d . So, for any representation of vi234

in terms of vectors in S, i.e., vi =
∑

j∈S αjvj ,235

1 = ⟨vi, vi⟩ =
∑
j∈S

αj⟨vi, vj⟩ ≤ ∥α∥1 · c
√

log n

d
.

Hence, ∥α∥1 ≥ 1
c

√
d

logn , as long as |S| < n.236

Note that the lower bound nearly matches the easy upper bound that one obtains from ℓ2 volumetric237

spanners (Theorem 3.6), described below:238

Corollary 3.9. For any set of vectors X = {v1, v2, . . . , vn}, an ℓ2-volumetric spanner is also a239

2
√
d-approximate ℓ1-volumetric spanner. Consequently, such a spanner of size O(d) exists and can240

be found in O(d log d) iterations of Local Search.241

The proof follows from the fact that if ∥α∥2 ≤ 1, ∥α∥1 ≤
√
3d, for α ∈ R3d (which is a consequence242

of the Cauchy-Schwarz inequality). Note that the existence and construction of an ℓ2 volumetric243

spanner of size 3d was shown in Theorem 3.6.244

ℓp-volumetric spanner for p ∈ (1, 2). Next, we apply the same argument as above for the case245

p ∈ (1, 2). Here, we see that the lower bound is not so strong: one can obtain a trade-off between246

the size of the spanner and the approximation. Once again, the solution returned by LocalSearch-NR247

is an almost optimal construction for spanning subsets in the ℓp norm. The proofs are deferred to248

Section B of the Supplement.249

Theorem 3.10 (Lower bound for ℓp-volumetric spanners for p ∈ (1, 2)). For any value of n ≤ eΩ(d)250

and 1 < p < 2, there exists a set of n vectors in Rd that has no o(r
1
p−1 · ( d

logn )
1
2 )-approximate251

ℓp-volumetric spanner of size at most r.252

In particular, a (1-approximate) ℓp-volumetric spanner of V , has size Ω(( d
logn )

p
2p−2 ).253

Next, we show that local search outputs almost optimal ℓp-volumetric spanners.254

Theorem 3.11 (Construction of ℓp-volumetric spanners for p ∈ (1, 2)). For any set of vectors255

X = {v1, v2, . . . , vn} ⊂ Rd and p ∈ (1, 2), LocalSearch-NR outputs an O(r
1
p−1 · d 1

2 )-approximate256

ℓp-volumetric spanner of X of size r.257

In particular, the local search algorithm outputs a 1-approximate ℓp-volumetric spanner when258

r = O(d
p

2p−2 ).259
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ℓp-volumetric spanner for p > 2. The result for p > 2 simply follows from the results for ℓ2-norm260

and the fact that ∥x∥p ≤ ∥x∥2 for any p ≥ 2 when ∥x∥2 ≤ 1.261

Corollary 3.12 (ℓp-volumetric spanner for p > 2). For any set of n vectors X = {v1, v2, . . . , vn} ⊂262

Rd, LocalSearch-NR outputs a 1-approximate ℓp-volumetric spanner of X of size r = 3d in263

O(dδ log d) iterations of Local Search.264

4 Applications of Local Search and Volumetric Spanners265

We now give an application of our Local Search algorithms and volumetric spanners to the problem266

of finding coresets for the MVEE problem. For other applications, please see Section A.267

Definition 4.1 (Minimum volume enclosing ellipsoid (MVEE)). Given a set of points X =268

{v1, v2, . . . , vn} ⊆ Rd, define E(X) to be the ellipsoid of the minimum volume containing the269

points X ∪ (−X), where (−X) := {−v : v ∈ X}.270

While the MVEE problem is well-defined for general sets of points, we are restricting to sets that are271

symmetric about the origin. It is well-known (see Todd [2016]) that the general case can be reduced272

to the symmetric one. Thus for any X , E(X) is centered at the origin. Since E is convex, one can273

also define E(X) to be the ellipsoid of the least volume containing conv(±v1,±v2, . . . ,±vn), where274

conv(·) refers to the convex hull.275

As defined in Section 2.1, a coreset is a subset of X that preserves the volume of the MVEE.276

Theorem 4.2. Consider a set of vectors X = {v1, · · · , vn} ⊂ Rd. Let S be the output of the277

algorithm LocalSearch-R on X , with278

r =

(
1 +

4

ϵ

)
d, δ =

ϵd

4r
. (4)

Then S is a coreset for the MVEE problem on X .279

To formulate the MVEE problem, recall that any ellipsoid E can be defined using a positive semidefi-280

nite (PSD) matrix H , as281

E = {x : xTHx ≤ d},
and for E defined as such, we have vol(E) = det(H−1), up to a factor that only depends on the282

dimension d (i.e., is independent of the choice of the ellipsoid). Thus, to find E , we can consider the283

following optimization problem.284

(MVEE) : min − ln det(H) subject to

vTi Hvi ≤ d ∀i ∈ [n],

H ⪰ 0.

It is well known (e.g., Boyd et al. [2004]) that this is a convex optimization problem. For any λ ∈ Rn285

with λi ≥ 0 for all i ∈ [n], the Lagrangian for this problem can be defined as:286

L(H;λ) = − ln det(H) +
∑
i∈[n]

λi(v
T
i Hvi − d).

Let OPT be the optimal value of the problem MVEE defined above. For any λ with non-negative287

coordinates, we have288

OPT ≥ min
H
L(H;u),

where the minimization is over the feasible set for MVEE; this is because over the feasible set, the289

second term the definition of L(H;λ) is ≤ 0. We can then remove the feasibility constraint, and290

conclude that291

OPT ≥ min
H⪰0
L(H;λ),
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as this only makes the minimum smaller. For any given λ with non-negative coordinates, the292

minimizing H can now be found by setting the derivative to 0,293

−H−1 +
∑
i∈[n]

uiviv
T
i = 0 ⇐⇒ H =

(∑
i

λiviv
T
i

)−1

.

There is a mild technicality here: if λ is chosen such that
∑

i λiviv
T
i is not invertible, then294

minH⪰0(H;λ) = −∞. We will only consider u for which this is not the case.295

Thus, we have that for any λ with non-negative coordinates for which
∑

i λiviv
T
i is invertible,296

OPT ≥ ln det

(∑
i

λiviv
T
i

)
+ d− d

∑
i

ui. (5)

We are now ready to prove Theorem 4.2 on small-sized coresets.297

Proof. Let X = {v1, v2, . . . , vn} be the set of given points, and let S be the output of the algorithm298

LocalSearch-R on X , with r, δ chosen later in (4). By definition, S is a multi-set, and we define T to299

be its support, supp(S). We prove that T is a coreset for the MVEE problem on X .300

To do so, define OPTX and OPTT to be the optimum values of the optimization problem MVEE301

defined earlier on sets X and T respectively. Since the problem on T has fewer constraints, we have302

OPTT ≤ OPTX , and thus we focus on showing that OPTX ≤ (1 + ϵ)d+ OPTT . This will imply303

the desired bound on the volumes.304

Let S be the multi-set returned by the algorithm LocalSearch-R, and let M :=
∑

i∈S viv
T
i . Define305

λi = ni/r, where ni is the number of times i appears in S. By definition, we have that
∑

i∈[n] λi = 1.306

Further, if we define H := (
∑

i∈[n] λiviv
T
i )

−1, we have H−1 = 1
r ·M .307

Now, using Corollary 3.5, we have that for all j ∈ [n],308

vTj M
−1vj <

d+ rδ

r − d+ 1
=⇒ vTj Hvj <

r(d+ rδ)

r − d+ 1
= d

(
1 +

d− 1

r − d+ 1

)(
1 +

rδ

d

)
.

Our choice of parameters will be such that both the terms in the parentheses are (1 + ϵ/4). For this,309

we can choose r, δ as in (4).310

Thus, we have that H ′ = H
(1+ϵ) is a feasible solution to the optimization problem MVEE on X . This311

gives us that OPTX ≤ (1 + ϵ)d− ln det(H).312

Next, using the fact that the ui are supported on T = supp(S), we can use (5) to conclude that313

OPTT ≥ ln det(H−1) = − ln det(H), where we also used the fact that
∑

i λi = 1.314

Together, these imply that OPTX ≤ (1 + ϵ)d+ OPTT , as desired.315

5 Conclusion316

We show that a one-swap local search procedure can be used to obtain an efficient construction of317

volumetric spanners, also known as well-conditioned spanning subsets. This improves (and simplifies)318

two lines of work that have used this notion in applications ranging from bandit algorithms to matrix319

sketching and low rank approximation. We then show that the local search algorithm also yields320

nearly tight results for an ℓp analog of volumetric spanners. Finally, we obtain O(d/ϵ) sized coresets321

for the classic problem of minimum volume enclosing ellipsoid, improving previous results by a322

d log log d term.323
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A Other Applications of Volumetric Spanners399

We now show some direct applications of our construction of volumetric spanners.400

A.1 Oblivious ℓp Subspace Embeddings401

Oblivious subspace embeddings (OSEs) are a well studied tool in matrix approximation, where the402

goal is to show that there exist sketching matrices that preserve the norm (say the ℓp norm) of all403

vectors in an unknown subspace with high probability. The constructions and analyses of OSEs rely404

on the existence of a well-conditioned spanning set for the vectors of interest. The following follows405

directly from Theorem 3.6 (note that we are only using our result for ℓ2).406

Theorem A.1 (Improvement of Theorem 1.11 in [Woodruff and Yasuda, 2023]). Let p ∈ (1,∞) and407

let A ∈ Rn×d. There exists a matrix R ∈ Rd×s for s = 3d such that ∥ARei∥p = 1 for every i ∈ [s],408

and for every x ∈ Rd, ∥Ax∥p = 1, there exists a y ∈ Rs such that Ax = ARy and ∥y∥2 ≤ 1.409

The Theorem follows by considering the set410

X = {Ax : ∥Ax∥p = 1},
and considering a well conditioned spanning subset in the ℓ2 norm. Theorem 3.6 shows the existence411

of such a subset with s = 3d, thus the theorem follows.412

However, note that the proof is non-constructive. In order to make it efficient, we need to show that413

the local search procedure can be implemented efficiently. For p ≥ 2, this may be possible via the414

classic result of Kindler et al. [2010] on ℓp variants of the Gröthendieck inequality, but we note that415

the applications in [Woodruff and Yasuda, 2023] require only the existential statement.416

A.2 Entrywise Huber Low Rank Approximation417

The Huber loss is a classic method introduced as a robust analog to least squares error. There has418

been a lot of work on finding low rank approximations to a matrix where the goal is to minimize419

the entry-wise Huber loss. The following slightly improves upon the work of Woodruff and Yasuda420

[2023].421

Theorem A.2. Let A ∈ Rn×d and let k ≥ 1. There exists a polynomial time algorithm that outputs a422

subset S ⊂ [d] of columns in A of size O(k log d) and X ∈ RS×d such that423

∥A−A|SX∥H ≤ O(k) min
rank(Ak)≤k

∥A−Ak∥H ,

where A|S denotes the matrix whose columns are the columns of A indexed by S and ∥ · ∥H denotes424

the entrywise Huber loss.425

Note that the size of S is reduced from O(k log log k log d) to O(k log d). The proof of Theorem A.2426

follows from Theorem 1.6 in [Woodruff and Yasuda, 2023] and our improved construction for427

ℓ2-volumetric spanner, i.e., O(1)-approximate spanning subset of size O(d) (see Theorem 3.6).428

A.3 Average Top k Subspace Embedding429

For a given vector v ∈ Rn, the average top k loss is defiend as430

∥v∥ATk
:=

1

k

∑
i∈[k]

|v[i]|,

where vi denotes the ith largest coordinate in v.431

Using the results of [Woodruff and Yasuda, 2023] relating the problem of average top k subspace432

embedding to ℓ2-volumetric spanners as a black-box, we have the following theorems for small k433

(i.e., k ≤ 3d) and large k (i.e., k > 3d) respectively.434

Theorem A.3 (small k). Let A ∈ Rn×d and let k ≤ 3d. There exists a set S ⊂ [n] of size O(d) such435

that for all x ∈ Rd,436

∥A|Sx∥ATk
≤ ∥Ax∥ATk

≤ O(
√
kd) · ∥A|Sx∥ATk

,

where A|S denotes the set of rows in A indexed by S.437
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Theorem A.4 (large k). Let A ∈ Rn×d and let k ≥ k0 where k0 = O(d+ 1
δ ). Let P1, . . . , P k

t
be a438

random partition of [n] into k
t groups where t = O(d+ log 1

δ ). For every i ∈ [kt ], there exists a set439

Si ⊂ Ni of size O(d) such that with probability at least 1− δ, for all x ∈ Rd,440

∥A|Sx∥ATk
≤ ∥Ax∥ATk

≤ O(
√
td) · ∥A|Sx∥ATk

,

where S :=
⋃

i∈[ kt ]
Si and A|S denotes the set of rows in A indexed by S.441

In both regimes, compared to the results of [Woodruff and Yasuda, 2023], our improved bounds442

ℓ2-volumetric spanner saves a factor of log log d in the number of rows and a factor of
√
log log d443

in the distortion. The proofs of above theorems respectively follows from Theorem 3.11 and 3.12444

of [Woodruff and Yasuda, 2023] together with our Theorem 3.6.445

A.4 Cascaded Norm Subspace Embedding446

Next, we explore the implications of the improved bound of ℓ2-volumetric spanner (i.e., Theorem 3.6)447

for embedding a subspace of matrices under (∥∥∞, ∥∥)-cascaded norm, which first evaluates an448

arbitrary norm of the rows and then return the maximum value over the n rows.449

The following is a consequence of Theorem 3.13 in [Woodruff and Yasuda, 2023] and our Theorem 3.6.450

We describe our result for the (∥∥∞, ∥∥)-cascaded norm, which first evaluates an arbitrary norm of451

rows and then return the maximum value over the n rows.452

Theorem A.5 ((∥∥∞, ∥∥)-subspace embedding). Let A ∈ Rn×d and let ∥∥ be any norm on Rm.453

There exists a set S ⊂ [n] of size at most 3d such that for every X ∈ Rd×m,454

∥A|SX∥(∥∥∞,∥∥) ≤ ∥AX∥(∥∥∞,∥∥) ≤ O(
√
d)∥A|SX∥(∥∥∞,∥∥)

B Missing Proofs455

B.1 Proof of Lemma 3.1456

Proof. In every iteration of the while loop, the determinant of the maintained M increases by at least457

a (1 + δ) factor. Thus, suppose we define S∗ to be the (multi-)set of [n] that maximizes det(M∗),458

where M∗ :=
∑

i∈S∗ viv
T
i . We claim that for the S used by the algorithm at initialization (and the459

corresponding M ), we have460

det(M∗) ≤
(
r

d

)
d! · det(M). (6)

This follows from two observations. First, let T ∗ be the (multi-)set of [n] that has size exactly d, and461

maximizes det(
∑

i∈T∗ viv
T
i ). Indeed, such a set will not be a multi-set, as a repeated element will462

reduce the rank. From the bound of Civril and Magdon-Ismail [2009], we have that at initialization,463

M satisfies464

det(
∑
i∈T∗

viv
T
i ) ≤ d! · det(M).

Next, by the Cauchy-Binet formula, we can decompose det(M∗) into a sum over sub-determinants of465

d-sized subsets of the columns. Thus there are
(
r
d

)
terms in the summation. Each such sub-determinant466

is at most det(
∑

i∈T∗ viv
T
i ), as T ∗ is the maximizer. This proves (6).467

Next, since the determinant increases by a factor (1 + δ) in every iteration, the number of iterations468

is at most469

O

(
1

δ

)
· [d log d+ d log(er/d)] ,

where we have used the standard bound of
(
r
d

)
≤
(
er
d

)d
. This completes the proof.470

13



B.2 Proof of Lemma 3.2471

Proof. Note that the second part follows from the symmetry of M (and thus also M−1). To see the472

first part, note that we can write vTi M
−1vi = ⟨M−1, viv

T
i ⟩, where ⟨U, V ⟩ refers to the entry-wise473

inner product between matrices U, V , which also equals Tr(UTV ). Using this,474 ∑
i∈S

τi =
∑
i∈S

⟨M−1, viv
T
i ⟩ = ⟨M−1,M⟩ = Tr(I) = d.

In the last equality, we used the symmetry of M .475

B.3 Proof of Theorem 3.10476

Proof. The proof follows from the same argument as before. Consider a set of n > r almost477

orthonormal vectors X = {v1, · · · , vn} ⊂ Rd from Lemma 3.7.478

Consider an index i ∈ [n] \ S and let vi =
∑

j∈S αjvj . By Lemma 2.5, for any p > 1,479

∥α∥p ≥ r
1
p−1 · ∥α∥1 = r

1
p−1 · 1

c

(
d

log n

) 1
2

.

In particular, to get a 1-approximate ℓp-volumetric spanner, i.e., ∥α∥p = 1, the spanning subset must480

have size r = Ω(( d
logn )

p
2p−2 ).481

B.4 Proof of Theorem 3.11482

Proof. By Corollary 3.5, the local search outputs a set of vectors in X indexed by the set S ⊂ [n] of483

size r > d such that for every i ∈ [n] \ S, vi can be written as a linear combination of the vectors in484

the spanner, vi =
∑

j∈S αjvj , such that ∥α∥2 ≤
(

d+rδ
r−d+1

) 1
2

. By Lemma 2.5 and setting δ = d/r,485

for any 1 < p < 2,486

∥α∥p ≤ r
1
p−

1
2 ·
(

d+ rδ

r − d+ 1

) 1
2

= O(r
1
p−1 · (d+ rδ)

1
2 ) = O(r

1
p−1 · d 1

2 ).

In particular, if we set r = O(d
p

2−2p ), the subset of vectors S returned by LocalSearch-NR is an487

(exact) ℓp-volumetric spanner; i.e., for every i ∈ [n] \ S, ∥α∥p ≤ 1.488

Finally, the runtime analysis follows immediately from Lemma 3.1.489
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